
CSE 153

Design of Operating

Systems

Fall 18

Lecture 2: OS model and Architectural

Support

Last time/Today

l Historic evolution of Operating Systems (and

computing!)

l Today:

We start our journey in exploring Operating Systems

Try to answer questions such as:

» What is the OS?

» What does it need to do?

» How/When does the OS run?

» How do programs interact with it?

» How is this supported by CPUs?

2

Some questions to get you

thinking

What is the OS? Software?

Is the OS always executing?

◆ If not, how do we make sure it gets to run?

How do we prevent user programs from directly

manipulating hardware?

3

Sleeping Beauty Model

Answer: Sleeping beauty model

◆ Technically known as controlled direct execution

◆ OS runs in response to “events”; we support the switch in

hardware

◆ Only the OS can manipulate hardware or critical system state

Most of the time the OS is sleeping

◆ Good! Less overhead

◆ Good! Applications are running directly on the hardware

4

5

What do we need from the

architecture/CPU?

Manipulating privileged machine state

◆ Protected instructions

◆ Manipulate device registers, TLB entries, etc.

◆ Controlling access

Generating and handling “events”
◆ Interrupts, exceptions, system calls, etc.

◆ Respond to external events

◆ CPU requires software intervention to handle fault or trap

Other stuff

◆ Mechanisms to handle concurrency, Isolation, virtualization …

6

Types of Arch Support

Manipulating privileged machine state

◆ Protected instructions

◆ Manipulate device registers, TLB entries, etc.

◆ Controlling access

Generating and handling “events”
◆ Interrupts, exceptions, system calls, etc.

◆ Respond to external events

◆ CPU requires software intervention to handle fault or trap

Other stuff

◆ Interrupts, atomic instructions, isolation

7

Protected Instructions

OS must have exclusive access to hardware and

critical data structures

Only the operating system can

◆ Directly access I/O devices (disks, printers, etc.)

» Security, fairness (why?)

◆ Manipulate memory management state

» Page table pointers, page protection, TLB management, etc.

◆ Manipulate protected control registers

» Kernel mode, interrupt level

◆ Halt instruction (why?)

8

Privilege mode

Hardware restricts privileged instructions to OS

Q: How does the HW know if the executed program is OS?

◆ HW must support (at least) two execution modes: OS (kernel)

mode and user mode

Mode kept in a status bit in a protected control register

◆ User programs execute in user mode

◆ OS executes in kernel mode (OS == “kernel”)

◆ CPU checks mode bit when protected instruction executes

◆ Attempts to execute in user mode trap to OS

Switching back and forth

Going from higher privilege to lower privilege

◆ Easy: can directly modify the mode register to drop privilege

But how do we escalate privilege?

◆ Special instructions to change mode

» System calls (int 0x80, syscall, svc)

» Saves context and invokes designated handler

You jump to the privileged code; you cannot execute your own

» OS checks your syscall request and honors it only if safe

◆ Or, some kind of event happens in the system

9

10

Types of Arch Support

Manipulating privileged machine state

◆ Protected instructions

◆ Manipulate device registers, TLB entries, etc.

◆ Controlling access

Generating and handling “events”
◆ Interrupts, exceptions, system calls, etc.

◆ Respond to external events

◆ CPU requires software intervention to handle fault or trap

Other stuff

Review: Computer Organization

11

12

Events

An event is an “unnatural” change in control flow

◆ Events immediately stop current execution

◆ Changes mode, context (machine state), or both

The kernel defines a handler for each event type

◆ Event handlers always execute in kernel mode

◆ The specific types of events are defined by the machine

Once the system is booted, OS is one big event

handler

◆ all entry to the kernel occurs as the result of an event

Handling events – Interrupt

vector table

13

14

Categorizing Events

Two kinds of events: synchronous and asynchronous

Sync events are caused by executing instructions

◆ Example?

Async events are caused by an external event

◆ Example?

