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ABSTRACT
Laundering email spam through open-proxies or compro-
mised PCs is a widely-used trick to conceal real spam sources
and reduce spamming cost in underground email spam in-
dustry. Spammers have been plaguing the Internet by ex-
ploiting a large number of spam proxies. The facility of
breaking spam laundering and deterring spamming activities
close to their sources, which would greatly benefit not only
email users but also victim ISPs, is in great demand but still
missing. In this paper, we reveal one salient characteristic
of proxy-based spamming activities, namely packet symme-
try, by analyzing protocol semantics and timing causality.
Based on the packet symmetry exhibited in spam launder-
ing, we propose a simple and effective technique, DBSpam,
to on-line detect and break spam laundering activities inside
a customer network. Monitoring the bi-directional traffic
passing through a network gateway, DBSpam utilizes a sim-
ple statistical method, Sequential Probability Ratio Test,
to detect the occurrence of spam laundering in a timely
manner. To balance the goals of promptness and accuracy,
we introduce a noise-reduction technique in DBSpam, after
which the laundering path can be identified more accurately.
Then, DBSpam activates its spam suppressing mechanism
to break the spam laundering. We implement a prototype of
DBSpam based on libpcap, and validate its efficacy through
both theoretical analyses and trace-based experiments.

Categories and Subject Descriptors: C.2.0 [Computer
Communication Networks]: Security and protection

General Terms: Security.

Keywords: Spam, Proxy, SPRT.

1. INTRODUCTION
As a side-product of free email services, spam has be-

come a serious problem that afflicts every Internet user in
recent years. According to MessageLabs [1], currently over
60% email traffic is spam. Although a number of anti-spam
mechanisms have been proposed and deployed to foil spam-
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mers, spam messages continue swarming into Internet users’
mailboxes. A more effective spam detection and suppression
mechanism close to spam sources is critical to dampen the
dramatically-grown spam volume.

At present, proxies such as off-the-shelf SOCKS and HTTP
proxies play an important role in the spam epidemic. Spam-
mers launder email spam through these proxies to conceal
their real identities and reduce spamming cost. The popu-
larity of proxy-based spamming is mainly due to the anony-
mous characteristic of a proxy and the availability of a large
number of spam proxies. The IP address of a spammer
is obfuscated by a spam proxy during the protocol trans-
formation, which hinders the tracking of real spam origins.
According to Composite Blocking List [7] which is a highly-
trusted DNSBL (DNS-based Blackhole List), the number
of available spam proxies and bots in August 2006 is more
than 3,200,000. Such numerous spam proxies facilitate the
formation of email spam laundering, by which a spammer
has great flexibility to change spam paths and bypass anti-
spam barriers.

To break this spam laundering, we propose a simple and
effective mechanism, called DBSpam, which detects and blocks
spam proxies’ activities inside a customer network and fur-
ther traces the corresponding spam sources outside the net-
work. DBSpam is designed to be placed at a network van-
tage point such as the edge router or gateway that connects
a customer network to the Internet. The customer network
could be a regional broadband (cable or DSL) customer net-
work, a regional dialup network, or a campus network. It
detects ongoing proxy-based spamming by monitoring bi-
directional traffic. Due to the protocol semantics of SMTP
and timing causality, the behavior of proxy-based spamming
demonstrates the unique characteristics of connection corre-
lation and packet symmetry. Utilizing this distinctive spam
laundering behavior, we can easily identify the suspicious
TCP connections involved in spam laundering. Then, we
can single out the spam proxies, trace the spam sources be-
hind them, and block the spam traffic. Based on libpcap, we
implement a prototype of DBSpam and evaluate its effec-
tiveness against email spam laundering through theoretical
analyses and trace-based experiments.

In general, DBSpam is distinctive from all previous anti-
spam approaches in the following two aspects.

• First, DBSpam pushes the defense line towards spam
sources. DBSpam enables an ISP (Internet Service
Provider) to on-line detect spam laundering activities
and spam proxies inside its customer networks. The
quick responsiveness of DBSpam offers the ISP an op-



portunity to suppress laundering activities and quar-
antine the identified spam proxies.

• Second, DBSpam has no need to scan message con-
tents, and has very few assumptions about the con-
nections between a spammer and its proxies. DBSpam
works even if (1) these connections are encrypted and
the message contents are compressed; and (2) a spam-
mer uses proxy chains inside the monitored network.

One additional benefit of DBSpam is that once spam laun-
dering is detected, fingerprinting spam messages at the sender
side is viable and spam signatures may be distributed to
accelerate spam detection at other places. In addition to
all these advantages, DBSpam is complementary to exist-
ing anti-spam techniques and can be incrementally deployed
over the Internet.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly presents spam laundering mechanisms. Sec-
tion 3 surveys commonly-used anti-spam techniques. Sec-
tion 4 describes the unique behavior of proxy-based spam-
ming. Section 5 details the working mechanism of DBSpam.
Section 6 evaluates the effectiveness of DBSpam through the
trace-based experiments. Section 7 discusses the robustness
of DBSpam against potential evasions. Finally, we conclude
the paper with Section 8.

2. SPAM LAUNDERING MECHANISMS
Spam laundering studied in this paper refers to the spam-

ming process, in which only proxies are involved in ori-
gin disguise. The proxy refers to the application such as
SOCKS that simply performs “protocol translation” (i.e.,
rewrite IP addresses and port numbers) and tunnels pack-
ets through. Different from an email relay, which first re-
ceives the whole message and then forwards it to the next
mail server, an email proxy requires that the connections
on both sides of the proxy synchronize during the message
transferring. More importantly, unlike an email relay which
inserts the information—“Received From” that records the
IP address of sender and the timestamp when the message
is received—in front of the message header before relaying
the message, an email proxy does not record such trace in-
formation during protocol transformation. Thus, from a re-
cipient’s perspective, the email proxy, instead of the original
sender, becomes the source of the message. It is this iden-
tity replacement that makes email proxy a favorite choice of
spammers.

Initially, spammers just seek open proxies on the Internet,
which usually are mis-configured proxies allowing anyone to
access their services. There are many Web sites and free
software providing open proxy search function. However,
once such mis-configurations are corrected by system ad-
ministrators, spammers have to find other available “open”
proxies.

It is ideal for a spammer to own many “private” and stable
proxies. Unsecured home PCs with broadband connections
are the best candidates for this purpose. To achieve this,
malicious software including specially-designed worms and
viruses, such as SoBig and Bagle, is used to hijack home PCs.
Equipped with Trojan horse or backdoor programs, these
compromised machines are available zombies. After proxy
programs such as SOCKS or Wingate are installed, these
zombies are ready to be used as proxies to pump out email

spam. Without serious performance degradation, most non-
professional Windows users are not aware of the ongoing
spamming. Recent research on the network-level behavior
of spammers [28] also confirms that most sinked spam is
originated from compromised Windows hosts.

To counter the soaring growth of spam volume, many ISPs
have adopted the policy of blocking port 25 (SMTP port), in
which outbound email from a subscriber must be relayed by
the ISP-designated email server. In other words, the ISP’s
edge routers only forward the SMTP traffic from some des-
ignated IP addresses to the outside. However, spammers
have easily evaded such simple SMTP port blocking mech-
anisms. The spam laundry is simple: having zombies send
spam messages to their ISP email servers first. In February
2005, Spamhaus [2] reported that over the past few months
a number of major ISPs had witnessed far more spam mes-
sages coming directly from the email servers of other ISPs.
This change in proxy-based spamming activity is mainly
caused by the use of new stealth spamware, which instructs
the hijacked proxy (e.g., zombie) to send spam messages via
the legitimate email server of the proxy’s ISP.

