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Abstract

A transparent and extensible malware analysis platform is essen-
tial for defeating malware. This platform should be transparent so
malware cannot easily detect and bypass it. It should also be ex-
tensible to provide strong support for heavyweight instrumentation
and analysis efficiency. However, no existing platform can meet
both requirements. Leveraging hardware virtualization technology,
analysis platforms like Ether can achieve good transparency, but its
instrumentation support and analysis efficiency are weak. In con-
trast, software emulation provides strong support for code instru-
mentation and good analysis efficiency by using dynamic binary
translation. However, analysis platforms based on software emu-
lation can be easily detected by malware and thus is poor in trans-
parency. To achieve both transparency and extensibility, we propose
a new analysis platform that combines hardware virtualization and
software emulation. The essence is precise heterogeneous replay:
the malware execution is recorded via hardware virtualization and
then replayed in software. Our design ensures the execution replay
to be precise. Moreover, with page-level recording granularity, the
platform can easily adjust to analyze various forms of malware (a
process, a kernel module, or a shared library). We implemented a
prototype called V2E and demonstrated its capability and efficiency
by conducting an extensive evaluation with both synthetic samples
and 14 realworld emulation-resistant malware samples.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Invasive software

General Terms Security, Performance

1. Introduction

Malware analysis is an important step to defend against malware.
Given a piece of unknown malware, the objective of malware anal-
ysis is to reverse engineer it and quickly reveal its inner workings.
As malware is often heavily obfuscated to thwart static binary anal-
ysis, dynamic binary analysis becomes increasingly prevalent. In
this approach the analyst runs a malware sample of interest in an
emulated execution environment (e.g., QEMU [30]) and then mon-
itors and analyzes its malicious behavior in a fine-grained manner
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(at the instruction level). A great deal of research efforts take this
approach [4, 8, 9, 15, 21, 24, 27, 32, 34, 40, 41].

The main advantages of this analysis approach are flexibility
and efficiency for code instrumentation. Since the emulator is a reg-
ular user-level program, it is relatively simple for security analysts
to add instrumentation code (such as taint analysis and symbolic
execution). Due to dynamic binary translation, the performance
overhead for such heavy instrumentation is often acceptable. How-
ever, its prominent drawback is lack of transparency. Because it is
extremely difficult (if not completely infeasible) to emulate every
aspect of real hardware, malware can take advantage of these dis-
crepancies to detect the emulated environment and stay dormant to
avoid analysis. Researchers have investigated this problem exten-
sively and identified a large number of different detection meth-
ods [16, 26, 31]. Our measurement study in Section 5.2 shows that
emulation-resistant malware has become a prevalent threat in the
wild.

To address this transparency issue, Dinaburg et al. proposed
to leverage hardware virtualization and developed a system called
Ether [13]. Since the malicious code is executed on bare metal hard-
ware and the in-guest changes caused by analysis can be intercepted
and hidden by the hypervisor, this approach can achieve ideal trans-
parency. However, Ether is not the ultimate solution. It incurs a
prohibitive performance penalty to conduct instruction-level anal-
ysis by simply enabling single-step mode. Our experiment shows
an approximately 3000 times slowdown by enabling single-step,
not to mention the extra heavy instrumentation needed by in-depth
malware analysis. Moreover, it is far more challenging to imple-
ment the code instrumentation tools within a hypervisor (i.e. Ring
-1) than an emulator (i.e. Ring 3).

In this paper, we aim to bring the best of these two worlds. We
aim to develop a malware analysis platform that is both transparent
and extensible to facilitate custom fine-grained malware analysis.
The essence of this platform is precise heterogeneous replay. That
is, we record malware execution using hardware virtualization for
transparency, and then replay and analyze the malware’s execution
using dynamic binary translation for flexibility and efficiency of in-
depth analysis. The idea of heterogeneous replay was first proposed
and implemented in Aftersight [10], which records the virtual ma-
chine execution from VMware and replays it in QEMU, for heavy-
weight analyses (such as bug detection) on production workload.
In contrast to Aftersight, our platform needs to work under the ma-
licious context: the emulator should exactly replay the execution
recorded from the hardware virtualization platform in spite of the
fact that malware is trying to detect every possible heterogeneous
property in these two systems.

One challenge of precise heterogeneous replay is how to strike
a balance between the recorder and the replayer. On one hand, if
the recorder does not record enough events and states, the replayer



cannot precisely reconstruct the execution. On the other hand, if the
recorder gathers complete information for every single instruction
or event and leave an easy task to the replayer, the recording perfor-
mance would become unacceptable. We carefully classify various
operations and instructions into several categories and handle them
properly to ensure precise replay.

We implemented a prototype system, called V2E. The recorder
has been implemented in KVM [23], and TEMU (a dynamic bi-
nary analysis platform [37]) has been modified to precisely replay
the execution. With minimum changes, the existing analysis plu-
gins (such as taint analysis, unpacker, and tracing) work properly,
achieving the advantages of transparency and greater analysis effi-
ciency.

We have evaluated V2E using both synthetic and realworld
emulation-resistant malware samples. These same samples were
successfully recorded and replayed on our modified TEMU reveal-
ing the behavior hidden from the original TEMU platform.

In summary, this paper makes the following contributions:

e We propose a new technique that combines hardware virtual-
ization and dynamic binary translation to achieve both trans-
parency and efficiency for fine-grained analysis.

We designed and implemented a prototype called V2E. While
the recording component was implemented in KVM to record
malware execution in a transparent fashion, the replay compo-
nent was built in TEMU, largely by modifying its dynamic bi-
nary translation logic. Consequently, existing TEMU plugins
have gained transparency and higher analysis efficiency after
minor changes.

We conducted extensive experiments and analysis, using both
synthetic and realworld emulation-resistant malware samples.
These samples utilize a large variety of methods for detecting
emulated environments, so we believe our evaluation is well
rounded. All emulation-resistant malware samples were suc-
cessfully analyzed completely.

The rest of the paper is organized as follows. The next section lists
the design goals that are essential for in-depth malware analysis
and gives an overview of our approach. Section 3 and Section 4 de-
scribe the design and implementation of the recording component
and replay component, respectively. Section 5 presents our exper-
imental results. Section 6 discusses the limitations of the current
implementation. Section 7 surveys the related work. Finally, the
paper concludes with Section 8.

2. Design Goals & Approach

We first list the design goals for in-depth malware analysis, and
then explain how our approach is able to address these design goals.
2.1 Design Goals

The following design goals are essential for in-depth malware anal-

ysis:

e G1: Transparency. The presence of the analysis environment
should remain invisible to malware, voiding its intent to escape
investigation.

