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Timer

The key to a timesharing OS

The fallback mechanism by which the OS reclaims control 

◆ Timer is set to generate an interrupt after a period of time

» Setting timer is a privileged instruction

» When timer expires, generates an interrupt
Handled by the OS, forcing a switch from the user program

» Basis for OS scheduler (more later…)

Also used for time-based functions (e.g., sleep())
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I/O Control

I/O issues

◆ Initiating an I/O

◆ Completing an I/O

Initiating an I/O

◆ Special instructions

◆ Memory-mapped I/O

» Device registers mapped into address space

» Writing to address sends data to I/O device
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I/O using Interrupts

Interrupts are the basis for asynchronous I/O

◆ OS initiates I/O

◆ Device operates independently of rest of machine

◆ Device sends an interrupt signal to CPU when done

◆ OS maintains a vector table containing a list of addresses of 

kernel routines to handle various events

◆ CPU looks up kernel address indexed by interrupt number, 

context switches to routine
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I/O Example

1. Ethernet receives packet, writes packet into memory

2. Ethernet signals an interrupt

3. CPU stops current operation, switches to kernel mode, 

saves machine state (PC, mode, etc.) on kernel stack

4. CPU reads address from vector table indexed by 

interrupt number, branches to address (Ethernet 

device driver)

5. Ethernet device driver processes packet (reads device 

registers to find packet in memory)

6. Upon completion, restores saved state from stack
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Interrupt Questions

Interrupts halt the execution of a process and transfer 

control (execution) to the operating system

◆ Can the OS be interrupted?  (Consider why there might be 

different interrupt levels)

Interrupts are used by devices to have the OS do stuff

◆ What is an alternative approach to using interrupts?

◆ What are the drawbacks of that approach?
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Synchronization

Interrupts cause difficult problems

◆ An interrupt can occur at any time

◆ A handler can execute that interferes with code that was interrupted 

OS must be able to synchronize concurrent execution

Need to guarantee that short instruction sequences execute 

atomically

◆ Disable interrupts – turn off interrupts before sequence, execute 

sequence, turn interrupts back on

◆ Special atomic instructions – read/modify/write a memory address, 

test and conditionally set a bit based upon previous value

» XCHG on x86
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Memory Isolation

OS must be able to protect programs from each other

OS must protect itself from user programs

OS may or may not protect user programs from itself

Memory management unit (MMU) 

◆ Hardware unit provides memory protection mechanisms

◆ Virtual memory

◆ Segmentation

Manipulating memory management hardware uses 

protected (privileged) operations
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Summary

Protection

◆ User/kernel modes

◆ Protected instructions

System calls

◆ Used by user-level processes to access OS functions

◆ Access what is “in” the OS

Exceptions

◆ Unexpected event during execution (e.g., divide by zero)

Interrupts

◆ Timer, I/O



Processes
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OS Abstractions
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Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory
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Today, we start discussing the first abstraction that enables us to virtualize 

(i.e., share) the CPU – processes!



What is virtualization?

l What is a virtual something? 

Somehow not real? But still functional?

l Provide illusion for each program of own copy of resources

Lets say the CPU or memory; every program thinks it has its own

In reality, limited physical resources (e.g., 1 CPU)

» It must be shared! (in time, or space)

l Frees up programs from worrying about sharing

The OS implements sharing, creating illusion of exclusive resources 

→Virtualization!

l Virtual resource provided as an object with defined operations on 

it. → Abstraction 13
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Virtualizing the CPU -- Processes

This lecture starts a class segment that covers processes, 

threads, and synchronization

◆ Basis for Midterm and Project 1

Today’s topics are processes and process management

◆ How do we virtualize the CPU?

» Virtualization: give each program the illusion of its own CPU

» What is the magic? We only have one real CPU

◆ How are applications represented in the OS?

◆ How is work scheduled in the CPU?
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The Process

The process is the OS abstraction for execution

◆ It is the unit of execution

◆ It is the unit of scheduling

A process is a program in execution

◆ Programs are static entities with the potential for execution

◆ Process is the animated/active program

» Starts from the program, but also includes dynamic state

» As the representative of the program, it is the “owner” of other 

resources (memory, files, sockets, …)

How does the OS implement this abstraction?