3. ANTI-SPAM TECHNIQUES
Many anti-spam techniques have been proposed and de-

ployed to counter email spam from different perspectives.
Based on the placement of anti-spam mechanisms, these
techniques can be divided into two categories: recipient-
oriented and sender-oriented. In terms of fighting spam at
the source, HoneySpam [13] might be the closest work to
ours. In the following, we briefly describe recipient-oriented
and sender-oriented techniques, respectively, and then com-
pare our work with HoneySpam.

3.1 Recipient-oriented Techniques
This class of techniques either (1) block/delay email spam

from reaching the recipient’s mailbox or (2) remove/mark
spam in the recipient’s mailbox. Due to the flourish of tech-
niques in this category, we further divide them into content-
based and non-content-based sub-categories.

3.1.1 Content-based Techniques
The techniques in this sub-category detect and filter spam

by analyzing the content of received messages, including
both message header and message body.

Email address filters: Email address filters are simply
whitelists or blacklists. Whitelists consist of all acceptable
email addresses and blacklists are the opposite. Blacklists
can be easily broken when spammers forge new email ad-
dresses, but using whitelists alone makes the world enclosed.
Garriss et al. [18] developed a new whitelisting system,
which can automatically populate whitelists by exploiting
friend-of-friend relationships among email correspondents.

Heuristic filters: The features that are rare in nor-
mal messages but appear frequently in spam, such as non-
existing domain names and spam-related keywords, can be
used to distinguish spam from normal email. SpamAssassin
[3] is such an example. Each received message is verified
against the heuristic filtering rules. Compared with a pre-
defined threshold, the verification result decides whether the
message is spam or not.

Machine learning based filters: Since spam detec-
tion can be converted into the problem of text classifica-
tion, many content-based filters utilize machine-learning al-



gorithms for filtering spam. Among them, Bayesian-based
approaches [15, 19, 24, 35] have achieved outstanding accu-
racy and have been widely used. As these filters can adapt
their classification engines with the change of message con-
tent, they outperform heuristic filters.

3.1.2 Non-content-based Techniques
The techniques in this sub-category use non-content spam

characteristics, such as source IP address, message send-
ing rate, and violation of SMTP standards, to detect email
spam.

DNSBLs: DNSBLs are distributed blacklists, which record
IP addresses of spam sources and are accessed via DNS
queries. When an SMTP connection is being established,
the receiving MTA (Mail Transfer Agent) can verify the
sending machine’s IP address by querying the subscribed
DNSBL. Even DNSBLs have been widely used, their effec-
tiveness [22, 28] and responsiveness [27] are still under study.

MARID: MARID (MTA Authorization Records In DNS)
is a class of techniques to counter forged email addresses by
enforcing sender authentication. MARID is also based on
DNS and can be seen as a distributed whitelist of authorized
MTAs. Multiple MARID drafts [10] have been proposed, in
which [8, 12] have been deployed in some places.

Challenge-Response (C-R): C-R is used to keep the
merit of whitelist without losing important messages. In-
coming messages, whose sender email addresses are not in
the recipient’s whitelist, are bounced back with a challenge
that needs to be solved by a human being. After a proper
response is received, the sender’s address can be added into
the whitelist.

Tempfailing: Tempfailing [30] is based on the fact that
legitimate SMTP servers have implemented the retry mech-
anism as required by SMTP, but a spammer seldom retries
if sending fails. It usually works with a greylist that records
the failed messages and the MTAs failed on their first tries.

Delaying: As a variation of rate limiting, delaying is
triggered by an unusually high sending rate. Most delaying
mechanisms, such as [17, 20, 33, 34] are applied at receiving
MTAs.

Sender Behavior Analysis: This technique distinguishes
spam from normal email by examining behavior of incoming
SMTP connections. Messages from the machine exhibiting
characteristics of malicious behavior such as directory har-
vest are blocked before reaching mailbox [4].

3.2 Sender-oriented Techniques
Usage Regulation: To effectively throttle spam at the

source, ISPs and ESPs (Email Service Providers) have taken
various measures such as blocking port 25, SMTP authen-
tication, to regulate the usage of email services. Message
submission protocol [9] has been proposed to replace SMTP,
when a message is submitted from an MUA (Mail User
Agent) to its MTA.

Cost-based approaches: Borrowing the idea of postage
from regular mail systems, many cost-based anti-spam tech-
niques [5, 11, 14, 23, 32] attempt to shift the cost of thwart-
ing spam from receiver side to sender side. All these tech-
niques assume that the average email cost for a normal user
is trivial and negligible, but the accumulative charge for a
spammer will be high enough to drive them out of busi-
ness. Cost concept may have different forms in different
proposals. Bonded Sender [5] advocates associating email

with real money, while SHRED [23] proposes affixing elec-
tronic stamps to messages. Both centralized [11, 23] and
distributed [32] cost enforcement mechanisms have been pro-
posed.

3.3 HoneySpam
HoneySpam [13] is a specialized honeypot framework based

on honeyd [25] to deter email address harvesters, poison
spam address databases, and intercept or block spam traf-
fic that goes through the open relay/proxy decoys set by
HoneySpam. With the network virtualization offered by
honeyd, HoneySpam can set up multiple fake web servers,
open proxies, and open relays. Fake web servers provide
specially crafted webpages to trap email address harvesting
bots. Fake open proxies or open relays are used to track
spammers exploiting them and block spam going through
them.

HoneySpam shares the same motivation of countering spam
at the source as DBSpam, and both deal with spam prox-
ies. However, the role of proxy and anti-spam approaches in
HoneySpam are quite different from those in DBSpam. The
proxies of HoneySpam are intentionally set on end hosts, and
spam sources are logged by HoneySpam. Thus, spam track-
ing is very easy. In contrast, detecting spam proxies is the
major task of DBSpam, and proxy identification and spam
tracking can only be accomplished through traffic analysis.
On the other hand, these two tracing and blocking systems
are complementary to each other. Moreover, both of them
can be used for spam signature generation, spam forensic
and law enforcement.

4. PROXY-BASED SPAM BEHAVIOR
In this section, we delineate the distinct behavior of proxy-

based spamming, which directly inspire the design of our
detecting algorithm. Figure 1 depicts a typical scenario of
proxy-based spamming in a customer network such as a Cox
regional residential network. Although spammers can con-
ceal their real identities from destination MTAs by exploit-
ing spam proxies, they cannot make the connection between
a spam source and its proxy invisible to the edge router or
gateway that sits in between. Here we assume that there
is a network vantage point where we can monitor all the
bi-directional traffic passing through the customer network,
and the location of the gateway (or firewall) of the customer
network (e.g. edge router R in Figure 1) that connects to
the Internet is such a point.

4.1 Laundry Path of Proxy Spamming
As shown in Figure 1, there is a customer network N, in

which spam proxies reside. Both spammer S and receiving
MTA M are connected to customer network N via edge
router R. S may be the original spam source or just another
spam proxy (but it must be closer to the real spam source).
M is the outside MTA.

