CSE 153
Design of Operating
Systems

Fall 2018

Lecture 08: Memory Management (1)

Some slides from Dave O’Hallaron

Announcements

o Midterm key posted
+ Hope to finish grading over the weekend

o HW2 (Ali) and HW1 (Hadi) should be graded by now

o Lab 2 due Friday

+ hope you are winning the battle against xv6 scheduler

+ Lab 3 will be released, but you will have to read ahead
» | may have to push back due date...we’'ll see

o Optional dynamic memory lab. to be assigned soon

CSE 153 — Lecture 08 — Memory Management

OS Abstractions

Applications

Process

File system

Virtual memory

Operating System

CPU

Disk

RAM

CSE 153 - Lecture 08 — Memory Management

Our plan of action

o Memory/storage technologies and trends
+ Memory wall!

o Locality of reference to the rescue
+ Caching in the memory hierarchy

o Abstraction: Address spaces and memory sharing
o Virtual memory

o Today: background and bird’s eye view — more details
to follow later

CSE 153 — Lecture 08 — Memory Management

Random-Access Memory
(RAM)

o Key features
+ RAM is traditionally packaged as a chip.
+ Basic storage unit is normally a cell (one bit per cell).
+ Multiple RAM chips form a memory.

o Static RAM (SRAM)
+ Each cell stores a bit with a four or six-transistor circuit.
+ Retains value indefinitely, as long as it is kept powered.
+ Relatively insensitive to electrical noise (EMI), radiation, etc.
+ Faster and more expensive than DRAM.

o Dynamic RAM (DRAM)
+ Each cell stores bit with a capacitor. One transistor is used for access
+ Value must be refreshed every 10-100 ms.
+ More sensitive to disturbances (EMI, radiation,...) than SRAM.
+ Slower and cheaper than SRAM.

CSE 153 — Lecture 08 — Memory Management

SRAM vs DRAM Summary

Trans. AccessNeeds Needs
per bit time refresh? EDC? Cost Applications

SRAM 4o0r6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

CSE 153 — Lecture 08 — Memory Management

Nonvolatile Memories

» DRAM and SRAM are volatile — lose info without power

o Nonvolatile memories (NVMSs) retain value
+Read-only memory (ROM): programmed during production
+Programmable ROM (PROM): can be programmed once
+Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
+Electrically eraseable PROM (EEPROM): electronic erase
+Flash memory: EEPROMSs with partial (sector) erase capability

» Wears out after about 100,000 erasings.

+Phase Change Memories (PCMs): also wear out
+Many exciting NVMs at various stages of development

CSE 153 — Lecture 08 — Memory Management

NVM Uses

o Firmware programs stored in a ROM (BIOS, controllers
for disks, network cards, graphics accelerators, security
subsystems,...)

o Solid state disks (replace rotating disks in thumb drives,
smart phones, mp3 players, tablets, laptops,...)

o Caches in high end systems

o Getting better -- many expect Universal memory to come
+ l.e., large replace both DRAM and disk drives

CSE 153 — Lecture 08 — Memory Management 8

Traditional Bus Structure Connecting
CPU and Memory

o A bus is a collection of parallel wires that carry
address, data, and control signals.

o Buses are typically shared by multiple devices.

Register file

-

System bus Memory bus

Bus interf /O Main
us interface bridge memory

CSE 153 — Lecture 08 — Memory Management 9

Memory Read Transaction (1)

o CPU places address A on the memory bus.

Register file

%beax

1r

[ALU

/O bridge

Bus interface

Load operation: movl A, %eax

Main memory

AN\

NV

| /IA—I\

N—

CSE 153 — Lecture 08 — Memory Management

0

A

10

Memory Read Transaction (2)

o Main memory reads A from the memory bus, retrieves
word X, and places it on the bus.

Register file

[Load operation: movl A, %eax
ALU
Y%eax |
Main
j E memory
||/o briolqeI X 0
A N SN

Bus interface

\,—M N—l/ X__|A

CSE 153 — Lecture 08 — Memory Management 11

Memory Read Transaction (3)

o CPU reads word x from the bus and copies it into

register %eax.
Register file

Obeax

] In

—)

ALU

Bus interface

Load operation: movl A, %eax

Main memory
/0 bridge 0

X A

CSE 153 — Lecture 08 — Memory Management 12

Memory Write Transaction (1)

o CPU places address A on bus. Main memory reads it

and waits for the corresponding data word to arrive.
Register file

%eax y

1r

—)

ALU

Bus interface

I/O bridge

A N A AN

N N—

CSE 153 — Lecture 08 — Memory Management

Store operation: movl %eax, A

Main memory

0

A

13

Memory Write Transaction (2)

o CPU places data word y on the bus.

Register file Store operation: movl %eax, A
: ALU
%eax
i E Main memory
| |I/O brldqe 0
A N

Bus interface ‘\J—l/‘ [\J—l/ A

CSE 153 — Lecture 08 — Memory Management 14

Memory Write Transaction (3)

o Main memory reads data word y from the bus and
stores it at address A.

register file

[ALU

%eax y |

10

bus interface

Store operation: movl %eax, A

main memory

I/O bridge

=

—>

CSE 153 - Lecture

08 — Memory Management

0

A

15

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0
10,000,000.0
1,000,000.0
100,000.0

10,000.0

ns

1,000.0
100.0
10.0
1.0

0.1

0.0

T

Disk

L 4

SSD

1

——Disk seek time
—A—Flash SSD access time
——DRAM access time
—o— SRAM access time
——CPU cycle time

—O— Effective CPU cycle time

B

CPU

1980 1985

199¢ 158995ctu 2000 M2p03Va20e5e"t 2010

Year

16

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a
fundamental property of computer programs known as
locality

CSE 153 — Lecture 08 — Memory Management 17

Today

I
. Locality of reference

CSE 153 — Lecture 08 — Memory Management

18

Locality

o Principle of Locality: Programs tend to use data and
Instructions with addresses near or equal to those they
have used recently Q

o Temporal locality:

+ Recently referenced items are likely
to be referenced again in the near future ﬂ

o Spatial locality:

+ Items with nearby addresses tend
to be referenced close together in time

CSE 153 — Lecture 08 — Memory Management 19

Locality Example

g

O

sum = 0;

sum += a[i];
return sum;

for (1 = 0; i < n; i++)

Data references

+ Reference array elements in
succession (stride-1 reference
pattern).

