CSE 153
Design of Operating
Systems

Fall 18

Lecture 2: OS model and Architectural
Support

Last time/Today

Historic evolution of Operating Systems (and
computing!)

Today:
We start our journey in exploring Operating Systems

Try to answer questions such as:
» What is the OS?

What does it need to do?

» How/When does the OS run?

How do programs interact with it?

How is this supported by CPUs?

>

\d

>

\d

>

\d

Some questions to get you
thinking

o What is the OS? Software?

o Is the OS always executing?
+ If not, how do we make sure it gets to run?

o How do we prevent user programs from directly
manipulating hardware?

Sleeping Beauty Model

o Answer: Sleeping beauty model
+ Technically known as controlled direct execution

+ OS runs in response to “events”; we support the switch in
hardware

+ Only the OS can manipulate hardware or critical system state

o Most of the time the OS is sleeping
+ Good! Less overhead

+ Good! Applications are running directly on the hardware

What do we need from the
architecture/CPU?

o Manipulating privileged machine state
+ Protected instructions
+ Manipulate device registers, TLB entries, etc.
+ Controlling access

» Generating and handling “events”
+ Interrupts, exceptions, system calls, etc.
+ Respond to external events
+ CPU requires software intervention to handle fault or trap

o Other stuff
+ Mechanisms to handle concurrency, Isolation, virtualization ...

Types of Arch Support

o Manipulating privileged machine state
+ Protected instructions
+ Manipulate device registers, TLB entries, etc.
+ Controlling access

Protected Instructions

a

OS must have exclusive access to hardware and
critical data structures

Only the operating system can
+ Directly access I/O devices (disks, printers, etc.)
» Security, fairness (why?)
+ Manipulate memory management state
» Page table pointers, page protection, TLB management, etc.
+ Manipulate protected control registers
» Kernel mode, interrupt level
+ Halt instruction (why?)

Privilege mode

o Hardware restricts privileged instructions to OS

o Q: How does the HW know if the executed program is OS?

+ HW must support (at least) two execution modes: OS (kernel)
mode and user mode

o Mode kept in a status bit in a protected control register
+ User programs execute in user mode
+ OS executes in kernel mode (OS == “kernel”)
+ CPU checks mode bit when protected instruction executes
+ Attempts to execute in user mode trap to OS

Switching back and forth

o Going from higher privilege to lower privilege
+ Easy: can directly modify the mode register to drop privilege

o But how do we escalate privilege?
+ Special instructions to change mode
» System calls (int 0x80, syscall, svc)

» Saves context and invokes designated handler
o You jump to the privileged code; you cannot execute your own

» OS checks your syscall request and honors it only if safe
+ Or, some kind of event happens in the system

Types of Arch Support

» Generating and handling “events”
+ Interrupts, exceptions, system calls, etc.
+ Respond to external events
+ CPU requires software intervention to handle fault or trap

10

Review: Computer Organization

opcode

Branch Address
Select | New PC | Program CPQ
PC ST Instructions
Fetch
Exec

11

Events

o An eventis an “unnatural” change in control flow
+ Events immediately stop current execution
+ Changes mode, context (machine state), or both

o The kernel defines a handler for each event type
+ Event handlers always execute in kernel mode
+ The specific types of events are defined by the machine

o Once the system is booted, OS is one big event
handler
+ all entry to the kernel occurs as the result of an event

12

Handling events - Interrupt

vector table

Processor
Register

Interrupt

Vector

>

handleTimerInterrupt() {

>

}

handleDivideByZero() {

>

}
handleSystemCall() {

}

13

Categorizing Events

o Two kinds of events: synchronous and asynchronous

o Sync events are caused by executing instructions
+ Example?

o Async events are caused by an external event
+ Example?

Asynchronous

l events l
A K IR (R I IR R R
ticks

T Synchronous T
events

14

Categorizing Events

o Two kinds of events: synchronous and asynchronous
+ Sync events are caused by executing instructions
+ Async events are caused by an external event

o Two reasons for events: unexpected and deliberate

o Unexpected events are, well, unexpected
+ Example?

o Deliberate events are scheduled by OS or application
+ Why would this be useful?

15

Categorizing Events

This gives us a convenient table:

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous Interrupt signal

Terms may be slightly different by OS and architecture

+ E.g., POSIX signals, asynch system traps, async or deferred

procedure calls

16

Faults

» Hardware detects and reports “exceptional”
conditions

+ Page fault, memory access violation (unaligned, permission,
not mapped, bounds...), illegal instruction, divide by zero

o Upon exception, hardware “faults” (verb)

+ Must save state (PC, regs, mode, etc.) so that the faulting
process can be restarted

+ Invokes registered handler

17

Handling Faults

1 Some faults are handled by “fixing” the exceptional
condition and returning to the faulting context
+ Page faults cause the OS to place the missing page into memory

+ Fault handler resets PC of faulting context to re-execute
Instruction that caused the page fault

18

Handling Faults

o The kernel may handle unrecoverable faults by killing
the user process
+ Program fault with no registered handler
+ Halt process, write process state to file, destroy process
+ In Unix, the default action for many signals (e.g., SIGSEGV)

o What about faults in the kernel?
+ Dereference NULL, divide by zero, undefined instruction
+ These faults considered fatal, operating system crashes

« Unix panic, Windows “Blue screen of death”
» Kernel is halted, state dumped to a core file, machine locked up

19

Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous Interrupt signal

20

System Calls

» For a user program to do something “privileged” (e.g.,
1/O) it must call an OS procedure

+ Known as crossing the protection boundary, or a protected
procedure call

o Hardware provides a system call instruction that:
+ Causes an exception, which invokes a kernel handler
» Passes a parameter determining the system routine to call

+ Saves caller state (PC, regs, mode) so it can be restored
» Why save mode?

+ Returning from system call restores this state

21

System Call

User mode

emacs: read()

Trap to
kernel mode,
save state

T

Kernel mode

A

y

Trap handler

A

read() kernel routine

y

Find read
handler

_/

Restore state,

return to user

level, resume
execution

22

Another view

OXFFFFFFFF

/ A

1G
\

0xC0Q00000

Address

Space

3G

\ |

0x00000000

Kernel Stack

Kernel Code

< SPZ‘_\
«— PC2

User Stack

~— SPl————

User Code

<~ PC1 _

25

System Call Questions

o There are hundreds of syscalls. How do we let the
kernel know which one we intend to invoke?

+ Before issuing int $0x80 or sysenter, set %eax/%rax with the
syscall number

o System calls are like function calls, but how to pass
parameters?

+ Just like calling convention in syscalls, typically passed
through %ebx, %ecx, %edx, %esi, %oedi, %ebp

26

More questions

o How to reference kernel objects (e.g., files, sockets)?
+ Naming problem — an integer mapped to a unique object
» int fd = open(“file”); read(fd, buffer);

+ Why can’t we reference the kernel objects by memory
address?

27

System calls in xv6

o Look at trap.h and trap.c

+ Interrupt handlers are initialized in two arrays (idt and vectors)
» Tvinit() function does the initialization

+ Syscalls have a single trap handler (T_SYSCALL, 64)

+ Trap() handles all exceptions, including system calls
» |If the exception is a system call, it calls syscall()

o Keep digging from there to understand how system
calls are supported
+ You will be adding a new system call in Lab 1

28

Categorizing Events

Unexpected Deliberate
Synchronous fault syscall trap
Asynchronous Interrupt software interrupt

o Interrupts signal asynchronous events
+ 1/O hardware interrupts

+ Software and hardware timers

29

