
CSE 153

Design of Operating

Systems

Fall 2018

Lecture 07: Scheduling

CSE 153 – Lecture 7 – Scheduling 2

Scheduling Overview

Scheduler runs when we context switching among

processes/threads to pick who runs next

◆ Under what situation does this occur?

◆ What should it do? Does it matter?

Making this decision is called scheduling

Now, we’ll look at:

◆ The goals of scheduling

◆ Starvation

◆ Various well-known scheduling algorithms

◆ Standard Unix scheduling algorithm

CSE 153 – Lecture 7 – Scheduling 3

Multiprogramming

Increase CPU utilization and job throughput by

overlapping I/O and CPU activities

Mechanisms vs. policy

We have covered the mechanisms

◆ Context switching, how and when it happens

◆ Process queues and process states

Now we’ll look at the policies

◆ Which process (thread) to run, for how long, etc.

We’ll refer to schedulable entities as jobs (standard

usage) – could be processes, threads, people, etc.

CSE 153 – Lecture 7 – Scheduling 4

Scheduling Goals

Scheduling works at two levels in an operating system

1. Control multiprogramming level –number of
jobs loaded into memory

» Moving jobs to/from memory is often called swapping

» Long term scheduler: infrequent

2. To decide what job to run next
» Does it matter? What criteria?

» Short term scheduler: frequent

» We are concerned with this level of scheduling

CSE 153 – Lecture 7 – Scheduling 5

Scheduling

The scheduler is the OS module that manipulates the process

queues, moving jobs to and from

The scheduling algorithm determines which jobs are chosen to

run next and what queues they wait on

In general, the scheduler runs:

◆ When a job switches from running to waiting

◆ When an interrupt occurs

◆ When a job is created or terminated

Preemptive vs. Non-

preemptive scheduling

We’ll discuss scheduling algorithms in two contexts

◆ In preemptive systems the scheduler can interrupt a running job

(involuntary context switch)

◆ In non-preemptive systems, the scheduler waits for a running job to

explicitly block (voluntary context switch)

CSE 153 – Lecture 7 – Scheduling 6

CSE 153 – Lecture 7 – Scheduling 7

Scheduling Goals

What are some reasonable goals for a scheduler?

Scheduling algorithms can have many different goals:

◆ CPU utilization

◆ Job throughput (# jobs/unit time)

◆ Turnaround time (Tfinish – Tstart)

» Normalized turnaround time = Turnaround time/process length

◆ Avg Waiting time (Avg(Twait): avg time spent on wait queues)

◆ Avg Response time (Avg(Tready): avg time spent on ready queue)

Batch systems

◆ Strive for job throughput, turnaround time (supercomputers)

Interactive systems

◆ Strive to minimize response time for interactive jobs (PC)

CSE 153 – Lecture 7 – Scheduling 8

Starvation

Starvation is a scheduling “non-goal”:

Starvation: process prevented from making progress

because other processes have the resource it requires

◆ Resource could be the CPU, or a lock (recall readers/writers)

Starvation usually a side effect of the sched. Algorithm

◆ E.g., a high priority process always prevents a low priority

process from running on the CPU

◆ E.g., one thread always beats another when acquiring a lock

Starvation can be a side effect of synchronization

◆ E.g., constant supply of readers always blocks out writers

First In First Out (FIFO)

Schedule tasks in the order they arrive

◆ Continue running them until they complete or give up the

processor

Example: memcached

◆ Facebook cache of friend lists, …

On what workloads is FIFO particularly bad?

◆ Imagine being at supermarket to buy a drink of water, but get

stuck behind someone with a huge cart (or two!)

» …and who pays in pennies!

◆ Can we do better?

CSE 153 – Lecture 7 – Scheduling 9

Shortest Job First (SJF)

Always do the task that has the shortest remaining

amount of work to do

◆ Often called Shortest Remaining Time First (SRTF)

Suppose we have five tasks arrive one right after each

other, but the first one is much longer than the others

◆ Which completes first in FIFO? Next?

◆ Which completes first in SJF? Next?

CSE 153 – Lecture 7 – Scheduling 10

FIFO vs. SJF

Whats the big deal?

Don’t they finish at

the same time?

CSE 153 – Lecture 7 – Scheduling 11

CSE 153 – Lecture 7 – Scheduling 12

SJF Example

AWT = (8 + (8+4)+(8+4+2))/3 = 11.33

AWT = (4 + (4+8)+(4+8+2))/3 = 10

AWT = (4+ (4+2)+(4+2+8))/3 = 8

AWT = (2 + (2+4)+(2+4+8))/3 = 7.33

SJF

Claim: SJF is optimal for average

response time

◆ Why?

For what workloads is FIFO optimal?

◆ For what is it pessimal (i.e., worst)?

Does SJF have any downsides?

CSE 153 – Lecture 7 – Scheduling 13

CSE 153 – Lecture 7 – Scheduling 14

Shortest Job First (SJF)

Problems?

◆ Impossible to know size of CPU burst

» Like choosing person in line without looking inside basket/cart

◆ How can you make a reasonable guess?

◆ Can potentially starve

Flavors

◆ Can be either preemptive or non-preemptive

◆ Preemptive SJF is called shortest remaining time first (SRTF)

Round Robin

Each task gets resource for a fixed period of time (time

quantum)

◆ If task doesn’t complete, it goes back in line

Need to pick a time quantum

◆ What if time quantum is too long?

» Infinite?

◆ What if time quantum is too short?

» One instruction?

