
SymFusion: Hybrid Instrumentation for Concolic Execution
Emilio Coppa

coppa@diag.uniroma1.it
Sapienza University of Rome

Italy

Heng Yin
heng.yin@ucr.edu

University of California, Riverside
USA

Camil Demetrescu
demetres@diag.uniroma1.it
Sapienza University of Rome

Italy

ABSTRACT

Concolic execution is a dynamic twist of symbolic execution de-
signed with scalability in mind. Recent concolic executors heavily
rely on program instrumentation to achieve such scalability. The
instrumentation code can be added at compilation time (e.g., using
an LLVM pass), or directly at execution time with the help of a
dynamic binary translator. The former approach results in more ef-
ficient code but requires recompilation. Unfortunately, recompiling
the entire code of a program is not always feasible or practical (e.g.,
in presence of third-party components). On the contrary, the latter
approach does not require recompilation but incurs significantly
higher execution time overhead.

In this paper, we investigate a hybrid instrumentation approach
for concolic execution, called SymFusion. In particular, this hybrid
instrumentation approach allows the user to recompile the core
components of an application, thus minimizing the analysis over-
head on them, while still being able to dynamically instrument the
rest of the application components at execution time. Our experi-
mental evaluation shows that our design can achieve a nice balance
between efficiency and efficacy on several real-world applications.

KEYWORDS

symbolic execution, code instrumentation
ACM Reference Format:

Emilio Coppa, Heng Yin, and Camil Demetrescu. 2022. SymFusion: Hybrid
Instrumentation for Concolic Execution. In 37th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’22), October 10–14,
2022, Rochester, MI, USA. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3551349.3556928

This paper is dedicated to the memory of Camil Demetrescu, a
brilliant researcher and a great teacher that has inspired many
students and colleagues. I was lucky enough to be one of his students
and then one of his research collaborators for several years. I will
carry the memory of Camil with me for the rest of my life.

Emilio

1 INTRODUCTION

Symbolic execution [2, 13, 30, 38] is a popular software testing tech-
nique that executes a program over symbolic, rather than concrete,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556928

i.e., fixed a priori, inputs. The technique builds symbolic expres-
sions to represent the computations over symbolic terms and then
queries an SMT solver to evaluate which branch directions can be
taken by the program when assigning the symbolic inputs. While
this approach naturally supports analyses aiming at code cover-
age [11], it can also be valuable for several security tasks, such
as vulnerability detection [14, 36, 44], exploit generation [1], and
reverse engineering [6, 41]. Unfortunately, a limiting factor for this
technique is its low scalability.

Concolic execution [25, 44] is a dynamic twist of symbolic exe-
cution where the program is concretely executed over one input
and the analysis is carried out only over the explored path. Any
symbolic branch condition met along the path can be then negated
to generate alternative inputs, which can be later used for other
concolic explorations. While numerous ideas (§2) help concolic ex-
ecution scale on large programs, efficient program instrumentation
is crucial to track the symbolic state with minimal overhead.

The instrumentation code used by recent concolic executors
is typically added into a program using two strategies: either at
compilation time, e.g., through an LLVM pass, as in SymCC [36], or
at execution time using a dynamic binary translator (DBT), as done
by SymQEMU [37] and other recent tools [8, 44].

Instrumentation at compilation time typically generates more
efficient code as the injected code can be seamlessly mixed with the
application code, and then benefit from the powerful optimizations
available in modern compilers. However, it requires to recompile
the program code with a custom compiler toolchain. Unfortunately,
while we may expect developers to be able to recompile the core
components of an application, they may struggle to recompile third-
party libraries, including the ones provided by the operating system.
When a component is not instrumented, the symbolic expressions
may be inaccurate. To mitigate such problem, tools may devise
function models [11, 42]: each model mimics the effects of the
uninstrumented code on the symbolic state. Unfortunately, such
models are still mostly written by hand, often leading to inaccurate
and incomplete implementations [3].

Instrumentation at execution time instead does not require to
recompile the program, since a DBT can dynamically instrument
the program during its execution, but it typically generates simpler,
less optimized, instrumentation code. Additionally, DBTs introduce
a non-negligible overhead when executing a program as they need
to closely control its execution, perform JIT translation, and track
the program state by maintaining a virtual CPU state. These aspects
may significantly increase the analysis overhead: for instance, as
detailed in §2, SymQEMU could be 6.5× slower than SymCC on a
simple code snippet.

Our contributions. In this paper, we investigate whether it is pos-
sible to devise a new concolic executor based on a mix, or a fusion,
of different instrumentation strategies. In other words, we explore a

https://orcid.org/0000-0002-8094-871X
https://orcid.org/0000-0002-8942-7742
https://orcid.org/0000-0002-4686-6745
https://doi.org/10.1145/3551349.3556928
https://doi.org/10.1145/3551349.3556928
https://doi.org/10.1145/3551349.3556928

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emilio Coppa, Heng Yin, and Camil Demetrescu

hybrid instrumentation approach, where the core components of an
application can be instrumented at compilation time (as in SymCC),
while the remaining components can be dynamically instrumented
at execution time (as in SymQEMU). The goal is to achieve the
benefits of both approaches in terms of efficiency and flexibility.

Although the idea may seem simple, we face several challenges.
First, the approach has to accurately identify when the program is
moving from code that was instrumented at compilation time to
code that was not instrumented and thus requires to be executed
under the DBT. Second, the two instrumentation strategies look at
the program from different perspectives: for instance, an LLVM pass
works on an architecture-independent representation that operates
on the program’s values, while a DBT transforms the binary code,
which is necessarily tightly coupled with the low-level aspects of
the underlying architecture, such as the registers and the platform
ABI. Our approach thus needs to build a bridge across these two
perspectives, supporting a seamless propagation of the symbolic
state. Finally, existing tools hide some unexpected gaps that re-
quire close attention to make the overall approach effective. For
instance, SymQEMU ignores the effects of some platform-specific
instructions, possibly losing track of the symbolic expressions.

In more detail, the contributions of the paper are:
• An investigation (§2) of the advantages and disadvantages of
the two instrumentation strategies when considering them
in the context of concolic execution.
• A new design (§3) for a concolic executor based on hybrid
instrumentation, called SymFusion. Our tool uses an LLVM
pass to instrument the core components at compilation time
and QEMU to instrument the other code at execution time.
We also present some low-level optimizations (§4).
• An experimental evaluation (§5) which first validates our de-
sign through several microbenchmarks and then analyzes the
performance of SymFusion on several complex real-world
applications considering different experimental scenarios. In
particular, we compare SymFusion with respect to SymCC
and SymQEMU in terms of efficiency (i.e., analysis time) and
effectiveness (i.e., how valuable are the inputs generated
by a tool). We show that SymFusion is indeed faster than
SymQEMU and more effective than SymCC.

Release of the prototype. To facilitate extensions of our approach,
we make our contributions available at:

https://season-lab.github.io/SymFusion/

2 BACKGROUND AND RELATEDWORK

The main ideas behind SymFusion arise from different existing
techniques and prior works. We now review some of them.

Program instrumentation. The code of an application can be in-
strumented in different ways [29]. When the source code is avail-
able, the code can be augmented before compilation using language-
specific tools [12, 39], or transformed during the compilation, by
working on the compiler intermediate representation (IR). Several
recent tools [24, 36, 40] have favored this strategy devising passes
for LLVM [31], an extremely powerful compiler toolchain.

When only the program binary code is available, instrumenta-
tion can be done statically [23], i.e., before executing the program,

or dynamically, i.e., at execution time, using a Dynamic Binary
Translator (DBT) [34]. Since static binary instrumentation is a less
common approach in concolic execution, we do not explicitly dis-
cuss it, although, it shares some traits with the dynamic strategy. To
make binary instrumentation easier to port across platforms, binary
tools may first lift the code into a more architecture-independent
IR, inject additional IR statements, and then lower back the result
into platform-dependent code. Unfortunately, IRs from DBTs are
still tight to several low-level aspects, requiring to reason, e.g., over
specific registers and platform-dependent rules.

QEMU [4] is a well-known machine emulator and virtualizer,
which internally integrates a DBT based on the Tiny Code Genera-
tion (TCG) IR. When executed in user mode, QEMU operates over
a single application. To keep track of the program execution state,
it generates code that updates a virtual CPU state, which is kept
in memory. Hence, when an instrumented basic block is executed,
it first reads the virtual registers, manipulates them using native
registers, and then writes back their values into the memory.

