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Last time/Today

l Historic evolution of Operating Systems (and 

computing!)

l Today:

We start our journey in exploring Operating Systems

Try to answer questions such as:

» What is the OS?

» What does it need to do?

» How/When does the OS run?

» How do programs interact with it?

» How is this supported by CPUs?
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Some questions to get you 

thinking

What is the OS?  Software?

Is the OS always executing?

◆ If not, how do we make sure it gets to run?

How do we prevent user programs from directly 

manipulating hardware?
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Sleeping Beauty Model

Answer: Sleeping beauty model

◆ Technically known as controlled direct execution

◆ OS runs in response to “events”; we support the switch in 

hardware

◆ Only the OS can manipulate hardware or critical system state

Most of the time the OS is sleeping

◆ Good!  Less overhead

◆ Good!  Applications are running directly on the hardware
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What do we need from the 

architecture/CPU?

Manipulating privileged machine state

◆ Protected instructions

◆ Manipulate device registers, TLB entries, etc.

◆ Controlling access

Generating and handling “events”
◆ Interrupts, exceptions, system calls, etc.

◆ Respond to external events

◆ CPU requires software intervention to handle fault or trap

Other stuff

◆ Mechanisms to handle concurrency, Isolation, virtualization …
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Types of Arch Support

Manipulating privileged machine state

◆ Protected instructions

◆ Manipulate device registers, TLB entries, etc.

◆ Controlling access

Generating and handling “events”
◆ Interrupts, exceptions, system calls, etc.

◆ Respond to external events

◆ CPU requires software intervention to handle fault or trap

Other stuff

◆ Interrupts, atomic instructions, isolation
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Protected Instructions

OS must have exclusive access to hardware and 

critical data structures

Only the operating system can 

◆ Directly access I/O devices (disks, printers, etc.)

» Security, fairness (why?)

◆ Manipulate memory management state

» Page table pointers, page protection, TLB management, etc.

◆ Manipulate protected control registers 

» Kernel mode, interrupt level

◆ Halt instruction (why?)
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Privilege mode

Hardware restricts privileged instructions to OS

Q: How does the HW know if the executed program is OS?

◆ HW must support (at least) two execution modes: OS (kernel) 

mode and user mode

Mode kept in a status bit in a protected control register

◆ User programs execute in user mode

◆ OS executes in kernel mode (OS == “kernel”)

◆ CPU checks mode bit when protected instruction executes

◆ Attempts to execute in user mode trap to OS



Switching back and forth

Going from higher privilege to lower privilege

◆ Easy: can directly modify the mode register to drop privilege

But how do we escalate privilege?

◆ Special instructions to change mode

» System calls (int 0x80, syscall, svc)

» Saves context and invokes designated handler

You jump to the privileged code; you cannot execute your own

» OS checks your syscall request and honors it only if safe

◆ Or, some kind of event happens in the system
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Types of Arch Support

Manipulating privileged machine state

◆ Protected instructions

◆ Manipulate device registers, TLB entries, etc.

◆ Controlling access

Generating and handling “events”
◆ Interrupts, exceptions, system calls, etc.

◆ Respond to external events

◆ CPU requires software intervention to handle fault or trap

Other stuff



Review: Computer Organization
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Events

An event is an “unnatural” change in control flow

◆ Events immediately stop current execution

◆ Changes mode, context (machine state), or both

The kernel defines a handler for each event type

◆ Event handlers always execute in kernel mode

◆ The specific types of events are defined by the machine

Once the system is booted, OS is one big event 

handler

◆ all entry to the kernel occurs as the result of an event



Handling events – Interrupt 

vector table
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Categorizing Events

Two kinds of events: synchronous and asynchronous

Sync events are caused by executing instructions

◆ Example?

Async events are caused by an external event

◆ Example?

CPU

ticks

Synchronous

events

Asynchronous

events



15

Categorizing Events

Two kinds of events: synchronous and asynchronous

◆ Sync events are caused by executing instructions

◆ Async events are caused by an external event

Two reasons for events: unexpected and deliberate

Unexpected events are, well, unexpected

◆ Example?

Deliberate events are scheduled by OS or application

◆ Why would this be useful?
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Categorizing Events

This gives us a convenient table:

Terms may be slightly different by OS and architecture

◆ E.g., POSIX signals, asynch system traps, async or deferred 

procedure calls

Unexpected Deliberate

Synchronous fault syscall trap

Asynchronous interrupt signal
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Faults

Hardware detects and reports “exceptional”
conditions

◆ Page fault, memory access violation (unaligned, permission, 

not mapped, bounds…), illegal instruction, divide by zero

Upon exception, hardware “faults” (verb)

◆ Must save state (PC, regs, mode, etc.) so that the faulting 

process can be restarted

◆ Invokes registered handler
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Handling Faults

Some faults are handled by “fixing” the exceptional 

condition and returning to the faulting context

◆ Page faults cause the OS to place the missing page into memory

◆ Fault handler resets PC of faulting context to re-execute 

instruction that caused the page fault
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Handling Faults

The kernel may handle unrecoverable faults by killing 

the user process

◆ Program fault with no registered handler

◆ Halt process, write process state to file, destroy process

◆ In Unix, the default action for many signals (e.g., SIGSEGV)

What about faults in the kernel?

◆ Dereference NULL, divide by zero, undefined instruction

◆ These faults considered fatal, operating system crashes

◆ Unix panic, Windows “Blue screen of death”

» Kernel is halted, state dumped to a core file, machine locked up
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Categorizing Events

Unexpected Deliberate

Synchronous fault syscall trap

Asynchronous interrupt signal
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System Calls

For a user program to do something “privileged” (e.g., 
I/O) it must call an OS procedure
◆ Known as crossing the protection boundary, or a protected 

procedure call

Hardware provides a system call instruction that:
◆ Causes an exception, which invokes a kernel handler

» Passes a parameter determining the system routine to call

◆ Saves caller state (PC, regs, mode) so it can be restored

» Why save mode?

◆ Returning from system call restores this state
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System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to 

kernel mode, 

save state

Trap handler

Find read 

handler

Restore state, 

return to user 

level, resume 

execution



Another view
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Kernel Stack

0x00000000

0xFFFFFFFF

Kernel Code

Address

Space

SP2

PC1

User Stack

User Code

PC2

SP1

0xC0000000

1G

3G
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System Call Questions

There are hundreds of syscalls. How do we let the 

kernel know which one we intend to invoke?

◆ Before issuing int $0x80 or sysenter, set %eax/%rax with the 

syscall number

System calls are like function calls, but how to pass 

parameters?

◆ Just like calling convention in syscalls, typically passed 

through %ebx, %ecx, %edx, %esi, %edi, %ebp



More questions

How to reference kernel objects (e.g., files, sockets)?

◆ Naming problem – an integer mapped to a unique object

» int fd = open(“file”);  read(fd, buffer);

◆ Why can’t we reference the kernel objects by memory 

address?
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System calls in xv6

Look at trap.h and trap.c

◆ Interrupt handlers are initialized in two arrays (idt and vectors)

» Tvinit() function does the initialization 

◆ Syscalls have a single trap handler (T_SYSCALL, 64)

◆ Trap() handles all exceptions, including system calls

» If the exception is a system call, it calls syscall()

Keep digging from there to understand how system 

calls are supported

◆ You will be adding a new system call in Lab 1
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Categorizing Events

Unexpected Deliberate

Synchronous fault syscall trap

Asynchronous interrupt software interrupt

Interrupts signal asynchronous events

◆ I/O hardware interrupts

◆ Software and hardware timers