Note that for the customer network that has its own mail
server(s) such as campus (or enterprise) networks, the mon-
itored network N may not be the whole network, but one of
its protected sub-networks. Usually such campus/enterprise
networks are divided into multiple sub-networks for security
and management concerns. Their mail servers are placed in
DMZ (DeMilitarized Zone) or a special sub-network that is
separated from other sub-networks such as wireless, dormi-
tory, or employee sub-networks. It is one of these loosely-
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Figure 1: Scenario of Proxy-based Spamming

managed sub-networks that becomes the monitored network
N and the router/gateway connecting the sub-networks be-
comes the vantage point R. Thus, the assumption of exterior
MTA M is valid even when the MTA is under the the same
administration domain as network N.

Inside monitored network N, S may use a single or multi-
ple spam proxies. If multiple proxies are employed, they may
either launder spam messages individually or be organized
into one or multiple proxy chains, depending on the spam-
mer’s strategy. Without loss of generality, only one chain is
shown in Figure 1. Spammer S usually communicates with
spam proxies through SOCKS or HTTP. The spam message
sent from S to a may even be encrypted. If it is a proxy
chain, the spam message can be conveyed by different proxy
protocols at different hops. For instance, SOCKS 4 is used
between S and a, while HTTP is employed between a and
z. However, all these protocol variations and message con-
tent encryptions cannot change the fact: it is last-hop proxy
z 1 that does the protocol transformation and forwards the
spam message to the MTA via SMTP.

We define the connection between spammer S and first-
hop proxy a as the upstream connection, and define the
connection between last-hop proxy z and MTA M as the
downstream connection. The upstream and downstream
connections plus the proxy chain form the spam laundry
path, which is shown in Figure 1.

4.2 Connection Correlation
There is a one-to-one mapping between the upstream and

downstream connections along the spam laundry path. While
this kind of connection mapping is common for proxy-based
spamming, it is very unusual for normal email transmission.
In normal email delivery, there is only one connection, i.e.,
the connection between sender and receiving MTA. The ex-
istence of such connection correlation is a strong indication
of spam laundering and provides valuable clue for spammer

1proxy z and proxy a are the same in the single proxy sce-
nario.
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Figure 2: Time-line of Spamming Processes for Sin-
gle Proxy (left) and Proxy Chain (right)

tracking. Here we assume that the downstream connection is
an SMTP connection. For the upstream connection we have
no restriction except that it should be a TCP connection.
The packets in the upstream connection may be encrypted
and even compressed.

The detection of such spam-proxy-related connection cor-
relation is challenging due to the following three reasons.
First, content-based approaches could be ineffective as spam-
mers may use encryption to evade content examination. Sec-
ond, because such a detection mechanism is usually deployed
at network vantage points, the induced overhead should be
affordable, which is critical to the success of its deployment.
Third, since spam traffic is machine-driven and could be
delayed by proxy at will, those timing-based correlation de-
tection algorithms such as [36] may not work well in this
environment.

4.3 Packet Symmetry
Figure 2 illustrates the detailed communication processes

of spam laundering for both single proxy and proxy chain
cases at the application layer, in which the message for-
mat is “PROTOCOL [content]”. For simplicity, P/P1/P2
stands for different application protocols, including SOCKS
(v4 or v5), HTTP, etc. For SMTP, its packet content is
in plain-text. But for application protocols P/P1/P2, their
packet contents may be encrypted. For ease of presenta-
tion, the small delays introduced by message processing at
end hosts and intermediate proxies are ignored. The initial
proxy handshaking process is also omitted as it has no effect
on email transactions. Without losing any generality, here
we only show the shortest SMTP transaction process for the
single-proxy case and parts of SMTP transaction process for
the proxy-chain case.

Due to protocol semantics, the process of proxy-based
spamming is similar to that of an interactive communica-
tion. The appearance of one inbound SOCKS-encapsulated
(or HTTP-encapsulated) 2 SMTP command message on the
upstream connection will trigger the occurrence of one out-
bound SMTP command message on the downstream connec-
tion later. Similarly, for each inbound SMTP reply message

2For the ease of presentation, we only use SOCKS in the
rest of paper, although HTTP can be used as well.



on the downstream connection, later on there will be one cor-
responding outbound SOCKS-encapsulated reply message
carried by TCP on the upstream connection. We term this
communication pattern as message symmetry.

This message symmetry leads to the packet symmetry at
the network layer with a few exceptions, in which the one-
to-one packet3 mapping between the upstream and down-
stream connections may be violated. The exceptions can
be caused by (1) packet fragmentation, (2) packet compres-
sion, (3) packet retransmission occurring along the laundry
path. However, due to the fact that SMTP reply messages
are very short (usually less than 300 bytes including packet
header) and Path MTUs for most customer networks are
above 500 bytes, the occurrence of (1) and (2) is very rare.
Moreover, the packet retransmission problem can be easily
resolved by checking TCP sequence numbers. In general,
the packet symmetry between the inbound and outbound
reply packets holds most of time.

time1st round 5th round 6th round2nd round 4th round3rd round

Inbound SMTP reply packet Outbound TCP packet
(e.g. HTTP/SOCKS)

connectionX connectionY connectionZ

Figure 3: Example of Reply Round and TCP Cor-
relation

Such packet symmetry is exemplified in Figure 3, where
the arrow with long solid line stands for the arrival of an
inbound SMTP reply packet of the suspicious SMTP con-
nection. In addition to the inbound SMTP connection, there
are three outbound TCP connections X, Y, and Z, as shown
in Figure 3. Three kinds of arrows with different dotted
lines stand for the arrivals of outbound TCP packets be-
longing to these outbound TCP connections, respectively.
The upward arrow indicates that the packet is leaving the
monitored network, while the downward arrow indicates the
packet is entering the network.

All of the inbound SMTP reply packets shown in Figure 3
belong to the same suspicious SMTP connection. We define
a reply round as the time interval between the arrivals of two
consecutive reply packets on an SMTP connection. Thus,
the nth reply round is the time interval between the arrival
of the nth reply packet and that of the (n+1)th reply packet.
Even for the simplified SMTP transaction, it has six reply
rounds as shown in Figure 3. Within one reply around,
the number of arrows with a specific dotted line indicates
the number of outbound TCP packets of the corresponding
TCP connection.

According to the one-to-one mapping of packet symmetry,
each SMTP reply packet observed on the downstream SMTP
connection should cause one and only one TCP packet ap-
peared on the upstream connection. As Figure 3 shows, if
one connection among X, Y, and Z is the suspicious up-
stream connection, one and only one outbound TCP packet
must be observed from that connection in every reply round.
Based on this rule, only TCP connection X meets this “one
and only one” requirement and can be classified as the sus-

3TCP control packets such as SYN, ACK are not counted
here.

picious upstream connection with high probability. In the
second reply round, more than one packets appear on con-
nection Z ; and in the fourth round, no packet occurs on
connection Y. Thus, we can easily filter out TCP connec-
tions Y and Z as normal background traffic. Note that the
order of packet arrivals in a reply round does not affect the
checking result of packet symmetry.