Concolic execution. Symbolic execution [2, 13] is a very pow-
erful program analysis technique, which evaluates the program
behavior on symbolic, rather than concrete, inputs. Any program
computation involving the inputs is represented using symbolic
expressions. When the program reaches a branch decision, the sym-
bolic executor uses an SMT solver [7, 16, 22] to evaluate which
directions (true or false) can be taken when assigning the input
values. When both directions are feasible, symbolic execution forks
the state and explores the paths in parallel. A symbolic executor can
be implemented as an interpreter of the program code [11]: how-
ever, this may result in non-negligible overhead [35, 36]. Moreover,
a symbolic executor strongly relies on the solver to understand how
to continue the exploration, possibly limiting the analysis progress
in some cases.

To mitigate these problems, concolic execution [25, 44] devises
a different strategy. The program is executed concretely over an in-
put, thus exploring one single path at a time. Along the exploration,
the executor builds the symbolic expressions and queries an SMT
solver to generate alternative inputs. For each alternative input, a
new exploration can be performed, allowing it to explore several
paths. A notable benefit of concolic execution is that the concrete
state is implicitly maintained by the native CPU, considerably re-
ducing the work for the executor. Additionally, the exploration can
go on even when the solver is unable to answer some queries, since
the native execution drives the exploration. One downside of con-
colic execution is that it has to repeat work across the executions,
possibly incurring even more overhead than symbolic execution.
Concolic executors thus require efficient instrumentation code to
reduce their overhead. Recent examples of concolic executors ex-
ploiting instrumentation at compilation time are SymCC [36] and
SymSan [15], while relevant examples of concolic executors using
instrumentation at execution time are QSYM [44], Fuzzolic [8],
and SymQEMU [37].

Instrumentation for concolic execution. Figure 1 exemplifies how
SymCC and SymQEMU may instrument a simple excerpt of code.

SymCC exploits an LLVM pass: it can thus exploit the knowledge
available in the compiler. For instance, it may know that the variable
b does not depend on the input and thus can be considered concrete.

https://season-lab.github.io/SymFusion/

SymFusion: Hybrid Instrumentation for Concolic Execution ASE ’22, October 10–14, 2022, Rochester, MI, USA

// original code
a = a + b; // compiler knows that b is not input-dependent

// when instrumenting it with SymCC
if (a_expr) // is variable a symbolic?

a_expr = _sym_build_add(a_expr, _sym_build_int(b));
a = a + b;

// when instrumenting it with SymQEMU
int a = vcpu->reg1; // memory access
int b = vcpu->reg2; // memory access
void* a_expr = vcpu->reg1_expr; // memory access
void* b_expr = vcpu->reg2_expr; // memory access
a_expr = helper_sym_add(a, a_expr, b, b_expr);
a = a + b;
vcpu->reg1 = a; // memory access
vcpu->reg1_expr = a_expr; // memory access

Figure 1: SymCC vs SymQEMU: instrumentation example.

int count = 0, N = 15000, x = input();
for (int i = 0; i < N; i++) count += x;
if (count == 2 * N) reach_me();

Figure 2: How fast can a concolic executor analyze this code?

Its instrumentation can then only test whether a is symbolic: this
is done by testing if the shadow variable of a, called a_expr, is not
NULL. When true, it builds a new symbolic expression using two
functions from the symbolic runtime. Thanks to the compiler, the
variables can be efficiently tracked by native registers.

SymQEMU instruments the code at execution time using QEMU,
which tracks the execution state using a virtual CPU state. For each
virtual register (e.g., vcpu->reg1), SymQEMU adds a shadow virtual
register (e.g., vcpu->reg1_expr) to track the symbolic expression
associated with the register. The instrumented code hence first
needs to load from memory the virtual registers for a and b and the
associated shadow registers. Then it tests whether they are sym-
bolic. Since the basic blocks are typically translated independently
from each other, a DBTmay fail to realize that b cannot be symbolic,
requiring the injected code to test it explicitly. Additionally, DBTs
may support only branchless instrumentation within a basic block.
Hence, conditional tests must be delegated to helper functions: the
code thus always performs the call to helper_sym_add. Finally, the
code must save the virtual registers back into memory.

Figure 2 shows a more involved snippet of C code. Using concolic
execution, it is possible to automatically identify that the function
reach_me is executed when 𝑥 = 2. SymCC can analyze the code
in 0.83 seconds on an AMD Ryzen 5900XT CPU running Ubuntu
20.04. On the same platform, SymQEMU, which does not require
to recompile the code with a custom toolchain, takes 5.39 seconds,
i.e., 6.5× slower than SymCC. Both tools perform the same number
of queries and use the same symbolic runtime, i.e., the software
component in charge of building and reasoning the expressions.
The main difference is due to: (a) the overhead introduced by the
QEMU DBT to track and instrument the program execution, and (b)
the efficiency of the instrumentation code. In this example, these
aspects are exacerbated by the presence of a CPU-intensive loop.

int x = input();
int r = lib_identity_fn(x); // fn from an external lib
if (r == 23) reach_me();

Figure 3: Input propagation through uninstrumented code.

In concolic execution, failing to instrument some code may lead
to inaccurate symbolic expressions. For instance, consider Figure 3,
where lib_identity_fn is a function that just returns its argu-
ment, i.e., 𝑟 ← 𝑥 . The function reach_me is thus executed when
the input is equal to 23. If we assume that lib_identity_fn is
within an uninstrumented library, then SymCC fails to understand
that 𝑟 = 𝑥 . On the other hand, SymQEMU does not have any issue
identifying such dependency but its analysis may be slower.

Comparison of instrumentation strategies. We now summarize
more in general the advantages (+) and disadvantages (⊖) of differ-
ent instrumentation strategies in the context of concolic execution.

Instrumentation at compilation time comes with different traits:
+ No overhead at execution time to instrument the code.
+ The instrumentation pass works on the compiler IR, which

is typically mature and well-defined. Additionally, it is rela-
tively easy to perform even complex code transformations.

+ The instrumented code is well-optimized and concise. In
particular, the pass can exploit code analyses and high-level
knowledge available during the compilation. Moreover, the
generated code can benefit from the optimization pipeline.

+ The pass can easily support several platforms.
⊖ The codemust be recompiledwith a custom compiler toolchain.
⊖ The placement of the pass within the compilation pipeline

is not trivial. Being early in the pipeline makes it possible
to benefit from subsequent optimizations but the final pro-
gram code may be quite different than what is seen by the
pass. For instance, the compiler may replace calls to specific
functions with specialized inline code: if this code is not
instrumented then these transformations are destructive for
the concolic analysis. Being late in the pipeline may mitigate
this problem but the injected code does not benefit from
most optimizations.

⊖ When a function is not instrumented, then a model must
be created for it. Otherwise, the symbolic state could be
inaccurate.

⊖ The compiler IR can be very rich, integrating several complex
and specialized data types (e.g., array, vector, struct, etc.),
which makes the implementation of the pass very complex
due to the large number of cases requiring special handling.

Instrumentation at execution time instead shows other features:
+ There is no need to recompile any part of the program.
+ Modern DBTs expose (almost) architecture-independent IRs,

making it easy to support a large set of instructions.
+ Several high-level concepts are simplified away at the binary

level. For instance, there is not much difference between a
pointer, an unsigned value, an unsigned struct field, etc.

⊖ The instrumentation code may be not very efficient. Tools
generate it considering one instruction, or one basic block,
at a time. Moreover, DBTs have limited optimization capa-
bilities during the JIT translation. Finally, DBTs may expect

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emilio Coppa, Heng Yin, and Camil Demetrescu

tools to inject branchless code in blocks, forcing executors to
inject calls to helpers when conditional actions are desired.

⊖ A DBT keeps track of the original program state, often devis-
ing a virtual CPU, whose state is kept in memory, requiring
several memory accesses to update it.

⊖ The IR of DBTs may not explicitly model specialized instruc-
tions. Hence, DBTs may rely on helper functions, i.e., hand-
written code that manipulates the virtual state to mimic
the native instructions. For instance, QEMU uses helpers to
model several x86 instructions, such as the division opera-
tion, vectorized instructions, and floating-point operations.
Executors need to track their effects over the symbolic state.
SymQEMU ignores these effects, giving up in terms of ac-
curacy. Other tools [8] exploit models, which, however, are
hard to write and easy to get wrong. S2E [19] explores a
different strategy: each helper is seen as an additional piece
of the analyzed program, translated into the LLVM IR, and
interpreted with KLEE to keep the symbolic state consistent.

⊖ Even when an executor can instrument specialized instruc-
tions, the resulting expressions may be extremely complex,
making it hard for an SMT solver to reason over them.