G2: Instrumentation Support. It should be relatively simple
to add custom instrumentation on malicious code execution. In
many cases, this instrumentation can be heavyweight, such as
dynamic taint analysis and instruction-level tracing.

e G3: Efficiency. The efficiency for malware analysis is two-
fold: 1) it should be efficient enough to monitor computation
intensive and highly interactive malware; and 2) performance
overhead for heavy code instrumentation should be acceptable.
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Figure 1. Architecture Overview

e G4: Adjustable View. Malware can present itself in various
forms, such as user process, shared library, dynamically in-
jected code, kernel module, etc. It should be easy to adjust our
analysis focus to concentrate on malware’s behavior instead of
the execution of the rest of the system.

2.2 Architecture

The overall architecture is depicted in Figure 1. The malware
sample under investigation is loaded into the guest system using
hardware virtualization, to achieve transparency (G1). Although
hardware virtualization may still be detected under certain circum-
stances [31] and a remote time source can be used to measure the
real timing difference [12], as hardware virtualization has been
widely deployed on production systems, detecting hardware vir-
tualization environments becomes increasingly irrelevant. Ether
demonstrated that hardware virtualization can achieve transparency
in a practical sense [13].

The guest system is partitioned into two realms. The malware
resides in the recording realm, and the rest of the guest system
(such as the guest OS and the other applications) remains in the
main realm. Depending on where the malware is present, we can
put a user process, a shared library, a kernel module, or any com-
bination of them into the recording realm to have a closer look at
the malware’s behavior. Such a separation fulfills the design goal of
adjustable view (G4). It also partially addresses the efficiency issue
(G3), because the irrelevant system execution is excluded from the
recording realm. Some analysis techniques (such as Panorama [40]
and HookFinder [41]) do need to observe the entire system exe-
cution. In this case, the recording realm includes the entire guest
system, falling back to the whole-system recording.

The record log obtained from the recorder is then fed into
the replayer. Using the dynamic binary translation technique, the
replayer is able to offer acceptable performance for fine-grained
code instrumentation, and thus achieves analysis efficiency (the
second part of G3). The replayer facilitates any existing malware
analysis platforms that are based on dynamic binary translation.
Therefore, the existing analysis plugins on these analysis platforms
can continue to work with minimum changes. It addresses the
instrumentation support (G2).

2.3 Precise Heterogeneous Replay

Using hardware virtualization, we can record the malware execu-
tion in a transparent and efficient manner. To support various in-
depth malware analysis techniques, we need to precisely replay the
execution using dynamic binary translation. That is, at every single
execution time, the program state in replay is exactly the same as
in recording in spite of the fact that the malware execution is trying
to detect various discrepancies between the real hardware and the
emulated system.

Formal Definition. At each time i, S; represents the program
state (including CPU registers and memory) and I; specifies the
input. I; may be null if no input occurs at time ¢. Then a transition



function f characterizes the real hardware: S; = f(Si—1,li—1).
Similarly, there is a transition function f’ for the emulated hard-
ware. Suppose that f' = f, given So and I we can replay the
whole execution. However, according to automata theory, deter-
mining if f° = f is equivalent to the problem of determining
whether two Turing machines are equal, which is known to be un-
decidable [35]. In practice, f’ # f, because it is nearly impossible
to correctly emulate some aspects of hardware. That is, for some
i, S, = f'(Si—1,I;—1) and S; # S,. Therefore, in addition to
recording So and I, for any moment j when S} # S;, we need to
record the state change A; = S; — S;_1. Then the new transition
function f,. is defined as below:

! / / S-Z, +Az
si= st ton 20 ={ Fg

In other words, during replay, whenever a state change A; has been
recorded for time ¢, we will directly apply the recorded state change
such that S; = S;_; + A;. Using simple induction, we can prove
that with (So, I, A) and f;, S; = S; always holds true for all
i€ [0,n].

if A; # null
Otherwise

From Theory to Practice. From the formal discussion, we can see
that the key to successful replay is to determine when to use f’ and
when to apply A. In other words, if we are confident that certain
instructions and events can be correctly emulated in software, then
we simply emulate them. Otherwise, we should record the state
changes and then during replay apply these changes.

Fortunately, for general instructions like data transfer (e.g., mov,
push, pop), control transfer (e.g., call, ret, jz, jmp), and integer
arithmetic (e.g., add, shl), it is fairly easy to emulate them cor-
rectly in software because of their semantics are simple and remain
the same across processor series.' Moreover, these instructions are
the vast majority in program execution. As a result, the efficiency
of both recorder and replayer can be ensured. We believe that this is
a valid assumption, because these common instructions are tested
over and over again in many different application contexts. Even
if there is an emulation bug in one of these common instructions,
because of its simple semantics, it should be easy to fix.

External interrupts, memory-mapped 10 (MMIO), port 10, di-
rect memory access (DMA), and timestamp counter are inputs I to
the guest system. Like other deterministic replay systems [10, 14,
36], we choose to record these events if they happen in the record-
ing realm.

Software exceptions, model-specific registers, and the cpuid
instruction are not generally treated as inputs in previous replay
systems. However, it is extremely difficult to emulate them right.
Software exceptions are triggered when certain condition checks
fail in the processor. It is fairly complicated to emulate all these
condition checks in the exactly same way as in the real processor,
not to mention that a specific processor may have CPU bugs that
raise incorrect exceptions. The behaviors of model-specific regis-
ters and the cpuid instruction are processor specific. It is a daunt-
ing task to correctly emulate all the specifics to support at least the
common CPU series. Therefore, we choose to record and replay
exceptions, model-specific registers and cpuid as state changes A.

Floating point instructions and SIMD (Single Instruction Multi-
ple Data) instructions (e.g., MMX and SSE) are generally difficult
to be emulated correctly as well. We could also record the results
of these instructions as A. However, for programs that heavily per-
form these operations, the performance for both record and replay
may greatly degrade. Alternatively, we choose to pass these instruc-
tions directly to the hardware processor during replay. This solution
assumes that the replayer is running on a machine supporting this

Note that these common instructions may still cause discrepancies in
exceptions, which are handled separately.

[ Operation Type | Solution ]
Data Transfer / Control Transfer / Emulate
Integer Arithmetic
Interrupts / MMIO / Port IO / DMA / TSC | Replay as
Exceptions / System Registers / CPUID Replay as A
Floating Point / SIMD Instructions Pass through

Table 1. Operations and Corresponding Solutions.

set of floating point and SIMD instructions. This assumption can
easily hold by running the recorder and the replayer on the same
kind of machines (or even the same machine).

As a summary, Table 1 lists these operations and their corre-
sponding solutions: emulate, replay, or pass-through. We empha-
size that the platform following this design principle does not im-
mediately become transparent completely, because we do not pre-
clude that the emulation of some of these common instructions may
still be buggy. However, once identified, these bugs can be easily
fixed and the transparency of the platform will be further improved.

3. Transparent Recorder

For successful replay, we need to capture So, I and A in a trans-
parent and efficient manner. In this section, we describe how we are
able to achieve this goal by leveraging hardware virtualization.