◆ How does it share the CPU?



How to support this 

abstraction?

First, we’ll look at what state a process encapsulates

◆ State of the virtual processor we are giving to each program

Next we will talk about process behavior/CPU time sharing

◆ How to implement the process illusion

Next, we discuss how the OS implements this abstraction

◆ What data structures it keeps, and the role of the scheduler

Finally, we see the process interface offered to programs

◆ How to use this abstraction

◆ Next class
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Process Components

A process contains all the state for a program in execution

◆ An address space containing

» Static memory:

The code and input data for the executing program

» Dynamic memory:

The memory allocated by the executing program

An execution stack encapsulating the state of procedure calls

◆ Control registers such as the program counter (PC) 

◆ A set of general-purpose registers with current values

◆ A set of operating system resources

» Open files, network connections, etc.

A process is named using its process ID (PID)
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Address Space (memory 

abstraction)
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How to support this 

abstraction?

First, we’ll look at what state a process encapsulates

◆ State of the virtual processor we are giving to each program

Next we will talk about process behavior/CPU time sharing

◆ How to implement the process illusion

Next, we discuss how the OS implements this abstraction

◆ What data structures it keeps, and the role of the scheduler

Finally, we see the process interface offered to programs

◆ How to use this abstraction

◆ Next class
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Process Execution State

A process is born, executes for a while, and then dies

The process execution state that indicates what it is 

currently doing

◆ Running: Executing instructions on the CPU

» It is the process that has control of the CPU

» How many processes can be in the running state simultaneously?

◆ Ready: Waiting to be assigned to the CPU

» Ready to execute, but another process is executing on the CPU

◆ Waiting: Waiting for an event, e.g., I/O completion

» It cannot make progress until event is signaled (disk completes)



Execution state (cont’d)

As a process executes, it moves from state to state

◆ Unix “ps -x”: STAT column indicates execution state

◆ What state do you think a process is in most of the time?

◆ How many processes can a system support?
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Execution State Graph
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How to support the process 

abstraction?

First, we’ll look at what state a process encapsulates

◆ State of the virtual processor we are giving to each program

Next we will talk about process behavior/CPU time sharing

◆ How to implement the process illusion

Next, we discuss how the OS implements this abstraction

◆ What data structures it keeps, and the role of the scheduler

Finally, we see the process interface offered to programs

◆ How to use this abstraction?

◆ What system calls are needed?
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How does the OS support this 

model?

We will discuss three issues:

1. How does the OS represent a process in the kernel?

The OS data structure representing each process is called the 

Process Control Block (PCB)

2. How do we pause and restart processes?

We must be able to save and restore the full machine state

3. How do we keep track of all the processes in the 

system? 

A lot of queues!
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PCB Data Structure

PCB also is where OS keeps all of a process’ hardware 

execution state when the process is not running
» Process ID (PID)

» Execution state

» Hardware state: PC, SP, regs

» Memory management

» Scheduling

» Accounting

» Pointers for state queues

» Etc.

This state is everything that is needed to restore the 

hardware to the same configuration it was in when the 

process was switched out of the hardware



Xv6 struct proc
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struct proc (Solaris)

/*

* One structure allocated per active process.  It contains all

* data needed about the process while the process may be swapped

* out.  Other per-process data (user.h) is also inside the proc structure.

* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.