Optimizations in concolic execution.Modern concolic executors
adopt several optimizations that trade accuracy for scalability.

For instance, linearization, or basic block pruning [44], makes the
executors track which parts of the program are creating symbolic
expressions: when the counter for a code site exceeds a user-defined
threshold, the engine returns concrete expressions for that site
instead of symbolic expressions. Figure 2 ignores this technique.

A symbolic memory access emerges when the value of a pointer
is input-dependent, e.g., when an array index is symbolic. Handling
symbolic pointers is hard [5, 9]. To favor scalability, executors con-
cretize symbolic pointers. To still consider alternative values, they
may generate a few alternative inputs for each symbolic pointer.

Since concolic executors may visit the same branch conditions
several times across different executions, they often keep track of
the sites generating branch queries using a bitmap [44], avoiding to
repeat queries over time. To make this mechanism less conservative,
queries are pruned based on an exponential back-off. Moreover,
tools may take into account the calling context of each site.

Hybrid fuzzing. Concolic execution may still struggle to scale
over complex programs. Hence, modern concolic executors [8,
36, 37, 44] are often executed in parallel with a coverage-guided
fuzzer [24], devising hybrid fuzzing. In particular, the concolic ex-
ecutor picks inputs from the queue of the fuzzer and runs over each
picked input with a user-defined timeout, e.g., up to 90 seconds,
while generating alternative inputs. The fuzzer periodically imports
inputs from the queue of the concolic executor, accepting only in-
puts that increase the code coverage (or other features tracked by
the fuzzer). Hence, the choice about which inputs are analyzed with
concolic execution depends on the choices made by the fuzzer.

Further refinements. Several works [10, 43, 45] have tried to tackle
the problem of path prioritization. This is crucial as the number
of paths increases exponentially in most programs. Thus, several
strategies aim at selecting which paths should be analyzed first
with symbolic execution. This aspect is still relevant for concolic
execution, as the executor may need to select the best input to

int main() {
 short data;
 read(0, &data, 2);
 data = ntohs(data);
 if (data == 0xCA) return 1;
 return 0;
}

internal code external code

code of read()
code of ntohs()
…

call/ret
call/ret

Figure 4: Running example.

explore next. When aiming at coverage, tools may, e.g., pick paths
visiting uncovered code [11]. When aiming at bug exploitation,
tools may, e.g., favor paths showing security alerts [18]. More in
general, a large body of works [2, 13, 17, 33] have contributed
to this direction from different perspectives. In this paper, we do
not contribute to this problem but we consider a traditional hybrid
fuzzing setup, since it themost common setup across recent concolic
executors.

3 SYMFUSION

In this section, we present the design of SymFusion.

3.1 Design challenges

The design of SymFusion faces several challenges:

• Code boundaries. SymFusion needs to define which part of
the program is instrumented at compilation time and which
part requires instead instrumentation at execution time.
• Symbolic state propagation. The two instrumentation strate-
gies used by SymFusion look at the program from different
perspectives (e.g., LLVM IR versus binary code, native exe-
cution versus DBT supervised execution, etc.). SymFusion
thus needs to intercept when the execution is moving across
these perspectives and devise a context switch mechanism
able to synchronize and propagate the (symbolic) state.
• Execution mode of the symbolic runtime. When SymCC in-
struments a program, the symbolic runtime becomes one
of the dynamic dependencies of the program. Similarly, the
DBT of SymQEMU also depends on the symbolic runtime.
Hence, when combining these approaches, during the execu-
tion, there would be two instances of the symbolic runtime,
which are also used in different execution modes (native
versus virtual). SymFusion must address this dichotomy to
keep the symbolic state always consistent.
• Function models, or not functions models. The two instrumen-
tation strategies may exploit function models for different
purposes. For instance, SymCC uses them to reason on sev-
eral C library functions. Conversely, SymQEMU may need
them to reason over specialized instructions that are not
modeled by the DBT IR. SymFusion should allow the anal-
ysis to exploit (good) models when available but then still
work accurately when models are missing.

The remainder of this section explains how SymFusion copes
with these challenges. To help our discussion, we consider the
small program depicted in Figure 4, where 2 bytes are read from the
standard input, reversed using ntohs, and then tested in a branch
condition.

SymFusion: Hybrid Instrumentation for Concolic Execution ASE ’22, October 10–14, 2022, Rochester, MI, USA

…

A()

B()

call

A()

ret

E
X
E
C
U
T
IO
N

…

(1) NATIVE MODE

(3) VIRTUAL MODE

(5) NATIVE MODE

(4) SWITCH EXEC. MODE

(2) SWITCH EXEC. MODE

code was instrumented at
compilation time and modifies
the native CPU state

code was instrumented at
compilation time and modifies
the native CPU state

code is dynamically
instrumented by DBT and
modifies the virtual CPU state

start DBT

stop DBT

(a) Main idea.

concrete memory

native CPU

DBT JITted
code

external
code

internal
code

native memory

symbolic statevirtual CPU state

symbolic
runtime

Legend: JITting
native execution

calls to symbolic runtime
load/store

(b) High-level view of the execution.

Symbolic Runtime [DBT]

Internal code [App]

 Stack [DBT]

 Stack [App]

 Heap [DBT]

 Heap [App]

Before patching
After patching

 Data [DBT]

 Data [App]

External code [App]

DBT

Symbolic Runtime [App]

(c) Logical view of the memory.

Figure 5: How SymFusion works.

3.2 Key ideas

For SymFusion, the code of a program can be conceptually split in:

• Internal code, i.e., the code that a user is willing to instrument
at compilation time. This covers the core components of the
application and, optionally, other dynamic libraries. We color
in light gray the code from this category in our figures. In
our example, the main function is part of the internal code.
• External code, i.e., any other dynamic library that a user
prefers not to instrument at compilation time. This typically
includes system libraries or other third-party libraries that
are not typically recompiled by application developers. We
color in black the code from this category in our figures. In
our example, the C library, which contains the implementa-
tion of read and ntohs, is part of the external code.

Figure 5a depicts the main idea behind SymFusion:

(1) The internal code can run directly on the native CPU. Indeed,
its code was generated in order to make calls to the symbolic
runtime when the symbolic state requires an update. In our
example, main can run without any supervision.

(2) When the internal code calls a function of an uninstrumented
library (external code), SymFusion requires to intercept this
event and perform a switch in the execution mode, moving
from native mode to virtual mode. In our example, the switch
is performed on the call to read and on the call to ntohs.

(3) Then, the execution should continue under the supervision
of the DBT, which will perform dynamic instrumentation.
In our example, the DBT supervises read and ntohs.

(4) When the function from the external code returns to its
caller in the internal code, SymFusion requires to intercept
this event and switch back the execution mode, moving from
virtual mode to native mode. In our example, the switch is
performed when read and ntohs return to the main.

(5) Finally, the internal code should continue its execution on
the native CPU, until (2) occurs again or termination.

In a more general sense, SymFusion supports nested scenarios
where the internal code calls the external code, which in turn calls
the internal code, and so on. This scenario happens, e.g., when
an application calls the C function qsort, which may execute a
user-defined comparator. Another example is when an application

devises a custom wrapper (internal code) around the malloc func-
tion (external code) and then provides the function pointer of the
wrapper to an uninstrumented library (external code).

SymFusion is thus designed to intercept transitions between in-
ternal and external code across call and ret instructions. However,
real-world programs may sometimes break the call/ret paradigm
when using, e.g., setjmp/longjmp and other similar primitives. In
the next subsection, we provide details about the general execution
workflow, while we cover setjmp/longjmp in Section 4. For the
sake of simplicity, we assume that system calls are invoked through
external code. Hence, they will be always executed under the su-
pervision of the DBT. Since the internal code can be arbitrarily
transformed during compilation, this assumption is not restrictive.

3.3 Execution workflow

Before starting the execution under SymFusion, we expect the user
to recompile the internal code of the program using a custom LLVM
pass (§3.3.1). Then, the program is ready for concolic execution.
Figure 5b provides a high-level view of what would happen:

(1) The host machine can be exemplified in two aspects: the
native CPU and the native memory. Any kind of computation from
the application should at the end run on the native CPU. Data can
be stored either (temporarily) in the native CPU registers or in the
native memory. With the term native CPU state, we refer to any
data stored in the native registers.