This packet symmetry is the key to distinguish the suspi-
cious upstream and downstream connections along the spam
laundry path from normal background traffic. It simply cap-
tures the fundamental feature of chained interactive commu-
nications, and does not assume any specific time distribu-
tion of packet arrivals. We use this simple rule to detect
the laundry path of proxy-based spamming, and the detec-
tion scheme is robust against any possible time perturba-
tion induced by spammers. Note that the one and only one

mapping of packet symmetry can be relaxed, which we will
discuss in Section 7.

5. WORKING MECHANISM OF DBSPAM
DBSpam consists of two major components: spam de-

tection module and spam suppression module, in which the
detection module is the core of DBSpam. To the best of
our knowledge, so far there is no effective technique which
can on-line detect both spam proxies and the corresponding
spammers behind them. We envisage that DBSpam may
achieve the following goals: (1) fast detection of spam laun-
dering with high accuracy; (2) breaking spam laundering via
throttling or blocking after detection; (3) support for spam-
mer tracking and law enforcement; (4) support for spam
message fingerprinting; and (5) support for global forensic
analysis.

In essence, the detection module of DBSpam is a simple
and efficient connection correlation detection algorithm to
identify the laundry path of spam messages (i.e., the suspi-
cious downstream and upstream connections) and the spam
source4 that drives spamming behind the proxies.

5.1 Deployment of DBSpam
Like other network intrusion detection systems, DBSpam

needs to be placed at a network vantage point that connects
a customer network to the Internet, where it can monitor the
bi-directional traffic of the customer network. For a single-
homed network, it is easy to locate such a network vantage
point (an edge router or a firewall) and deploy DBSpam
on it. For a multi-homed network, it may not be possible
to locate a single network vantage point that can monitor
all the bi-directional traffic passing through the customer
network.

However, on one hand, many customer networks use multi-
homing not for load-balance, but for reliability and fault-
tolerance. Therefore, in case of the backup multi-homing,
DBSpam works well if deployed at the primary ISP edge
router. On the other hand, even in the load-balance multi-
homing scenario, as long as the packets that belong to the
same proxy chain go through the same ISP edge router or
firewall, DBSpam still can work at different ISP edge routers
or firewalls without coordination. Moreover, there are spe-
cial network devices (e.g., [6]) which can passively aggregate
traffic from multiple network segments. By hooking up to

4Or just another spam proxy that is outside the customer
network but at least one more step closer to the real source.



such devices, DBSpam can still have the complete view of
network traffic.

5.2 Design Choices and Overview
Our goal is to detect the spam laundry path promptly and

accurately, once a proxy-based spamming activity occurs on
the monitored network. We show in the previous section
that packet symmetry is the inherent characteristic of proxy-
based spamming behavior. Since legitimate messages are
rarely delivered along the path illustrated in Figure 1, the
possibility of a normal SMTP connection being consistently
correlated with an unrelated TCP connection is very small
in terms of packet symmetry. Hence, frequent observations
of connection correlation is a strong indication of occurrence
of spam laundering.

According to the packet symmetry rule, for the upstream
TCP connection along a spam laundry path, its outbound
packet5 number in each reply round of the downstream SMTP
connection is always one. For a normal TCP connection,
however, this rule can only be satisfied with a very small
probability. Thus, a simple and intuitive correlation detec-
tion method is to count the number of outbound packets
observed on suspicious TCP connections in sequential reply
rounds of an SMTP connection. Given the characteristic of
successive arrival of observations, this correlation detection
problem is well suited for the statistical method of Sequential

Probability Ratio Test (SPRT) developed by Wald [31].
As a simple and powerful mathematical tool, SPRT has

been used in many areas such as portscan detection [21]
and wireless MAC protocol misbehavior detection [26]. Ba-
sically, an SPRT can be viewed as an one-dimensional ran-
dom walk. The walk starts from a point between two bound-
aries and can go either upward or downward with different
probabilities. With each arrival of observation, the walk
makes one step in the direction determined by the result
of observation. Once the walk firstly hits or crosses either
the upper boundary or the lower boundary, it terminates
and the corresponding hypothesis is selected. For SPRT, its
actual false positive probability and false negative probabil-
ity are bounded by predefined values. It has been proved
that SPRT minimizes the average number of required ob-
servations to reach a decision among all sequential and non-
sequential tests, which do not have larger error probabilities
than SPRT.

We utilize the packet symmetry of SMTP reply packets to
detect proxy-based spamming activity. Basically, we mon-
itor the inbound SMTP traffic first, then apply the rule of
packet symmetry for detecting the spam laundry path inside
the customer network. In other words, DBSpam focuses on
the clock-wise reply packet flow as shown in Figure 1, in-
stead of the counter-clock-wise command packet flow, for
connection correlation detection. The arrivals of inbound
SMTP reply packets, which delimit the reply rounds and
drive the progress of connection correlation detection, be-
come a self-setting clock of the detection algorithm. SPRT
terminates by either selecting the hypothesis that Ctcp is
correlated with Csmtp or choosing the opposite hypothesis.

There are two benefits of using SMTP reply messages to
drive SPRT. First, as mentioned earlier, SMTP reply mes-
sages are very small, which minimizes the occurrence of
packet fragmentation; and we can significantly increase the

5Here packets refer to non-retransmitted, non-zero-payload
TCP packets.

processing capacity of DBSpam by monitoring small pack-
ets only. Second, being either the spam target or the relay,
the remote SMTP servers are usually very reliable; and the
implementation and listening port of these servers strictly
follow the SMTP protocol semantics. Thus, the packet sym-
metry rule always holds, and SMTP packets can be easily
identified based on the port number of TCP header.

In the rest part of the section, we first briefly describe the
basic concept of SPRT, then present the detection module
of DBSpam, which include two phases: SPRT detection and
noise reduction.

5.3 Sequential Probability Ratio Testing
Let Xi, i = 1, 2, . . ., be random variables representing

the events observed sequentially. The SPRT for a simple
hypothesis H0 against a simple alternative H1 has the fol-
lowing form:

Λn ≥ B =⇒ accept H1 and terminate test,

Λn ≤ A =⇒ accept H0 and terminate test, (1)

A < Λn < B =⇒ conduct another observation.

where two constants or boundaries A and B satisfy 0 < A <
B <∞, and Λn is the log-likelihood ratio defined as follows:

Λn = λ(X1, . . . , Xn) = ln
Pr(X1, . . . , Xn|H1)

Pr(X1, . . . , Xn|H0)
. (2)

Assume X1, . . . , Xi are independent and identically dis-
tributed (i.i.d) Bernoulli random variables with

Pr(Xi = 1|θ) = 1− Pr(Xi = 0|θ) = θ, (3)

then

Λn = ln

Qn

1 Pr(Xi|H1)
Qn

1 Pr(Xi|H0)
=

n
X

1

ln
Pr(Xi|H1)

Pr(Xi|H0)
=

n
X

1

Zi, (4)

where Zi = ln Pr(Xi|H1)
Pr(Xi|H0)

. Λn can be viewed as a random

walk (or more properly a family of random walks6) with
steps Zi which proceeds until it first crosses boundary A or
B. Suppose the distributions for H1 and H0 are θ1 and θ0,
respectively. Λn moves up with step length ln θ1

θ0
when Xi =

1, and goes down with step length ln 1−θ1
1−θ0

when Xi = 0.
In SPRT, we define two types of error

α = Pr(S1|H0), β = Pr(S0|H1),

where Pr(Si|Hj) denotes the probability of selecting Hi but
in fact Hj is true. If we call the selection of H1 detection
and the selection of H0 normality, the event of S1|H0 can be
viewed as a false positive. So, α represents the false positive
probability. Likewise, the event of S0|H1 can be termed a
false negative and β represents false negative probability.