*/

typedef struct  proc {

/*

* Fields requiring no explicit locking

*/

struct  vnode *p_exec;          /* pointer to a.out vnode */

struct  as *p_as;               /* process address space pointer */

struct  plock *p_lockp;         /* ptr to proc struct's mutex lock */

kmutex_t p_crlock;              /* lock for p_cred */

struct  cred    *p_cred;        /* process credentials */

/*

* Fields protected by pidlock

*/

int     p_swapcnt;              /* number of swapped out lwps */

char    p_stat;                 /* status of process */

char    p_wcode;                /* current wait code */

ushort_t p_pidflag;             /* flags protected only by pidlock */

int     p_wdata;                /* current wait return value */

pid_t   p_ppid;                 /* process id of parent */

struct  proc    *p_link;        /* forward link */

struct  proc    *p_parent;      /* ptr to parent process */

struct  proc    *p_child;       /* ptr to first child process */

struct  proc    *p_sibling;     /* ptr to next sibling proc on chain */

struct  proc    *p_psibling;    /* ptr to prev sibling proc on chain */

struct  proc    *p_sibling_ns;  /* prt to siblings with new state */

struct  proc    *p_child_ns;    /* prt to children with new state */

struct  proc    *p_next;        /* active chain link next */

struct  proc    *p_prev;        /* active chain link prev */

struct  proc    *p_nextofkin;   /* gets accounting info at exit */

struct  proc    *p_orphan;

struct  proc    *p_nextorph;

*p_pglink;      /* process group hash chain link next */

struct  proc    *p_ppglink;     /* process group hash chain link prev */

struct  sess    *p_sessp;       /* session information */

struct  pid     *p_pidp;        /* process ID info */

struct  pid     *p_pgidp;       /* process group ID info */

/*

* Fields protected by p_lock

*/

kcondvar_t p_cv;                /* proc struct's condition variable */

kcondvar_t p_flag_cv;

kcondvar_t p_lwpexit;           /* waiting for some lwp to exit */

kcondvar_t p_holdlwps;          /* process is waiting for its lwps */

/* to to be held.  */

ushort_t p_pad1;                /* unused */

uint_t  p_flag;                 /* protected while set. */

/* flags defined below */

clock_t p_utime;                /* user time, this process */

clock_t p_stime;                /* system time, this process */

clock_t p_cutime;               /* sum of children's user time */

clock_t p_cstime;               /* sum of children's system time */

caddr_t *p_segacct;             /* segment accounting info */

caddr_t p_brkbase;              /* base address of heap */

size_t  p_brksize;              /* heap size in bytes */

/*

* Per process signal stuff.

*/

k_sigset_t p_sig;               /* signals pending to this process */

k_sigset_t p_ignore;            /* ignore when generated */

k_sigset_t p_siginfo;           /* gets signal info with signal */

struct sigqueue *p_sigqueue;    /* queued siginfo structures */

struct sigqhdr *p_sigqhdr;      /* hdr to sigqueue structure pool */

struct sigqhdr *p_signhdr;      /* hdr to signotify structure pool */

uchar_t p_stopsig;              /* jobcontrol stop signal */
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struct proc (Solaris) (2)
/*

* Special per-process flag when set will fix misaligned memory

* references.

*/

char    p_fixalignment;

/*

* Per process lwp and kernel thread stuff

*/

id_t    p_lwpid;                /* most recently allocated lwpid */

int     p_lwpcnt;               /* number of lwps in this process */

int     p_lwprcnt;              /* number of not stopped lwps */

int     p_lwpwait;              /* number of lwps in lwp_wait() */

int     p_zombcnt;              /* number of zombie lwps */

int     p_zomb_max;             /* number of entries in p_zomb_tid */

id_t    *p_zomb_tid;            /* array of zombie lwpids */

kthread_t *p_tlist;             /* circular list of threads */

/*

* /proc (process filesystem) debugger interface stuff.

*/

k_sigset_t p_sigmask;           /* mask of traced signals (/proc) */

k_fltset_t p_fltmask;           /* mask of traced faults (/proc) */

struct  vnode *p_trace;         /* pointer to primary /proc vnode */

struct  vnode *p_plist;         /* list of /proc vnodes for process */

kthread_t *p_agenttp;           /* thread ptr for /proc agent lwp */

struct watched_area *p_warea;   /* list of watched areas */

ulong_t p_nwarea;               /* number of watched areas */

struct watched_page *p_wpage;   /* remembered watched pages (vfork) */

int     p_nwpage;               /* number of watched pages (vfork) */

int     p_mapcnt;               /* number of active pr_mappage()s */

struct  proc  *p_rlink;         /* linked list for server */

kcondvar_t p_srwchan_cv;