(2) The native memory is used to host three main kinds of data:
(i) the concrete data of the program, (ii) the virtual CPU state,
used by the DBT to keep track of the program CPU state, and
(iii) the symbolic state, i.e., the symbolic expressions. During the
execution, the concrete memory will also host the code of: the
DBT, the symbolic runtime, and the application. Figure 5c shows
another view on the memory, where the data are organized based
on how they are allocated (stack versus heap versus global data)
and based on their owner: analyzed program (solid border) versus
DBT (dashed border).

(3) The symbolic runtime is in charge of updating the symbolic
state. Hence, any piece of code from the program, regardless if it is
from the internal code or the external code, must call the functions
of this component to modify the symbolic state. The symbolic
runtime devised by SymFusion is an extension of the one used by
SymCC and SymQEMU.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emilio Coppa, Heng Yin, and Camil Demetrescu

(4) When SymFusion is started, the DBT is executed on the
native CPU, allowing it to perform its initialization phase. Then,
the DBT is used to bootstrap the program execution (§3.3.4), e.g.,
load into the memory the application code. When done, the native
CPU state generated by the DBT is saved and the native execution
is diverted at the entry point of the internal code, e.g., starting from
the main function.

(5) The internal code can now run on the native CPU until a call
to the external code is performed. When this event occurs (§3.3.2),
the native CPU state is imported into the virtual CPU state, the
DBT state is restored and the DBT is restarted.

(6) The DBT then performs JIT translation of the external code,
adding calls to the symbolic runtime (§3.3.5). After, the JITted code
is executed, allowing the program to make progress.

(7) When the external code calls or returns to the internal code,
the native CPU state of the DBT is saved, the virtual CPU state
is imported into the native CPU state and then the execution is
diverted back to the internal code.

This workflow is repeated until the program’s termination. We
now review in detail the most interesting aspects of this workflow.

3.3.1 Instrumentation at compilation time. The instrumentation of
the internal code is performed using an LLVM pass. As discussed in
Section 2, the main idea is to add around each LLVM IR statement
one or more calls to the symbolic runtime, guarding them with
tests regarding the concreteness of the values manipulated by the
statement (§2). Indeed, only when at least one of the operands
manipulated by the statement has a symbolic expression associated
with it, then there is the need to update the symbolic state.

Our pass is inspired by SymCC, we refer to its paper [36] for more
implementation details. However, there are some design choices
that characterize SymFusion.

Placement of the pass in the pipeline.Depending onwhere the pass
is inserted within the compilation pipeline, different tradeoffs can
be achieved. SymFusion places the pass in themiddle of the pipeline,
i.e., immediately before the LLVMvectorizer (EP_VectorizerStart).
This allows it to benefit from several optimizations but still process
simple, i.e., no over-optimized, code. Moreover, SymFusion disables
some destructive optimizations, e.g., it prevents LLVM from replac-
ing built-in functions with (uninstrumented) inline code. Sanitizers,
e.g., ASAN, share this problem but instead prefer to replace built-in
functions with ad-hoc wrappers.

Function models. One natural question is whether SymFusion
should avoid using function models since uninstrumented code can
be tracked using the DBT. While the naive answer is yes, however,
in practice, this may lead to worse results. For instance, several
functions from the C library are often implemented with vectorized
instructions. While SymFusion, as we discuss later, can correctly
instrument them, it still may struggle at generating valuable sym-
bolic expressions: we will show this in Section 5. Hence, in practice,
we do not want to drop completely function models. We can still
benefit from them when it makes sense, relying instead on dynamic
instrumentation when writing a model is hard or impractical.

Propagation of the symbolic state.When calling a function, the
caller must pass the symbolic expressions associated with the func-
tion arguments to the callee. When these functions are part of the

internal code, SymFusion, as SymCC, injects calls to specific run-
time functions, such as _sym_set_parameter_expr in the caller
and _sym_get_parameter_expr in the callee, to perform such prop-
agation. When the caller and the callee are instead in the external
code, SymFusion, as SymQEMU, can easily propagate the symbolic
arguments just by working with the shadow registers and the sym-
bolic memory, following the calling convention from the platform
ABI. For instance, on Linux x86_64, a callee taking one integer
argument expects to find the symbolic expression in the shadow
register of RDI, while a callee taking a floating-point argument
expects to find the expression in the shadow register of XMM0.

However, when the caller is inside the internal code and the callee
inside the external code, or vice versa, it is not clear how to perform
such propagation. Indeed, the LLVM pass works on the compiler IR,
which is architecture-independent, while the binary code follows
platform-dependent rules. SymFusion thus devises inside its DBT a
compatibility layer that can still correctly propagate the expressions.
To support such an operation, the LLVM pass can help such a layer
bymaking the internal code export the knowledge about the number
and types of the arguments passed to the callee and the expected
return type. For instance, in our example, main, before the call to
ntohs, uses a few functions from the runtime to declare that is
passing a single integer argument and is expecting back an integer
type. SymFusion can then call _sym_get_parameter_expr(id=0)
to retrieve the associated expression and map it to the shadow
register of RDI. Similarly, when ntohs returns, SymFusion takes
the expression tracked by the shadow register of RAX and calls
_sym_set_return_expr, allowing the internal code to later retrieve
the expression with _sym_get_return_expr.

Handling indirect calls. SymFusion must know when a callee
is part of the external code, since this may require a switch in
the execution mode. For direct calls, this can be easily determined
statically (§3.3.4). Unfortunately, the same is not true for indirect
calls. In these cases, SymFusion is forced to evaluate at execution
timewhether the target is inside or outside the external code. Hence,
the pass replaces each indirect call with a direct call to a proxy
handler. If the target is within the internal code, the handler jumps
to the expected target. Otherwise, it forces a switch to virtual mode.
The next section describes how this context switch is performed.

3.3.2 Context switches. To perform the switch between native
mode and virtual mode, SymFusion devises several interception
mechanisms. We discuss them considering the Linux platform and
assume that the external code is composed of dynamic libraries.

Internal code calls external code. For direct calls, the internal code
is expected to invoke a stub from the PLT (Procedure Linkage Ta-
ble). The stub retrieves the actual target address from the GOT
(Global Offset Table). The dynamic linker is in charge of populating
(resolving) the GOT with the correct addresses: this is done lazily,
i.e., the first time an entry is needed, or eagerly during the process
bootstrap phase for all the entries. Hence, the GOT can naturally
be exploited to devise a redirection mechanism. In particular, Sym-
Fusion forces the eager resolution of the targets, builds a mapping
between PLT stubs and their correct targets, and then patches the
GOT as depicted by the following figure:

SymFusion: Hybrid Instrumentation for Concolic Execution ASE ’22, October 10–14, 2022, Rochester, MI, USA

switch_to_DBT_XXX:
 push target
 call context_switch
 call resume_DBT

fn@plt:
 jmpq *0x<offset>(%rip)

target

.got.plt fn:
 <binary code of fn>BEFORE

AFTER

In particular, each target is replaced with the address of a dynami-
cally generated stub, which at running time saves the native CPU
state and resumes the DBT execution from the correct virtual PC.

For indirect calls, the internal code invokes the proxy handler,
which is in charge of checking whether the target is within the
memory boundaries of the external code. When this is true, it
performs the same steps of a dynamically generated stub.

Regardless of the call type, while resuming the DBT execution,
SymFusion exploits the knowledge on the type and number of
arguments (§3.3.1) to propagate the symbolic expressions associated
with the arguments, following the rules of the platform ABI.

External code returns to internal code. In this case, SymFusion
performs a switch from virtual mode to native mode. There are
two possible ways to intercept this event: (a) by monitoring the
stack pointer and the instruction pointer in the virtual CPU after
ret instructions, identifying when, e.g., the stack pointer is within
the stack frame of the caller from the internal code, or (b) before
executing the external codewith the DBT, the return address pushed
by the internal code into the stack can be saved into a shadow stack
and then replaced with the address of a custom handler, which will
thus be executed when the relevant ret instruction is executed.
For the sake of simplicity, the current implementation favors the
second strategy. The custom handler is in charge of performing the
context switch, propagating also the symbolic expression of the
return value: the expression associated with the shadow register
holding the return value (e.g., RAX on Linux x86_64) is sent to
the symbolic runtime, allowing the caller to retrieve it through a
dedicated runtime function, such as _sym_get_return_expr().

External code calls internal code. In this case, the DBT monitors
the instruction pointer during calls, checking when it is falling
between the memory boundaries of the internal code. When this
happens, a context switch is performed, saving the native CPU state
of the DBT and then importing the virtual CPU state into the native
CPU state. SymFusion also propagates the symbolic arguments.

Internal code returns to external code. This case can be handled
using a similar strategy to what was discussed for the scenario
when the external code returns to the internal code.