3.1 Mediating Recording Realm

In order to monitor malware in various forms, including kernel
modules, shared libraries and processes, the recording realm needs
to be defined at the page-level granularity and the interaction be-
tween the recording realm and the rest of the system needs to be
mediated.

In hardware virtualization, Two Dimensional Paging (TDP) is
a memory virtualization mechanism. While the conventional page
table pointed by CR3 in the guest will be used to translate a Guest
Virtual Address (GVA) into its Guest Physical Address (GPA), the
second-layer page table maintained by the hypervisor will translate
the Guest Physical Address into the Host Physical Address (HPA).
The maintenance of the second-layer page table is invisible to the
guest. AMD and Intel have different implementations: Nested Page
Tables (NPT) for AMD and Extended Page Tables (EPT) for Intel.

We take advantage of TDP to mediate the recording realm.
Specifically, we create two TDP tables, which partition the guest
physical memory into two memory spaces, one for the recording
realm and the other for the rest of the guest system. The code
pages that belong to the monitored malware will be loaded into the
recording realm, such that the interaction of the monitored malware
with the rest of the system can be mediated by the TDP page faults
and other VMEXit (transitions from the guest to the hypervisor)
events. Once again, these VMEXit events are invisible to the guest
system.

This TDP-based recording realm is flexible enough to monitor
a small code module, a full user process, and even the entire guest
system, depending on what pages are loaded into the recording
realm.

3.2 Basic Scheme

In the basic design, the two guest physical memory spaces are
mutually exclusive. That is, each individual guest physical page
can only be present in either the recording realm or the main realm,
but not both. This basic design ensures mediating all the inputs and
events for the recording realm is simple.

We use a simplified adore-ng rootkit [1] as an example to il-
lustrate this basic scheme. The C source code and the correspond-
ing disassembly are shown in Figure 2. Briefly speaking, the orig-



1. int adore_root_filldir(void *buf, char *name,
int nlen, loff_t off, ino_t ino, unsigned x)

2. {
3. struct inode *inode = NULL;
4. int r = 0;
5. uid_t uid;
6. gid_t gid;
7.
8. if ((inode=iget(root_sb[current->pid’ 1024],
ino)) == NULL)
9. return 0;
//lines 10 to 20 are omitted for brevity
21. }

(a) C source

d88888550 <adore_root_filldir>:
550: push Y%ebp
551...56C: //set up stack,
//%eax = current @L8

66C: mov  Ox6c¢c(%eax),%edx ///edz=pid CL8
56F: xor %hedi,%hedi

571: test Yedx,%edx

573: mov  %edx,%eax

575: jns 57d <adore_root_filldir+0x2d>
577: lea  0x3ff(%edx),%eax

67D: push $0x0
57F: push $0x0
581: and $0xfffffc00,%eax
586: sub Yeax,%edx
588: pushl Oxlc(%ebp) //push ino @L8
58B: pushl x0(,%edx,4) //push root_sb[...] @L8
// call iget @ line 8
592: call 593 <adore_root_filldir+0x43>
//The rest is omitted for brevity.

(b) disassembly

Figure 2. adore_root_filldir

inal pointer to root_filldir has been replaced by a pointer to
adore_root_filldir to hide certain files. Suppose we want to
record the execution of this kernel rootkit. So we move the code
page of this kernel module from the main realm to the recording
realm. We may treat this first code page as So. Figure 3 (A) illus-
trates this situation.

When the guest system is about to call root_filldir, the
execution is redirected to adore_root_filldir, with virtual ad-
dress 0xd88888550 and physical address 0x16876550. Since the
physical page 0216876000 is not present in the main realm any
more, this control flow transition will trigger a TDP page fault.
The recorder located in the hypervisor will capture this TDP page
fault and switch the memory space to the recording realm, which is
shown in Figure 3 (B). In addition, we record the current CPU state
(all the registers and flags), as input Io.

On fetching the first instruction in adore_root_filldir, two
more TDP page faults will be triggered for the page table directory
page (PD) and the page table entry page (PTc) respectively. This is
because the TLB has been flushed during the realm switch, and the
CPU needs to look up the page table for the physical address of the
first instruction. We will also move these two pages in the recording
realm and record their contents as another input. This is a desired
behavior, because the replayer will need the page table pages for
address translation. Moreover, by including the page table pages,
the problem of page swapping and re-mapping is automatically
handled in both recorder and replayer. Figure 3 (C) shows this
moment.

This first instruction (push %ebp) writes onto the stack. As the
stack page is absent in the recording realm, this operation triggers
the TDP page faults for the stack page (MS) and the corresponding
page table pages (PD and PTs). as shown in Figure 3 (D). In this
example, PD has already been moved into the recording realm, so
no TDP page fault happens for PD.

Then the execution continues without causing any VMEXits un-
til 0xd888856¢. This instruction (mov 0x6c (eax), %edx)reads
a data page (D), which is not present in the recording realm. Simi-
larly, this data page (D) and its corresponding page table page (PTd)
are moved into the recording realm and recorded (see Figure 3 (E)).

The execution further proceeds to the instruction located at
02169 f7592. It calls a kernel function iget. A TDP page fault
is raised because the jump target is absent in the recording realm.
By checking the faulting EIP, we determine that this EIP does not
belong to the malware module. So we decide to switch back to the
main realm (see Figure 3 (F)). In addition, we record a “JumpOut”

event at this point, indicating that the execution has transferred out
of the recording realm.

The kernel function iget now resumes its execution in the main
realm. While it accesses the parameters, another TDP page fault
will occur because the stack page (MS) has been moved to the
recording realm. So we will move the stack page (MS) and the
corresponding page table pages (PD and PTs) back to the main
realm. This behavior is also desirable, because next time when the
recording realm reads one of these pages, we are able to capture
it and record the new page content as a new input. Figure 3 (G)
illustrates this situation.

When iget finishes and returns, a TDP page fault will occur
because the jump target is not present in the main realm. Thus,
we switch the memory space to the recording realm, which is
shown in Figure 3 (H). The CPU state is recorded and the exe-
cution resumes in the recording realm. The subsequent execution
of adore_root_filldir will follow a similar cycle.

3.3 Other Inputs

The previous example only shows how to capture inputs from CPU
states and memory. We need to handle other kinds of inputs as well.
Control transitions such as interrupts and exceptions are naturally
handled in the basic scheme. As the Interrupt Descriptor Table
(IDT) is never present in the recording realm, any interrupt or
exception will trigger a TDP page fault. We will treat this fault
as a control transition and a new CPU state will be recorded when
the execution returns to the recording realm. When executing in
the recording realm, instructions like cpuid, rdmsr, in and rdtsc
need to be recorded as inputs / and state changes A. With hardware
virtualization support, we are able to trap these instructions into the
hypervisor, and record their results when they are executed in the
recording realm. DMA transfers may change memory pages in the
recording realm without CPU intervention. When DMA writes into
a page resident in the recording realm, we need to record that page
as a new input. The DMA controller is emulated in software. So we
can intercept this DMA write and record this input.

