CSE 153
Design of Operating
Systems

Fall 2018

Lecture 5: Threads/Synchronization

Implementing threads

Kernel Level Threads
. All thread operations are implemented in the kernel

. The OS schedules all of the threads in the system
. Don’t have to separate from processes

OS-managed threads are called kernel-level threads
or lightweight processes

. Windows: threads

. Solaris: lightweight processes (LWP)

. POSIX Threads (pthreads): PTHREAD SCOPE_SYSTEM

CSE 153 — Lecture 6 — Threads

Kernel Thread (KLT)
Limitations

KLTs make concurrency cheaper than processes
. Much less state to allocate and initialize

However, there are a couple of issues

. Issue 1: KLT overhead still high
» Thread operations still require system calls
» |deally, want thread operations to be as fast as a procedure call

. Issue 2: KLTs are general; unaware of application needs

Alternative: User-level threads (ULT)

CSE 153 — Lecture 6 — Threads

Alternative: User-Level Threads

o Implement threads using user-level library

n ULTs are small and fast

+ Athread is simply represented by a PC, registers, stack, and
small thread control block (TCB)

+ Creating a new thread, switching between threads, and
synchronizing threads are done via procedure call

» No kernel involvement
+ User-level thread operations 100x faster than kernel threads
+ pthreads: PTHREAD SCOPE_PROCESS

CSE 153 — Lecture 6 — Threads

ULT Limitations

o But, user-level threads are not a perfect solution
+ As with everything else, they are a tradeoff

o ULTs are invisible to the OS

o As a result, the OS can make poor decisions
+ Scheduling a process with idle threads

+ Blocking a process whose thread initiated an 1/0O, even though
the process has other threads that can execute

+ Unscheduling a process with a thread holding a lock

o Solving this requires communication between the
kernel and the user-level thread manager

CSE 153 — Lecture 6 — Threads 5

Summary KLT vs. ULT

o Kernel-level threads
+ Integrated with OS (informed scheduling)
+ Slow to create, manipulate, synchronize

o User-level threads
+ Fast to create, manipulate, synchronize
+ Not integrated with OS (uninformed scheduling)
o Understanding the differences between kernel and
user-level threads is important
+ For programming (correctness, performance)
+ For test-taking ©

CSE 153 — Lecture 6 — Threads

Sample Thread Interface

o thread fork(procedure t)
+ Create a new thread of control
» Also thread_create(), thread_setstate()

o thread_stop()
+ Stop the calling thread; also thread_block

o thread_start(thread t)
+ Start the given thread

o thread_ yield()

+ Voluntarily give up the processor

o thread_exit()
+ Terminate the calling thread; also thread_destroy

CSE 153 — Lecture 6 — Threads

Thread Scheduling

o The thread scheduler determines when a thread runs

It uses queues to keep track of what threads are doing
+ Just like the OS and processes
+ Butitis implemented at user-level in a library

Run queue: Threads currently running (usually one)
Ready queue: Threads ready to run

o Are there walit queues?
+ How would you implement thread_sleep(time)?

Oa

(|

O

CSE 153 — Lecture 6 — Threads

Non-Preemptive Scheduling

o Threads voluntarily give up the CPU with thread_yield

Ping Thread Pong Thread
while (1) { while (1) {
printf(“ping\n”); printf(“pong\n”);
thread_yield(); thread_yield();
} }

o What is the output of running these two threads?

CSE 153 — Lecture 6 — Threads

thread_yield()

o The semantics of thread_yield are that it gives up the
CPU to another thread

+ In other words, it context switches to another thread
o S0 what does it mean for thread_vyield to return?

o EXxecution trace of ping/pong

printf(“pong\n”);
thread_vyield();

* & o o o

CSE 153 — Lecture 6 — Threads 10

Implementing thread_yield()

thread yield() {)
thread t old thread = current thread;

current thread = get next thread(); ~~ As old thread

append to queue (ready queue, old thread);

context switch(old thread, current thread);
return; > As new thread

o The magic step is invoking context_switch()
o Why do we need to call append _to queue()?