CPU

ticks

Synchronous

events

Asynchronous

events

15

Categorizing Events

Two kinds of events: synchronous and asynchronous

◆ Sync events are caused by executing instructions

◆ Async events are caused by an external event

Two reasons for events: unexpected and deliberate

Unexpected events are, well, unexpected

◆ Example?

Deliberate events are scheduled by OS or application

◆ Why would this be useful?

16

Categorizing Events

This gives us a convenient table:

Terms may be slightly different by OS and architecture

◆ E.g., POSIX signals, asynch system traps, async or deferred

procedure calls

Unexpected Deliberate

Synchronous fault syscall trap

Asynchronous interrupt signal

17

Faults

Hardware detects and reports “exceptional”
conditions

◆ Page fault, memory access violation (unaligned, permission,

not mapped, bounds…), illegal instruction, divide by zero

Upon exception, hardware “faults” (verb)

◆ Must save state (PC, regs, mode, etc.) so that the faulting

process can be restarted

◆ Invokes registered handler

18

Handling Faults

Some faults are handled by “fixing” the exceptional

condition and returning to the faulting context

◆ Page faults cause the OS to place the missing page into memory

◆ Fault handler resets PC of faulting context to re-execute

instruction that caused the page fault

19

Handling Faults

The kernel may handle unrecoverable faults by killing

the user process

◆ Program fault with no registered handler

◆ Halt process, write process state to file, destroy process

◆ In Unix, the default action for many signals (e.g., SIGSEGV)

What about faults in the kernel?

◆ Dereference NULL, divide by zero, undefined instruction

◆ These faults considered fatal, operating system crashes

◆ Unix panic, Windows “Blue screen of death”

» Kernel is halted, state dumped to a core file, machine locked up

20

Categorizing Events

Unexpected Deliberate

Synchronous fault syscall trap

Asynchronous interrupt signal

21

System Calls

For a user program to do something “privileged” (e.g.,
I/O) it must call an OS procedure
◆ Known as crossing the protection boundary, or a protected

procedure call

Hardware provides a system call instruction that:
◆ Causes an exception, which invokes a kernel handler

» Passes a parameter determining the system routine to call

◆ Saves caller state (PC, regs, mode) so it can be restored

» Why save mode?

◆ Returning from system call restores this state

22

System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to

kernel mode,

save state

Trap handler

Find read

handler

Restore state,

return to user

level, resume

execution

Another view

25

Kernel Stack

0x00000000

0xFFFFFFFF

Kernel Code

Address

Space

SP2

PC1

User Stack

User Code

PC2

SP1

0xC0000000

1G

3G

26

System Call Questions

There are hundreds of syscalls. How do we let the

kernel know which one we intend to invoke?

◆ Before issuing int $0x80 or sysenter, set %eax/%rax with the

syscall number

System calls are like function calls, but how to pass

parameters?

◆ Just like calling convention in syscalls, typically passed

through %ebx, %ecx, %edx, %esi, %edi, %ebp

More questions

How to reference kernel objects (e.g., files, sockets)?

◆ Naming problem – an integer mapped to a unique object

» int fd = open(“file”); read(fd, buffer);

◆ Why can’t we reference the kernel objects by memory

address?

27

System calls in xv6

Look at trap.h and trap.c

◆ Interrupt handlers are initialized in two arrays (idt and vectors)

» Tvinit() function does the initialization

◆ Syscalls have a single trap handler (T_SYSCALL, 64)

◆ Trap() handles all exceptions, including system calls

» If the exception is a system call, it calls syscall()

Keep digging from there to understand how system

calls are supported

◆ You will be adding a new system call in Lab 1

28

29

Categorizing Events

Unexpected Deliberate

Synchronous fault syscall trap

Asynchronous interrupt software interrupt

Interrupts signal asynchronous events

◆ I/O hardware interrupts

◆ Software and hardware timers