3.4 Optimizations

The basic scheme enforces two mutually exclusive realms. In many
cases, this is unnecessarily expensive. If two realms read a shared
page alternately, the basic scheme would repeatedly remove that
page from the recording realm, and later move it back and record
it, even though the page contents have not changed. We employ
several optimizations to allow these two realms to share pages.
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Figure 3. TDP snapshots for adore_root_fill. The two columns represent two guest physical memory spaces for the main realm and the
recording realm respectively. A shaded block represents a present page, while a blank block indicates an absent page. The arrow on top

signifies which realm is active.

Sharing Data Pages. To enable sharing data pages, we use a
”Remove-On-Write” (ROW) principle, which is similar to Copy-
On-Write. More specifically, we allow two realms to share pages,
and these pages are set to be read-only. When one realm attempts
to write to a page, a TDP write violation will be triggered, and
that page will be removed from the other realm. This optimization
works especially well for the page table pages, because both realms
need these pages for address translation, and these pages do not
change so often.

Sharing Code Pages. When recording a full process, we en-
counter a problem where both realms need to access shared library
code pages. These code pages will be moved back and forth be-
tween the main realm and the recording realm, according to the ba-
sic scheme. Similar to sharing data pages, these code pages present
in the both realms and are marked to be read-only. In addition,
we manipulate the NX (Non-Execute) bit for these code pages,
to capture the moment when the execution transitions into these
code pages in the monitored process. More specifically, we mon-
itor the context switch by intercepting CR3 writes. When the ex-
ecution context switches to the recorded process, we switch from
the main realm to the recording realm. However, there is a gap be-
tween this context switch and the user-level execution, because the
context switch is performed in the kernel space and the execution
will continue in the kernel space for a while before it transitions to
the user space. In order to capture the entry point to the user space,
we mark all the pages in the recording realm as Non-Executable.
Although the kernel execution will trigger TDP page faults and in
turn these pages will be loaded into the recording realm, we do
not record these pages. We wait until we observe a TDP execute
violation with the faulting EIP in the user space. Then we detect
the entry point. The pages loaded during the kernel execution will
be removed, so we can capture when the execution transfers back
to the kernel later and pages marked NX will be restored. Fortu-
nately, the kernel execution within this gap is normally very brief,
so the overhead for capturing the entry point to the user space is
very small.

3.5 Bridging the Semantic Gap

We usually specify which malware to monitor by its executable
name, whereas the recording realm operates directly on guest phys-
ical pages. Therefore there exists a semantic gap. We leverage the
VM introspection technique to bridge this semantic gap [17, 20].
More specifically, we intercept system calls and parse kernel data

structures in the guest system to extract the OS-level semantics,
such as the process list and the module memory map. By this way,
we map the process name to the corresponding CR3, and module
name to its virtual memory range. Then by looking up the guest
page table, we further map the guest virtual address to the guest
physical address.

The mapping from guest virtual to guest physical address may
change over time due to page swapping. The newly mapped phys-
ical page will be captured and recorded when it is accessed later,
but the physical page that is no longer mapped needs to be removed
from the recording realm immediately. To do so, we need to cap-
ture the page table changes that affect the pages in the recording
realm. According to our data page sharing mechanism, the page
table pages associated to the recording realm are shared in both
realms and set to be read-only. Therefore, any changes to these page
table pages will be trapped to the hypervisor. Therefore, by check-
ing which page table entry has been modified, we can determine
which guest physical page needs to be removed from the recording
realm.

3.6 Shadow Time Stamp Counter

As extra TDP page faults and other VMEXits are needed for record-
ing the malware execution, malware may detect the underlying
recording behavior by examining the advance of the Time Stamp
Counter (TSC). This can be done by rdtsc and reading the TSC
model-specific register. We maintain a shadow TSC to hide this ar-
tifact.

The shadow TSC is an estimate of how much time the guest
actually runs. We calculate it as follows: Let ¢; be the value of the
host TSC before VMRESUME? is executed. Let t, be the value of
the host TSC right after the CPU returns to the host. Let ¢. and ¢,
be the time it takes to enter the guest and exit to the host and ¢, be
the actual execution time for the guest, then t, — t; = te + 1. + 4.
We approximate t. + t, by turning on rdtsc and running rdtsc
in a loop in the guest to obtain the average of t. + t;, which we
used to calculate 4. Then ¢, is used to increment the shadow TSC,
which is returned to the guest whenever the guest queries the TSC.

3.7 Implementation

We implemented the recording component in KVM in the Linux
Kernel 2.6.32. The code base of KVM is well organized. While

2 VMRESUME is the Intel instruction for entering the guest, non-root mode



vmx . c and svm. c contain the hardware specific code for Intel and
AMD virtualization extensions respectively, mmu.c contains the
memory management unit code that is common to both architec-
tures. Within mmu. c is the tdp_page_fault function that is called
by both VMX and SVM, and is where we implemented our realm
control and enforcement logic. All memory based inputs are han-
dled at this location. All non-memory based inputs to the recording
realm are handled in the architecture specific implementation files.

Memory Management. For KVM, a virtual machine runs as a
user process on the host. The guest physical memory is just virtual
memory in that process. The guest physical pages can be swapped
in and out, depending on the system workload. Therefore, the TDP
table is rather dynamic. To tackle these dynamics, KVM registers
mmu_notifiers with the Linux kernel. With these in place, any
changes made to the page tables of that specific process, such as
swapping a page or re-mapping a virtual page to another physical
page, will notify KVM through mmu_notifier. As we manage two
TDP tables, both tables need to be updated accordingly. Thus, we
implemented our own versions of the mmu_notifiers so changes in
the page table of the host process are reflected in the TDP page
tables for both realms.

Logging. Being a kernel module, KVM cannot directly write to
files. To enable logging, we implemented a user-level program that
commits the changes to a log file. In the current implementation,
when we load a page into the recording realm and record it, we
record the full page content. Obviously, this is only necessary when
the page is recorded for the first time. When the page is modified
in the main realm and loaded back again, it is very likely that only
a small portion of the page has changed. As a simple optimization,
we may keep the old copy and only record the “diff”. We did
not implement this optimization. Instead, we simply zip the log.
We found this simple solution sufficient in practice, because the
compressed logs are usually small enough.

Event Landmark. We need a landmark to tell at what execution
point a log event is recorded, such that we can replay the same
log event at the same moment. Previous replay systems used the
branch counter as a landmark. The branch counter increments when
each branch instruction is committed and thus serves as an accurate
landmark. In our current implementation, we simply used the CPU
state (including the EIP, registers and flags) as the landmark. It is
simple but might not be as accurate as the branch counter, because
two execution points may happen to have the same CPU state. In
practice, we found this simple solution good enough. As described
later in Section 4, most of the events (such as memory accesses,
regular control transitions, and special instructions) are replayed
on demand, the role of the landmark is not as important as in the
other replay systems.