CSE 153 — Lecture 6 — Threads 11

Thread Context Switch

o The context switch routine does all of the magic

+ Saves context of the currently running thread (old_thread)
» Push all machine state onto its stack (not its TCB)

+ Restores context of the next thread
» Pop all machine state from the next thread’ s stack

+ The next thread becomes the current thread

+ Return to caller as new thread

o This is all done in assembly language

+ It works at the level of the procedure calling convention, so it
cannot be implemented using procedure calls

CSE 153 — Lecture 6 — Threads

12

Preemptive Scheduling

o Non-preemptive threads have to voluntarily give up CPU
+ Along-running thread will take over the machine

+ Only voluntary calls to thread_yield(), thread_stop(), or thread_exit()
causes a context switch

o Preemptive scheduling causes an involuntary context switch
+ Need to regain control of processor asynchronously
+ Use timer interrupt (How do you do this?)
« Timer interrupt handler forces current thread to “call” thread_yield

CSE 153 — Lecture 6 — Threads 13

Threads Summary

o Processes are too heavyweight for multiprocessing
+ Time and space overhead

o Solution is to separate threads from processes
+ Kernel-level threads much better, but still significant overhead
+ User-level threads even better, but not well integrated with OS

o Scheduling of threads can be either preemptive or non-
preemptive

o Now, how do we get our threads to correctly cooperate
with each other?
+ Synchronization...

CSE 153 — Lecture 6 — Threads 14

Cooperation between Threads

o What is the purpose of threads?

o Threads cooperate in multithreaded programs

0 Why’?
+ To share resources, access shared data structures
» Threads accessing a memory cache in a Web server

+ To0 coordinate their execution
» One thread executes relative to another

CSE 153 — Lecture 7 — Synchronization 15

Threads: Sharing Data

int num;connections = 0;

web server() {
while (1) {
int sock = accept();
thread fork(handle request, sock);

}

handle request(int sock) ({
++num connections;
Process request
close (sock) ;

CSE 153 — Lecture 7 — Synchronization

16

Threads: Cooperation

o Threads voluntarily give up the CPU with thread_yield

Ping Thread Pong Thread
while (1) { while (1) {
printf(“ping\n”); printf(“pong\n”);
thread_vyield(); thread_yield();
} }

CSE 153 — Lecture 7 — Synchronization

Synchronization

o For correctness, we need to control this cooperation
+ Threads interleave executions arbitrarily and at different rates
+ Scheduling is not under program control

o We control cooperation using synchronization

+ Synchronization enables us to restrict the possible inter-
leavings of thread executions

CSE 153 — Lecture 7 — Synchronization 18

What about processes?

o Does this apply to processes too?
+ Yes!

s Processes are a little easier because they don’ t share
by default

o But share the OS structures and machine resources
so we need to synchronize them too

+ Basically, the OS is a multi-threaded program

CSE 153 — Lecture 7 — Synchronization 19

Shared Resources

We initially focus on coordinating access to shared resources

o Basic problem

+ If two concurrent threads are accessing a shared variable, and that
variable is read/modified/written by those threads, then access to
the variable must be controlled to avoid erroneous behavior

o Over the next couple of lectures, we will look at
+ Exactly what problems occur

+ How to build mechanisms to control access to shared resources
» Locks, mutexes, semaphores, monitors, condition variables, etc.

+ Patterns for coordinating accesses to shared resources
» Bounded buffer, producer-consumer, etc.

CSE 153 — Lecture 7 — Synchronization 20

A First Example

o Suppose we have to implement a function to handle

withdrawals from a bank account:

withdraw (account, amount) {
balance = get_balance(account);
balance = balance — amount;
put_balance(account, balance);
return balance;

}
o Now suppose that you and your father share a bank

account with a balance of $1000

o Then you each go to separate ATM machines and
simultaneously withdraw $100 from the account

CSE 153 — Lecture 7 — Synchronization 21

Example Continued

« We’ ll represent the situation by creating a separate

thread for each p
o These threads ru

erson to do the withdrawals
n on the same bank machine:

withdraw (account, amount) {

return balance;

}

withdraw (account, amount) {

balance = get_balance(account); balance = get_balance(account);
balance = balance — amount;
put_balance(account, balance); put_balance(account, balance);

balance = balance — amount;

return balance;

}

s What' s the probl
+ Think about pote

em with this implementation?
ntial schedules of these two threads

CSE 153 — Lecture 7 — Synchronization

22

Interleaved Schedules

o The problem is that the execution of the two threads
can be interleaved:

balance = get_balance(account);
balance = balance — amount;

Execution - - -~ .
sequence alance = get_balance(account);

seen by CPU balance = balance — amount; Context switch
put_balance(account, balance);

v | put_balance(account, balance);

o What Is the balance of the account now?

