
CSE 153

Design of Operating

Systems

Fall 2018

Lecture 4: Processes (2)

Threads

CSE 153 – Lecture 5– Processes (II) 2

Process Creation: Unix

In Unix, processes are created using fork()
int fork()

fork()
◆ Creates and initializes a new PCB

◆ Creates a new address space

◆ Initializes the address space with a copy of the entire
contents of the address space of the parent

◆ Initializes the kernel resources to point to the resources used
by parent (e.g., open files)

◆ Places the PCB on the ready queue

Fork returns twice
◆ Returns the child’s PID to the parent, “0” to the child

CSE 153 – Lecture 5– Processes (II) 3

fork()

int main(int argc, char *argv[])

{

char *name = argv[0];

int child_pid = fork();

if (child_pid == 0) {

printf(“Child of %s is %d\n”, name, getpid());

return 0;

} else {

printf(“My child is %d\n”, child_pid);

return 0;

}

}

What does this program print?

CSE 153 – Lecture 5– Processes (II) 4

Example Output

[well ~]$ gcc t.c

[well ~]$./a.out

My child is 486

Child of a.out is 486

CSE 153 – Lecture 5– Processes (II) 5

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC

CSE 153 – Lecture 5– Processes (II) 6

Divergence

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf(“child”);

} else {

printf(“parent”);

}

PC

PC

child_pid = 486 child_pid = 0

CSE 153 – Lecture 5– Processes (II) 7

Example Continued

[well ~]$ gcc t.c

[well ~]$./a.out

My child is 486

Child of a.out is 486

[well ~]$./a.out

Child of a.out is 498

My child is 498

Why is the output in a different order?

CSE 153 – Lecture 5– Processes (II) 8

Why fork()?

Very useful when the child…

◆ Is cooperating with the parent

◆ Relies upon the parent’s data to accomplish its task

Example: Web server
while (1) {

int sock = accept();

if ((child_pid = fork()) == 0) {

Handle client request

} else {

Close socket

}

}

CSE 153 – Lecture 5– Processes (II) 9

Process Creation: Unix (2)

Wait a second. How do we actually start a new

program?
int exec(char *prog, char *argv[])

exec()

◆ Stops the current process

◆ Loads the program “prog” into the process’ address space

◆ Initializes hardware context and args for the new program

◆ Places the PCB onto the ready queue

◆ Note: It does not create a new process

What does it mean for exec to return?

What does it mean for exec to return with an error?

CSE 153 – Lecture 5– Processes (II) 10

Process Creation: Unix (3)

fork() is used to create a new process, exec is used to

load a program into the address space

What happens if you run “exec csh” in your shell?

What happens if you run “exec ls” in your shell? Try it.

fork() can return an error. Why might this happen?

CSE 153 – Lecture 5– Processes (II) 11

Process Termination

All good processes must come to an end. But how?

◆ Unix: exit(int status), NT: ExitProcess(int status)

Essentially, free resources and terminate

◆ Terminate all threads (next lecture)

◆ Close open files, network connections

◆ Allocated memory (and VM pages out on disk)

◆ Remove PCB from kernel data structures, delete

Note that a process does not need to clean up itself

◆ OS will handle this on its behalf

CSE 153 – Lecture 5– Processes (II) 12

wait() a second…

Often it is convenient to pause until a child process

has finished

◆ Think of executing commands in a shell

Use wait() (WaitForSingleObject)

◆ Suspends the current process until a child process ends

◆ waitpid() suspends until the specified child process ends

Wait has a return value…what is it?

Unix: Every process must be reaped by a parent

◆ What happens if a parent process exits before a child?

◆ What do you think is a “zombie” process?

CSE 153 – Lecture 5– Processes (II) 13

Unix Shells

while (1) {

char *cmd = read_command();

int child_pid = fork();

if (child_pid == 0) {

Manipulate STDIN/OUT/ERR file descriptors for pipes,

redirection, etc.

exec(cmd);

panic(“exec failed”);

} else {

if (!(run_in_background))

waitpid(child_pid);

}

}

CSE 153 – Lecture 5– Processes (II) 14

Processes: check your

understanding

What are the units of execution?
◆ Processes

How are those units of execution represented?
◆ Process Control Blocks (PCBs)

How is work scheduled in the CPU?
◆ Process states, process queues, context switches

What are the possible execution states of a process?
◆ Running, ready, waiting, …

How does a process move from one state to another?
◆ Scheduling, I/O, creation, termination

How are processes created?
◆ CreateProcess (NT), fork/exec (Unix)

CSE 153 – Lecture 6 – Threads 15

Processes

Recall that …
◆ A process includes:

» An address space (defining all the code and
data pages)

» OS resources (e.g., open files) and accounting
info

» Execution state (PC, SP, regs, etc.)