4. Precise Replayer

We replay the execution using dynamic binary translation tech-
nique to provide good instrumentation support and analysis effi-
ciency.

4.1 Dynamic Binary Translation

Briefly speaking, software emulation based on dynamic binary
translation works as follows. When the emulator is about to run a
block of code for the first time, it will translate that code block into
a piece of code that can execute on the host and will store the trans-
lated code into the code cache. When the same code block needs to
be emulated, the emulator can skip the translation procedure and di-
rectly fetch the translated code from the code cache and execute it.
Special care is needed to emulate memory accesses. The softmmu

is a software implementation of the Memory Management Unit,
which looks up the page table and performs virtual-to-physical ad-
dress translation. To speed up the address translation, the software
TLB (Translation Look-aside Buffer) is implemented as a cache for
the address translation results.

This design is mainly for improving emulation efficiency. How-
ever it deviates from the real execution in at least the following
ways. First, a block-by-block translation procedure is introduced,
which does not exist in the real processors. This translation proce-
dure is normally invisible to the emulated execution, except when
the block translation crosses the page boundary. This extra page
access can be observed if it causes a page fault.

Second, for efficiency, dynamic binary translation often per-
forms a lazy calculation of flags: a flag is calculated only when it
is needed. For example, in “cmpl $1, Y%eax; jz 0x401020;”,
EFLAGS are not calculated on the first instruction, and then on the
second instruction, only ZF is calculated to determine which branch
to go. This lazy approach is good for efficiency but can be exploited
to detect emulation.

Third, again for efficiency, interrupts are checked and served
only at the block boundary. In contrast, on real hardware, inter-
rupts may happen on any instruction. We have seen that realworld
malware samples repeatedly measure the cpu cycles consumed
by a simple mov instruction (using a sequence like “rdtsc; mov
%eax, hebx; rdtsc;”)inaloop and only exit the loop when the
number of cpu cycles is greater than a relatively big threshold to
detect the presence of an interrupt in between.

In addition to the above discrepancies that are unique to dy-
namic binary translation, several more are common in software
emulation. First of all, due to the complexity of x86 instruction
set, some special-purpose instructions (e.g., System Management
Mode and Trusted Execution Technology instructions) are hard to
emulate and thus have not been implemented in software. We have
seen that a malware sample executes rsm instructions and leads to
a crash in QEMU. Moreover, accurate CPU timestamp emulation
is nearly impossible. For simplicity, current CPU emulators (like
QEMU) choose to fetch the time stamps on the host. It means that
an instruction would consume much more CPU cycles in emulation
than on the real hardware. Finally, the logic of checking and raising
exceptions in the hardware is fairly complex and thus the software
emulation for this logic is often error-prone.

4.2 Changes for Precise Replay

Considering all these challenges in software emulation and dy-
namic binary translation, we come up with several design changes
in the work flow of software emulation to ensure precise replay.
Particularly, we have modified the implementation of dynamic bi-
nary translation in QEMU to comply with these design changes.

New Translation Logic. According to Section 2.3, during dy-
namic translation, we classify the instructions into three categories:
general-purpose, FPU, and others. General-purpose instructions in-
clude data transfer, control transfer, and integer arithmetic. They
are translated according to their simple semantics. To avoid dis-
crepancies in flag calculation, we disable the lazy flag calculation.
That is, EFLAGS are immediately calculated after each instruction
that changes EFLAGS. Assuming the control transition caused by
exceptions be correctly replayed, the logic for checking and rais-
ing exceptions is completely removed, except for page fault. This
is because we rely on the page fault logic to load memory pages at
right moment.

Floating point and SIMD instructions execute on FPU. To en-
sure correctness, these instructions will be translated to wrapper
functions that pass the operations directly to the real FPU. For ex-
ample, in the software emulation approach, a floating point instruc-
tion fadd %stl, %stO would be translated to call a helper func-



tion helper_fadd_STO_STN, in which this instruction is emulated
in software. In our pass through approach, we will directly insert a
piece of assembly code as: __asm__("fadd %st(1), %st(0)").
As this instruction takes two FPU registers. We can pass the same
instruction to the FPU. If an instruction takes any operands from
memory or the general-purpose registers, we need to copy the
operands from the guest environment to the host or vice versa.
For example, the instruction fadds %0xc (%ebp) adds a memory
operand with st (0) and saves the result in st (0). Since this mem-
ory operand is loaded in the guest system, we have to copy its value
into a temporary value on the host and then performs the floating
point operation natively on the host, as shown in the following code
snippet:

unsigned long temp = 1d1(A0);
__asm__("fadds %0;" : "m" (float)temp));

These natively executed FPU instructions may raise exceptions.
We register exception handlers to catch and ignore them. We expect
to replay the exceptions from the execution log.

Other instructions will be translated into “nop”, expecting that
the results of these instructions be correctly replayed from the log.
That is, no translated code will be generated except advancing the
program counter to the next instruction.

While translating each instruction, we check and ensure the
program counter should not across the page boundary. Otherwise,
we will stop translating the current code block and leave the current
instruction to the next block.

Replay Logic. As our page-level recording is based on TDP, we
will need the same page table mechanism in software emulation
to correctly replay log events on demand. We introduce a physical
page container for this purpose. This physical page container indi-
cates if a physical page has been loaded from the log and thus is
present. Generally speaking, during replay the physical page con-
tainer replicates the TDP page table of the recording realm. When
the replayed execution accesses a page that is absent in the physical
page container, we will load the missing memory page and update
CPU states from the log at the right moment.

In addition, in the end of each instruction we will compare the
current CPU state with the landmark of the next log event. If the
landmark matches, we will replay this log event. This log event
may be a control transition caused by interrupts or exceptions, or a
state change made by special-purpose instructions.

4.3 Example Walkthrough

We use the same adore-ng example to walk through the replay
logic. As the first log event, the code page MC is loaded in the
physical page container. This initial state is the same as that of the
right column in Figure 3(A).

Then the second event is the CPU state for the entry point of
adore_root_filldir. The replayer updates the CPU state accord-
ingly. The code block starting with the EIP Oxd8888550 needs to be
translated and put into the translated code cache before executed.
This translation triggers looking up the page table for the physical
address of that EIP. Consequently, the page table pages (PD and
PTm) are loaded from the log on demand, because they are not
present in the physical page container.

Now we start to execute the translated code. The first instruction
pushes onto the stack. At this moment, we will load the page table
page PTs during page table lookup and then the stack page MS for
the memory write. Similarly, we will load the page table page PTd
and the data page D at the right moments.

At the end of the call instruction at 0xd8888592, which is
about to jump to the kernel function iget, we know that a control
transition happens at this moment. This log event is followed by

several events for removing pages (MS, PD, PTs). Subsequently,
we see an event to update the CPU state. After executing all these
log events, we skip the execution of iget and directly arrive at the
instruction 0zd888885a7, where iget returns to. Now we arrive at
the same state as the right column of Figure 3 (H). As this point, we
also need to flush the TLB, because changes may have been made
to the page table during the skipped execution.