3.3.3 Execution mode of the symbolic runtime. The internal code
is instrumented at compilation time using an LLVM pass that in-
tegrates calls to the symbolic runtime. The runtime, however, is
not embedded into the program, but it is marked as a dynamic
library for the program. The DBT also dynamically depends on the
symbolic runtime, as it needs to instrument the external code. This
means that, when SymFusion is started, the dynamic loader loads
the DBT into memory, loading one copy of the symbolic runtime.
The DBT then loads into memory the program: this is done by
running the dynamic loader in virtual mode. The dynamic loader in
virtual mode loads the internal code, the external code, and another
copy of the symbolic runtime. Hence, as shown in Figure 5c, there
are two copies of the runtime. However, SymFusion needs to use
only one, otherwise, the concolic execution may be inconsistent.

A notable downside of the symbolic runtime linked to the binary
is that it shares the stack and the heap with the program. On the
other hand, the symbolic runtime linked to the DBT shares the
stack and the heap with the DBT. Aiming at isolation, the current
implementation favors the symbolic runtime of the DBT. To make
the internal code execute the correct copy of the runtime, during
the program bootstrap phase (§3.3.4), SymFusion patches the GOT
entries associated with functions from the symbolic runtime, forc-
ing the internal code to jump to the correct targets (see Figure 5c).
To avoid performing a full and expensive context switch for each
call, the symbolic runtime, when called by the internal code, is
executed using a hybrid context: it uses the stack of the program
but performs dynamic allocations over the heap of the DBT.

3.3.4 Program bootstrap. To execute a program, SymFusion needs
to patch the GOT and perform other initialization tasks. These oper-
ations require some knowledge about the structure of the program.
To this aim, before the program execution, SymFusion statically
analyzes the program binary and its dynamic libraries to:

• Identify which dynamic libraries have not been instrumented
by the LLVM pass and thus are part of the external code.
• For each component of the internal code, identify the offsets
of the GOT entries that need to be patched. These entries
can be divided into two categories: targets of the external
code and targets of the symbolic runtime. Notice that some
GOT entries may be related to libraries that are part of the
internal code, which do not require any patching operation.

When running the program under SymFusion, the DBT is exe-
cuted, which in turn runs the dynamic loader in virtual mode to
load the program into memory. When this operation is completed,
SymFusion stops the DBT, saves its native CPU state, and performs
the patching operations, exploiting the knowledge obtained during
the static analysis. Finally, the native execution is diverted into the
entry point of the internal code. While the static analysis can be
performed only once for each program, the patching operations
must be repeated each time the concolic execution is restarted. In
Section 4, we discuss how to amortize this cost over several runs.

3.3.5 Instrumentation at execution time. To dynamically instru-
ment the external code at execution time, SymFusion extends
SymQEMU (see Section 2). One notable limitation of this framework
is the lack of symbolic handling for the QEMU helpers. These are
extensively used by QEMU to emulate the specialized instructions
of a platform which do not have a counterpart in the TCG IR. Exam-
ples for the x86_64 platform are division and remainder operations,
vectorized instructions, atomic instructions, and floating-point op-
erations. Moreover, in some cases, QEMU is not able to explicitly
model the eflags register, thus relying on some helpers.

SymFusion attacks this problem by exploiting its capability of hy-
brid instrumentation. Indeed, the QEMU helpers are implemented
in C code and thus can be easily instrumented at compilation using
the LLVM pass and then executed in place of the original helpers.
This approach is more general than hand-written symbolic models.

However, since the code instrumented at compilation time is not
aware of the virtual CPU, SymFusion has to also inject additional
instrumentation code around the helper calls to build a bridge

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emilio Coppa, Heng Yin, and Camil Demetrescu

between the two types of instrumentation. This bridge is similar to
the compatibility layer discussed in Section 3.3.1.

4 OTHER IMPLEMENTATION DETAILS

A few refinements are needed to make SymFusion effective.

Optimizing the program bootstrap. SymFusion devises also a
shallow implementation of the symbolic runtime. This can be linked
to the internal code in place of the actual runtime implementation.
Then, when the dynamic loader executed in virtual mode loads
the symbolic runtime into memory, it only needs to load a small
executable with no dependencies (while the actual runtime requires
several libraries, e.g., the SMT solver), reducing the loader work.

Amortizing the cost of the program bootstrap. Performing the
program bootstrap and the patching operations can induce a non-
negligible overhead (see Section 5). Hence, SymFusion devises a
fork server, which can perform the setup phase only once and then
fork the process any time a new concolic execution must be started.

Handling of setjmp and longjmp. A program may use the setjmp
and longjmp primitives to perform non-local gotos, breaking the
expectations of SymFusion. To overcome this problem, SymFusion
dynamically tracks the invocations of these primitives. In particu-
lar, when setjmp is called, SymFusion saves the passed argument,
the current stack pointer, and the current return address. When
longjmp is called, SymFusion matches the passed argument with
one from a previous call to setjmp, predicting how the CPU state
will be manipulated by the longjmp in terms of the instruction
pointer and stack pointer after its execution.

Thread-local storage. In Linux x86_64, a program can access
the Thread-Local Storage (TLS) through the register fs. When the
program is analyzed by SymFusion, there are two instances of the
TLS: one for the original program and one for the DBT. Hence, the
fs register should be restored when performing a context switch.
Unfortunately, updating the fs register is expensive: only recent
kernel releases allow a program in user mode to update its value,
while before a system call was required. Even when this register
can be updated in user mode, the cost may be non-negligible as
it requires specialized instructions. Hence, SymFusion favors a
different strategy: the native CPU always runs with the value of the
fs register from the DBT evenwhen the internal code is running. To
keep the execution consistent, the LLVM pass explicitly adds calls
to a few runtime functions that temporarily restore the fs register
value around the (typically rare) TLS accesses of the internal code.

5 EXPERIMENTAL EVALUATION

In this section, we first consider a few microbenchmarks to validate
the design of SymFusion. Then, we evaluate the efficiency and
effectiveness of SymFusion on several real-world applications.

5.1 Microbenchmarks

We designed a few programs (M1-6) to validate the design choices
behind SymFusion. Table 1 reports the main goal of each program.
We now summarize what we experimentally observed:

M1: When analyzing a program containing the code from Fig-
ure 2, SymFusion can almost match the efficiency of SymCC,

Benchmark description
M1 Program containing the code from Figure 2.
M2 Program containing the code from Figure 3.
M3 Program containing a division operation.
M4 Program using the C library function ntohl.
M5 Program using the C library function strlen.
M6 Program containing a loop with a nested call to the C library fun. malloc.

Table 1: Microbenchmarks [20].

resulting in a slowdown of 1.02× (versus 6.5× of SymQEMU)
thanks to the hybrid instrumentation.

M2: When considering a program containing the code from Fig-
ure 3, similarly to SymQEMU and differently from SymCC,
SymFusion can track the propagation of symbolic values
even when lib_identity_fn() is part of the external code.

M3: When running a program with a division operation over
symbolic data, SymFusion can build the correct symbolic
expression, regardless if the operation is within the internal
code or the external code. SymCC can track it only when
the operation is inside the internal code. SymQEMU does
not track it at all on several platforms, e.g., on x86_64, since
QEMU may use helpers to handle it but SymQEMU ignores
them.

M4: SymFusion, as SymQEMU, can correctly track the symbolic
effects of ntohl (external code) even without a function
model for it. In contrast, SymCC must require a function
model. Interestingly, SymCC has a model for ntohl, but not
for ntohs. As a result, SymCC does not handle correctly the
code in Figure 4.

M5: SymFusion can always track the effects of strlen (external
code) but it could struggle at generating valuable expressions.
Indeed, when a function model is available for it, SymFusion,
similarly to SymCC, generates simple expressions, which help
the solver to generate valuable inputs. However, when the
model is not available, the quality of the expressions depends
on the strlen implementation. For instance, when strlen
uses vectorized instructions, SymFusion can reason over
them but these instructions may generate symbolic mem-
ory accesses, which are concretized by SymFusion, possibly
preventing the generation of valuable inputs. Hence, SymFu-
sion still exploits function models when they are available.
SymQEMU instead ignores the effects of vectorized instruc-
tions.

M6: Finally, the last program exacerbates one downside of Sym-
Fusion: the cost of a context switch. In particular, within
each loop iteration, the program switches between external
code (a call to malloc) and internal code (which just saves
the obtained pointer into an array). Hence, for each iteration,
two context switches are performed by SymFusion. When
the number of iterations is large, e.g., 𝑁 = 15000, SymFu-
sion can be slower than SymCC (11.2×) but also slower than
SymQEMU (1.22×). The cost of a context switch could be re-
duced through the use of specialized instructions. However,
in some extreme scenarios, its cost is unavoidable.

