CSE 153
Design of Operating
Systems

Fall 2018

Lecture 07: Scheduling

Scheduling Overview

o Scheduler runs when we context switching among
processes/threads to pick who runs next
+ Under what situation does this occur?
+ What should it do? Does it matter?

o Making this decision is called scheduling

s Now, we’ Il look at:
+ The goals of scheduling
+ Starvation
+ Various well-known scheduling algorithms
+ Standard Unix scheduling algorithm

CSE 153 — Lecture 7 — Scheduling

Multiprogramming

o Increase CPU utilization and job throughput by
overlapping I/O and CPU activities

o Mechanisms vs. policy

» We have covered the mechanisms
+ Context switching, how and when it happens
+ Process queues and process states

s Now we’ Il look at the policies
+ Which process (thread) to run, for how long, etc.

s We' ll refer to schedulable entities as jobs (standard
usage) — could be processes, threads, people, etc.

CSE 153 — Lecture 7 — Scheduling

Scheduling Goals

o Scheduling works at two levels in an operating system

»

»

»

»

»

Control multiprogramming level —number of

jobs loaded into memory
Moving jobs to/from memory is often called swapping
Long term scheduler: infrequent

To decide what job to run next

Does it matter? What criteria?
Short term scheduler: frequent
We are concerned with this level of scheduling

CSE 153 — Lecture 7 — Scheduling

Scheduling

o The scheduler is the OS module that manipulates the process
gueues, moving jobs to and from

o The scheduling algorithm determines which jobs are chosen to
run next and what queues they wait on

o In general, the scheduler runs:
+ When a job switches from running to waiting
+ When an interrupt occurs
+ When a job is created or terminated

CSE 153 — Lecture 7 — Scheduling

Preemptive vs. Non-
preemptive scheduling

« We’ ll discuss scheduling algorithms in two contexts

+ In preemptive systems the scheduler can interrupt a running job
(involuntary context switch)

+ In non-preemptive systems, the scheduler waits for a running job to
explicitly block (voluntary context switch)

CSE 153 — Lecture 7 — Scheduling

Scheduling Goals

o What are some reasonable goals for a scheduler?

o Scheduling algorithms can have many different goals:
+ CPU utilization
+ Job throughput (# jobs/unit time)

+ Turnaround time (Tsnich — Tstart)
» Normalized turnaround time = Turnaround time/process length

+ Avg Waiting time (Avg(T,,,): avg time spent on wait queues)

+ Avg Response time (Avg(T,.,q,): avg time spent on ready queue)
» Batch systems

+ Strive for job throughput, turnaround time (supercomputers)

o Interactive systems
+ Strive to minimize response time for interactive jobs (PC)

CSE 153 — Lecture 7 — Scheduling 7

Starvation

Starvation is a scheduling “non-goal”:

o Starvation: process prevented from making progress
because other processes have the resource it requires
+ Resource could be the CPU, or a lock (recall readers/writers)

o Starvation usually a side effect of the sched. Algorithm

+ E.g., a high priority process always prevents a low priority
process from running on the CPU

+ E.g., one thread always beats another when acquiring a lock

o Starvation can be a side effect of synchronization
+ E.g., constant supply of readers always blocks out writers

CSE 153 - Lecture 7 — Scheduling 8

First In First Out (FIFO)

o Schedule tasks in the order they arrive

+ Continue running them until they complete or give up the
processor

o Example: memcached
+ Facebook cache of friend lists, ...

o On what workloads is FIFO particularly bad?

+ Imagine being at supermarket to buy a drink of water, but get
stuck behind someone with a huge cart (or two!)

» ...and who pays in pennies!
+ Can we do better?

CSE 153 — Lecture 7 — Scheduling

Shortest Job First (SJF)

o Always do the task that has the shortest remaining
amount of work to do
+ Often called Shortest Remaining Time First (SRTF)

o Suppose we have five tasks arrive one right after each
other, but the first one is much longer than the others
+ Which completes first in FIFO? Next?
+ Which completes first in SJF? Next?