size_t  p_stksize;              /* process stack size in bytes */

/*

* Microstate accounting, resource usage, and real-time profiling

*/

hrtime_t p_mstart;              /* hi-res process start time */

hrtime_t p_mterm;               /* hi-res process termination time */

hrtime_t p_mlreal;              /* elapsed time sum over defunct lwps */

hrtime_t p_acct[NMSTATES];      /* microstate sum over defunct lwps */

struct lrusage p_ru;            /* lrusage sum over defunct lwps */

struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */

uintptr_t p_rprof_cyclic;       /* ITIMER_REALPROF cyclic */

uint_t  p_defunct;              /* number of defunct lwps */

/*

* profiling. A lock is used in the event of multiple lwp's

* using the same profiling base/size.

*/

kmutex_t p_pflock;              /* protects user profile arguments */

struct prof p_prof;             /* profile arguments */

/*

* The user structure

*/

struct user p_user;             /* (see sys/user.h) */

/*

* Doors.

*/

kthread_t               *p_server_threads;

struct door_node        *p_door_list;   /* active doors */

struct door_node        *p_unref_list;

kcondvar_t              p_server_cv;

char                    p_unref_thread; /* unref thread created */

/*

* Kernel probes

*/

uchar_t                 p_tnf_flags;



CSE 153 – Lecture 5– Processes (II) 29

struct proc (Solaris) (3)

/*

* C2 Security  (C2_AUDIT)

*/

caddr_t p_audit_data;           /* per process audit structure */

kthread_t       *p_aslwptp;     /* thread ptr representing "aslwp" */

#if defined(i386) || defined(__i386) || defined(__ia64)

/*

* LDT support.

*/

kmutex_t p_ldtlock;             /* protects the following fields */

struct seg_desc *p_ldt;         /* Pointer to private LDT */

struct seg_desc p_ldt_desc;     /* segment descriptor for private LDT */

int p_ldtlimit;                 /* highest selector used */

#endif

size_t p_swrss;                 /* resident set size before last swap */

struct aio      *p_aio;         /* pointer to async I/O struct */

struct itimer   **p_itimer;     /* interval timers */

k_sigset_t      p_notifsigs;    /* signals in notification set */

kcondvar_t      p_notifcv;      /* notif cv to synchronize with aslwp */

timeout_id_t    p_alarmid;      /* alarm's timeout id */

uint_t          p_sc_unblocked; /* number of unblocked threads */

struct vnode    *p_sc_door;     /* scheduler activations door */

caddr_t         p_usrstack;     /* top of the process stack */

uint_t          p_stkprot;      /* stack memory protection */

model_t         p_model;        /* data model determined at exec time */

struct lwpchan_data     *p_lcp; /* lwpchan cache */

/*

* protects unmapping and initilization of robust locks.

*/

kmutex_t        p_lcp_mutexinitlock;

utrap_handler_t *p_utraps;      /* pointer to user trap handlers */

refstr_t        *p_corefile;    /* pattern for core file */

#if defined(__ia64)

caddr_t         p_upstack;      /* base of the upward-growing stack */

size_t          p_upstksize;    /* size of that stack, in bytes */

uchar_t         p_isa;          /* which instruction set is utilized */

#endif

void            *p_rce;         /* resource control extension data */

struct task     *p_task;        /* our containing task */

struct proc     *p_taskprev;    /* ptr to previous process in task */

struct proc     *p_tasknext;    /* ptr to next process in task */

int             p_lwpdaemon;    /* number of TP_DAEMON lwps */

int             p_lwpdwait;     /* number of daemons in lwp_wait() */

kthread_t       **p_tidhash;    /* tid (lwpid) lookup hash table */

struct sc_data  *p_schedctl;    /* available schedctl structures */

} proc_t;
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How to pause/restart processes?