CSE 153 — Lecture 7 — Synchronization 23

Shared Resources

O

Problem: two threads accessed a shared resource
+ Known as a race condition (remember this buzzword!)

Need mechanisms to control this access
+ SO0 we can reason about how the program will operate

Our example was updating a shared bank account

Also necessary for synchronizing access to any
shared data structure
+ Buffers, queues, lists, hash tables, etc.

CSE 153 — Lecture 7 — Synchronization

24

When Are Resources -

Stack (T1) Thread 1

Shared? R —
| Stack (T3) <« Thread 3
Heap]
» Local variables? i B
PC(T2) ode
« Not shared: refer to data on the stack cof ~— pc

+ Each thread has its own stack

+ Never pass/share/store a pointer to a local variable on the
stack for thread T1 to another thread T2

o Global variables and static objects?
+ Shared: in static data segment, accessible by all threads

o Dynamic objects and other heap objects?
+ Shared: Allocated from heap with malloc/free or new/delete

CSE 153 — Lecture 7 — Synchronization 25

How Interleaved Can It Get?

How contorted can the interleavings be?

o We'll assume that the only atomic operations are reads
and writes of individual memory locations

+ Some architectures don't even give you that!
o We'll assume that a context

switch can occur at any time [get_balance(account);

o We'll assume that you can balance = get_balance(account);

delay a thread as Iong as you balance = ..o,

like as long as it's not delayed

balance = balance — amount;

forever

balance = balance — amount;

put_balance(account, balance);

put_balance(account, balance);

CSE 153 — Lecture 7 — Synchronization 26

What do we do about it?

Does this problem matter in practice?
Are there other concurrency problems?

And, if so, how do we solve it?
Really difficult because behavior can be different every time

How do we handle concurrency in real life?

CSE 153 — Lecture 7 — Synchronization

27

Mutual Exclusion

o Mutual exclusion to synchronize access to shared
resources
+ This allows us to have larger atomic blocks
+ What does atomic mean?

» Code that uses mutual called a critical section
+ Only one thread at a time can execute in the critical section
+ All other threads are forced to wait on entry
+ When a thread leaves a critical section, another can enter
+ Example: sharing an ATM with others

o What requirements would you place on a critical
section?

CSE 153 — Lecture 7 — Synchronization

28

Critical Section Requirements

Critical sections have the following requirements:

1) Mutual exclusion (mutex)
+ If one thread is in the critical section, then no other is

2) Progress
+ A thread in the critical section will eventually leave the critical section
+ If some thread T is not in the critical section, then T cannot prevent
some other thread S from entering the critical section
3) Bounded waiting (no starvation)
+ If some thread T is waiting on the critical section, then T will
eventually enter the critical section
4) Performance

+ The overhead of entering and exiting the critical section is small with
respect to the work being done within it

CSE 153 — Lecture 7 — Synchronization 29

About Requirements

There are three kinds of requirements that we'll use
o Safety property: nothing bad happens

+ Mutex

o Liveness property. something good happens
+ Progress, Bounded Waiting

o Performance requirement
+ Performance

o Properties hold for each run, while performance
depends on all the runs

+ Rule of thumb: When designing a concurrent algorithm, worry
about safety first (but don't forget liveness!).

CSE 153 — Lecture 7 — Synchronization 30

Mechanisms For Building
Critical Sections

Locks
. Primitive, minimal semantics, used to build others

Semaphores
. Basic, easy to get the hang of, but hard to program with

Monitors
. High-level, requires language support, operations implicit

Architecture help

. Atomic read/write
» Can it be done?

CSE 153 — Lecture 7 — Synchronization

31

How do we implement a lock?

First try

pthread_trylock(mutex) {

If (mutex==0) {
mutex= 1;
return 1;
} else return O;

}

Thread O, 1, ...

.../ltime to access critical region
while(!pthread_trylock(mutex); // wait
<critical region>

pthread unlock(mutex)

ation

Does this work?
Assume reads/writes
are atomic

The lock itself is a
critical region!
+ Chicken and egg

Computer scientist
struggled with how to
create software locks

32

Second try

int turn = 1;
while (true) { while (true) {
while (turn '= 1) ; while (turn != 2) ;
critical section critical section
turn = 2; turn = 1;
outside of critical section outside of critical section
} }

This is called alternation
It satisfies mutex;

* If blue is in the critical section, then turn == 1 and if yellow is in the critical section then
turn ==
* (turn == 1) = (turn 1= 2)

|s there anything wrong with this solution?