It is worth noting that the replayer literally replays the log. As
this example describes the basic scheme, we can see that quite a
few pages (such as page table pages) are removed and then loaded
back later. Given a log recorded using the optimizations discussed
in Section 3.4, the replay will proceed more efficiently.

4.4 Implementation

We implemented the replayer on TEMU, a dynamic analysis plat-
form in the Bitblaze binary analysis infrastructure [37]. A hand-
ful of plugins have been developed on TEMU to perform malware
analysis. TEMU is based on QEMU version 0.9.1. So we modified
the existing dynamic binary translation code in QEMU to support
precise replay.

With the modifications in TEMU, the existing analysis plugins
should work automatically, except for a small change. Each regular
TEMU plugin needs to check if the current execution is within the
context of interest (e.g., if the current process is the malware’s pro-
cess). However, for a plugin that works with replay, all execution is
of interest. This is ensured by the recorder. So we can remove this
context checking in the plugin. In particular, we modified two plug-
ins. The first plugin is an unpacker, which is the implementation of
Renovo [21]. The second is an instruction tracing tool called trace-
cap, which performs taint analysis and dumps detailed information
for each instruction. Having a detailed instruction trace with taint
information has been demonstrated to be crucial in many malware
analysis projects [7-9, 22].

5. Evaluation

We conducted a systematic experimental study for V2E from the
following aspects: 1) we studied the existing emulation detection
methods and examined the effectiveness of V2E against these
methods; 2) we conducted a measurement study on the severity
and prevalence of emulation-resistant malware; 3) we evaluated
V2E’s capabilities in tackling real-world emulation-resistant mal-
ware samples; and 4) we measured its performance impact in vari-
ous settings.

Experimental setup. The host machine has a Core i7 860 Quad
Core processor with 4 GB of memory running Ubuntu 10.04, with
our modified 2.6.32.29 kernel. The guest systems are Windows XP
SP2, Ubuntu 9.04 and Redhat 7.

5.1 Study of Existing Anti-emulation Attacks

We collected a list of existing anti-emulation methods that are
available in the literature [16, 22, 31]. To evaluate if V2E can
defeat these techniques, we tested both synthetic and realworld
samples whenever available. For those techniques without samples,
we speculated their internal mechanisms and then made careful
decisions. Descriptions of these methods are listed in the Table 2.

Among these detection methods, six of them, including “cm-
pxch8b”, “double fault”, “reserved MSR”, “instruction length”,
“alignment checking” and “invalid opcode”, cause aberrant excep-
tion behavior. As V2E accurately replays the exceptions from the
real hardware, these detection methods will be automatically taken
care of. We verified instruction length and invalid opcode using
synthetic samples.

Then, “cpuid”, “MSR fingerprinting” and “rdtsc” have deviated
values returned from certain instructions. These values are hard-
ware specific and thus hard to emulate correctly. V2E defeats these



Description

| Defeated? |

cpuid returns processor specific information. QEMU returns generic information. [16]

rdtsc returns the contents of the TSC. [16, 22, 31]

cmpxch8b conditionally writes to the memory operand, but a #GP exception is always generated if the memory
operand is not writable. QEMU only raises #GP when the memory is written indeed. [16]

A double fault exception is generated if the #GP handler can’t be retrieved from the IDT when a #GP occurs.
QEMU generates #GPs repeatedly. [16]

Writing to reserved MSRs should generate #GP, but QEMU does not. [31]

A #GP is generated if the instruction length is more than 15 bytes, but certain prefixes like rep can break this
rule in QEMU. [22, 31]

If the alignment check flag is set, then an alignment exception is thrown when an unaligned memory address is
accessed. This exception is not thrown in QEMU. [31]
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CPU bugs or errata results in behavior that are either unexpected or does not follow the published logic, thus the
emulator does not handle these like specific hardware would. [31]

<\
*

MSR fingerprinting uses the rdmsr_safe macro to find the MSRs supported by the CPU. The list of MSRs can
be used to help determine the CPU model. [31]

The fnstcw instruction pushes the FPU Control Word register onto the stack. As it turns out, bit 3 of this register
is reserved in Intel’s implementation but is always 1. QEMU always returns 0. [22].

icebp is an undocumented instruction that simply raises an exception. In QEMU this instruction hangs the
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emulator. [22]

rep stosb can be used to overwrite a range of memory with nop. When paired with a jmp to nowhere, QEMU
and singlestepping will throw a segmentation fault. Hardware executes successfully. [16]

N/A

Table 2. Survey of Emulation Detection Techniques.

methods by recording the values from the real hardware. We fur-
ther verified “cpuid” and “rdtsc” using both synthetic and realworld
malware samples.

“fnstcw” causes a deviated state in the FPU. V2E passes
FPU/MMX/SIMD instructions directly on hardware, so no devi-
ations in FPU would be possible for V2E. We have verified using
several realworld samples, thus we are confident that it is defeated.

The “CPU errata” method needs special considerations. If a
CPU bug causes a totally unpredictable result, it would be ex-
tremely hard to handle. The CPU bugs used for emulation de-
tection in the literature [31] all cause incorrect exceptions. These
CPU bugs can be handled correctly by V2E, because exceptions
are recorded and replayed. In any sense, the effectiveness of this
detection method is very limited, because a CPU bug is specific to
a CPU family.

The “rep stosb” detection method exploits a cache coherency
bug for self-modifying code in earlier Intel processors. This bug has
been fixed in all current Intel processors. Therefore, this method is
no longer relevant.

5.2 Malware on Existing Malware Analysis Platforms

We would like to see how well the existing malware analy-
sis platforms handle realworld malware. So we collected 150 re-
alworld malware samples from a live malware repository (http:
//malcOde.com/database) and security researchers, and tested
them on three malware analysis platforms: Anubis [2], CWSand-
box [11], and TEMU [37]. While Anubis and TEMU are based on
software emulation, CWSandbox uses API hooking technique. We
found that out of 150 samples, 51, 88, and 14 crashed or exhib-
ited no behaviors in Anubis, CWSandbox, and TEMU respectively.
Note that all these samples run properly in KVM, which means
that they intended to escape from either of these analysis platforms.
Interestingly enough, 14 samples that are resistant to TEMU also
escaped Anubis and CWSandbox. Evidently, emulation-resistant
malware has already become a prevalent threat.

5.3 Analyzing Realworld Malware with V2E

To evaluate how well V2E handles realworld malware, we ran the
these 14 emulation-resistant samples with V2E. We ran each sam-
ple for up to 2 minutes and then stopped recording. For each sam-
ple, we configured V2E to record the entire user-level process and
spawned child processes if any. We chose the time-out threshold of
2 minutes to be consistent with the settings of Anubis and CWSand-
box. We did not observe any sample installing kernel rootkits, but if
indeed a kernel module is installed, the recorder can be configured
to record the execution of that kernel module as well.

