
CSE 153

Design of Operating

Systems

Fall 18

Lecture 11: Page Replacement

CSE 153 – Lecture 11 – Page Replacement 2

Mapped Files

Mapped files enable processes to do file I/O using

loads and stores

◆ Instead of “open, read into buffer, operate on buffer, …”

Bind a file to a virtual memory region (mmap() in Unix)

◆ PTEs map virtual addresses to physical frames holding file data

◆ Virtual address base + N refers to offset N in file

Initially, all pages mapped to file are invalid

◆ OS reads a page from file when invalid page is accessed

◆ OS writes a page to file when evicted, or region unmapped

◆ If page is not dirty (has not been written to), no write needed

» Another use of the dirty bit in PTE

CSE 153 – Lecture 11 – Page Replacement 3

Memory Management

Memory management systems

◆ Physical and virtual addressing; address translation

◆ Techniques: Partitioning, paging, segmentation

◆ Page table size, TLBs, VM tricks

Policies

◆ Page replacement algorithms (3)

CSE 153 – Lecture 11 – Page Replacement 5

Demand Paging (OS)

We use demand paging (similar to other caches):

◆ Pages loaded from disk when referenced

◆ Pages may be evicted to disk when memory is full

◆ Page faults trigger paging operations

What is the alternative to demand paging?

◆ Some kind of prefetching

Lazy vs. aggressive policies in systems

CSE 153 – Lecture 11 – Page Replacement 6

Demand Paging (Process)

Demand paging when a process first starts up

When a process is created, it has

◆ A brand new page table with all valid bits off

◆ No pages in memory

When the process starts executing

◆ Instructions fault on code and data pages

◆ Faulting stops when all necessary code and data pages are in

memory

◆ Only code and data needed by a process needs to be loaded

◆ This, of course, changes over time…

CSE 153 – Lecture 11 – Page Replacement 7

Page Replacement

When a page fault occurs, the OS loads the faulted page

from disk into a page frame of memory

At some point, the process has used all of the page

frames it is allowed to use

◆ This is likely (much) less than all of available memory

When this happens, the OS must replace a page for each

page faulted in

◆ It must evict a page to free up a page frame

◆ Written back only if it is has been modified (i.e., “dirty”)!

Page replacement policy

What we discussed so far (page faults, swap, page

table structures, etc…) is mechanisms

Page replacement policy: determine which page to

remove when we need a victim

Does it matter?

◆ Yes! Page faults are super expensive

◆ Getting the number down, can improve the performance of the

system significantly

CSE 153 – Lecture 11 – Page Replacement 8

Considerations

Page replacement support has to be simple during

memory accesses

◆ They happen all the time, we cannot make that part slow

But it can be complicated/expensive when a page fault

occurs – why?

◆ Reason 1: if we are successful, this will be rare

◆ Reason 2: when it happens we are paying the cost of I/O

» I/O is very slow: can afford to do some extra computation

» Worth it if we can save some future page faults

What makes a good page replacement policy?

CSE 153 – Lecture 11 – Page Replacement 9

CSE 153 – Lecture 11 – Page Replacement 10

Locality to the Rescue

Recall that virtual memory works because of locality

◆ Temporal and spatial

◆ Work at different scales: for cache, at a line level, for VM, at

page level, and even at larger scales

All paging schemes depend on locality

◆ What happens if a program does not have locality?

◆ High cost of paging is acceptable, if infrequent

◆ Processes usually reference pages in localized patterns,

making paging practical

CSE 153 – Lecture 11 – Page Replacement 11

Evicting the Best Page

Goal is to reduce the page fault rate

The best page to evict is the one never touched again

◆ Will never fault on it

Never is a long time, so picking the page closest to

“never” is the next best thing

◆ Evicting the page that won’t be used for the longest period of

time minimizes the number of page faults

◆ Proved by Belady

We’re now going to survey various replacement

algorithms, starting with Belady’s

CSE 153 – Lecture 11 – Page Replacement 12

Belady’s Algorithm

Belady’s algorithm

◆ Idea: Replace the page that will not be used for the longest

time in the future

◆ Optimal? How would you show?

◆ Problem: Have to predict the future

Why is Belady’s useful then?

◆ Use it as a yardstick/upper bound

◆ Compare implementations of page replacement algorithms

with the optimal to gauge room for improvement

» If optimal is not much better, then algorithm is pretty good

◆ What’s a good lower bound?

» Random replacement is often the lower bound

CSE 153 – Lecture 11 – Page Replacement 13

First-In First-Out (FIFO)

FIFO is an obvious algorithm and simple to implement

◆ Maintain a list of pages in order in which they were paged in

◆ On replacement, evict the one brought in longest time ago

Why might this be good?

◆ Maybe the one brought in the longest ago is not being used

Why might this be bad?

◆ Then again, maybe it’s not

◆ We don’t have any info to say one way or the other

FIFO suffers from “Belady’s Anomaly”
◆ The fault rate might actually increase when the algorithm is

given more memory (very bad)

CSE 153 – Lecture 11 – Page Replacement 14

Least Recently Used (LRU)

LRU uses reference information to make a more

informed replacement decision

◆ Idea: We can’t predict the future, but we can make a guess

based upon past experience

◆ On replacement, evict the page that has not been used for the

longest time in the past (Belady’s: future)

◆ When does LRU do well? When does LRU do poorly?