» PCB to keep track of everything
◆ Processes are completely isolated from each other

But…

P1 P2

OS

Some issues with processes

Creating a new process is costly because of new
address space and data structures that must be
allocated and initialized
◆ Recall struct proc in xv6 or Solaris

Communicating between processes is costly because
most communication goes through the OS
◆ Inter Process Communication (IPC) – we will discuss later

◆ Overhead of system calls and copying data

CSE 153 – Lecture 6 – Threads 16

CSE 153 – Lecture 6 – Threads 17

Parallel Programs

l Also recall our Web server example that forks off copies

of itself to handle multiple simultaneous requests

l To execute these programs we need to

Create several processes that execute in parallel

Cause each to map to the same address space to share data

» They are all part of the same computation

Have the OS schedule these processes in parallel

l This situation is very inefficient (CoW helps)

Space: PCB, page tables, etc.

Time: create data structures, fork and copy addr space, etc.

CSE 153 – Lecture 6 – Threads 18

Rethinking Processes

What is similar in these cooperating processes?

◆ They all share the same code and data (address space)

◆ They all share the same privileges

◆ They all share the same resources (files, sockets, etc.)

What don’t they share?

◆ Each has its own execution state: PC, SP, and registers

Key idea: Separate resources from execution state

Exec state also called thread of control, or thread

CSE 153 – Lecture 6 – Threads 19

Recap: Process Components

A process is named using its process ID (PID)

A process contains all of the state for a program in

execution

◆ An address space

◆ The code for the executing program

◆ The data for the executing program

◆ A set of operating system resources

» Open files, network connections, etc.

◆ An execution stack encapsulating the state of procedure calls

◆ The program counter (PC) indicating the next instruction

◆ A set of general-purpose registers with current values

◆ Current execution state (Ready/Running/Waiting)

Per-

Process

State

Per-

Thread

State

CSE 153 – Lecture 6 – Threads 20

Threads

l Separate execution and resource container roles

The thread defines a sequential execution stream within a

process (PC, SP, registers)

The process defines the address space, resources, and

general process attributes (everything but threads)

l Threads become the unit of scheduling

Processes are now the containers in which threads execute

Processes become static, threads are the dynamic entities

CSE 153 – Lecture 6 – Threads 21

Recap: Process Address Space

Stack

0x00000000

0xFFFFFFFF

Code

(Text Segment)

Static Data

(Data Segment)

Heap

(Dynamic Memory Alloc)
Address

Space

SP

PC

CSE 153 – Lecture 6 – Threads 22

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

CSE 153 – Lecture 6 – Threads 23

Thread Design Space

One Thread/Process
Many Address Spaces

(Early Unix)

One Thread/Process
One Address Space

(MSDOS)

Many Threads/Process
Many Address Spaces

(Mac OS, Unix, Windows)

Many Threads/Process
One Address Space

(Pilot, Java)

Address Space

Thread

CSE 153 – Lecture 6 – Threads 24

Process/Thread Separation

Separating threads and processes makes it easier to

support multithreaded applications

◆ Concurrency does not require creating new processes

Concurrency (multithreading) can be very useful

◆ Improving program structure

◆ Handling concurrent events (e.g., Web requests)

◆ Writing parallel programs

So multithreading is even useful on a uniprocessor

CSE 153 – Lecture 6 – Threads 25

Threads: Concurrent Servers

Using fork() to create new processes to handle

requests in parallel is overkill for such a simple task

Recall our forking Web server:

while (1) {

int sock = accept();

if ((child_pid = fork()) == 0) {

Handle client request

Close socket and exit

} else {

Close socket

}

}

CSE 153 – Lecture 6 – Threads 26

Threads: Concurrent Servers

Instead, we can create a new thread for each request

web_server() {

while (1) {

int sock = accept();

thread_fork(handle_request, sock);

}

}

handle_request(int sock) {

Process request

close(sock);

}

CSE 153 – Lecture 6 – Threads 27

Implementing threads

l Kernel Level Threads

l All thread operations are implemented in the kernel

The OS schedules all of the threads in the system

Don’t have to separate from processes

l OS-managed threads are called kernel-level threads

or lightweight processes

Windows: threads

Solaris: lightweight processes (LWP)

POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

CSE 153 – Lecture 6 – Threads 28

Kernel Thread (KLT)

Limitations

l KLTs make concurrency cheaper than processes

u Much less state to allocate and initialize

l However, there are a couple of issues

u Issue 1: KLT overhead still high

» Thread operations still require system calls

» Ideally, want thread operations to be as fast as a

procedure call

u Issue 2: KLTs are general; unaware of application needs

l Alternative: User-level threads (ULT)

CSE 153 – Lecture 6 – Threads 29

Alternative: User-Level Threads

Implement threads using user-level library

ULTs are small and fast

◆ A thread is simply represented by a PC, registers, stack, and

small thread control block (TCB)

◆ Creating a new thread, switching between threads, and

synchronizing threads are done via procedure call

» No kernel involvement

◆ User-level thread operations 100x faster than kernel threads

◆ pthreads: PTHREAD_SCOPE_PROCESS