V2E was able to record and replay the malicious behaviors for
all these samples. During replay, we tested three settings: 1) replay
with no plugin provides a baseline for the replay performance; 2)
replay with tracing produces a complete and detailed instruction
trace for the recorded execution; and 3) replay with unpacking ex-
tracts hidden code and data from the packed malware. A summary
of the results is presented in Table 3. For each sample, we list its
MD5 hash, the executable size, and the size of the recorded execu-
tion log. Then the runtime for replay with no plugin is listed. With
regards to tracing, we list the instruction count and the runtime for
tracing. As for unpacking, we show the number of memory dump
files, and the runtime for unpacking.

From Table 3, we can make the following observations. First,
the execution logs (after compression) are fairly small (up to
55MB). It is worth noting that unlike the logs in the other exe-
cution replay systems, these logs are self contained with all neces-
sary code and data included. We can directly feed these logs into
the replayer for in-depth malware investigation, and no other en-
vironment setup (e.g., virtual machine images and configurations)
is needed. Second, due to the efficiency of dynamic binary trans-
lation, the baseline performance of the replayer (with no plugin) is
satisfactory, from less than 1 second to 79 seconds. The very short
replay runtime (less than 1 second) on some samples indicates that
these samples are mostly idle. This is reasonable because many of
the samples are bots and the networking is disabled during record-
ing. Note that some samples are very computation-intensive, with
over 1.3 billion instructions executed within 2 minutes. Third, with
good instrumentation support (especially the support for shadow



Null Tracing Unpacking
[ MD5SUM [ exesz log sz || runtime || runtime | #ins || runtime | dumps
27eb815£101a9295fbb601986£393d01 105KB 29.07MB 76.76s 2h19m | 1347M 96.5s 78
43de1618764daf7e5887bd8ac9cadb52 105KB || 28.46MB 76.69s 2h18m | 1346M 96.09s 79
03£322365b844d8faf9236aab34b4214 || 106KB || 30.75MB 77.09s 2h19m | 1349M 97.02s 79
4£12dfb4b613abcdddf56d087223a868 115KB 35.93MB 78.87s 2h20m | 1366M 98.8s 57
f01cdf6e5052aeb5c6510bd8£8d88636 103KB 29.95MB 77.21s 2h19m | 1348M 98.94s 81
£068b4362c646daed2cc3blb8fe20c12 110KB 30.13MB 77.2s 2h19m | 1350M 97.17s 77
1686739bc81a407dd9944e2d9bbcf2el 23KB 2.44MB 0.65s 46.8s | 7.73M 0.71s 8
0b8b2c0926630c69a6¢c75bbab7b24a3e 39KB 3.25MB 0.97s 99.7s 16.8M 1.2s 55
cb5f£7232868333107fa3efe895f12361 245KB 55.36MB 29s 27m15s 248M 39.33s 39
36e5fdcdbeObcdc59ea001b162bfb97d 243KB 37.48MB 20.91s 1150s 175M 30.56s 22
c1a66699820fdeb7242e884e6d2f8bcb 119KB 676KB 0.57s 55.7s 9.55M 0.66s 10
dabec78d489f1e783fb23d6e726bd1ad || 108KB 2.00MB 0.19s 23.2s | 4.09M 0.22s 1
ef0458e196fbd1b4dcc1613ba2ca3c43b || 280KB 3.30MB 0.36s 54.8s | 9.51M 0.46s 1
Tce6cd9837e1a7837c2b491c21ff5b69 101KB 7.10MB 34.35s 294.4s 43M 35.4s 30

Table 3. Analyzing Realworld Emulation-Resistant Malware with V2E

memory), the unpacker built on top of the replayer demonstrated
good efficiency. It was able to finish replaying 2-minute execu-
tion logs in up to 99 seconds, and at the same time successfully
extract hidden code and data from the packed malware samples.
Interestingly enough, all these samples are packed. Without V2E’s
support, it would not be possible to unpack them successfully. Fi-
nally, tracing is substantially more heavyweight than unpacking,
because it has to disassemble each instruction, fetch instruction
raw bytes and operands, and write these details into the instruc-
tion trace. We have obtained complete instruction traces for all the
samples within a reasonably short period (from tens of seconds to
a couple of hours).

5.4 Performance

Without ground knowledge about the realworld malware, it is dif-
ficult to accurately measure the performance of V2E. Instead, we
choose to measure its performance in controlled experiments.

Recording adore-ng. This experiment shows how well V2E an-
alyzes kernel rootkits. We installed the adore-ng rootkit in Redhat
7 and exercised it by decompressing the linux source with about
17,000 files. This workload took 3s without recording and 52s
when recording was enabled, generating a 14MB execution log. A
roughly 17x slowdown seems high, but is reasonable for this work-
load with frequent context switch between the rootkit and the rest
of the kernel.

Recording Internet Explorer. We use this test to show how
well V2E performs on analyzing a highly complex, computation-
intensive, and interactive application. In this experiment, we mea-
sured the load time of IE with and without recording. Without
recording, IE started up and loaded the MSN homepage in 2.5s.
With recording, it took 13.8s. That is about a 5x slowdown. A
52MB execution log was generated. We expect that the record-
ing performance impact decrease as the IE continues to run, be-
cause more pages would remain stable in the recording realm.
While recording, the IE was very responsive, so it should not be
a problem to record any user interactions. In general, as we de-
sign V2E in favor of the flexibility of page-level recording and the
self-containment of execution logs, its recording performance is
likely less efficient than other recording systems. We believe this
trade-off is reasonable for malware investigation.

Comparing with Single Stepping. We then enabled single step-
ping on KVM and measured the performance overhead of single
stepping by executing a loop with 8 million instructions. On KVM,

it took approximately .008s vs. 25s when single stepping was dis-
abled and enabled respectively. That is more than 3000x slowdown.
We can anticipate the performance of obtaining a complete instruc-
tion trace based on single-stepping to be much worse. By contrast,
using V2E, the same 8 million instructions were recorded with neg-
ligible performance penalty. The baseline replay runtime was 0.3s,
and it took only 0.8s to perform unpacking analysis and 48s to ob-
tain the complete instruction trace.

6. Discussion

We discuss the limitations and potential evasion techniques in this
section.

Bugs in Common Instructions. To achieve transparency, we as-
sume that common instructions be emulated correctly. This as-
sumption does not necessarily hold in the current implementation
of V2E. If malware exploits one of the emulation bugs in the com-
mon instructions, V2E cannot successfully replay the malware exe-
cution. Once the replay failure is found, we can identify the bug and
fix its emulation code in V2E. Over time, V2E will be improved to
be increasingly more transparent.

