
CSE 153

Design of Operating

Systems

Fall 2018

Lecture 09: Paging/Virtual Memory (1)

Some slides modified from originals by Dave O’hallaron

CSE 153 – Lecture 08 – Memory Management 2

Sharing Memory

Rewind to the days of “second-generation” computers

◆ Programs use physical addresses directly

◆ OS loads job, runs it, unloads it

Multiprogramming changes all of this

◆ Want multiple processes in memory at once

» Overlap I/O and CPU of multiple jobs

◆ How to share physical memory across multiple processes?

» Many programs do not need all of their code and data at once (or

ever) – no need to allocate memory for it

» A program can run on machine with less memory than it “needs”

CSE 153 – Lecture 08 – Memory Management 3

Virtual Addresses

To make it easier to manage the memory of processes

running in the system, we’re going to make them use

virtual addresses (logical addresses)

◆ Virtual addresses are independent of the actual physical

location of the data referenced

◆ OS determines location of data in physical memory

Instructions executed by the CPU issue virtual

addresses

◆ Virtual addresses are translated by hardware into physical

addresses (with help from OS)

◆ The set of virtual addresses that can be used by a process

comprises its virtual address space

CSE 153 – Lecture 08 – Memory Management 4

Virtual Addresses

Many ways to do this translation…
◆ Need hardware support and OS management algorithms

Requirements

◆ Need protection – restrict which addresses jobs can use

◆ Fast translation – lookups need to be fast

◆ Fast change – updating memory hardware on context switch

vmapprocessor
physical

memory

virtual

addresses

physical

addresses

CSE 153 – Lecture 08 – Memory Management 5

Fixed Partitions

Physical memory is broken up into

fixed partitions

◆ Size of each partition is the same and

fixed

◆ Hardware requirements: base register

◆ Physical address = virtual address +

base register

◆ Base register loaded by OS when it

switches to a process

Physical Memory

P1

P2

P3

P4

P5

CSE 153 – Lecture 08 – Memory Management 6

Fixed Partitions

P4’s Base

+Offset

Virtual Address

Physical Memory

Base Register P1

P2

P3

P4

P5
How do we provide protection?

7

Fixed Partitions

Advantages

◆ Easy to implement

» Need base register

» Verify that offset is less than fixed partition size

◆ Fast context switch

Problems?

◆ Internal fragmentation: memory in a partition not used by a

process is not available to other processes

◆ Partition size: one size does not fit all (very large processes?)

CSE 153 – Lecture 08 – Memory Management

8

Variable Partitions

Natural extension – physical memory is broken up into

variable sized partitions

◆ Hardware requirements: base register and limit register

◆ Physical address = virtual address + base register

Why do we need the limit register?

◆ Protection: if (virtual address > limit) then fault

CSE 153 – Lecture 08 – Memory Management

CSE 153 – Lecture 08 – Memory Management 9

Variable Partitions

P3’s Base

+Offset

Virtual Address

Base Register

P2

P3<

Protection Fault

Yes?

No?

P3’s Limit

Limit Register

P1

10

Variable Partitions

Advantages

◆ No internal fragmentation: allocate just enough for process

Problems?

◆ External fragmentation: job loading and unloading produces

empty holes scattered throughout memory

CSE 153 – Lecture 08 – Memory Management

P2

P3

P1

P4

CSE 153 – Lecture 08 – Memory Management 11

Paging

New Idea: split virtual address space into multiple

partitions

◆ Each can go anywhere!

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging solves the external fragmentation problem by

using fixed sized units in both physical and virtual memory But need to keep track

of where things are!

CSE 153 – Lecture 08 – Memory Management 12

Process Perspective

Processes view memory as one contiguous address

space from 0 through N

◆ Virtual address space (VAS)

In reality, pages are scattered throughout physical

storage

The mapping is invisible to the program

Protection is provided because a program cannot

reference memory outside of its VAS

◆ The address “0x1000” maps to different physical addresses

in different processes

CSE 153 – Lecture 08 – Memory Management 13

Paging

Translating addresses

◆ Virtual address has two parts: virtual page number and offset

◆ Virtual page number (VPN) is an index into a page table

◆ Page table determines page frame number (PFN)

◆ Physical address is PFN::offset

Page tables

◆ Map virtual page number (VPN) to page frame number (PFN)