CSE 153 — Lecture 7 — Scheduling 10

FIFO vs. SJF

Tasks FIFO

() D Whats the big deal?
SJF Don’t they finish at
the same time?

>
Time
CSE 153 — Lecture 7 — Scheduling 11

SJF Example

T T LT AWT = (8 + (8+4)+(8+4+2))/3 = 11.33
T LT T LT AWT = (4 + (4+8)+(4+8+2))/3 = 10
D AWT = (4+ (4+2)+(4+2+8))/3 = 8
D AWT = (2 + (2+4)+(2+4+8))/3 = 7.33

CSE 153 — Lecture 7 — Scheduling 12

SJF

» Claim: SJF is optimal for average
response time

o Why?

» For what workloads is FIFO optimal?
+ FOr what is it pessimal (i.e., worst)?

» Does SJF have any downsides?

CSE 153 — Lecture 7 — Scheduling

13

Shortest Job First (SJF)

o Problems?

+ Impossible to know size of CPU burst
» Like choosing person in line without looking inside basket/cart

+ How can you make a reasonable guess?
+ Can potentially starve

o Flavors
+ Can be either preemptive or non-preemptive
+ Preemptive SJF is called shortest remaining time first (SRTF)

CSE 153 — Lecture 7 — Scheduling 14

Round Robin

o Each task gets resource for a fixed period of time (time
guantum)
+ If task doesn’t complete, it goes back in line

o Need to pick a time quantum
+ What if time quantum is too long?

» Infinite?
+ What if time quantum is too short?

» One Instruction?

CSE 153 — Lecture 7 — Scheduling 15

Round Robin

Tasks

(1)
(2)
(3)
(4)
(5)

(1)
(2)
(3)

(5)

Round Robin (1 ms time slice)

rest of task 1

Round Robin (100 ms time slice)

rest of task 1

]

]
]
]

Time
CSE 153 — Lecture 7 — Scheduling

A4

16

Round Robin vs. FIFO

» Many context switches can be costly

» Other than that, iIs Round Robin always
better than FIFO?

CSE 153 — Lecture 7 — Scheduling

17

Round Robin vs. FIFO

Tasks Round Robin (1 ms time slice) Is Round Robin always fair?

]
]
]
]
]

FIFO and SJF

N
N

A~ N /SN /S~
W
~—"

CSE 1os —Lecture 7/ —scneauling / 18
Time

Tasks 1/0O
\I/completes

I/0 bound D

issues

I/0

request
CPU bound
CPU bound

Mixed Workload

1/O
\I/completes

/[\

gets
CPU

CSE 153 — Lecture 7 — Scheduling

Time

N2

19

Max-Min Fairness

o How do we balance a mixture of repeating tasks:
+ Some I/O bound, need only a little CPU

+ Some compute bound, can use as much CPU as they are
assigned

o One approach: maximize the minimum allocation
given to a task

+ Schedule the smallest task first, then split the remaining time
using max-min

CSE 153 — Lecture 7 — Scheduling

20

Priority Scheduling

o Priority Scheduling

+ Choose next job based on priority
» Airline checkin for first class passengers

+ Can implement SJF, priority = 1/(expected CPU burst)
+ Also can be either preemptive or non-preemptive

o Problem?
+ Starvation — low priority jobs can wait indefinitely

o Solution

+ “Age” processes
» Increase priority as a function of waiting time
» Decrease priority as a function of CPU consumption

CSE 153 — Lecture 7 — Scheduling

21

More on Priority Scheduling

o For real-time (predictable) systems, priority is often
used to isolate a process from those with lower

priority. Priority inversion is a risk unless all resources
are jointly scheduled.

x->Acquire()
Py]