Let α∗ and β∗ be user-desired false positive and false neg-
ative probabilities, respectively. According to (1), we can
derive7 the Wald boundaries as follows:

A = ln
β∗

1− α∗
, B = ln

1− β∗

α∗
, (5)

6It is a family of random walks, since the distribution of the
steps depends on which hypothesis is true.
7Due to the space limitation, the derivations of (5), (6), and
(7) are omitted here. See [21, 31] for details.



and the derived relationships between actual error probabil-
ities and user-desired error probabilities are:

α ≤
α∗

1− β∗
, β ≤

β∗

1− α∗
, (6)

α + β ≤ α∗ + β∗. (7)

Inequality (6) suggests that the actual error probabilities α
and β can only be slightly larger than their expected values
α∗ and β∗. For example, if the desired α∗ and β∗ are both
0.01, then their actual values α and β will be no greater
than 0.0101. Inequality (7) can be interpreted as that the
sum of actual error probabilities is bounded by the sum of
their desired values.

According to Wald’s theory, E[N ] = E[ΛN ]/E[Zi]. Sup-
pose hypothesis H1 is true and Bernoulli variable Xi has
distribution θ1 which implies that Λn steps up with proba-
bility θ1 or goes down with probability 1− θ1, we have

E[Zi|H1] = θ1 ln
θ1

θ0
+ (1− θ1) ln

1− θ1

1− θ0
. (8)

If the user-desired false negative probability of the test is
β∗, then the true positive probability is 1− β∗ and

E[ΛN |H1] =β∗A + (1− β∗)B

=β∗ ln
β∗

1− α∗
+ (1− β∗) ln

1− β∗

α∗
. (9)

With (8) and (9), we have

E[N |H1] =
β∗ ln β∗

1−α∗
+ (1− β∗) ln 1−β∗

α∗

θ1 ln θ1
θ0

+ (1− θ1) ln 1−θ1
1−θ0

. (10)

Likewise, we can derive

E[N |H0] =
(1− α∗) ln β∗

1−α∗
+ α∗ ln 1−β∗

α∗

θ0 ln θ1
θ0

+ (1− θ0) ln 1−θ1
1−θ0

. (11)

Apparently the average observation number E[N ] of SPRT
is determined by four parameters: predefined error proba-
bilities α∗, β∗ and distribution parameters θ0 and θ1. The
determination of these values and their effect on E[N ] will
be discussed with our correlation detection algorithm in the
following.

5.4 SPRT Detection Algorithm
According to the principle of packet symmetry, within

each reply round, there must be one and only one outbound
TCP packet appearing on the corresponding upstream con-
nection. By contrast, those connections that have none or
more than one TCP packet can be classified as innocent con-
nections. Within the framework of SPRT, this correlation
detection problem can be easily transformed into an SPRT,
in which we test the hypothesis H1 that Ctcp is correlated
with Csmtp against the hypothesis H0 that two connections
are uncorrelated by counting the number of TCP packets
appearing on Ctcp in each reply round of Csmtp.

If we use a Bernoulli random variable Xi to represent the
observation result on Ctcp in i-th reply round of Csmtp and
assume that these variables in different rounds are i.i.d, we
have the following distribution:

Xi|H1 =



θ1 if one outbound TCP packet observed
1− θ1 otherwise

Algorithm 1 Detect-Correlation

1: Input: Ctcp, Csmtp

2: Para: A, B
3: Output: Ctcp is correlated with Csmtp or not
4: repeat
5: for each reply round of Csmtp do
6: if # of outbound packets on Ctcp is 1 then
7: Λn ← Λn + ln θ1

θ0

8: else
9: Λn ← Λn + ln 1−θ1

1−θ0

10: end if
11: if Λn ≥ B then
12: Ctcp is correlated with Csmtp and the test stops
13: else if Λn ≤ A then
14: Ctcp is not correlated with Csmtp and the test

stops
15: else
16: wait for observation in next reply round
17: end if
18: end for
19: until Csmtp is closed

Xi|H0 =



θ0 if one outbound TCP packets observed
1− θ0 otherwise

The algorithm of detecting connection correlation can be
expressed in Algorithm 1.

For proxy-based spamming, given that packet symmetry
holds most of time, the major reason that correlation can-
not be detected without is mainly attributed to the packet
misses by the monitoring system. For example, when the
traffic volume exceeds the capacity that the monitoring sys-
tem can handle, packets may be dropped by the monitoring
system. If the packet conveying SMTP reply message is
dropped on either the downstream connection or the up-
stream connection, the correlation detection will fail in this
reply round. So we can use packet miss rate to estimate
the probability of a proxy connection being correlated when
spamming occurs, i.e. θ1. From the conservative perspec-
tive, we take 0.01 as the packet miss rate which in fact is
fairly high8 considering only small packets (say less than 300
bytes) need attention and only packet header information is
required for detection algorithm. So θ1 is 0.99 in this case.

To estimate θ0, we employ the mathematical model given
in [16]. We assume that the uni-directional packet arrivals
of a normal TCP connection can be modeled as a non-
homogeneous Poisson process, which can be approximated
by a sequence of Poisson processes with varying rates, and
over varying time periods that could be arbitrarily small.
For example, let M(t) denote the number of packets sent in
an outbound TCP connection during time interval t. Pro-
cess {M(t), t ≥ 0} can be represented by a sequence of Pois-
son processes (λ1, ∆t1), (λ2, ∆t2), · · · , where t = ∆t1 +
∆t2 + · · · . The advantage of this model is to approximate
almost any distribution. More importantly, the number of
packets observed during any given time interval T , can be
represented by a Poisson process M with a single rate λ̂T .
Here λ̂T is the weighted mean of the rates of all the Poisson
processes during T .

With this model, we can easily compute the probability of

8In practice, the miss rate is usually below 0.005 in our
campus network.
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Figure 4: E[N |H1] vs. θ0 and α∗ (θ1 = 0.99, β∗ = 0.01)

one and only one packet sent in a reply round if T denotes
the duration of a reply round. From

Pr(M = i) = e−(λ̂T T ) (λ̂T T )i

i!
, (12)

we have

Pr(M = 1) = e−(λ̂T T )(λ̂T T ) ≤ e−1. (13)

In (13) Pr(M = 1) reaches its maximum value e−1 when

λ̂T T = 1. Although this is a theoretical derivative, we find
that it is valid on almost all of the evaluated traces. Thus,
we set θ0 = e−1.

