
CSE 153

Design of Operating

Systems

Fall 2018

Lecture 6: Semaphores

Last time

Worked through software implementation of locks

◆ Good concurrency practice

◆ Ended up with Dekker and Peterson’s algorithms

» Work under assumptions of atomic and in order memory system

So, they do not work in practice

Compiler reorders

And memory system is not ordered

Introduced hardware support for synchronization

◆ Two flavors:

» Atomic instructions that read and update a variable

E.g., test-and-set, xchange, …

» Disable interrupts

CSE 153 – Lecture 9 – Semaphores and Monitors 2

CSE 153 – Lecture 9 – Semaphores and Monitors 3

Using Test-And-Set

Here is our lock implementation with test-and-set:

When will the while return? What is the value of held?

Does it satisfy critical region requirements? (mutex,

progress, bounded wait, performance?)

struct lock {

int held = 0;

}

void acquire (lock) {

while (test-and-set(&lock->held));

}

void release (lock) {

lock->held = 0;

}

CSE 153 – Lecture 9 – Semaphores and Monitors 4

Another solution: Disabling

Interrupts

Another implementation of acquire/release is to

disable interrupts:

Note that there is no state associated with the lock

Can two threads disable interrupts simultaneously?

struct lock {

}

void acquire (lock) {

disable interrupts;

}

void release (lock) {

enable interrupts;

}

CSE 153 – Lecture 9 – Semaphores and Monitors 5

On Disabling Interrupts

Disabling interrupts blocks notification of external

events that could trigger a context switch (e.g., timer)

In a “real” system, this is only available to the kernel

◆ Why?

Disabling interrupts is insufficient on a multiprocessor

◆ Back to atomic instructions

Like spinlocks, only want to disable interrupts to

implement higher-level synchronization primitives

◆ Don’t want interrupts disabled between acquire and release

CSE 153 – Lecture 9 – Semaphores and Monitors 6

Summarize Where We Are

Goal: Use mutual exclusion to protect critical sections

of code that access shared resources

Method: Use locks (spinlocks or disable interrupts)

Problem: Critical sections can be long

acquire(lock)

…

Critical section

…

release(lock)

Disabling Interrupts:

Should not disable interrupts

for long periods of time

Can miss or delay important

events (e.g., timer, I/O)

Spinlocks:

Threads waiting to acquire

lock spin in test-and-set loop

Wastes CPU cycles

Longer the CS, the longer

the spin

Greater the chance for lock

holder to be interrupted

Memory consistency model

causes problems (out of

scope of this class)

Block waiters, interrupts enabled in critical sections

void release (lock) {

Disable interrupts;

if (Q)

remove and unblock a waiting thread;

else

lock->held = 0;

Enable interrupts;

}

CSE 153 – Lecture 9 – Semaphores and Monitors 7

Implementing Locks (4)

struct lock {

int held = 0;

queue Q;

}

void acquire (lock) {

Disable interrupts;

if (lock->held) {

put current thread on lock Q;

block current thread;

}

lock->held = 1;

Enable interrupts;

}

acquire(lock)

…

Critical section

…

release(lock)

Interrupts Enabled

Interrupts Disabled

Interrupts Disabled

8

Higher-Level Synchronization

Locks so far inefficient when critical sections are long
◆ Spinlocks – inefficient

◆ Disabling interrupts – can miss or delay important events

Instead, we want synchronization mechanisms that
◆ Block waiters

◆ Leave interrupts enabled inside the critical section

Plan:
◆ Look at two common high-level mechanisms

» Semaphores: binary (mutex) and counting

» Monitors: mutexes and condition variables

◆ Use them to solve common synchronization problems

CSE 153 – Lecture 9 – Semaphores and Monitors

9

Semaphores

Semaphores are an abstract data type that provide mutual
exclusion to critical sections

◆ Block waiters, interrupts enabled within critical section

◆ Described by Dijkstra in THE system in 1968

Semaphores are integers that support two operations:

◆ wait(semaphore): decrement, block until semaphore is open

» Also P(), after the Dutch word for test, or down()

◆ signal(semaphore): increment, allow another thread to enter

» Also V() after the Dutch word for increment, or up()

◆ That's it! No other operations – not even just reading its value – exist

Semaphore safety property: the semaphore value is always
greater than or equal to 0

CSE 153 – Lecture 9 – Semaphores and Monitors

CSE 153 – Lecture 9 – Semaphores and Monitors 10

Blocking in Semaphores

Associated with each semaphore is a queue of waiting

threads/processes

When wait() (or P()) is called by a thread:

◆ If semaphore is open, thread continues

◆ If semaphore is closed, thread blocks on queue

Then signal() (or V()) opens the semaphore:

◆ If a thread is waiting on the queue, the thread is unblocked

◆ If no threads are waiting on the queue, the signal is

remembered for the next thread

CSE 153 – Lecture 9 – Semaphores and Monitors 11

Semaphore Types

Semaphores come in two types

Mutex semaphore (or binary semaphore)

◆ Represents single access to a resource

◆ Guarantees mutual exclusion to a critical section

Counting semaphore (or general semaphore)

◆ Multiple threads pass the semaphore determined by count

» mutex has count = 1, counting has count = N

◆ Represents a resource with many units available

◆ or a resource allowing some unsynchronized concurrent

access (e.g., reading)

Protecting a critical region

sem mutex =1;

process CS[i = 1 to n] {

while (true) {

P(mutex);

critical region;

V(mutex);

noncritical region;

}

}

CSE 153 – Lecture 9 – Semaphores and Monitors 12

Implementing a 2-process barrier

CSE 153 – Lecture 9 – Semaphores and Monitors 13

Neither process can pass the barrier until both have arrived

Must be able continuously reuse the barrier; therefore it must reinitialize after letting processes

pass the barrier.
◆ This will require two semaphores: a signaling semaphore for each of arrival and departure.

◆ Each process x signals its arrival using a V(arrivex) and then waits on the other process' (y) semaphore

with a P(arrivey);
sem arrive1 = 0, arrive2 = 0;

process Worker1 {

...

V(arrive1); /*signal arrival */

P(arrive2); /*await arrival of other process */

...

}

process Worker2 {

...

V(arrive2);

P(arrive1);

..

}

A simple producer/consumer problem

Use a single shared buffer

Only one process can read or write

the buffer at a time

Producers put things in the buffer

Consumers take things out of the

buffer

Need two semaphores

◆ Empty will keep track of whether the

buffer is empty

◆ Full will keep track of whether the

buffer is full

CSE 153 – Lecture 9 – Semaphores and Monitors 14

typeT buf; /* a buffer of some type */

sem empty =1; /*initially buffer is empty */

sem full = 0; /*initially buffer is not full */

process Producer [i = 1 to m] {

while (true) {

...

/*produce data, then deposit it in the buffer */

P(empty);

buf = data;

V(full);

}

}

process Consumer [j=1 to n] {

while (true) {

P(full);

result = buf;

V(empty);

...

}

}

Bounded Buffers: Resource Counting

Several messages can be

queued between a producer and

a consumer

Use counting semaphores to

keep track of how many buffers

are full and how many are empty

CSE 153 – Lecture 9 – Semaphores and Monitors 15

typeT buf[n]; /*an array to hold the queue of messages*/

int front =0, rear =0-;

sem empty =n, full = 0; /*n -2 <= empty+full <= n*/

process Producer {

while (true) {

...

/*produce message data and deposit it in the buffer;*/

P(empty);

buf[rear] = data; rear = (rear+1)%n;

V(full);

}

}

process Consumer {

while (true) {

/*fetch message result and consume it */

P(full);

result = buf[front]; front = (front + 1)%n;

V(empty);

...

}

}

Multiple Producers and Consumers

Since multiple

producers can access

deposit at the same

time and multiple

consumers can

access fetch at the

same time, we need

critical regions

CSE 153 – Lecture 9 – Semaphores and Monitors 16

typeT buf[n] /* an array of data*/

int front =0, rear =0;

sem empty = n, full =0;

sem mutexD =1, mutexF =1; /* semaphores for mutual exclusion*/

process Producer [i= 1 to M] {

while (true) {

...

/* produce message and deposit it in the buffer */

P(empty);

P(mutexD);

buf[rear] = data; rear = (rear +1) %n;

V(mutexD);

V(full);

}

}

process Consumer [i = 1 to N] {

while (true) {

...

/*fetch message and consumer it */

P(full);

P(mutexF);

result = buf[front]; front = (front+1) % n;

V(mutexF);

V(empty);

...

}

}

More complex situations…

How to get it right?

What if it is not done right?

◆ Race condition

◆ Erroneous program behavior

◆ Deadlock

CSE 153 – Lecture 9 – Semaphores and Monitors 17

CSE 153 – Lecture 9 – Semaphores and Monitors 18

Semaphore Summary

Semaphores can be used to solve any of the

traditional synchronization problems

However, they have some drawbacks

◆ They are essentially shared global variables

» Can potentially be accessed anywhere in program

◆ No connection between the semaphore and the data being

controlled by the semaphore

◆ Used both for critical sections (mutual exclusion) and

coordination (scheduling)

» Note that I had to use comments in the code to distinguish

◆ No control or guarantee of proper usage

Sometimes hard to use and prone to bugs

◆ Another approach: Use programming language support

