
CSE 153

Design of Operating

Systems

Fall 2018

Lecture 5: Threads/Synchronization

CSE 153 – Lecture 6 – Threads 2

Implementing threads

l Kernel Level Threads

l All thread operations are implemented in the kernel

u The OS schedules all of the threads in the system

u Don’t have to separate from processes

l OS-managed threads are called kernel-level threads

or lightweight processes

u Windows: threads

u Solaris: lightweight processes (LWP)

u POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

CSE 153 – Lecture 6 – Threads 3

Kernel Thread (KLT)

Limitations

l KLTs make concurrency cheaper than processes

u Much less state to allocate and initialize

l However, there are a couple of issues

u Issue 1: KLT overhead still high

» Thread operations still require system calls

» Ideally, want thread operations to be as fast as a procedure call

u Issue 2: KLTs are general; unaware of application needs

l Alternative: User-level threads (ULT)

CSE 153 – Lecture 6 – Threads 4

Alternative: User-Level Threads

Implement threads using user-level library

ULTs are small and fast

◆ A thread is simply represented by a PC, registers, stack, and

small thread control block (TCB)

◆ Creating a new thread, switching between threads, and

synchronizing threads are done via procedure call

» No kernel involvement

◆ User-level thread operations 100x faster than kernel threads

◆ pthreads: PTHREAD_SCOPE_PROCESS

CSE 153 – Lecture 6 – Threads 5

ULT Limitations

But, user-level threads are not a perfect solution

◆ As with everything else, they are a tradeoff

ULTs are invisible to the OS

As a result, the OS can make poor decisions

◆ Scheduling a process with idle threads

◆ Blocking a process whose thread initiated an I/O, even though

the process has other threads that can execute

◆ Unscheduling a process with a thread holding a lock

Solving this requires communication between the

kernel and the user-level thread manager

CSE 153 – Lecture 6 – Threads 6

Summary KLT vs. ULT

Kernel-level threads

◆ Integrated with OS (informed scheduling)

◆ Slow to create, manipulate, synchronize

User-level threads

◆ Fast to create, manipulate, synchronize

◆ Not integrated with OS (uninformed scheduling)

Understanding the differences between kernel and

user-level threads is important

◆ For programming (correctness, performance)

◆ For test-taking ☺

CSE 153 – Lecture 6 – Threads 7

Sample Thread Interface

thread_fork(procedure_t)

◆ Create a new thread of control

◆ Also thread_create(), thread_setstate()

thread_stop()

◆ Stop the calling thread; also thread_block

thread_start(thread_t)

◆ Start the given thread

thread_yield()

◆ Voluntarily give up the processor

thread_exit()

◆ Terminate the calling thread; also thread_destroy

CSE 153 – Lecture 6 – Threads 8

Thread Scheduling

The thread scheduler determines when a thread runs

It uses queues to keep track of what threads are doing

◆ Just like the OS and processes

◆ But it is implemented at user-level in a library

Run queue: Threads currently running (usually one)

Ready queue: Threads ready to run

Are there wait queues?

◆ How would you implement thread_sleep(time)?

CSE 153 – Lecture 6 – Threads 9

Non-Preemptive Scheduling

Threads voluntarily give up the CPU with thread_yield

What is the output of running these two threads?

while (1) {

printf(“ping\n”);

thread_yield();

}

while (1) {

printf(“pong\n”);

thread_yield();

}

Ping Thread Pong Thread

CSE 153 – Lecture 6 – Threads 10

thread_yield()

The semantics of thread_yield are that it gives up the

CPU to another thread

◆ In other words, it context switches to another thread

So what does it mean for thread_yield to return?

Execution trace of ping/pong
◆ printf(“ping\n”);

◆ thread_yield();

◆ printf(“pong\n”);

◆ thread_yield();

◆ …

CSE 153 – Lecture 6 – Threads 11

Implementing thread_yield()

thread_yield() {

thread_t old_thread = current_thread;

current_thread = get_next_thread();

append_to_queue(ready_queue, old_thread);

context_switch(old_thread, current_thread);

return;

}

The magic step is invoking context_switch()

Why do we need to call append_to_queue()?