If we choose 0.005 for false positive probability α∗ and
0.01 for false negative probability β∗, with θ0 = e−1 and
θ1 = 0.99, E[N |H1] is 5.5 and E[N |H0] is 2.02, respectively.
Figure 4 shows how E[N |H1] varies with the changes of α∗

and θ0, when β∗ and θ1 are fixed. In general, E[N |H1]
increases when θ0 gets bigger or α∗ gets smaller. Intuitively,
this prolonged random walk is a natural result of smaller

step length ln θ1
θ0

or enlarged distance ln 1−β∗

α∗
for the walk

towards upper threshold.
From the perspective of anomaly detection, it is desirable

that error probabilities, especially the false positive proba-
bility, can be as low as possible. In the framework of SPRT,
this implies that E[N |H1] goes up, i.e., the average detection
time is prolonged. However, given that not all SMTP trans-
actions (the shortest one has only 6 reply rounds) can be
longer enough to make the SPRT reach a decision when α is
too small, a tradeoff between lowering false positive and false
negative has to be made. In DBSpam, we set α∗ = 0.005 so
that even the shortest spam transactions can be captured.

5.5 Noise Reduction
To further lower the false positives of SPRT, we introduce

a simple and effective noise reduction technique in DBSpam.
In a series of correlation tests, we define the active spam
sources and proxies that are prone to be identified many
times as signals, and define those innocent IP addresses
that may be accidentally captured as noises. We utilize
the dichotomy between signal and noise to distinguish spam
sources and proxies from innocent end-hosts. We call this
procedure noise reduction. The noise reduction are executed
in two steps: first, we maintain a set Si of external IP ad-
dresses that appear in the correlation results for each time
window ∆; second, in the consecutive M time windows, we
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Figure 5: Pr(X ≥ K) vs. p and (M, K)

single out the external IP addresses, which appear no fewer
than K times, as the spam sources and the corresponding
proxy addresses as the spam proxies.

The time window ∆ is determined by the lower-bound
of spamming rate υ (in replies/s) and the number of reply
rounds N :

∆ ≥ N/υ. (14)

Hence, a spammer sending spam faster than υ must appear
in Si at least once in each time window ∆. Assume that the
appearance of an IP address in Si is independent, with a
constant probability p. Then, the number of occurrences of
the IP address among M time windows follows the binomial

distribution.

Pr(X = i) =

 

M

i

!

pi(1− p)M−i. (15)

The probability of having no fewer than K occurrences in
the binomial distribution is:

Pr(X ≥ K) =
M
X

i=K

 

M

i

!

pi(1− p)M−i. (16)

Figure 5 illustrates the dynamics of Pr(X ≥ K) with the
variation of probability p for several pre-determined tuples
of (M, K). The diagonal line shows the case of tuple (M =
1, K = 1), in which Pr(X ≥ K) is equal to p. Clearly, if p
is smaller than 0.2, all other curves are below this diagonal
line, indicating that their values of Pr(X ≥ K) are smaller
than that of tuple (M = 1, K = 1). In contrast, if p is larger
than 0.8, these curves are above the diagonal line, indicating
that their values of Pr(X ≥ K) are larger than that of tuple
(M = 1, K = 1).

The value of p for an innocent address depends on the
false positive rate of the correlation detection, which should
be closer to zero than one. The left part of Figure 5 illus-
trates the noise reduction can further lower the chance of an
innocent address being mis-classified as a spam source. On
the other hand, the value of p for a spam source is related
to the complementary of the false negative rate of the cor-
relation detection, which should be closer to one than zero
as shown in the right part of Figure 5. This indicates that
noise reduction increases the probability of a spam source
being identified as well. Therefore, both false positives and
false negatives are reduced after noise reduction. Figure 5



Table 1: Trace Information
Attribute S-1-A S-1-B S-1-C S-2-A S-2-B S-2-C N-1 N-2

duration (sec) 770 674 756 654 1,385 1,398 5,116 14,944
# of packets 3,872,550 4,178,567 4,509,336 12,036,413 26,422,563 26,172,898 24,434,518 297,733,228
avg packet/sec 5,029 6,200 5,965 18,404 19,078 18,722 4,776 19,923
trace size 295MB 318MB 343MB 931MB 2,044MB 2,018MB 1,851MB 22.4GB
packet miss rate < 0.001 < 0.001 < 0.001 0.008 0.005 0.005 <0.001 0.006
# of threads/spammer 1 3 1 1 3 1 - -

shows that when M is fixed, the probability Pr(X ≥ K) goes
smaller with bigger K. For example, Pr(X ≥ 3|M = 4) is
much smaller than Pr(X ≥ 2|M = 4). Moreover, the noise
reduction algorithm works very well even with very small
M and K. For example, with (M = 4, K = 3), pre-noise-
reduction false positive rate, which is 0.1, can be signifi-
cantly lowered to 0.0037 after noise reduction. These two
rules of thumb may guide the selection of (M, K) in prac-
tice. We will further discuss the parameter setup of ∆, M
and K, and demonstrate the effectiveness of the noise re-
duction technique in Section 6.3.2.

6. SYSTEM EVALUATION
We implemented a prototype of DBSpam using libpcap

on Linux. Due to access limitation, we cannot deploy our
prototype in an ISP network environment to evaluate its
on-line performance. Alternatively, we collected traces from
a middle-sized campus network and conducted a series of
trace-based experiments to validate the efficacy of DBSpam.

By replaying the collected traces with our prototype, we
attempt to answer the following questions: (1) how fast DB-
Spam can detect spam laundering; (2) how accurate the de-
tection result of DBSpam is; (3) how many system resources
DBSpam consumes.

6.1 Data Collection
The campus network is connected to the Internet via an

OC-3 data link. A Snort-based NIDS [29] is deployed on the
edge router of the campus network to block any suspicious
proxy traffic (e.g. SOCKS and HTTP) via signature check-
ing. All outgoing email messages must go through the main
email server and secure authentication is enforced.

This well-protected campus network provides an ideal plat-
form to assess the false positive ratio of DBSpam on normal
network traffic. According to the IT department, proxy-
based spamming activities on this campus network are very
rare. To evaluate the detection time and accuracy of DB-
Spam on spam laundering, we generate “spam” traffic, in-
cluding both plain-text and encrypted proxy traffic, with the
cooperation of the IT department. Although the monitoring
systems of IT can detect plain-text proxy traffic by check-
ing content, our encrypted proxy traffic successfully evades
their detection.

The generated spamming scenario is similar to the one
shown in Figure 1. The campus network plays the role of
network N . We use two home PCs outside the campus net-
work, which are located in two different ISP broadband net-
works, to emulate two spam sources. The spam sink (MTA
M in Figure 1) is located in the dark net of the campus
network. The dark net is a special subnet that directly links
to the edge router and is used to dump all malicious traffic.
Two SOCKS and HTTP proxies run in two different sub-
nets of the campus network to form a proxy chain. We use a

common spamware and sockschain 9 to emulate proxy-chain
spamming. The spam messages are sent from the two home
PCs, through the proxy chain and destined to the spam sink.
The data collection point is just before the edge router and
can see all the traffic passing through the edge router. We
use tcpdump to capture all small bi-directional TCP packets
with the snaplen set to 75 bytes.

