
CS 153

Design of Operating 

Systems

Fall 18

Lecture 1: Course Introduction
Instructor: Heng Yin

Slide contributions from 

Nael Abu-Ghazaleh, Chengyu Song, Harsha 
Madhyvasta and Zhiyun Qian



Teaching Staff

Heng Yin

◆ I am an Associate Professor in CSE

» Third year at UCR, but many more elsewhere

◆ Office hours Monday 2-3pm, Thursday 11am-12pm, or by 

appointment

» Hope to meet many of you during office hours

Two TAs

◆ Hadi Zamani (TA’ed several times) and Yue Duan

» PhD students in Computer Science

◆ Office hours TBA

◆ Leads for Labs

2



3

Class Overview

Check class webpage for information

◆ https://www.cs.ucr.edu/~heng/teaching/cs153-fall18/

Lecture slides, homeworks, and projects will be posted 

on class webpage

Assignment turn-in through iLearn

◆ Digital only, no paper copy 

◆ Announcements through iLearn and posted on class webpage 

Piazza for discussion forums; link on website

◆ Use these please

◆ Stay on top of things – falling behind can snowball quickly into 

trouble

http://www.cs.ucr.edu/~zhiyunq/cs153/


4

Textbook

Apraci-Dessau and Apraci-Dessau, OS, 3 easy 

pieces (required + free!)

Other good books:

◆ Anderson and Dahlin, Operating Systems: Principles and 

Practice (recommended)

◆ Silberschatz, Galvin, and Gagne, Operating System 

Concepts, John Wiley and Sons, 8th Edition 

(recommended)



5

Class Overview

Grading breakdown

◆ projects (40% total)

» Xv6 Operating system

» Book uses examples from it

» 4 projects (used to be 2, splitting into halves)

To keep the TA load under control, they will grade each two together

◆ 4 homeworks (16% total)

◆ Mid-term (18%)

◆ Final (26%)



6

Projects

Project framework this time: xv6

◆ Projects are in C

◆ Very good debugging support

◆ Used in OS class at several other universities

Start to get familiar immediately

◆ We will start labs. next week!

◆ Go over the xv6 documentation (on the course web page)

◆ Optional Lab 0 to help get familiar with what xv6 is



Projects are HARD!

Probably the hardest class you will take at UCR in 

terms of development effort

◆ You must learn gdb if you want to preserve your sanity! ☺

Working on the projects will take most of your time in 

this class

Biggest reason the projects are hard: legacy code

◆ You have to understand existing code before you can add more 

code

◆ Preparation for main challenge you will face at any real job

7



Project Recommendations

Easier if you are engaged/excited

Find a partner that you like/trust

Do not start working on projects at last minute!

◆ A lot of the time will be spent on understanding the code 

◆ Debugging is integral process of development

Make good use of help available

◆ Post questions on piazza

◆ Take advantage of TA office hours

◆ Come prepared to Labs 

◆ Again, learning to debug

8



Project logistics

Projects to be done in groups of two

◆ When you have chosen groups, send your group info to your TA 

◆ Use the find a partner feature in piazza 

» email if unable to find partner and we’ll form groups

◆ Option to switch partners after project two

First step is to conceptually understand the project

◆ Then come up with implementation plan

» Fail and fail again

» Debug, debug, debug (systems are unforgiving)

» →success!!

9



10

Homeworks and Exams

Four homeworks
◆ Can expect similar questions on the exams

Midterm (tentatively November 1)
◆ In class

Final (December 11, 8-11am)
◆ Covers second half of class + selected material from first part 

» I will be explicit about the material covered

» Because first midterm is short (80 minutes)

No makeup exams
◆ Unless dire circumstances



Submission Policies

Homeworks due on ilearn by the end of the day (will be 

specified on ilearn)

Code and design documents for projects due by the 

end of the day (similarly will be specified on ilearn)

Late policy (also on course webpage):

◆ 15% penalty for every late day up to 3 days

◆ Late submission beyond 3 days are not graded

11



Recipe for success in CS153

Start early on projects

Attend labs and office hours

◆ Take advantage of available help

Be engaged, interested, curious

Make sure to attend lectures

◆ Going over slides is not the same

Try to read textbook material before class

Ask questions when something is unclear 

12



13

How Not To Pass CS 153

Do not come to lecture

◆ It’s nice out, the slides are online, and the material is in the 

book anyway

◆ Lecture material is the basis for exams and directly relates to 

the projects

◆ I often see capable students hurt themselves badly (fail, or get 

miserable grades) by not attending

Do not ask questions in lecture, office hours, or email

◆ It’s scary, I don’t want to embarrass myself

◆ Asking questions is the best way to clarify lecture material at 

the time it is being presented

◆ Office hours and email will help with projects



14

How Not To Pass (2)

Wait until the last couple of days to start a project

◆ We’ll have to do the crunch anyways, why do it early?