+ Reference variable sum each iteration.
Instruction references

+ Reference instructions in sequence.
+ Cycle through loop repeatedly.

Spatial locality

Temporal locality

Spatial locality

Temporal locality

CSE 153 — Lecture 08 — Memory Management

20

Qualitative Estimates of
Locality

o Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

o Question: Does this function have good locality with
respect to array a?

int sum _array rows (int a[M] [N])

{

int i, j, sum = O;

for (i = 0; i < M; i++)
for (jJ = 0; j < N; j++)
sum += a[i] [j];
return sum;

} CSE 153 — Lecture 08 — Memory Management 21

Locality Example

o Question: Does this function have good locality with

respect to array a?

{

int sum array cols(int a[M] [N])

int i, j, sum = 0;

for (j = 0; j < N; J++)
for (1 = 0; 1 < M; i++4)
sum += a[i] [J];
return sum;

CSE 153 — Lecture 08 — Memory Management

22

Locality Example

o Question: Can you permute the loops so that the
function scans the 3-d array a with a stride-1

reference pattern (and thus has good spatial locality)?

int sum array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (i = 0; 1 < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
sum += a[k][1i][]]’
return sum;

CSE 153 — Lecture 08 — Memory Management

Memory Hierarchies

o Some fundamental and enduring properties of
hardware and software:

+ Fast storage technologies cost more per byte, have less
capacity, and require more power (heat!).

+ The gap between CPU and main memory speed is widening.
+ Well-written programs tend to exhibit good locality.

o These fundamental properties complement each other
beautifully.

o They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

CSE 153 — Lecture 08 — Memory Management 24

Today

Oa

Caching in the memory hierarchy

CSE 153 — Lecture 08 — Memory Management

25

An Example Memory Hierarchy

CPU registers hold words retrieved from L1
cache

Registers

L1: L1 cache
small (SRAM) L1 cache holds cache lines retrieved from
maller, L2 cache
faster,
costlier L2:
per byte L2 cache
(SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
L Main memory
arger, (DRAM) Main memory holds disk blocks
slower, retrieved from local disks
cheaper
per byte .
L4: Local secondary storage Local disks hold files
(local disks) retrieved from disks on
remote network servers
5 Remote secondary storage

(tapes, distributed file systems, Web servers)

CSE 153 — Lecture 08 — Memory Management 26

Memory hierarchy

Cache: A smaller, faster storage device that acts as a staging area for
a subset of the data in a larger, slower device.

Fundamental idea of a memory hierarchy:
. For each layer, faster, smaller device caches larger, slower device

Why do memory hierarchies work?

. Because of locality!
» Hit fast memory much more frequently even though its smaller

. Thus, the storage at level k+1 can be slower (but larger and cheaper!)

Big Idea: The memory hierarchy creates a large pool of storage that
costs as much as the cheap storage near the bottom, but that serves

data to programs at the rate, of the, fast,storage near the top. .

General Cache Concepts

Cache

Memory

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 7
9 10 11
12 13 14 15

CSE 153 — Lecture 08 — Memory Management 28

General Cache Concepts: Hit

Cache

Memory

Request: 14
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

CSE 153 — Lecture 08 — Memory Management

Data in block b is needed

Block b is in cache:
Hit!

29

General Cache Concepts:
Miss

Request: 12 Data in block b is needed
Block b is not in cache:
Cache 8 12 14 3 .y
Miss!
Block b is fetched from
12 Request: 12
memory
M Block b is stored in cache
emory 0 1 2 3 .
*Placement policy:
4 5 6 7 determines where b goes
*Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)

CSE 153 — Lecture 08 — Memory Management 30

General Caching Concepts:
Types of Cache Misses

o Cold (compulsory) miss
+ Cold misses occur because the cache is empty.

o Conflict miss

+ Most caches limit blocks at level k+1 to a small subset (sometimes
a singleton) of the block positions at level k.

» E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

+ Conflict misses occur when the level k cache is large enough, but
multiple data objects all map to the same level k block.

» E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
o Capacity miss

+ Occurs when the set of active cache blocks (working set) is larger
than the cache.

CSE 153 — Lecture 08 — Memory Management 31

Examples of Caching in the
Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By
Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block On/Off-Chip L2 10 | Hardware
Virtual Memory 4-KB page Main memory 100 | Hardware + OS
Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware
Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client
cache

Browser cache Web pages Local disk 10,000,000 | Web browser
Web cache Web pages Remote server disks 1,000,000,000 | Web proxy

CSE 153 —

server
32

Lecture 08 — l\/Inmnr\J/ l\llsmngnmnn

Summary so far

o The speed gap between CPU, memory and mass
storage continues to widen.

o Well-written programs exhibit a property called locality.

o Memory hierarchies based on caching close the gap
by exploiting locality.

CSE 153 — Lecture 08 — Memory Management 33