We collected multiple traces of normal and spam traffic in
two different months. The detailed information of the traces
is listed in Table 1, and additional explanations are given
below. First, we only captured small TCP packets with
packet length less than 300 bytes as DBSpam only utilizes
the SMTP reply messages for detection, which are usually
conveyed by TCP packets with length less than 300 bytes.
Second, We collected two kinds of traces to evaluate the per-
formance of DBSpam, one with generated spam traffic and
the other without generated spam traffic. All traces include
the normal background SMTP traffic passing through the
campus network. The name of a trace follows the format
“{S|N}-{1|2}-{A|B|C}”. S (N) indicates that the trace has
Spam (No spam) traffic. 1 (2) refers to the different month
of trace collection. A (B, C) is only for spam traces and
stands for different spam scenario. Third, in order to vali-
date DBSpam for detecting both plain-text and encrypted
spam traffic, we injected encrypted and compressed spam
traffic through SSH tunneling into traces S-*-C (* is either
1 or 2), and injected plain-text spam traffic into S-*-A and
S-*-B. Fourth, a multi-threaded spamming technique was
used in S-*-B to validate the efficacy of DBSpam in a multi-
threaded spamming scenario. The N-threaded spamming
means up to N upstream connections may be issued simul-
taneously from the spam source to a proxy for spam laun-
dering.

6.2 Detection Time
The overall detection time of DBSpam is determined by

SPRT detection time, the noise-reduction time window ∆,
and the number of consecutive windows M . Among these
three factors, SPRT detection time is the fundamental one,
which bounds the value of time window ∆. In the following,
we focus on the estimation of SPRT detection time.

6.2.1 SPRT Detection Time
We evaluate SPRT detection time from two perspectives:

the number of observations needed to reach a decision and
the actual time spent by SPRT.

Number of Observations N : The theoretical average
number of observations under spam hypothesis (E[N |H1])
and non-spam hypothesis (E[N |H0]) can be easily computed
based on Equations (10) and (11). In our evaluation, they
are rounded to 6 and 3, respectively, with α∗ = 0.005,
β∗ = 0.01, θ0 = e−1, and θ1 = 0.99. Table 2 shows the
distribution of N |H1 in six spam traces. The results clearly

9Both are binary Windows programs so that we cannot mod-
ify any code.



Table 2: Distribution of N |H1

Trace N = 6 N = 11 N >= 16
S-1-A 970 (100%) 0 0
S-1-B 5019 (96.9%) 139 (2.7%) 21 (0.4%)
S-1-C 2245 (92.8%) 169 (7.0%) 6 (0.2%)
S-2-A 433 (99.1%) 3 (0.7%) 1 (0.2%)
S-2-B 4298 (94.7%) 198 (4.4%) 40 (0.9%)
S-2-C 1758 (98.9%) 16 (1.0%) 3 (0.1%)

demonstrate the dominance of (N = 6) in all traces. The
comparatively low percentage of (N = 6) in trace S-1-C is
mainly caused by the abnormally high packet-miss-rate of
the spam traffic but not the whole traffic. Note that due
to the characteristics of SPRT, the detection of connection
correlation (H1) can only be reached after certain number
of observations, such as 6 and 11.

Figure 6 shows the distribution of N |H0 for non-spam
traces N-1 and N-2. The curves indicate that SPRT can
filter out at least 95% of normal connections within four
observations. The distributions of N |H0 for spam traces are
similar to those for non-spam traces.
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Figure 6: Distribution of N |H0

Actual Detection Time of SPRT: After recording the
start and end points for each SPRT on six spam traces, we
derive all the detection time in these traces and draw their
CDF (cumulative distribution function) in Figure 7. The
detection time is approximated by ceiling for CDF drawing,
e.g., 1.2s is ceiled to 2s. We classify the results from six
traces into two groups: “S-1” and “S-2”, since the results
in each group are very similar. As shown in Figure 7, 95%
detections are made within 5 seconds. Note that the actual
detection time is roughly the duration of 6 reply rounds of
SMTP connection, since the computation overhead of SPRT
is negligible. The curve difference between “S-1” and “S-2”
is due to the inferior link quality in “S-2” experiments.

6.3 Detection Accuracy
Since the detection module of DBSpam has two phases—

SPRT detection and noise reduction, we first evaluate the
false positive and false negative of SPRT detection, and then
present the overall detection accuracy of DBSpam after noise
reduction.

6.3.1 Accuracy of SPRT
False Positives: The upper part of Table 3 shows the

false positives of SPRT in different traces. The “detection”
row is the total number of correlations reported by SPRT,
and “True Positives (TP)” and “False Positives (FP)” rows
list the outcome of detections. The “True Negatives (TN)”
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Figure 7: CDF of Detection Time for SPRT

row lists the number of tests on normal connections that are
correctly identified. According to the definition of false pos-
itive probability α = F P

F P+TN
, the probabilities in all traces

are well below 0.0002, indicating that the false positive prob-
ability of SPRT is fairly small in practice.

False Negatives: We estimate the false negatives by
counting the number of proxy connections that are missed
by SPRT, and compute the ratio of missed spam connec-
tions, which are shown in the lower part of Table 3. The
false negatives of SPRT are attributed to the missed pack-
ets in the spam traces. The three spam traces S-2-A/B/C
contain both long SMTP connections (more than 10 reply
rounds) and short SMTP connections (six reply rounds).
More than 70% of the total connections are short SMTP
connections. For those short spam connections with only
six reply rounds, if any packet on either the upstream con-
nection or the downstream connection is missed in the trace,
SPRT cannot reach a decision, leading to a false negative.
A simple estimation shows the feasibility of the missing ra-
tio of spam connections. For simplicity, we assume that the
packet miss rate p is constant through the trace. Then,
the probability of one packet missing in six reply rounds is
`

12
1

´

p(1−p)11. If p = 0.005 (the packet miss rate of traces S-
2-B/C), the probability is around 0.057, which is more than
the miss ratio as shown in Table 3.

6.3.2 DBSpam Accuracy after Noise Reduction
To investigate the efficacy of noise-reduction, we first need

to determine the value of time window ∆. Figure 7 shows
that over 80% of all SPRTs on spam traces terminate within
2 seconds. So, we set the time window ∆ to 2 seconds. For
(M, K), we test several combinations and the final detec-
tion results are shown in Table 4, where the data format
is “number of FP/number of overall detections”. From the
table, we can see that noise reduction eliminates the major-
ity of false positives of SPRT, due to the fact that most of
wrongly-classified correlations only occur sporadically. The
false positive of DBSpam approaches zero, when (1) M and
K are relatively large and (2) the gap between M and K
is small. Such dynamics of false positive reduction fits well
with the analysis in Section 5.5. For our traces, any combi-
nation with 4/5 for M and 3/4 for K can achieve fairly high
accuracy. Of course, the high detection accuracy is achieved
at the cost of lowering detection sensitivity. It always ex-
ists a tradeoff between accuracy and sensitivity in network
anomaly detection. However, even when the time window



Table 3: False Positives and False Negatives of SPRT
Attribute S-1-A S-1-B S-1-C S-2-A S-2-B S-2-C N-1 N-2

Detection 970 5,179 2,420 437 4,536 1,777 66 2,368
True Positives 966 5,108 2,369 320 3,510 1,558 - -
False Positives 4 71 51 117 1,026 219 66 2,368
True Negatives 290,889 1,156,085 596,979 1,634,307 8,895,993 4,266,100 687,390 15,941,150
FP/(FP+TN) 1.4e-5 6.1e-5 8.5e-5 7.2e-5 1.2e-4 5.1e-5 9.6e-5 1.5e-4
Spam Connections 958 570 324 329 1,351 969 - -
Missed Connections 8 2 0 6 27 13 - -
Missed Conn Ratio 0.008 0.004 0 0.018 0.020 0.013 - -

∆ is set to 2 seconds and M is set to 5, the overall delay of
DBSpam detection is just 10 seconds but with much higher
accuracy.