◆ The projects cannot be done in the last few days

◆ Repeat: The projects cannot be done in the last few days

◆ Each quarter groups learn that starting early meant finishing 

all of the projects on time…and some do not



15

Objectives of this class

In this course, we will study problems and solutions that go 

into design of an OS to address these issues

◆ Focus on concepts rather than particular OS

◆ Specific OS for examples

Develop an understanding of how OS and hardware 

impacts application performance and reliability

Examples:

◆ What causes your code to crash when you access NULL?

◆ What happens behind a printf()?

◆ Why can multi-threaded code be slower than single-threaded code? 



Questions for today

Why do we need operating systems course?

Why do we need operating systems?

What does an operating system need to do?

Looking back, looking forward

16



Soap box – why you should 

care

Student surveys show low interest coming in

Computers are an amazing feat of engineering

◆ Perhaps the greatest human achievement

You get to understand how they work

◆ OS, Architecture, Compilers, PL, … are the magic that makes 

computers possible

Ours is a young field

◆ Our Newtons, Einsteins, LaPlace’s, … happened in the last century

◆ Many of our giants are still alive

◆ So much innovation at an unbelievable pace

◆ You can help write the next chapter

17



18

Why an OS class?

Why are we making you sit here today, having to 

suffer through a course in operating systems?

◆ After all, most of you will not become OS developers

Understand what you use (and build!)

◆ Understanding how an OS works helps you develop apps

◆ System functionality, debugging, performance, security, etc.

Learn some pervasive abstractions

◆ Concurrency: Threads and synchronization are common 

modern programming abstractions (Java, .NET, etc.)

Learn about complex software systems

◆ Many of you will go on to work on large software projects

◆ OSes serve as examples of an evolution of complex systems



Questions for today

Why do we need operating systems course?

Why do we need operating systems?

What does an operating system need to do?

Looking back, looking forward

19



What if applications ran directly on hardware?

Problems:

◆ Portability

◆ Resource sharing

Why have an OS?

20

Applications

Hardware



The operating system is the software layer between 

user applications and the hardware

The OS is “all the code that you didn’t have to write”
to implement your application

21

What is an OS?

Operating System

Hardware

Applications



Questions for today

Why do we need operating systems course?

Why do we need operating systems?

What does an operating system need to do?

Looking back, looking forward.

22



Roles an OS plays

l Beautician that hides all the ugly low level details so 

that anyone can use a machine (e.g., smartphone!)

l Wizard that makes it appear to each program that it 

owns the machine and shares resources while making 

them seem better than they are

l Referee that arbitrates the available resources 

between the running programs efficiently, safely, fairly, 

and securely 

Managing a million crazy things happening at the same time is 

part of that –

l Elephant that remembers all your data and makes it 

accessible to you -- persistence

23



More technically…

Abstraction: defines a set of logical resources (objects) 

and well-defined operations on them (interfaces)

Virtualization: Isolates and multiplexes physical 

resources via spatial and temporal sharing

Access Control: who, when, how

◆ Scheduling (when): efficiency and fairness

◆ Permissions (how): security and privacy

24



CS 153

Design of Operating 

Systems

Fall 18

Lecture 1.2: Historical perspective
Instructor: Heng Yin



Some Questions to Ponder

What is part of an OS?  What is not?

◆ Is the windowing system part of an OS? Java? Apache 

server? Compiler?  Firmware?

Popular OS’s today include Windows, Linux, and OS X

◆ How different/similar do you think these OSes are?

Somewhat surprisingly, OSes change all of the time

◆ Consider the series of releases of Windows, Linux, OS X…

◆ What are the drivers of OS change?

◆ What are the most compelling issues facing OSes today?

28



Pondering Cont’d

How many lines of code in an OS?

◆ Vista (2006): 50M (XP + 10M)

» What is largest kernel component?

◆ OS X (2006): 86M

◆ Debian 3.1 (2006): 213M

What does this mean (for you)?

◆ OSes are useful for learning about software complexity 

» The mythical man month

» KDE (X11): 4M

» Browser : 2M+, …

◆ If you become a developer, you will face complexity

» Including lots of legacy code

29



Questions for today

Why do we need operating systems course?

Why do we need operating systems?

What does an operating system need to do?

Looking back, looking forward.

