CSE 153
Design of Operating
Systems

Fall 2018

Lecture 6: Semaphores

Last time

o Worked through software implementation of locks
+ Good concurrency practice

+ Ended up with Dekker and Peterson’s algorithms

» Work under assumptions of atomic and in order memory system
o So, they do not work in practice
o Compiler reorders
o And memory system is not ordered

o Introduced hardware support for synchronization

+ Two flavors:

» Atomic instructions that read and update a variable
o E.g., test-and-set, xchange, ...

» Disable interrupts

CSE 153 — Lecture 9 — Semaphores and Monitors

Using Test-And-Set

o Here is our lock implementation with test-and-set:

struct lock {
int held = 0;
}
void acquire (lock) {
while (test-and-set(&lock->held));
}
void release (lock) {
lock->held = 0;

}

o When will the while return? What is the value of held?

o Does it satisfy critical region requirements? (mutex,
progress, bounded wait, performance?)

CSE 153 — Lecture 9 — Semaphores and Monitors

Another solution: Disabling
Interrupts

o Another implementation of acquire/release is to
disable interrupts:

struct lock {
}
void acquire (lock) {

disable interrupts;
}
void release (lock) {

enable interrupts;

}

o Note that there is no state associated with the lock
o Can two threads disable interrupts simultaneously?

CSE 153 — Lecture 9 — Semaphores and Monitors

On Disabling Interrupts

o Disabling interrupts blocks notification of external
events that could trigger a context switch (e.g., timer)

» In a “real” system, this is only available to the kernel
o Why?

o Disabling interrupts is insufficient on a multiprocessor
+ Back to atomic instructions

o Like spinlocks, only want to disable interrupts to
Implement higher-level synchronization primitives
+ Don’ t want interrupts disabled between acquire and release

CSE 153 — Lecture 9 — Semaphores and Monitors

Summarize Where We Are

o Goal: Use mutual exclusion to protect critical sections
of code that access shared resources

o Method: Use locks (spinlocks or disable interrupts)
o Problem: Critical sections can be long

Spinlocks:

o Threads waiting to acquire
lock spin in test-and-set loop

o Wastes CPU cycles

o Longer the CS, the longer
the spin

o Greater the chance for lock
holder to be interrupted

sMemory consistency model
causes problems (out of
scope of this class)

<

acquire(lock)
Critical section

release(lock)

CSE 153 — Lecture 9 — Semaphores and Monitors

Disabling Interrupts:

o Should not disable interrupts
for long periods of time

o Can miss or delay important
events (e.g., timer, 1/O)

Implementing Locks (4)

o Block waiters, interrupts enabled in critical sections

struct lock {
int held = 0;
queue Q;
}
void acquire (lock) {
Disable interrupts;
if (lock->held) {
put current thread on lock Q;
block current thread,;
}
lock->held = 1;
Enable interrupts;

void release (lock) {
Disable interrupts;
if (Q)
remove and unblock a waiting thread;
else
lock->held = 0O;
Enable interrupts;

}
acquire(lock) } Interrupts Disabled
Critical section Interrupts Enabled

release(lock)

} Interrupts Disabled

CSE 153 — Lecture 9 — Semaphores and Monitors 7

Higher-Level Synchronization

o Locks so far inefficient when critical sections are long
+ Spinlocks — inefficient
+ Disabling interrupts — can miss or delay important events

o Instead, we want synchronization mechanisms that
+ Block waiters
+ Leave interrupts enabled inside the critical section

o Plan:

+ Look at two common high-level mechanisms
» Semaphores: binary (mutex) and counting
» Monitors: mutexes and condition variables

+ Use them to solve common synchronization problems

CSE 153 — Lecture 9 — Semaphores and Monitors 8

Semaphores

o Semaphores are an abstract data type that provide mutual
exclusion to critical sections
+ Block waiters, interrupts enabled within critical section
+ Described by Dijkstra in THE system in 1968

o Semaphores are integers that support two operations:
+ wait(semaphore): decrement, block until semaphore is open
» Also P(), after the Dutch word for test, or down()

+ signal(semaphore): increment, allow another thread to enter
» Also V() after the Dutch word for increment, or up()

+ That's it! No other operations — not even just reading its value — exist

o Semaphore safety property: the semaphore value is always
greater than or equalto O

CSE 153 — Lecture 9 — Semaphores and Monitors

Blocking in Semaphores

o Associated with each semaphore is a queue of waiting
threads/processes

o When wait() (or P()) is called by a thread:
+ If semaphore is open, thread continues
+ If semaphore is closed, thread blocks on queue
o Then signal() (or V()) opens the semaphore:

+ If athread is waiting on the queue, the thread is unblocked

+ If no threads are waiting on the queue, the signal is
remembered for the next thread

CSE 153 — Lecture 9 — Semaphores and Monitors 10

Semaphore Types

o Semaphores come in two types

o Mutex semaphore (or binary semaphore)
+ Represents single access to a resource
+ Guarantees mutual exclusion to a critical section

» Counting semaphore (or general semaphore)

+ Multiple threads pass the semaphore determined by count
» mutex has count = 1, counting has count =N

+ Represents a resource with many units available

+ Or aresource allowing some unsynchronized concurrent
access (e.g., reading)

CSE 153 — Lecture 9 — Semaphores and Monitors

11

Protecting a critical region

o Sem mutex =1;
process CS[i = 1ton]{
while (true) {
P(mutex);
critical region;
V(mutex);
noncritical region;

}
}

CSE 153 — Lecture 9 — Semaphores and Monitors

12

Implementing a 2-process barrier

O Neither process can pass the barrier until both have arrived
O Must be able continuously reuse the barrier; therefore it must reinitialize after letting processes

pass the barrier.

€ This will require two semaphores: a signaling semaphore for each of arrival and departure.
€ Each process x signals its arrival using a V(arrivex) and then waits on the other process' (y) semaphore

with a P(arrivey);

sem arrivel = 0, arrive2 = 0;
process Workerl {

V(arrivel); /*signal arrival */
P(arrive2); [*await arrival of other process */

}...

process Worker2 {

V(arrive2);
P(arrivel);

CSE 153 — Lecture 9 — Semaphores and Monitors 13

A simple producer/consumer problem

Use a single shared buffer typeT buf; /* a buffer of some type */

Only one process can read or write sem empty =1; /*initially buffer is empty */
the buffer at a time sem full = 0; /*initially buffer is not full */
. : process Producer [i =1 tom] {

Producers put things in the buffer while (true) {

Consumers take things out of the

buffer /*produce data, then deposit it in the buffer */
P(empty);
Need two semaphores buf = data:
+ Empty will keep track of whether the V(full);
buffer is empty 1
+ Full will keep track of whether the }
buffer is full process Consumer [j=1to n] {
while (true) {
P(full);
result = buf;
V(empty);
¥
¥

CSE 153 — Lecture 9 — Semaphores and Monitors 14

Bounded Buffers: Resource Counting

o Several messages can be typeT buf[n]; /*an array to hold the queue of messages*/
ueued between a producer and - romt =0, rear =0-
; P sem empty =n, full = 0; /*n -2 <= empty+full <= n*/
a consumer process Producer {
o Use counting semaphores to while (true) {

keef:’ track of how many buffers [*produce message data and deposit it in the buffer;*/
are full and how many are empty P(empty);
buf[rear] = data; rear = (rear+1)%n;
V(full);
}
}

process Consumer {
while (true) {
[*fetch message result and consume it */
P(full);
result = buf[front]; front = (front + 1)%n;
V(empty);

.
}

CSE 153 — Lecture 9 — Semaphores and Monitors 15

Multiple Producers and Consumers

typeT buf[n] /* an array of data*/
]] int front =0, rear =0;
n Since multiple sem empty = n, full =0;

sem mutexD =1, mutexF =1; /* semaphores for mutual exclusion*/

pI’OdUCEI’S Can acCcess process Producer [i= 1 to M] {

deposit at the same while (true) ¢

time and mu|t|p|e /* produce message and deposit it in the buffer */
p ty);

consumers can s
buf[rear] = data; rear = (rear +1) %n;

access_ fetch at the V(D)

same time, we need }V(fun);

critical regions }

process Consumer [i = 1to NJ {
while (true) {

[*fetch message and consumer it */
P(full);

P(mutexF);

result = buf[front]; front = (front+1) % n;
V(mutexF);

V(empty);

.
¥

CSE 153 — Lecture 9 — Semaphores and Monitors 16

More complex situations...

o How to get it right?

o What if it is not done right?
+ Race condition
+ Erroneous program behavior
+ Deadlock

CSE 153 — Lecture 9 — Semaphores and Monitors

17

Semaphore Summary

o Semaphores can be used to solve any of the
traditional synchronization problems

o However, they have some drawbacks
+ They are essentially shared global variables
» Can potentially be accessed anywhere in program

+ No connection between the semaphore and the data being
controlled by the semaphore

+ Used both for critical sections (mutual exclusion) and
coordination (scheduling)

» Note that | had to use comments in the code to distinguish
+ No control or guarantee of proper usage

o Sometimes hard to use and prone to bugs
+ Another approach: Use programming language support

CSE 153 — Lecture 9 — Semaphores and Monitors

18