Attacking the Landmarks. As mentioned in Section 3.7, the land-
mark mechanism is not perfect because the CPU state is not a
unique identifer of execution point. A malware author may take
advantage of this limitation to force an imprecise replay. We leave
it as future work to resolve this issue by implementing a branch
counter landmark.

Multi-core Support. The current implementation of V2E only
supports a single-core guest environment. Since we use two-
dimensional paging for separating the main and recording realms
and each virtualized core has its own TDP table, recording mal-
ware’s execution on multi-core environment is feasible by design.
We leave the multi-core support as future work as well.

Denial-of-Service Attack. 1t is feasible for the malware to induce
a large number of exits (e.g., TDP page faults and exceptions)
to the hypervisor, so as to launch a denial-of-service attack to
the recorder. In addition, the malware could detect the analysis
environment by measuring this slowdown using an external clock.
In general, this kind of limitation is not unique to V2E. It is also
shared by other platforms (like Ether). The analysts will have to
analysts make case-by-case solutions once they actually arise.



7. Related Work

Malware Analysis Platform. Here we compare different analysis
platforms with respect to the degree of transparency, the breadth
of analysis view, the support for fine-grained instrumentation, and
fine-grained analysis efficiency.

DynamoRIO [6], Pin [25], and Valgrind [28] provide convenient
and efficient support for fine-grained instrumentation on a user-
level program, by performing dynamic binary translation. However,
as they can only instrument a single user-level process, they cannot
analyze kernel malware. TEMU [37] is an analysis platform based
on QEMU [5], which is an efficient CPU emulator by performing
dynamic binary translation. With a whole-system view, TEMU can
analyze both user-level and kernel-mode malware. Cobra [38] is a
malware analysis platform in form of a Windows kernel module.
It uses a technique called localized execution to instrument and in-
spect malware’s behavior. The localized execution technique is in
spirit similar to dynamic translation techniques. Since Cobra re-
sides in the kernel, it also has a whole-system view. However, it is
unclear if Cobra has support for instruction-level instrumentation.
The downside for all the above systems that are based on dynamic
binary translation is lack of transparency. Incapable of correctly
emulating all the complexities of a real CISC computer system,
these analysis systems can be easily detected [16, 26, 31]. By de-
sign, Cobra is able to defeat some known anti-analysis techniques.
However, Cobra does not address the transparency problem in a
general context.

Ether [13] makes use of hardware virtualization techniques to
observe malware’s execution in a stealthy manner. However, Ether
is not an ideal platform for in-depth malware analysis, which re-
quires instruction-level instrumentation. Although fine-grained in-
strumentation can be achieved through single-step mode, its sig-
nificant performance overhead (thousands of times slowdown) is
unacceptable for the context of in-depth malware analysis.

V2E outperforms all these analysis platforms by combining the
advantages of both hardware virtualization and dynamic binary
translation techniques, and thus can achieve the highest standard
in all the four metrics.

Emulator Detection and Countermeasures. Researchers have
studied the problem of detecting emulators extensively [16, 31]
and identified numerous detection methods. We have carefully ex-
amined these methods, and confirmed that V2E is able to defeat
them effectively.

To address the anti-emulation problem, several techniques have
been proposed. Balzarotti et al. proposed an automatic method to
detect the emulation-resistant behavior by comparing if a piece of
malware behaves differently on the real hardware than in the em-
ulated environment [3]. This technique is effective as a detection
tool, but it does not help defeat this anti-emulation problem. In
order to successfully emulate these emulation-resistant malware,
Kang et al. proposed a differential analysis method by compar-
ing two execution traces, one from Ether and the other one from
QEMU [22]. By performing trace alignment, this technique is able
to automatically detect the root cause for the divergence and gen-
erate a runtime patch. However, this approach is not scalable if
malware has many anti-emulation checks in many different paths
(which is often true in practice), because one runtime patch can
only apply to one point in one execution path. In comparison, V2E
takes a more radical approach to defeat this problem. With the as-
sumption that the emulation for common instructions should be
correct, it should be able to analyze all emulation-resistant mal-
ware correctly. This assumption may not be entirely true, but once
a bug is found for one of these common instructions, we should be
able to fix it easily.

In fact, EmuFuzzer can help discover emulation bugs by fuzz
testing[26]. According to the results, a large number of deviations
are found for exceptions and floating point operations for QEMU.
As V2E directly replays exceptions and executes floating point in-
structions natively, these deviations are irrelevant. Most of devia-
tions in CPU flags would also disappear, as V2E disables the opti-
mization for flags calculation. The rest deviations (37 in total) are
for CPU general registers and memory states, some of which may
indeed be bugs in the common instructions. If so, we should fix
them and the transparency of V2E would be further improved.

Execution Replay. Building a reliable and efficient execution re-
play system is a challenging task, especially in the malicious con-
text. Some replay systems record and replay the program execution
of a single user-level process [18, 19, 29, 33, 36]. So they cannot
monitor the malicious activities happening in the kernel (e.g., ker-
nel rootkits). Moreover, completely intercepting and recording all
the inputs taken by a user-level process is also difficult. Other than
system calls, a user-level program may also take inputs from CPU
timestamps, and the memory regions shared with other processes
and the kernel, etc. Most of the above systems cannot completely
capture all these inputs, and thus they are only partial solutions. To
solve this problem, Jockey [33] makes use of binary rewriting tech-
nique. The program to be recorded needs to be disassembled, and
the problematic instructions are replaced with functionally equiva-
lent functions that can be intercepted. This approach becomes inef-
fective when dealing with malicious code, because it is commonly
known that correctly disassembling malicious code is an open prob-
lem.

Revirt [14], VMware [39], and Aftersight [10] record and re-
play the execution of an entire virtual machine. Thus, they can
observe malicious activities in both user and kernel space. V2E
shares some similarity with Aftersight in terms of heterogeneous
replay. Aftersight records a whole virtual machine execution from
VMware and replays it in QEMU, enabling heavyweight analyses
(e.g., kernel bug detection) on production workload [10]. Unlike
Aftersight, V2E is specially tailored for malware investigation. In-
stead of monitoring the entire virtual machine, V2E takes a targeted
approach: it directly monitors malware’s execution, and can poten-
tially achieve higher efficiency. More importantly, V2E is able to
record malware’s execution in a transparent fashion and then during
replay faithfully emulate the execution for heavyweight analyses.

8. Conclusion

In this paper we presented V2E, a new malware analysis platform
that is both transparent and extensible. It first records an execu-
tion log for a given malware sample under hardware virtualization
to achieve transparency goal, then it replays the execution using
dynamic binary translation to facilitate custom code instrumenta-
tion and in-depth investigation. The key challenge is to ensure that
this replay process is precise. We conducted well-rounded experi-
ments by analyzing a large number of realworld emulation-resistant
malware samples and comparing with other malware analysis plat-
forms. While these emulation-resistant malware samples are able to
evade the other analysis platforms, the successful analysis of these
samples in V2E demonstrated the efficacy and efficiency of our ap-
proach.
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