Implementation

◆ To be perfect, need to time stamp every reference (or

maintain a stack) – much too costly

◆ So we need to approximate it

CSE 153 – Lecture 11 – Page Replacement 15

Approximating LRU

LRU approximations use the PTE reference bit

◆ Keep a counter for each page

◆ At regular intervals, for every page do:

» If ref bit = 0, increment counter

» If ref bit = 1, zero the counter

» Zero the reference bit

◆ The counter will contain the number of intervals since the last

reference to the page

◆ The page with the largest counter is the least recently used

Some architectures don’t have a reference bit

◆ Can simulate reference bit using the valid bit to induce faults

LRU Approximation

CSE 153 – Lecture 11 – Page Replacement 16

Reference bits LRU counter

Problem: Overhead of one counter value per page

CSE 153 – Lecture 11 – Page Replacement 17

LRU Clock

(Not Recently Used)

Not Recently Used (NRU) – Used by Unix
◆ Replace page that is “old enough”

◆ Arrange all of physical page frames in a big circle (clock)

◆ A clock hand is used to select a good LRU candidate

» Sweep through the pages in circular order like a clock

» If the ref bit is off, it hasn’t been used recently

What is the minimum “age” if ref bit is off?

» If the ref bit is on, turn it off and go to next page

◆ Arm moves quickly when pages are needed

◆ Low overhead when plenty of memory

◆ If memory is large, “accuracy” of information degrades

» What does it degrade to?

» One fix: use two hands (leading erase hand, trailing select hand)

LRU Clock

CSE 153 – Lecture 11 – Page Replacement 18

P1: 1

P2: 1

P3: 1

P8: 0

P7: 0

P6: 0

P5: 1

P4: 0

P1: 0

P2: 0

P3: 0

P8: 1

P7: 0

P6: 0

P5: 1

P4: 0

Example: gcc Page Replace

CSE 153 – Lecture 11 – Page Replacement 19

Example: Belady’s Anomaly

CSE 153 – Lecture 11 – Page Replacement 20

Other ideas

Victim buffer

◆ Add a buffer (death row!) we put a page on when we decide to

replace it

◆ Buffer is FIFO

◆ If you get accessed while on death row – clemency!

◆ If you are the oldest page on death row – replacement!

CSE 153 – Lecture 11 – Page Replacement 21

CSE 153 – Lecture 11 – Page Replacement 22

Fixed vs. Variable Space

In a multiprogramming system, we need a way to
allocate memory to competing processes

Problem: How to determine how much memory to give
to each process?
◆ Fixed space algorithms

» Each process is given a limit of pages it can use

» When it reaches the limit, it replaces from its own pages

» Local replacement

Some processes may do well while others suffer

◆ Variable space algorithms

» Process’ set of pages grows and shrinks dynamically

» Global replacement

One process can ruin it for the rest

CSE 153 – Lecture 11 – Page Replacement 23

Working Set Model

A working set of a process is used to model the

dynamic locality of its memory usage

◆ Defined by Peter Denning in 60s

Definition

◆ WS(t,w) = {set of pages P, such that every page in P was

referenced in the time interval (t, t-w)}

◆ t – time, w – working set window (measured in page refs)

A page is in the working set (WS) only if it was

referenced in the last w references

CSE 153 – Lecture 11 – Page Replacement 24

Working Set Size

The working set size is the number of pages in the

working set

◆ The number of pages referenced in the interval (t, t-w)

The working set size changes with program locality

◆ During periods of poor locality, you reference more pages

◆ Within that period of time, the working set size is larger

Intuitively, want the working set to be the set of pages

a process needs in memory to prevent heavy faulting

◆ Each process has a parameter w that determines a working

set with few faults

◆ Denning: Don’t run a process unless working set is in

memory

Example: gcc Working Set

CSE 153 – Lecture 11 – Page Replacement 25

CSE 153 – Lecture 11 – Page Replacement 26

Working Set Problems

Problems

◆ How do we determine w?

◆ How do we know when the working set changes?

Too hard to answer

◆ So, working set is not used in practice as a page replacement

algorithm

However, it is still used as an abstraction

◆ The intuition is still valid

◆ When people ask, “How much memory does Firefox need?”,
they are in effect asking for the size of Firefox’s working set

CSE 153 – Lecture 11 – Page Replacement 27

Page Fault Frequency (PFF)

Page Fault Frequency (PFF) is a variable space

algorithm that uses a more ad-hoc approach

◆ Monitor the fault rate for each process

◆ If the fault rate is above a high threshold, give it more memory

» So that it faults less

» But not always (FIFO, Belady’s Anomaly)

◆ If the fault rate is below a low threshold, take away memory

» Should fault more

» But not always

Hard to use PFF to distinguish between changes in

locality and changes in size of working set

CSE 153 – Lecture 11 – Page Replacement 28

Thrashing

Page replacement algorithms avoid thrashing

◆ When most of the time is spent by the OS in paging data back

and forth from disk

◆ No time spent doing useful work (making progress)

◆ In this situation, the system is overcommitted

» No idea which pages should be in memory to reduce faults

» Could just be that there isn’t enough physical memory for all of

the processes in the system

» Ex: Running Windows95 with 4 MB of memory…

◆ Possible solutions

» Swapping – write out all pages of a process

» Buy more memory

CSE 153 – Lecture 11 – Page Replacement 29

Summary

Page replacement algorithms

◆ Belady’s – optimal replacement (minimum # of faults)

◆ FIFO – replace page loaded furthest in past

◆ LRU – replace page referenced furthest in past

» Approximate using PTE reference bit

◆ LRU Clock – replace page that is “old enough”

◆ Working Set – keep the set of pages in memory that has

minimal fault rate (the “working set”)

◆ Page Fault Frequency – grow/shrink page set as a function of

fault rate

Multiprogramming

◆ Should a process replace its own page, or that of another?