These microbenchmarks do not always reflect what would hap-
pen in a real-world program. Hence, in the next subsection we
evaluate SymFusion over more realistic targets.

SymFusion: Hybrid Instrumentation for Concolic Execution ASE ’22, October 10–14, 2022, Rochester, MI, USA

Program # inputs
S1: No symbolic expressions S2: No queries to the solver S3: Full analysis

avg. time (ms) slowdown wrt SymCC avg. time (ms) slowdown wrt SymCC avg. time (ms) slowdown wrt SymCC
SymCC SymQEMU SymFusion SymCC SymQEMU SymFusion SymCC SymQEMU SymFusion

objdump 3687 7 14.4× 3.4× 89 23.4× 1.9× 811 4.0× 3.4×
readelf 8478 4 19.0× 3.0× 41 10.5× 2.4× 641 2.5× 0.3×
tcpdump 5546 4 18.8× 1.8× 23 6.5× 1.1× 398 3.6× 1.0×
libpng 1027 4 51.5× 1.3× 125 16.3× 2.4× 4400 3.3× 1.8×
libtiff 3317 15 9.4× 4.0× 382 12.2× 4.8× 1607 3.1× 4.9×
libxml2 9077 17 11.4× 3.6× 1379 3.5× 1.3× 71461 1.1× 0.9×
php 1591 34 30.5× 5.2× 435 12.2× 4.5× 6166 9.0× 0.7×
poppler 500 800 2.0× 1.3× 2004 5.2× 1.2× 5058 4.2× 1.0×
bsdtar 1753 14 9.7× 9.1× 1083 3.3× 2.2× 4156 1.4× 1.7×
freetype2 7928 8 14.6× 1.3× 278 10.4× 1.5× 5642 3.2× 1.4×
Geo. mean 13.8× 2.7× 8.7× 2.1× 3.0× 1.3×

Table 2: Analysis time when running over the same input queue (generated by AFL in a 2-hour experiment).

S1 S2 S30

10

slo
wd

ow
n

wr
t S

ym
CC

14.1x

2.7x 2.8x 2.1x 1.4x 1.3x

w/o fork server
w/ fork server

Figure 6(a): Impact of the fork server.

poppler libxml20

50

100

%
 ti

m
e

60.0 51.0 52.0

98.1 94.0 99.7
SymCC SymQEMU SymFusion

Figure 6(b): Solving time in S3.

Program
S4: Concolic execution S5: Hybrid fuzzing

br. cov. Δ br. cov. wrt SymCC br. cov. Δ br. cov. wrt SymCC
SymCC SymQEMU SymFusion SymCC SymQEMU SymFusion

objdump 3107 −141 +4 4535 +32 +210
readelf 4123 −607 +1584 7094 −393 +130

tcpdump 6872 −3109 +3767 15991 −1513 +725

libpng 1349 +3 +361 1847 +32 +52

libtiff 1860 −1066 +2151 4520 −213 +22

libxml2 10079 −330 +155 12255 −13 +143

php 4451 −114 +59 4536 −5 +10

poppler 15236 +37 +42 18711 −617 +387

bsdtar 2777 −122 +15 3469 −533 +167
freetype2 5420 +181 +1785 7770 −599 +901

Avg. −527 +992 −382 +274

Table 6(c): Branch coverage. Delta values for SymFusion are in bold when

the Mann–Whitney U test p-value < 0.05 w.r.t. both SymCC and SymQEMU.

5.2 Real-world applications

Evaluating the efficiency and effectiveness of a concolic executor is
non-trivial. Indeed, one tool may be faster but inaccurate in building
symbolic expressions, while another one may be more accurate but
then slower, possibly hitting even more solving timeouts. We thus
investigate different scenarios to take into account these tradeoffs.

5.2.1 Experimental setup. We considered 10 applications integrated
into the OSS-Fuzz project [27] and often considered by previous
works [8, 28, 36, 37]. In particular, we tested: objdump and readelf
from binutils 2.34, bsdtar (libarchive) rev. f3b1f9, freetype2
(ftfuzzer) rev. cd02d3, libpng rev. a37d483, libtiff (read_rgba
_fuzzer) rev. c145a6, libxml2 (read_memory_fuzzer) rev. ec6e3e,
poppler (pdf_fuzzer) rev. 1d2310, php (fuzzer exif) rev. bc39ab,
tcpdump 4.9.3 (pcap 1.9.1). Regarding which components are part
of the internal code, we followed the setup from OSS-Fuzz and
Magma [28], using also their seeds. Besides SymFusion, we con-
sider SymQEMU rev. d1838 and SymCC rev. 9b206. Each tool ran
for 12 hours inside a Docker container based on Ubuntu 20.04, as-
signing to it 1 core and 4GB of RAM in a server with two Intel Xeon
6238R and 768 GB of RAM. Experiments were repeated 10 times.

5.2.2 Efficiency. To compare the analysis time of different tools,
we need to run them exactly on the same input queue. Since the
number of seeds for some programs was small, we executed AFL++
3.14c for 2 hours and then collected its input queue. Table 2 shows
the number of inputs for each benchmark and the average running
time observed when running SymCC, SymQEMU, and SymFusion.
In particular, to help make the comparison, we use SymCC as the

baseline and report the slowdown observed with SymQEMU and
SymFusion. We considered three experimental scenarios S1-3.

In S1, we do not inject any symbolic input. Hence, we measure
only the running time resulting from having the instrumentation
(which does not perform any actual work). We can see that SymCC
is the fastest: this is expected as it only uses compile-time instru-
mentation and tracks only internal code. SymQEMU is 13.8× slower
than SymCC. SymFusion can substantially reduce the slowdown,
being 2.7× slower than SymCC. This slowdown is expected, as a
large amount of time may be spent within the external code and
the increased overhead mainly comes from the instrumentation of
the external code. Figure 6a sheds light on the benefit of having
the fork server: without it, in S1, SymFusion is even slower than
SymQEMU. Indeed, the process bootstrap can take a non-negligible
amount of time (§3.3.4).

In S2, we inject symbolic inputs, allowing a tool to build the
expressions, but we disable interactions with the solver. Building
expressions increases the work performed by the tools, especially
within internal code. As expected, SymCC is still the fastest, fol-
lowed by SymFusion with a slowdown of 2.1×. Finally, SymQEMU
is 8.7× slower than SymCC. Notice that the tools are not doing
exactly the same work, as they may build different expressions and
lose track of data flows in different ways. We also see that with the
increase of running time, the cost of the program bootstrap has a
lower impact, as shown in Figure 6a.

In S3, we consider the full concolic analysis, where a tool can
build expressions and submit them to the solver to generate alter-
native inputs. A tool may be faster and more accurate at generating
expressions, but then it may spend a lot of time querying the solver.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emilio Coppa, Heng Yin, and Camil Demetrescu

For instance, objdump calls the function dcgettext (external code),
which generates extremely complex queries. SymCC ignores this
function, SymQEMU wrongly generates some of the queries (mak-
ing them trivially unsolvable), while SymFusion submits several
expensive queries, hitting often the solving timeouts (10 seconds
for each query). Interestingly, on some programs, SymFusion is
faster than SymCC: for instance, on readelf, some external code
concretizes one part of the memory but SymCC continues to gener-
ate queries when the program works on that part of the memory.
Overall, the gap between SymQEMU and SymCC is reduced, which
is expected as the solving time plays a crucial role. However, its
weight varies across benchmarks. Figure 6b depicts the percentage
of time spent in the solver for two programs: in poppler, 51 − 60%
of the time is passed in the solver, while, in libxml2, the same
percentage is significantly higher. On some benchmarks, such as
libxml2 or freetype2, not all tools were able to process the entire
queue within the 12 hours: analyzing a single input may take a
large amount of time. We also remark that the tools try to avoid
repeating queries from the same code site across runs. Hence, the
number of queries performed during an experiment depends on
the variety of inputs: very different inputs may push the executor
towards a larger solving time, while similar inputs may reduce the
weight of the solving time. Finally, the impact of the fork server in
S3 is on average less evident. However, on some programs, such as
readelf, it can still help cut the average running time by 20%.