As old thread

As new thread

CSE 153 – Lecture 6 – Threads 12

Thread Context Switch

The context switch routine does all of the magic

◆ Saves context of the currently running thread (old_thread)

» Push all machine state onto its stack (not its TCB)

◆ Restores context of the next thread

» Pop all machine state from the next thread’s stack

◆ The next thread becomes the current thread

◆ Return to caller as new thread

This is all done in assembly language

◆ It works at the level of the procedure calling convention, so it

cannot be implemented using procedure calls

CSE 153 – Lecture 6 – Threads 13

Preemptive Scheduling

Non-preemptive threads have to voluntarily give up CPU

◆ A long-running thread will take over the machine

◆ Only voluntary calls to thread_yield(), thread_stop(), or thread_exit()

causes a context switch

Preemptive scheduling causes an involuntary context switch

◆ Need to regain control of processor asynchronously

◆ Use timer interrupt (How do you do this?)

◆ Timer interrupt handler forces current thread to “call” thread_yield

CSE 153 – Lecture 6 – Threads 14

Threads Summary

Processes are too heavyweight for multiprocessing

◆ Time and space overhead

Solution is to separate threads from processes

◆ Kernel-level threads much better, but still significant overhead

◆ User-level threads even better, but not well integrated with OS

Scheduling of threads can be either preemptive or non-

preemptive

Now, how do we get our threads to correctly cooperate

with each other?

◆ Synchronization…

Cooperation between Threads

What is the purpose of threads?

Threads cooperate in multithreaded programs

Why?

◆ To share resources, access shared data structures

» Threads accessing a memory cache in a Web server

◆ To coordinate their execution

» One thread executes relative to another

CSE 153 – Lecture 7 – Synchronization 15

CSE 153 – Lecture 7 – Synchronization 16

Threads: Sharing Data

int num_connections = 0;

web_server() {

while (1) {

int sock = accept();

thread_fork(handle_request, sock);

}

}

handle_request(int sock) {

++num_connections;

Process request

close(sock);

}

CSE 153 – Lecture 7 – Synchronization 17

Threads: Cooperation

Threads voluntarily give up the CPU with thread_yield

while (1) {

printf(“ping\n”);

thread_yield();

}

while (1) {

printf(“pong\n”);

thread_yield();

}

Ping Thread Pong Thread

CSE 153 – Lecture 7 – Synchronization 18

Synchronization

For correctness, we need to control this cooperation

◆ Threads interleave executions arbitrarily and at different rates

◆ Scheduling is not under program control

We control cooperation using synchronization

◆ Synchronization enables us to restrict the possible inter-

leavings of thread executions

What about processes?

Does this apply to processes too?

◆ Yes!

Processes are a little easier because they don’t share

by default

But share the OS structures and machine resources

so we need to synchronize them too
◆ Basically, the OS is a multi-threaded program

CSE 153 – Lecture 7 – Synchronization 19

CSE 153 – Lecture 7 – Synchronization 20

Shared Resources

We initially focus on coordinating access to shared resources

Basic problem

◆ If two concurrent threads are accessing a shared variable, and that

variable is read/modified/written by those threads, then access to

the variable must be controlled to avoid erroneous behavior

Over the next couple of lectures, we will look at

◆ Exactly what problems occur

◆ How to build mechanisms to control access to shared resources

» Locks, mutexes, semaphores, monitors, condition variables, etc.

◆ Patterns for coordinating accesses to shared resources

» Bounded buffer, producer-consumer, etc.

CSE 153 – Lecture 7 – Synchronization 21

A First Example

Suppose we have to implement a function to handle

withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

return balance;

}

Now suppose that you and your father share a bank

account with a balance of $1000

Then you each go to separate ATM machines and

simultaneously withdraw $100 from the account

CSE 153 – Lecture 7 – Synchronization 22

Example Continued

We’ll represent the situation by creating a separate

thread for each person to do the withdrawals

These threads run on the same bank machine:

What’s the problem with this implementation?

◆ Think about potential schedules of these two threads

withdraw (account, amount) {

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

return balance;

}

withdraw (account, amount) {

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

return balance;

}

CSE 153 – Lecture 7 – Synchronization 23

Interleaved Schedules

The problem is that the execution of the two threads

can be interleaved:

What is the balance of the account now?