CSE 153 — Lecture 7 — Synchronization 33

Third try - two variables

Bool flag[2]

while (flag[1] != 0);
flag[0] = 1;

critical section
flag[0]=0;

outside of critical section

while (flag[O] != 0);
flag[1l] = 1;

critical section

flag[1]=0;

outside of critical section

We added two variables to try to break the race for the same variable

|s there anything wrong with this solution?

CSE 153 — Lecture 7 — Synchronization 34

Fourth try - set before you
check

Bool flag[2]

flag[0] = 1;

flag[0]=0;

while (flag[1] != 0);
critical section

outside of critical section

flag[1l] = 1;

while (flag[O] != 0);
critical section

flag[1]=0;

outside of critical section

|s there anything wrong with this solution?

CSE 153 — Lecture 7 — Synchronization 35

Fifth try - double check and

back off

Bool flag[2]

flag[0] = 1;
while (flag[1] != 0) {

flag[0] = O;

wait a short time;

flag[0] = 1,
}
critical section
flag[0]=0;

outside of critical section

flag[1l] = 1;

while (flag[0] != 0) {
flag[1] = O;
wait a short time;
flag[1l] = 1;

}

critical section
flag[1]=0;
outside of critical section

CSE 153 — Lecture 7 — Synchronization

36

Six try - Dekker’s Algorithm

Bool flag[2]l
Int turn = 1;
flag[0] = 1; flag[1l] = 1;
while (flag[1] '= 0) { while (flag[0] != 0) {
if(turn == 2) { if(turn == 1) {
flag[0] = O; flag[1] = O;
while (turn == 2); while (turn == 1);
flag[0] = 1; flag[1] = 1,
} it it
Hiwhile Yiwhile
critical section critical section
flag[0]=0; flag[1]=0;
turn=2; turn=1,
outside of critical section outside of critical section

CSE 153 — Lecture 7 — Synchronization

Another solution: Peterson's
Algorithm

int turn = 1;
bool tryl = false, try2 = false;
while (true) { while (true) {
tryl = true; try2 = true;
turn = 2; turn = 1;
while (try2 && turn = 1) ; while (tryl && turn = 2) ;
critical section critical section
tryl = false; try2 = false;
outside of critical section outside of critical section
} }

* This satisfies all the requirements
* Here's why...

CSE 153 — Lecture 7 — Synchronization

Mutex with Atomic R/W:
Peterson's Algorithm

int turn = 1;
bool tryl = false, try2 = false;

while (true) {

{=tryl A(turn==1vturn==2)}
1 tryl = true;

{tryl A (turn==1V turn==2) }
2 turn = 2;

{tryl A (turn==1V turn==2) }
3 while (try2 && turn !=1) ;

{ trylA(turn==1V -try2v

(try2 A (yellow at 6 or at 7)) }

critical section
4 tryl = false;

{=tryl A (turn==1V turn==2) }

outside of critical section

}

while (true) {

{=try2 A(turn==1Vvturn==2)}
5 try2 =true;

{try2 A (turn==1V turn==2) }
6 turn=1;

{try2 A (turn==1V turn==2) }
7 while (tryl && turn = 2) ;

{ try2 A(turn==2vVv -trylv

(tryl A (blue at 2 or at 3)) }

critical section
8 try2 = false;

{=try2 A(turn==1Vv turn==2) }

outside of critical section

}

(blue at 4) Atryl A (turn==1V = try2 v (try2 A (yellow at 6 or at 7))
A (yellow at 8) Atry2 A (turn==2 Vv = tryl v (tryl A (blue at 2 or at 3))

Lo (turn==1 Aturn == 2)

CSE 153 — Lecture 7 — Synchronization

40

Some observations

o This stuff (software locks) is hard
+ Hard to get right
+ Hard to prove right
o It also is inefficient
+ A spin lock — waiting by checking the condition repeatedly

o Even better, software locks don’ t really work

+ Compiler and hardware reorder memory references from
different threads
o Something called memory consistency model
o Well beyond the scope of this class ©

o S0, we need to find a different way
+ Hardware help; more in a second

CSE 153 — Lecture 7 — Synchronization

41