When a process is running, its dynamic state is in memory and some 

hardware registers

◆ Hardware registers include Program counter, stack pointer, control registers, data 

registers, …

◆ To be able to stop and restart a process, we need to completely restore this state

When the OS stops running a process, it saves the current values of the 

registers (usually in PCB)

When the OS restarts executing a process, it loads the hardware 

registers from the stored values in PCB

Changing CPU hardware state from one process to another is called a 

context switch

◆ This can happen 100s or 1000s of times a second!
CSE 153 – Lecture 5– Processes (II)
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How does the OS track processes?

The OS maintains a collection of queues that 

represent the state of all processes in the system

Typically, the OS at least one queue for each state

◆ Ready, waiting, etc.

Each PCB is queued on a state queue according to its 

current state

As a process changes state, its PCB is unlinked from 

one queue and linked into another
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State Queues

Firefox PCB X Server PCB Outlook PCB

Emacs PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue

.

.

.

ls PCB

There may be many wait queues, 

one for each type of wait (disk, 

console, timer, network, etc.)



How to support the process 

abstraction?

First, we’ll look at what state a process encapsulates

◆ State of the virtual processor we are giving to each program

Next we will talk about process behavior/CPU time sharing

◆ How to implement the process illusion

Next, we discuss how the OS implements this abstraction

◆ What data structures it keeps, and the role of the scheduler

Finally, we see the process interface offered to programs

◆ How to use this abstraction?

◆ What system calls are needed?
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Process system call API

Process creation: how to create a new process?

Process termination: how to terminate and clean up a 

process

Coordination between processes

◆ Wait, waitpid, signal, inter-process communication, 

synchronization

Other

◆ E.g., set quotas or priorities, examine usage, …
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Process Creation

A process is created by another process

◆ Why is this the case?

◆ Parent is creator, child is created (Unix: ps “PPID” field)

◆ What creates the first process (Unix: init (PID 0 or 1))?

In some systems, the parent defines (or donates) 

resources and privileges for its children

◆ Unix: Process User ID is inherited – children of your shell 

execute with your privileges

After creating a child, the parent may either wait for it 

to finish its task or continue in parallel (or both)
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Process Creation: Windows

The system call on Windows for creating a process is 

called, surprisingly enough, CreateProcess:
BOOL CreateProcess(char *prog, char *args) (simplified)

CreateProcess

◆ Creates and initializes a new PCB

◆ Creates and initializes a new address space

◆ Loads the program specified by “prog” into the address space

◆ Copies “args” into memory allocated in address space

◆ Initializes the saved hardware context to start execution at 

main (or wherever specified in the file)

◆ Places the PCB on the ready queue
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Process Creation: Unix

In Unix, processes are created using fork()
int fork()

fork()
◆ Creates and initializes a new PCB

◆ Creates a new address space

◆ Initializes the address space with a copy of the entire 
contents of the address space of the parent

◆ Initializes the kernel resources to point to the resources used 
by parent (e.g., open files)

◆ Places the PCB on the ready queue

Fork returns twice
◆ Returns the child’s PID to the parent, “0” to the child
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fork()

int main(int argc, char *argv[])

{

char *name = argv[0];

int child_pid = fork();

if (child_pid == 0) {

printf(“Child of %s is %d\n”, name, getpid());

return 0;

} else {

printf(“My child is %d\n”, child_pid);

return 0;

}

}

What does this program print?
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Example Output

[well ~]$ gcc t.c

[well ~]$ ./a.out

My child is 486

Child of a.out is 486
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Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) { 

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) { 

printf(“child”);

} else {

printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC
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Divergence

child_pid = fork();

if (child_pid == 0) { 

printf(“child”);

} else {

printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) { 

printf(“child”);

} else {

printf(“parent”);

}

PC

PC

child_pid = 486 child_pid = 0
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Example Continued

[well ~]$ gcc t.c

[well ~]$ ./a.out

My child is 486

Child of a.out is 486

[well ~]$ ./a.out

Child of a.out is 498

My child is 498

Why is the output in a different order?