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

put_balance(account, balance);

Execution

sequence

seen by CPU Context switch

CSE 153 – Lecture 7 – Synchronization 24

Shared Resources

Problem: two threads accessed a shared resource

◆ Known as a race condition (remember this buzzword!)

Need mechanisms to control this access

◆ So we can reason about how the program will operate

Our example was updating a shared bank account

Also necessary for synchronizing access to any

shared data structure

◆ Buffers, queues, lists, hash tables, etc.

CSE 153 – Lecture 7 – Synchronization 25

When Are Resources

Shared?

Local variables?

◆ Not shared: refer to data on the stack

◆ Each thread has its own stack

◆ Never pass/share/store a pointer to a local variable on the

stack for thread T1 to another thread T2

Global variables and static objects?

◆ Shared: in static data segment, accessible by all threads

Dynamic objects and other heap objects?

◆ Shared: Allocated from heap with malloc/free or new/delete

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)
Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Thread 1

CSE 153 – Lecture 7 – Synchronization 26

How Interleaved Can It Get?

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance =

How contorted can the interleavings be?

We'll assume that the only atomic operations are reads
and writes of individual memory locations
◆ Some architectures don't even give you that!

We'll assume that a context
switch can occur at any time

We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever

What do we do about it?

l Does this problem matter in practice?

l Are there other concurrency problems?

l And, if so, how do we solve it?

Really difficult because behavior can be different every time

l How do we handle concurrency in real life?

CSE 153 – Lecture 7 – Synchronization 27

CSE 153 – Lecture 7 – Synchronization 28

Mutual Exclusion

Mutual exclusion to synchronize access to shared
resources
◆ This allows us to have larger atomic blocks

◆ What does atomic mean?

Code that uses mutual called a critical section
◆ Only one thread at a time can execute in the critical section

◆ All other threads are forced to wait on entry

◆ When a thread leaves a critical section, another can enter

◆ Example: sharing an ATM with others

What requirements would you place on a critical
section?

CSE 153 – Lecture 7 – Synchronization 29

Critical Section Requirements

Critical sections have the following requirements:

1) Mutual exclusion (mutex)

◆ If one thread is in the critical section, then no other is

2) Progress

◆ A thread in the critical section will eventually leave the critical section

◆ If some thread T is not in the critical section, then T cannot prevent

some other thread S from entering the critical section

3) Bounded waiting (no starvation)

◆ If some thread T is waiting on the critical section, then T will

eventually enter the critical section

4) Performance

◆ The overhead of entering and exiting the critical section is small with

respect to the work being done within it

CSE 153 – Lecture 7 – Synchronization 30

About Requirements

There are three kinds of requirements that we'll use

Safety property: nothing bad happens

◆ Mutex

Liveness property: something good happens

◆ Progress, Bounded Waiting

Performance requirement

◆ Performance

Properties hold for each run, while performance

depends on all the runs

◆ Rule of thumb: When designing a concurrent algorithm, worry

about safety first (but don't forget liveness!).

CSE 153 – Lecture 7 – Synchronization 31

Mechanisms For Building

Critical Sections

Locks
u Primitive, minimal semantics, used to build others

Semaphores
u Basic, easy to get the hang of, but hard to program with

Monitors
u High-level, requires language support, operations implicit

Architecture help
u Atomic read/write

» Can it be done?

How do we implement a lock?

First try

Does this work?

Assume reads/writes

are atomic

The lock itself is a

critical region!

◆ Chicken and egg

Computer scientist

struggled with how to

create software locks

CSE 153 – Lecture 7 – Synchronization 32

pthread_trylock(mutex) {

if (mutex==0) {

mutex= 1;

return 1;

} else return 0;

}

Thread 0, 1, …

…//time to access critical region

while(!pthread_trylock(mutex); // wait

<critical region>

pthread_unlock(mutex)

CSE 153 – Lecture 7 – Synchronization 33

Second try

while (true) {

while (turn != 1) ;

critical section

turn = 2;

outside of critical section

}

while (true) {

while (turn != 2) ;

critical section

turn = 1;

outside of critical section

}

int turn = 1;

This is called alternation

It satisfies mutex:

• If blue is in the critical section, then turn == 1 and if yellow is in the critical section then

turn == 2

• (turn == 1) ≡ (turn != 2)

Is there anything wrong with this solution?