» VPN is the index into the table that determines PFN

◆ One page table entry (PTE) per page in virtual address space

» Or, one PTE per VPN

CSE 153 – Lecture 08 – Memory Management 14

Page Lookups

Page frame

Page number Offset

Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

CSE 153 – Lecture 08 – Memory Management 15

Paging Example

Pages are 4KB

◆ Offset is 12 bits (because 4KB = 212 bytes)

◆ VPN is 20 bits (32 bits is the length of every virtual address)

Virtual address is 0x7468

◆ Virtual page is 0x7, offset is 0x468

Page table entry 0x7 contains 0x2000

◆ Page frame number is 0x2000

◆ Seventh virtual page is at address 0x2000 (2nd physical page)

Physical address = 0x2000 + 0x468 = 0x2468

16

Page Table Entries (PTEs)

Page table entries control mapping

◆ The Modify bit says whether or not the page has been written

» It is set when a write to the page occurs

◆ The Reference bit says whether the page has been accessed

» It is set when a read or write to the page occurs

◆ The Valid bit says whether or not the PTE can be used

» It is checked each time the virtual address is used (Why?)

◆ The Protection bits say what operations are allowed on page

» Read, write, execute (Why do we need these?)

◆ The page frame number (PFN) determines physical page

R VM Prot Page Frame Number

1 1 1 2 20

CSE 153 – Lecture 08 – Memory Management

17

Paging Advantages

Easy to allocate memory

◆ Memory comes from a free list of fixed size chunks

◆ Allocating a page is just removing it from the list

◆ External fragmentation not a problem

» All pages of the same size

Simplifies protection

◆ All chunks are the same size

◆ Like fixed partitions, don’t need a limit register

Simplifies virtual memory – later

CSE 153 – Lecture 08 – Memory Management

CSE 153 – Lecture 08 – Memory Management 18

Paging Limitations

Can still have internal fragmentation

◆ Process may not use memory in multiples of a page

Memory reference overhead

◆ 2 references per address lookup (page table, then memory)

◆ What can we do?

Memory required to hold page table can be significant

◆ Need one PTE per page

◆ 32 bit address space w/ 4KB pages = 220 PTEs

◆ 4 bytes/PTE = 4MB/page table

◆ 25 processes = 100MB just for page tables!

◆ What can we do?

CSE 153 – Lecture 08 – Memory Management 19

Segmentation

Segmentation: partition memory into logically related units

◆ Module, procedure, stack, data, file, etc.

◆ Units of memory from user’s perspective

Natural extension of variable-sized partitions

◆ Variable-sized partitions = 1 segment/process

◆ Segmentation = many segments/process

◆ Fixed partition : Paging :: Variable partition : Segmentation

Hardware support

◆ Multiple base/limit pairs, one per segment (segment table)

◆ Segments named by #, used to index into table

◆ Virtual addresses become <segment #, offset>

CSE 153 – Lecture 08 – Memory Management 20

Segment Lookups

limit base

+<

Protection Fault

Segment # Offset

Virtual Address

Segment Table

Yes?

No?

Physical Memory

Today

l Address spaces

l VM as a tool for caching

l VM as a tool for memory management

l VM as a tool for memory protection

l Address translation

A System Using Physical

Addressing

Used in “simple” systems like embedded microcontrollers

in devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

A System Using Virtual

Addressing

Used in all modern servers, desktops, and laptops

One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Address Spaces

Linear address space: Ordered set of contiguous non-negative integer

addresses:

{0, 1, 2, 3 … }

Virtual address space: Set of N = 2n virtual addresses

{0, 1, 2, 3, …, N-1}

Physical address space: Set of M = 2m physical addresses

{0, 1, 2, 3, …, M-1}

Clean distinction between data (bytes) and their attributes (addresses)

Each object can now have multiple addresses

Every byte in main memory:

one physical address, one (or more) virtual addresses

Why Virtual Memory (VM)?

Virtual memory is page with a new ingredient
◆ Allow pages to be on disk

» In a special partition (or file) called swap

Motivation?
◆ Uses main memory efficiently

◆ Use DRAM as a cache for the parts of a virtual address space

Simplifies memory management
◆ Each process gets the same uniform linear address space

◆ With VM, this can be big!

Today

Address spaces

VM as a tool for caching

VM as a tool for memory management

VM as a tool for memory protection

Address translation

VM as a Tool for Caching

Virtual memory is an array of N contiguous bytes

stored on disk.