5.2.3 Effectiveness. Following the approach taken by FuzzBench [26],
we indirectly evaluate the effectiveness by measuring the code
coverage achieved by a program when running over the inputs
generated by a specific tool. Table 6c reports the branch coverage
measured with gcovr for SymCC. Using SymCC as the baseline, the
table also reports the delta, i.e., positive or negative increment, on
the coverage observed for SymQEMU and SymFusion. We consider
two experimental scenarios S4 and S5. In these settings, the input
queue of each tool is initialized with the program seeds.

In S4, each tool performs a full analysis, as in S3, but also handles
its own queue. Hence, while the tools start from the same set of
seeds, the input queue over time is affected by the tool’s capabil-
ity of generating new interesting inputs. To evaluate whether an
input is interesting and should be placed in the queue, tools used
afl-showmap (as done in a traditional hybrid fuzzing setup [36, 37,
44]). We can see that SymFusion can, on several programs, signifi-
cantly increase the code coverage over SymCC. Indeed, although
SymFusion is slower than SymCC, it can track the external code,
which in turn may lead to the generation of additional interesting
inputs. In some benchmarks, e.g., bsdtar and objdump, SymFusion
generated very complex expressions, hitting the solving timeout
more frequently than SymCC: since the exploration over an input
is aborted after 90 seconds, SymFusion failed to reach some deep
branches in a few executions. When considering SymQEMU, Sym-
Fusion is faster and potentially more accurate (when taking into
account the QEMU helpers), which can give an edge in the long
run as the tool can perform more runs and produce more inputs.

In S5, we tested the tools in a traditional hybrid fuzzing setup,
thus running each tool in parallel with an instance of AFL++. In this
setup, the concolic executor picks inputs from the queue of AFL++,
while AFL++ periodically imports interesting inputs from the input

queue of the concolic executor. AFL++ was used in LLVM mode,
thus recompiling the internal code of the programs to maximize
the fuzzing effectiveness. The first insight from the results shown
in Table 6c is that the S5 setup is able to reach higher code cover-
age for all programs than what was observed for S4. Interestingly,
SymFusion is still able to show a positive delta when compared
to SymCC. However, this positive delta is less prominent. After
investigating these results, we made three main observations.

First, AFL++ was able to generate several inputs associated with
program behaviors that in S4 were exclusively generated by in-
puts produced by SymFusion. This is not unexpected as modern
coverage-guided fuzzers, such as AFL++, have been thoroughly
tested over the programs that we considered, achieving extremely
high coverage. We remark that we considered S5 and programs
from OSS-Fuzz because this is one experimental setup that the
research community may consider, e.g., in FuzzBench.

Second, while both SymFusion and SymQEMU may successfully
flip branches in the external code, afl-showmap, which is used to
evaluate whether an input is interesting, may discard the generated
inputs when they only generate new behaviors in the external code.
However, when analyzed with a concolic executor, they could lead
to the generation of inputs resulting in new behaviors even inside
the internal code. Hence, the current hybrid fuzzing setup, used by
most recent concolic executors, may waste some analysis work.

Third, recent concolic executors, including SymFusion, are not
handling symbolic memory accesses. However, reasoning on them
may help generate inputs that can be hardly generated by a coverage-
guided fuzzers. Unfortunately, adding this capability may signifi-
cantly slow down the concolic analysis [21]. The state-of-the-art
symbolic executor KLEE, which can reason over symbolic accesses,
has been shown [32] to struggle at reaching the same coverage
obtained by modern fuzzers in FuzzBench. Additionally, handling
symbolic memory accesses is even harder when working at binary
level, since some knowledge about the program, such as the size of
the objects or how the stack frame is organized, is not available.

6 LIMITATIONS

The current implementation of SymFusion has some limitations.
First, the current prototype is not thread-safe. In particular, while

the design behind SymFusion can naturally cope even with threads
(assuming that the system call clone is executed under the super-
vision of the DBT), the current implementation of the symbolic
runtime is not thread-safe since it exploits several global data struc-
tures. SymCC and SymQEMU share the same limitation.

Second, the context switch operation is implemented through
inline x86_64 assembly code to minimize the overhead. Hence, this
code must be revised when porting SymFusion to other platforms.

Third, while SymFusion could instrument the floating-point
instructions, both in the LLVM pass and inside the DBT, its symbolic
runtime does not yet know how to generate the correct expressions
in the SMT solver. SymCC and SymQEMU share the same limitation.

Fourth, the current prototype does not handle the stack un-
winding operation performed by some C++ exception handlers.
In particular, similarly to longjmp, these handlers may break the
call/return paradigm expected by SymFusion. To properly han-
dle stack unwinding, SymFusion should closely monitor the stack

SymFusion: Hybrid Instrumentation for Concolic Execution ASE ’22, October 10–14, 2022, Rochester, MI, USA

and instruction pointer during the execution to understand how
the program is unraveling the stack frames.

Finally, the LLVM pass does not force a switch to the virtual
mode when some inline assembly code is met within a function.
SymFusion also assumes that static libraries are always part of the
internal code, ignoring the scenario where a program statically links
a library that has not been instrumented with the LLVM pass. To
handle such a case, SymFusion should force a switch to the virtual
mode in presence of calls to the uninstrumented static library.

7 CONCLUSIONS

This paper presents SymFusion, a novel design for a concolic ex-
ecutor based on hybrid instrumentation.

From one side, compilation time instrumentation allows a con-
colic executor to track the effects of a piece of code with small
overhead but requires recompilation, which can be tricky in pres-
ence of third-party components, such as system libraries. On the
other side, instrumentation at execution time performed, e.g., with
a dynamic binary translator (DBT), does not require to recompile
the program but may generate less efficient instrumented code, in-
creasing the analysis overhead. Unfortunately, when the code is not
instrumented, the analysis may generate inaccurate expressions.

SymFusion allows the user to instrument only the core compo-
nents of an application at compilation time with an LLVM pass but
then still tracks the effects of the remaining code using a DBT. Our
experiments show that SymFusion can provide a nice balance be-
tween accuracy and efficiency when analyzing complex real-world
applications. Indeed, SymFusion, when compared to SymCC and
SymQEMU, is able to achieve higher code coverage over time.

As future work, we identify four main directions. First, we plan
to improve the symbolic runtime, making it thread-safe and adding
support for floating-point operations. Second, accurate handling of
symbolic memory accesses could make SymFusion more effective.
Third, the LLVM pass could be extended to force a switch in virtual
mode when inline assembly code is met within a function. Finally,
we believe that the traditional hybrid fuzzing setup is limiting the
potential behind SymFusion and alternative setups should be thus
explored. Several existing works [43, 45] on this research topic did
not consider modern concolic executors, hence, it is not clear how
they would perform without an extended experimental evaluation.

ACKNOWLEDGMENTS

This work is supported, in part, by the National Science Foundation
under Grant No. 2133487. Any opinions, findings, conclusions, or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J. Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic Exploit Generation. Commun.
ACM 57, 2 (feb 2014), 74–84. https://doi.org/10.1145/2560217.2560219

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACMComputer
Surveys 51, 3, Article 50 (2018). https://doi.org/10.1145/3182657

[3] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg,
ConMcGarvey, Bohus Ondrusek, SriramK. Rajamani, and Abdullah Ustuner. 2006.
Thorough Static Analysis of Device Drivers. In Proc. 1st ACM SIGOPS/EuroSys
European Conf. on Comp. Systems (EuroSys’06). ACM, 73–85. https://doi.org/10.
1145/1217935.1217943

[4] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC
’05). USENIX Association, Berkeley, CA, USA, 41–41. http://dl.acm.org/citation.
cfm?id=1247360.1247401

[5] Luca Borzacchiello, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu.
2019. Memory models in symbolic execution: key ideas and new thoughts.
Software Testing, Verification and Reliability 29, 8 (2019). https://doi.org/10.1002/
stvr.1722

[6] Luca Borzacchiello, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu.
2019. Reconstructing C2 Servers for Remote Access Trojans with Symbolic
Execution. In Cyber Security Cryptography and Machine Learning (CSCML ’19).
Springer International Publishing. https://doi.org/10.1007/978-3-030-20951-3_12

[7] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. 2021. Fuzzing Sym-
bolic Expressions. In Proceedings of the 43rd International Conference on Software
Engineering (ICSE ’21). https://doi.org/10.1109/ICSE43902.2021.00071

[8] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. 2021. FUZZOLIC:
mixing fuzzing and concolic execution. Computers & Security (2021). https:
//doi.org/10.1016/j.cose.2021.102368

[9] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. 2022. Handling
Memory-Intensive Operations in Symbolic Execution. In Proceedings of the 15th
Innovations in Software Engineering Conference (ISEC ’22). https://doi.org/10.
1145/3511430.3511453