CSE 153 – Lecture 7 – Synchronization 34

Third try – two variables

while (flag[1] != 0);

flag[0] = 1;

critical section

flag[0]=0;

outside of critical section

while (flag[0] != 0);

flag[1] = 1;

critical section

flag[1]=0;

outside of critical section

Bool flag[2]

We added two variables to try to break the race for the same variable

Is there anything wrong with this solution?

CSE 153 – Lecture 7 – Synchronization 35

Fourth try – set before you

check

Is there anything wrong with this solution?

flag[0] = 1;

while (flag[1] != 0);

critical section

flag[0]=0;

outside of critical section

flag[1] = 1;

while (flag[0] != 0);

critical section

flag[1]=0;

outside of critical section

Bool flag[2]

Fifth try – double check and

back off

CSE 153 – Lecture 7 – Synchronization 36

flag[0] = 1;

while (flag[1] != 0) {

flag[0] = 0;

wait a short time;

flag[0] = 1;

}

critical section

flag[0]=0;

outside of critical section

flag[1] = 1;

while (flag[0] != 0) {

flag[1] = 0;

wait a short time;

flag[1] = 1;

}

critical section

flag[1]=0;

outside of critical section

Bool flag[2]

Six try – Dekker’s Algorithm

CSE 153 – Lecture 7 – Synchronization 37

flag[0] = 1;

while (flag[1] != 0) {

if(turn == 2) {

flag[0] = 0;

while (turn == 2);

flag[0] = 1;

} //if

}//while

critical section

flag[0]=0;

turn=2;

outside of critical section

flag[1] = 1;

while (flag[0] != 0) {

if(turn == 1) {

flag[1] = 0;

while (turn == 1);

flag[1] = 1;

} //if

}//while

critical section

flag[1]=0;

turn=1;

outside of critical section

Bool flag[2]l

Int turn = 1;

CSE 153 – Lecture 7 – Synchronization 39

Another solution: Peterson's

Algorithm

while (true) {

try1 = true;

turn = 2;

while (try2 && turn != 1) ;

critical section

try1 = false;

outside of critical section

}

while (true) {

try2 = true;

turn = 1;

while (try1 && turn != 2) ;

critical section

try2 = false;

outside of critical section

}

int turn = 1;

bool try1 = false, try2 = false;

• This satisfies all the requirements

• Here's why...

CSE 153 – Lecture 7 – Synchronization 40

Mutex with Atomic R/W:

Peterson's Algorithm

while (true) {

{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

1 try1 = true;

{ try1 ∧ (turn == 1 ∨ turn == 2) }

2 turn = 2;

{ try1 ∧ (turn == 1 ∨ turn == 2) }

3 while (try2 && turn != 1) ;

{ try1 ∧ (turn == 1 ∨ ¬ try2 ∨
(try2 ∧ (yellow at 6 or at 7)) }

critical section

4 try1 = false;

{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section

}

while (true) {

{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

5 try2 = true;

{ try2 ∧ (turn == 1 ∨ turn == 2) }

6 turn = 1;

{ try2 ∧ (turn == 1 ∨ turn == 2) }

7 while (try1 && turn != 2) ;

{ try2 ∧ (turn == 2 ∨ ¬ try1 ∨
(try1 ∧ (blue at 2 or at 3)) }

critical section

8 try2 = false;

{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section

}

int turn = 1;

bool try1 = false, try2 = false;

(blue at 4) ∧ try1 ∧ (turn == 1 ∨ ¬ try2 ∨ (try2 ∧ (yellow at 6 or at 7))

∧ (yellow at 8) ∧ try2 ∧ (turn == 2 ∨ ¬ try1 ∨ (try1 ∧ (blue at 2 or at 3))

... ⇒ (turn == 1 ∧ turn == 2)

Some observations

This stuff (software locks) is hard

◆ Hard to get right

◆ Hard to prove right

It also is inefficient

◆ A spin lock – waiting by checking the condition repeatedly

Even better, software locks don’t really work

◆ Compiler and hardware reorder memory references from

different threads

Something called memory consistency model

Well beyond the scope of this class ☺

So, we need to find a different way

◆ Hardware help; more in a second

CSE 153 – Lecture 7 – Synchronization 41

