
CSE 153

Design of Operating

Systems

Fall 2018

Lecture 08: Memory Management (1)

Some slides from Dave O’Hallaron

Announcements

Midterm key posted

◆ Hope to finish grading over the weekend

HW2 (Ali) and HW1 (Hadi) should be graded by now

Lab 2 due Friday

◆ hope you are winning the battle against xv6 scheduler

◆ Lab 3 will be released, but you will have to read ahead

» I may have to push back due date…we’ll see

Optional dynamic memory lab. to be assigned soon

CSE 153 – Lecture 08 – Memory Management 2

OS Abstractions

3

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

CSE 153 – Lecture 08 – Memory Management

Our plan of action

Memory/storage technologies and trends
◆ Memory wall!

Locality of reference to the rescue
◆ Caching in the memory hierarchy

Abstraction: Address spaces and memory sharing

Virtual memory

Today: background and bird’s eye view – more details
to follow later

CSE 153 – Lecture 08 – Memory Management 4

Random-Access Memory

(RAM)

Key features

◆ RAM is traditionally packaged as a chip.

◆ Basic storage unit is normally a cell (one bit per cell).

◆ Multiple RAM chips form a memory.

Static RAM (SRAM)

◆ Each cell stores a bit with a four or six-transistor circuit.

◆ Retains value indefinitely, as long as it is kept powered.

◆ Relatively insensitive to electrical noise (EMI), radiation, etc.

◆ Faster and more expensive than DRAM.

Dynamic RAM (DRAM)

◆ Each cell stores bit with a capacitor. One transistor is used for access

◆ Value must be refreshed every 10-100 ms.

◆ More sensitive to disturbances (EMI, radiation,…) than SRAM.

◆ Slower and cheaper than SRAM.
CSE 153 – Lecture 08 – Memory Management 5

SRAM vs DRAM Summary

Trans. AccessNeeds Needs

per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,

frame buffers

CSE 153 – Lecture 08 – Memory Management 6

Nonvolatile Memories

DRAM and SRAM are volatile – lose info without power

Nonvolatile memories (NVMs) retain value

◆Read-only memory (ROM): programmed during production

◆Programmable ROM (PROM): can be programmed once

◆Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)

◆Electrically eraseable PROM (EEPROM): electronic erase

◆Flash memory: EEPROMs with partial (sector) erase capability

» Wears out after about 100,000 erasings.

◆Phase Change Memories (PCMs): also wear out

◆Many exciting NVMs at various stages of development

CSE 153 – Lecture 08 – Memory Management 7

NVM Uses

Firmware programs stored in a ROM (BIOS, controllers
for disks, network cards, graphics accelerators, security
subsystems,…)

Solid state disks (replace rotating disks in thumb drives,
smart phones, mp3 players, tablets, laptops,…)

Caches in high end systems

Getting better -- many expect Universal memory to come
◆ i.e., large replace both DRAM and disk drives

CSE 153 – Lecture 08 – Memory Management 8

Traditional Bus Structure Connecting

CPU and Memory

A bus is a collection of parallel wires that carry

address, data, and control signals.

Buses are typically shared by multiple devices.

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU chip

System bus Memory bus

CSE 153 – Lecture 08 – Memory Management 9

Memory Read Transaction (1)

CPU places address A on the memory bus.

ALU

Register file

Bus interface

A
0

Ax

Main memory
I/O bridge

%eax

Load operation: movl A, %eax

CSE 153 – Lecture 08 – Memory Management 10

Memory Read Transaction (2)

Main memory reads A from the memory bus, retrieves

word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main

memory

%eax

I/O bridge

Load operation: movl A, %eax

CSE 153 – Lecture 08 – Memory Management 11

Memory Read Transaction (3)

CPU reads word x from the bus and copies it into

register %eax.

x
ALU

Register file

Bus interface x

Main memory
0

A

%eax

I/O bridge

Load operation: movl A, %eax

CSE 153 – Lecture 08 – Memory Management 12

Memory Write Transaction (1)

CPU places address A on bus. Main memory reads it

and waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

A

Main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A

CSE 153 – Lecture 08 – Memory Management 13

Memory Write Transaction (2)

CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A

CSE 153 – Lecture 08 – Memory Management 14

Memory Write Transaction (3)

Main memory reads data word y from the bus and

stores it at address A.