§ x->Acquire() x->Release()
= P S B

CSE 153 — Lecture 7 — Scheduling 22

Priority inheritance

o If lower priority process is being waited on by a higher
priority process it inherits its priority
+ How does this help?
+ Does it prevent the previous problem?

o Priority inversion is a big problem for real-time
systems
+ Mars pathfinder bug (link)

CSE 153 — Lecture 7 — Scheduling

23

https://www.microsoft.com/en-us/research/people/mbj/?from=http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/authoritative_account.html

Problems of basic algorithms

o FIFO: Good: fairness; bad: turnaround time, response
time

o SJF: good: turnaround time; bad: fairness, response
time, need to estimate run-time

o RR: good: fairness, response time; bad: turnaround
time

o Is there a scheduler that balances these issues better?

+ Challenge: limited information about a process in the
beginning

+ Challenge: how to prevent gaming the scheduler to get more
run-time

CSE 153 — Lecture 7 — Scheduling 24

MLQ: combining algorithms

o Scheduling algorithms can be combined
+ Have multiple queues
+ Use a different algorithm for each queue
+ Move processes among queues

» Example: Multiple-level feedback queues (MLFQ)

+ Multiple queues representing different job types
» Interactive, CPU-bound, batch, system, etc.
+ Queues have priorities, jobs on same queue scheduled RR

+ Jobs can move among queues based upon execution history
» Feedback: Switch from interactive to CPU-bound behavior

CSE 153 — Lecture 7 — Scheduling

25

Multi-level Feedback Queue
(MFQ)

o Goals:
+ Responsiveness
+ Low overhead
+ Starvation freedom
+ Some tasks are high/low priority
+ Fairness (among equal priority tasks)

o Not perfect at any of them!
+ Used in Linux (and probably Windows, MacQOS)

CSE 153 — Lecture 7 — Scheduling

MFQ

o Set of Round Robin queues
+ Each queue has a separate priority

o High priority queues have short time slices
+ Low priority queues have long time slices

o Scheduler picks first thread in highest priority queue

o Tasks start in highest priority queue
+ If time slice expires, task drops one level

CSE 153 — Lecture 7 — Scheduling

27

MFQ

Priority Time Slice (ms)

1 10
2 20
3 40
4 80

Round Robin Queues

new or /O
bound task

@time slice

: expiration

i

CSE 153 — Lecture 7 — Scheduling

&

28

Unix Scheduler

o The canonical Unix scheduler uses a MLFQ

+ 3-4 classes spanning ~170 priority levels
» Timesharing: first 60 priorities
» System: next 40 priorities
» Real-time: next 60 priorities
» Interrupt: next 10 (Solaris)
o Priority scheduling across queues, RR within a queue
+ The process with the highest priority always runs
+ Processes with the same priority are scheduled RR

o Processes dynamically change priority
+ Increases over time if process blocks before end of quantum
+ Decreases over time if process uses entire quantum

CSE 153 — Lecture 7 — Scheduling

29

Motivation of Unix Scheduler

o The idea behind the Unix scheduler is to reward
Interactive processes over CPU hogs

o Interactive processes (shell, editor, etc.) typically run
using short CPU bursts

+ They do not finish quantum before waiting for more input
o Want to minimize response time

+ Time from keystroke (putting process on ready queue) to
executing keystroke handler (process running)

+ Don’ t want editor to wait until CPU hog finishes quantum

o This policy delays execution of CPU-bound jobs
+ But that’ s ok

CSE 153 — Lecture 7 — Scheduling 30

Scheduling Summary

o Scheduler (dispatcher) is the module that gets invoked
when a context switch needs to happen

o Scheduling algorithm determines which process runs,
where processes are placed on queues

o Many potential goals of scheduling algorithms
+ Utilization, throughput, wait time, response time, etc.

o Various algorithms to meet these goals
o FCFS/FIFO, SJF, Priority, RR

o Can combine algorithms
+ Multiple-level feedback queues
+ Unix example

CSE 153 — Lecture 7 — Scheduling 31