30



A brief history—Phase 0

In the beginning, OS is just runtime libraries

◆ A piece of code used/sharable by many programs

◆ Abstraction: reuse magic to talk to physical devices

◆ Avoid bugs

User scheduled an exclusive time where they would 

use the machine

User interface was switches and lights, eventually 

punched tape and cards

◆ An interesting side effect: less bugs

31



Phase 1: Batch systems 

(1955-1970)

Computers expensive; people cheap

◆ Use computers efficiently – move people away from 

machine

OS in this period became a program loader
» Loads a job, runs it, then moves on to next

» More efficient use of hardware but increasingly difficult to debug

Still less bugs ☺

32



Advances in OS in this period

SPOOLING/Multiprogramming
◆ Simultaneous Peripheral Operation On-Line (SPOOL)

» Non-blocking tasks

» Copy document to printer buffer so printer can work while CPU 

moves on to something else

◆ Hardware provided memory support (protection and relocation)

◆ Scheduling: let short jobs run first

◆ OS must manage interactions between concurrent things

OS/360 from IBM first OS designed to run on a 

family of machines from small to large

33



Phase 1, problems

Utilization is low (one job at a time)

No protection between jobs

◆ But one job at a time, so?

Short jobs wait behind long jobs

Coordinating concurrent activities

People time is still being wasted

Operating Systems didn’t really work

◆ Birth of software engineering

34



Phase 2: 1970s

Computers and people are expensive

◆ Help people be more productive

Interactive time sharing: let many people use the same 

machine at the same time

Emergence of minicomputers

◆ Terminals are cheap

Persistence: Keep data online on fancy file systems

35



Unix appears

Ken Thompson, who worked on MULTICS, wanted to 

use an old PDP-7 laying around in Bell labs

He and Dennis Richie built a system designed by 

programmers for programmers

Originally in assembly.  Rewritten in C

◆ In their paper describing unix, they defend this decision!

◆ However, this is a new and important advance: portable 

operating systems!

Shared code with everyone (particularly universities)

36



Unix (cont’d)

Berkeley added support for virtual memory for the VAX

◆ Unix BSD

DARPA selected Unix as its networking platform in 

arpanet

Unix became commercial

◆ …which eventually lead Linus Torvald to develop Linux

37



Phase 3: 1980s 

Computers are cheap, people expensive

◆ Put a computer in each terminal

◆ CP/M from DEC first personal computer OS (for 8080/85) processors

◆ IBM needed software for their PCs, but CP/M was behind schedule

◆ Approached Bill Gates to see if he can build one

◆ Gates approached Seattle computer products, bought 86-DOS and 

created MS-DOS

◆ Goal: finish quickly and run existing CP/M software

◆ OS becomes subroutine library and command executive

38



Phase 4: Networked/distributed 

systems--1990s to now?

Its all about connectivity

Enables parallelism but performance is not goal

Goal is communication/sharing

◆ Requires high speed communication

◆ We want to share data not hardware

Networked applications drive everything

◆ Web, email, messaging, social networks, …

39



New problems

Large scale

◆ Google file system, mapreduce, …

Parallelism on the desktop (multicores)

Heterogeneous systems, IoT

◆ Real-time; energy efficiency

Security and Privacy

40



Phase 5

New generation?

Computing evolving beyond networked systems

◆ Cloud computing, IoT, Drones, Cyber-physical systems, 

computing everywhere

◆ But what is it?

◆ …and what problems will it bring?

41



Where are we headed next?

How is the OS structured?  Is it a special program? Or 

something else?

◆ How do other programs interact with it?

How does it protect the system?

◆ What does the architecture/hardware need to do to support it?

42



43

Why Start With Architecture?

Recall: Key roles of an OS are 
1) Wizard: isolation and resource virtualization

2) Referee: efficiency, fairness and security

Architectural support can greatly simplify –or 
complicate– OS tasks

◆Easier for OS to implement a feature if supported by hardware

◆OS needs to implement everything hardware doesn‘t

OS evolution accompanies architecture evolution

◆New software requirements motivate new hardware

◆New hardware features enable new software



Some questions to get you 

thinking

What is the OS?  Software?

Is the OS always executing?

◆ If not, how do we make sure it gets to run?

How do we prevent user programs from directly 

manipulating hardware?

44



Sleeping Beauty Model

Answer: Sleeping beauty model

◆ Technically known as Controlled direct execution

◆ OS runs in response to “events”; we support the switch in 

hardware

Most of the time the OS is sleeping

◆ Good!  Less overhead

◆ Good!  Applications are running directly on the hardware

45