y
ALU

register file

bus interface y

main memory

0

A

%eax

I/O bridge

Store operation: movl %eax, A

CSE 153 – Lecture 08 – Memory Management 15

The CPU-Memory Gap

The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

n
s

Year

Disk seek time

Flash SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Disk

DRAM

CPU

SSD

CSE 153 – Lecture 08 – Memory Management 16

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a

fundamental property of computer programs known as

locality

CSE 153 – Lecture 08 – Memory Management 17

Today

l Storage technologies and trends

l Locality of reference

l Caching in the memory hierarchy

l Virtual memory and memory sharing

CSE 153 – Lecture 08 – Memory Management 18

Locality

Principle of Locality: Programs tend to use data and

instructions with addresses near or equal to those they

have used recently

Temporal locality:

◆ Recently referenced items are likely

to be referenced again in the near future

Spatial locality:

◆ Items with nearby addresses tend

to be referenced close together in time

CSE 153 – Lecture 08 – Memory Management 19

Locality Example

Data references

◆ Reference array elements in

succession (stride-1 reference

pattern).

◆ Reference variable sum each iteration.

Instruction references

◆ Reference instructions in sequence.

◆ Cycle through loop repeatedly.

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

CSE 153 – Lecture 08 – Memory Management 20

Qualitative Estimates of

Locality

Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional

programmer.

Question: Does this function have good locality with
respect to array a?

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

} 21CSE 153 – Lecture 08 – Memory Management

Locality Example

Question: Does this function have good locality with
respect to array a?

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

CSE 153 – Lecture 08 – Memory Management 22

Locality Example

Question: Can you permute the loops so that the
function scans the 3-d array a with a stride-1

reference pattern (and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

for (k = 0; k < N; k++)

sum += a[k][i][j];

return sum;

}

CSE 153 – Lecture 08 – Memory Management 23

Memory Hierarchies

Some fundamental and enduring properties of

hardware and software:

◆ Fast storage technologies cost more per byte, have less

capacity, and require more power (heat!).

◆ The gap between CPU and main memory speed is widening.

◆ Well-written programs tend to exhibit good locality.

These fundamental properties complement each other

beautifully.

They suggest an approach for organizing memory and

storage systems known as a memory hierarchy.

CSE 153 – Lecture 08 – Memory Management 24

Today

Storage technologies and trends

Locality of reference

Caching in the memory hierarchy

Virtual memory and memory sharing

CSE 153 – Lecture 08 – Memory Management 25

An Example Memory Hierarchy

Registers

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

CSE 153 – Lecture 08 – Memory Management 26

Memory hierarchy

l Cache: A smaller, faster storage device that acts as a staging area for

a subset of the data in a larger, slower device.

l Fundamental idea of a memory hierarchy:

u For each layer, faster, smaller device caches larger, slower device

.

l Why do memory hierarchies work?

u Because of locality!

» Hit fast memory much more frequently even though its smaller

u Thus, the storage at level k+1 can be slower (but larger and cheaper!)

l Big Idea: The memory hierarchy creates a large pool of storage that

costs as much as the cheap storage near the bottom, but that serves

data to programs at the rate of the fast storage near the top.
CSE 153 – Lecture 08 – Memory Management 27

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

CSE 153 – Lecture 08 – Memory Management 28

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

CSE 153 – Lecture 08 – Memory Management 29

General Cache Concepts:

Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
•Placement policy:
determines where b goes
•Replacement policy:
determines which block
gets evicted (victim)

CSE 153 – Lecture 08 – Memory Management 30

General Caching Concepts:

Types of Cache Misses

Cold (compulsory) miss

◆ Cold misses occur because the cache is empty.

Conflict miss

◆ Most caches limit blocks at level k+1 to a small subset (sometimes

a singleton) of the block positions at level k.

» E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

◆ Conflict misses occur when the level k cache is large enough, but

multiple data objects all map to the same level k block.

» E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Capacity miss

◆ Occurs when the set of active cache blocks (working set) is larger

than the cache.

CSE 153 – Lecture 08 – Memory Management 31

Examples of Caching in the

Hierarchy

Hardware0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes block

64-bytes block

4-8 bytes words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware1On-Chip L1

Hardware10On/Off-Chip L2

AFS/NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

CSE 153 – Lecture 08 – Memory Management 32

Summary so far

The speed gap between CPU, memory and mass

storage continues to widen.

Well-written programs exhibit a property called locality.

Memory hierarchies based on caching close the gap

by exploiting locality.

CSE 153 – Lecture 08 – Memory Management 33