[10] Jacob Burnim and Koushik Sen. 2008. Heuristics for Scalable Dynamic Test Gen-
eration. In 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. 443–446. https://doi.org/10.1109/ASE.2008.69

[11] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). http://dl.acm.org/citation.cfm?id=1855741.1855756

[12] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2008. EXE: Automatically Generating Inputs of Death. ACM Trans. Inf.
Syst. Secur. 12, 2, Article 10 (2008). https://doi.org/10.1145/1455518.1455522

[13] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (2013), 82–90. https://doi.org/10.1145/
2408776.2408795

[14] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In Proc. 2012 IEEE Symp. on Sec. and Privacy
(SP’12). IEEE Comp. Society, 380–394. https://doi.org/10.1109/SP.2012.31

[15] Ju Chen, Wookhyun Han, Mingjun Yin, Haochen Zeng, Chengyu Song, Byoungy-
ong Lee, Heng Yin, and Insik Shin. 2022. SymSan: Time and Space Efficient
Concolic Execution via Dynamic Data-Flow Analysis. In USENIX Security Sym-
posium (Security). USENIX Association. https://www.usenix.org/conference/
usenixsecurity22/presentation/chen-ju

[16] Ju Chen, Jinghan Wang, Chengyu Song, and Heng Yin. 2022. JIGSAW: Efficient
and Scalable Path Constraints Fuzzing. In Proceedings of the 43rd IEEE Symposium
on Security and Privacy (SP ’22). https://doi.org/10.1109/SP46214.2022.9833796

[17] Yaohui Chen, Mansour Ahmadi, Reza Mirzazade farkhani, Boyu Wang, and Long
Lu. 2020. MEUZZ: Smart Seed Scheduling for Hybrid Fuzzing. In 23rd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020). 77–92.
https://www.usenix.org/conference/raid2020/presentation/chen

[18] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Tao Wei, and Long Lu. 2020. SAVIOR: Towards Bug-Driven Hybrid Testing. In
2020 IEEE Symposium on Security and Privacy (SP). 1580–1596. https://doi.org/10.
1109/SP40000.2020.00002

[19] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E
Platform: Design, Implementation, and Applications. ACM Trans. on Computer
Systems (TOCS) 30, 1 (2012), 2:1–2:49. https://doi.org/10.1145/2110356.2110358

[20] Emilio Coppa. 2022. SymFusion repository. https://season-lab.github.io/
SymFusion/

[21] Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. 2017. Rethinking
Pointer Reasoning in Symbolic Execution. In Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering (ASE ’17). https:
//doi.org/10.1109/ASE.2017.8115671

[22] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of 14th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08/ETAPS’08). https://doi.org/10.1007/978-3-540-
78800-3_24

[23] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
In 2020 IEEE Symposium on Security and Privacy (SP). https://doi.org/10.1109/
SP40000.2020.00009

[24] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining incremental steps of fuzzing research. In Proceedings of the 14th
USENIX Workshop on Offensive Technologies (WOOT ’20).

[25] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In Proc. Network and Distributed System Security Symp.
(NDSS’08).

[26] Google. 2022. FuzzBench. https://github.com/google/fuzzbench/.

https://doi.org/10.1145/2560217.2560219
https://doi.org/10.1145/3182657
https://doi.org/10.1145/1217935.1217943
https://doi.org/10.1145/1217935.1217943
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1002/stvr.1722
https://doi.org/10.1002/stvr.1722
https://doi.org/10.1007/978-3-030-20951-3_12
https://doi.org/10.1109/ICSE43902.2021.00071
https://doi.org/10.1016/j.cose.2021.102368
https://doi.org/10.1016/j.cose.2021.102368
https://doi.org/10.1145/3511430.3511453
https://doi.org/10.1145/3511430.3511453
https://doi.org/10.1109/ASE.2008.69
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1109/SP.2012.31
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju
https://doi.org/10.1109/SP46214.2022.9833796
https://www.usenix.org/conference/raid2020/presentation/chen
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1145/2110356.2110358
https://season-lab.github.io/SymFusion/
https://season-lab.github.io/SymFusion/
https://doi.org/10.1109/ASE.2017.8115671
https://doi.org/10.1109/ASE.2017.8115671
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1109/SP40000.2020.00009
https://github.com/google/fuzzbench/

ASE ’22, October 10–14, 2022, Rochester, MI, USA Emilio Coppa, Heng Yin, and Camil Demetrescu

[27] Google. 2022. Google OSS-Fuzz: continuous fuzzing of open source software.
https://github.com/google/oss-fuzz.

[28] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4, 3, Article 49
(Dec. 2020), 29 pages. https://doi.org/10.1145/3428334

[29] J.C. Huang. 1978. Program Instrumentation and Software Testing. Computer 11,
4 (1978), 25–32. https://doi.org/10.1109/C-M.1978.218134

[30] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394. https://doi.org/10.1145/360248.360252

[31] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.2004.
1281665

[32] Jonathan Metzman Laurent Simon, Read Sprabery. 2021. Klee in FuzzBench.
https://srg.doc.ic.ac.uk/klee21/talks/Simon-FuzzBench.pdf.

[33] Dongge Liu, Gidon Ernst, Toby Murray, and Benjamin I. P. Rubinstein. 2020.
Legion: Best-First Concolic Testing. In Proceedings of the 35th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE ’20). https:
//doi.org/10.1145/3324884.3416629

[34] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). https://doi.org/10.1145/1065010.1065034

[35] Sebastian Poeplau and Aurélien Francillon. 2019. Systematic Comparison of
Symbolic Execution Systems: Intermediate Representation and Its Generation. In
Proceedings of the 35th Annual Computer Security Applications Conference (ACSAC
’19). https://doi.org/10.1145/3359789.3359796

[36] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with
SymCC: Don’t interpret, compile!. In 29th USENIX Security Symposium (USENIX
Security 20). https://www.usenix.org/system/files/sec20-poeplau.pdf

[37] Sebastian Poeplau and Aurélien Francillon. 2021. SymQEMU: Compilation-based
symbolic execution for binaries. In Network and Distributed System Security
Symposium. Network & Distributed System Security Symposium.

[38] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You Ever
Wanted to KnowAbout Dynamic Taint Analysis and Forward Symbolic Execution
(but Might Have Been Afraid to Ask). In Proceedings of the 2010 IEEE Symposium
on Security and Privacy (SP 2010). 317–331. https://doi.org/10.1109/SP.2010.26

[39] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit
Testing Engine for C. In Proc. 10th European Software Engineering Conf. Held
Jointly with 13th ACM SIGSOFT Int. Symp. on Foundations of Software Engineering
(ESEC/FSE’13). 263–272. https://doi.org/10.1145/1081706.1081750

[40] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12). 309–318.

[41] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In 22nd Annual Network and Distributed
System Security Symp. (NDSS’15). https://doi.org/10.14722/ndss.2015.23294

[42] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symp. on Security and Privacy (SP’16). 138–157. https:
//doi.org/10.1109/SP.2016.17

[43] Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin.
2018. Towards Optimal Concolic Testing. In Proceedings of the 40th International
Conference on Software Engineering (ICSE ’18). 291–302. https://doi.org/10.1145/
3180155.3180177

[44] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:
A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th
USENIX Security Symposium (USENIX Security 18). USENIX Association. https:
//www.usenix.org/conference/usenixsecurity18/presentation/yun

[45] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hardest
Problems My Way: Probabilistic Path Prioritization for Hybrid Fuzzing. In
26th Annual Network and Distributed System Security Symposium, NDSS
2019. https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-
my-way-probabilistic-path-prioritization-for-hybrid-fuzzing/

https://github.com/google/oss-fuzz
https://doi.org/10.1145/3428334
https://doi.org/10.1109/C-M.1978.218134
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://srg.doc.ic.ac.uk/klee21/talks/Simon-FuzzBench.pdf
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/3359789.3359796
https://www.usenix.org/system/files/sec20-poeplau.pdf
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.14722/ndss.2015.23294
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/3180155.3180177
https://doi.org/10.1145/3180155.3180177
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-my-way-probabilistic-path-prioritization-for-hybrid-fuzzing/
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-my-way-probabilistic-path-prioritization-for-hybrid-fuzzing/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 SymFusion
	3.1 Design challenges
	3.2 Key ideas
	3.3 Execution workflow

	4 Other implementation details
	5 Experimental Evaluation
	5.1 Microbenchmarks
	5.2 Real-world applications

	6 Limitations
	7 Conclusions
	References