CSE 153 – Lecture 7 – Scheduling 15

Round Robin

CSE 153 – Lecture 7 – Scheduling 16

Round Robin vs. FIFO

Many context switches can be costly

Other than that, is Round Robin always

better than FIFO?

CSE 153 – Lecture 7 – Scheduling 17

Round Robin vs. FIFO

Is Round Robin always fair?

CSE 153 – Lecture 7 – Scheduling 18

Mixed Workload

CSE 153 – Lecture 7 – Scheduling 19

Max-Min Fairness

How do we balance a mixture of repeating tasks:

◆ Some I/O bound, need only a little CPU

◆ Some compute bound, can use as much CPU as they are

assigned

One approach: maximize the minimum allocation

given to a task

◆ Schedule the smallest task first, then split the remaining time

using max-min

CSE 153 – Lecture 7 – Scheduling 20

CSE 153 – Lecture 7 – Scheduling 21

Priority Scheduling

Priority Scheduling

◆ Choose next job based on priority

» Airline checkin for first class passengers

◆ Can implement SJF, priority = 1/(expected CPU burst)

◆ Also can be either preemptive or non-preemptive

Problem?

◆ Starvation – low priority jobs can wait indefinitely

Solution

◆ “Age” processes

» Increase priority as a function of waiting time

» Decrease priority as a function of CPU consumption

CSE 153 – Lecture 7 – Scheduling 22

More on Priority Scheduling

For real-time (predictable) systems, priority is often

used to isolate a process from those with lower

priority. Priority inversion is a risk unless all resources

are jointly scheduled.

x->Acquire()

x->Acquire()

x->Release()

x->Acquire()

x->Acquire()

time

time

How can this be avoided?

PH

PL

PH

PL

PM

Priority inheritance

If lower priority process is being waited on by a higher

priority process it inherits its priority

◆ How does this help?

◆ Does it prevent the previous problem?

Priority inversion is a big problem for real-time

systems

◆ Mars pathfinder bug (link)

CSE 153 – Lecture 7 – Scheduling 23

https://www.microsoft.com/en-us/research/people/mbj/?from=http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/authoritative_account.html

Problems of basic algorithms

FIFO: Good: fairness; bad: turnaround time, response

time

SJF: good: turnaround time; bad: fairness, response

time, need to estimate run-time

RR: good: fairness, response time; bad: turnaround

time

Is there a scheduler that balances these issues better?

◆ Challenge: limited information about a process in the

beginning

◆ Challenge: how to prevent gaming the scheduler to get more

run-time

CSE 153 – Lecture 7 – Scheduling 24

CSE 153 – Lecture 7 – Scheduling 25

MLQ: combining algorithms

Scheduling algorithms can be combined

◆ Have multiple queues

◆ Use a different algorithm for each queue

◆ Move processes among queues

Example: Multiple-level feedback queues (MLFQ)

◆ Multiple queues representing different job types

» Interactive, CPU-bound, batch, system, etc.

◆ Queues have priorities, jobs on same queue scheduled RR

◆ Jobs can move among queues based upon execution history

» Feedback: Switch from interactive to CPU-bound behavior

Multi-level Feedback Queue

(MFQ)

Goals:

◆ Responsiveness

◆ Low overhead

◆ Starvation freedom

◆ Some tasks are high/low priority

◆ Fairness (among equal priority tasks)

Not perfect at any of them!

◆ Used in Linux (and probably Windows, MacOS)

CSE 153 – Lecture 7 – Scheduling 26

MFQ

Set of Round Robin queues

◆ Each queue has a separate priority

High priority queues have short time slices

◆ Low priority queues have long time slices

Scheduler picks first thread in highest priority queue

Tasks start in highest priority queue

◆ If time slice expires, task drops one level

CSE 153 – Lecture 7 – Scheduling 27

MFQ

CSE 153 – Lecture 7 – Scheduling 28

CSE 153 – Lecture 7 – Scheduling 29

Unix Scheduler

The canonical Unix scheduler uses a MLFQ
◆ 3-4 classes spanning ~170 priority levels

» Timesharing: first 60 priorities

» System: next 40 priorities

» Real-time: next 60 priorities

» Interrupt: next 10 (Solaris)

Priority scheduling across queues, RR within a queue
◆ The process with the highest priority always runs

◆ Processes with the same priority are scheduled RR

Processes dynamically change priority
◆ Increases over time if process blocks before end of quantum

◆ Decreases over time if process uses entire quantum

CSE 153 – Lecture 7 – Scheduling 30

Motivation of Unix Scheduler

The idea behind the Unix scheduler is to reward

interactive processes over CPU hogs

Interactive processes (shell, editor, etc.) typically run

using short CPU bursts

◆ They do not finish quantum before waiting for more input

Want to minimize response time

◆ Time from keystroke (putting process on ready queue) to

executing keystroke handler (process running)

◆ Don’t want editor to wait until CPU hog finishes quantum

This policy delays execution of CPU-bound jobs

◆ But that’s ok

CSE 153 – Lecture 7 – Scheduling 31

Scheduling Summary

Scheduler (dispatcher) is the module that gets invoked

when a context switch needs to happen

Scheduling algorithm determines which process runs,

where processes are placed on queues

Many potential goals of scheduling algorithms

◆ Utilization, throughput, wait time, response time, etc.

Various algorithms to meet these goals

◆ FCFS/FIFO, SJF, Priority, RR

Can combine algorithms

◆ Multiple-level feedback queues

◆ Unix example