The contents of the array on disk are cached in

physical memory (DRAM cache)

◆ These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

DRAM Cache Organization

DRAM cache organization driven by the enormous miss penalty

◆ DRAM is about 10x slower than SRAM

◆ Disk is about 10,000x slower than DRAM

Consequences

◆ Large page (block) size: typically 4-8 KB, sometimes 4 MB

◆ Fully associative

» Any VP can be placed in any PP

» Requires a “large” mapping function – different from CPU caches

◆ Highly sophisticated, expensive replacement algorithms

» Too complicated and open-ended to be implemented in hardware

◆ Write-back rather than write-through

Page Tables

A page table is an array of page table entries (PTEs) that maps

virtual pages to physical pages.

◆ Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM

cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Page Fault

Page fault: reference to VM word that is not in physical memory

(DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault

Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 4

Virtual memory
(disk)

Valid

0

1

0

1

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 3

Virtual memory
(disk)

Valid

0

1

1

0

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0

VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault

Page miss causes page fault (an exception)

Page fault handler selects a victim to be evicted (here VP 4)

Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

VP 3

Virtual memory
(disk)

Valid

0

1

1

0

0

1

0

1

Physical page
number or

disk address

PTE 0

PTE 7

PP 0

VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Locality to the Rescue!

Virtual memory works because of locality

At any point in time, programs tend to access a set of
active virtual pages called the working set
◆ Programs with better temporal locality will have smaller working

sets

If (working set size < main memory size)
◆ Good performance for one process after compulsory misses

If (SUM(working set sizes) > main memory size)
◆ Thrashing: Performance meltdown where pages are swapped

(copied) in and out continuously

Today

l Address spaces

l VM as a tool for caching

l VM as a tool for memory management

l VM as a tool for memory protection

l Address translation

VM as a Tool for Memory

Management

Key idea: each process has its own virtual address space

◆ It can view memory as a simple linear array

◆ Mapping function scatters addresses through physical memory

» Well chosen mappings simplify memory allocation and management

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

VM as a Tool for Memory

Management

Memory allocation

◆ Each virtual page can be mapped to any physical page

◆ A virtual page can be stored in different physical pages at different times

Sharing code and data among processes

◆ Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Sharing

Can map shared memory at same or different virtual

addresses in each process’ address space

◆ Different:

» 10th virtual page in P1 and 7th virtual page in P2 correspond to

the 2nd physical page

» Flexible (no address space conflicts), but pointers inside the

shared memory segment are invalid

◆ Same:

» 2nd physical page corresponds to the 10th virtual page in both P1

and P2

» Less flexible, but shared pointers are valid

Copy on Write

OSes spend a lot of time copying data

◆ System call arguments between user/kernel space

◆ Entire address spaces to implement fork()

Use Copy on Write (CoW) to defer large copies as

long as possible, hoping to avoid them altogether

◆ Instead of copying pages, create shared mappings of parent

pages in child virtual address space

◆ Shared pages are protected as read-only in parent and child

» Reads happen as usual

» Writes generate a protection fault, trap to OS, copy page, change

page mapping in client page table, restart write instruction

◆ How does this help fork()?

Execution of fork()

Page 1

Physical Memory

Page 2

Parent process’s

page table

Page 1

Child process’s

page table

Page 2

fork() with Copy on Write

Page 1

Physical Memory

Page 2

Parent process’s

page table

Page 1

Child process’s

page table

Page 2

Protection bits set to prevent either

process from writing to any page

When either process modifies Page 1,

page fault handler allocates new page

and updates PTE in child process

Simplifying Linking and Loading

Linking

◆ Each program has similar virtual

address space

◆ Code, stack, and shared libraries

always start at the same address

Loading

◆ execve() allocates virtual pages

for .text and .data sections
= creates PTEs marked as invalid

◆ The .text and .data sections

are copied, page by page, on

demand by the virtual memory

system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp

(stack
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Today

l Address spaces

l VM as a tool for caching

l VM as a tool for memory management

l VM as a tool for memory protection

l Address translation

VM as a Tool for Memory

Protection

Extend PTEs with permission bits

Page fault handler checks these before remapping
◆ If violated, send process SIGSEGV (segmentation fault)

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

Today

l Address spaces

l VM as a tool for caching

l VM as a tool for memory management

l VM as a tool for memory protection

l Address translation

Address Translation With a

Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

Address Translation: Page

Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA

miss

PTEA

hit

PA

hit

Data

PTE

L1

cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Elephant(s) in the room

• Problem 1: Translation is slow!

• Many memory accesses for each memory access

• Caches are useless!

• Problem 2: Page

table can be

gigantic!

• We need one for

each process

• All your memory

are belong to us!