Currently most false positives of DBSpam are induced
by P2P applications. The capacity of spawning thousands
of connections in a second and the behavior of periodic
PING/PONG communications make P2P applications have
a much higher probability of being correlated than any other
applications. Due to its hog overwhelming proportion in
bandwidth consumption, many ISPs and university networks
in US have restricted the maximal connections that P2P ap-
plications can establish, which helps reduce the false posi-
tives of DBSpam.

Table 4: Overall False Positives of DBSpam (∆ = 2s)
(M, K)

Trace (3, 2) (4, 3) (5, 3) (5, 4)
S-1-A 0/188 0/138 0/124 0/110
S-1-B 0/162 0/126 0/103 0/103
S-1-C 0/194 0/150 0/124 0/123
S-2-A 0/65 0/36 0/52 0/27
S-2-B 13/335 3/243 4/216 0/186
S-2-C 0/193 0/124 0/135 0/94
N-1 0/0 0/0 0/0 0/0
N-2 7/7 1/1 2/2 0/0

*Data Format: # of false positives / # of total detections

6.4 Resource Consumption
According to Table 1, the arrival rate of small TCP pack-

ets at the edge router can reach around 20,000 packets per
second (pps), at which DBSpam must be able to handle.
Current high-end PCs can meet this requirement without
much difficulty. Using a Dell Precision 360 machine with
Pentium-4 3GHz CPU and 512MB memory, we run the pro-
totype of DBSpam on each trace multiple times. We use
time and ps to measure the CPU and memory usage. The
results are listed in Table 5. The average packet processing
rate of DBSpam is computed by dividing the total packet
number of the trace over the processing time (“CPU Time”).
The processing rates clearly demonstrate the capability of
DBSpam working at high-speed networks. Even in the worst
case, DBSpam still can handle 241,965 pps, which is over 10
times more than the required processing speed.

Table 5: Resource Consumption
Trace CPU Util CPU Time pps Peak Mem
S-1-A 36.3% 9.0s 430,283 2.2MB
S-1-B 37.7% 9.8s 426,384 1.6MB
S-1-C 24.0% 9.3s 484,875 1.2MB
S-2-A 58.0% 36.8s 327,076 11.9MB
S-2-B 84.3% 109.2s 241,965 10.5MB
S-2-C 57.1% 78.6s 332,989 2.8MB
N-1 21.7% 51.1s 478,171 5.6MB
N-2 32.1% 789.9s 376,925 8.4MB

Memory consumption of DBSpam is mainly determined
by two factors: the number of active SMTP connections
and the number of outbound TCP connections during each

SMTP reply rounds. So, the peak memory consumption
is not necessarily determined by the network traffic volume.
As DBSpam only needs to maintain very few states, and only
a very small portion (false positive probability) of connec-
tions need to maintain states for relatively long time (lifes-
pan of SMTP connections), the overall memory consump-
tion should not be a problem. Also note that the memory
management of our prototype is quite naive since our focus
is mainly on the correctness, not on the performance.

6.5 Suppressing Spam Activities
Once the spam laundering activities are identified, DB-

Spam can effectively stifle them by activating the suppres-
sion module. Since spam suppression mechanisms such as
blocking and throttling are straightforward to implement,
the evaluation results of the suppression module are not in-
cluded due to space limit.

7. POTENTIAL EVASIONS
In such an ongoing arms race between spammers and anti-

spammers, we envision that sufficiently aggressive spammers
will seek sophisticated techniques to evade DBSpam. This
is especially true for a spammer who is able to fully control
remote spam proxy machines and deploy arbitrarily cus-
tomized software. It may use non-off-the-shelf proxy pro-
grams, which can manipulate the traffic between the spam
source and the first-hop proxy, to break packet symmetry.
One possible way is to split a single reply packet from SMTP
server into n fragmented packets on the first-hop proxy and
then to transfer them back to the spam source.

However, as long as enough observations are collected,
DBSpam can still capture such potential evasions. Recall
that the effect of this packet splitting on SPRT model is
just the change of the value of θ0, which measures the prob-
ability of 1 to n outbound TCP packets observed in a reply
round. So, instead of θ0 = Pr(M = 1), now θ0 = Pr(M =
1) + . . . + Pr(M = n). According to Equation (10), without
changing other parameters, the augmented value of θ0 ren-
ders more average number of observations needed to detect a
spam proxy. On the other hand, not all SMTP transactions
have enough reply rounds for detection. Due to enlonged
observations, short-living spamming activities may not be
detected.

To demonstrate the capability of DBSpam in capturing
such evasions, we relax the definition of packet symmetry,
in which one or two data packets may appear in one reply
round, and adjust θ0 to 0.5.10 Then, we estimate the overall
false positives of DBSpam, which are listed in Table 6 un-
der the parameter setting of M = 5, K = 4, and ∆ = 2s.
For comparison, the results without relaxation are listed in
the first row, while the results with relaxation are listed in

10Note that θ0 never exceeds 0.5 in all our traces with various
packet lengths from 150 to 300 bytes.



Table 6: False Positive Comparisons (M = 5, K = 4, ∆ = 2s)
θ0 α

∗

E[N |H1] S-1-A S-1-B S-1-C S-2-A S-2-B S-2-C N-1 N-2

e
−1 0.005 5.5 0/110 0/103 0/123 0/27 0/186 0/94 0/0 0/0
0.5 0.005 8.1 0/0 0/103 0/120 0/0 0/97 0/32 0/0 8/8
0.5 0.02 6.0 0/110 2/105 0/121 0/27 7/194 1/94 0/0 21/21

the second row. Clearly, the short-living spamming activi-
ties are missed by DBSpam, with zero detection for S-*-A
traces and much fewer detections for S-2-B and S-2-C traces.
However, those spamming activities with more reply rounds
can still be accurately detected. Since parameter α∗ is tun-
able, we vary its value, from 0.005 to 0.02, to accommodate
the shortest SMTP transactions for the examination of DB-
Spam. The third row in Table 6 lists the results after this
adjustment, showing that DBSpam can capture almost all
spamming activities as same as before but at the cost of
slightly more false positives, which is the necessary tradeoff
in capturing evasive spam proxy traffic.

Moreover, instead of employing off-the-shelf proxy soft-
ware, any advanced evasion technique will inevitably induce
the modifications on the current spam methods and degrade
the spam laundering efficiency. The customized proxy soft-
ware also increases the cost of spamming. Overall, DBSpam
indeed significantly raises the protection bar against email
spam, breaking the laundering and tracing out the real spam
sources, in the anti-spam-vs-spam arms race.

8. CONCLUSION
In this paper, we present a simple and effective system,

DBSpam, to detect and break proxy-based email spam laun-
dering activities inside a customer network and to trace out
the corresponding spam sources outside the network. In-
stead of content checking, DBSpam leverages the protocol
semantics and timing causality of proxy-based spamming to
identify spam proxies and real spam sources behind them.
Based on connection correlation and packet symmetry prin-
ciples, DBSpam monitors the bi-directional traffic passing
through a network gateway, and utilizes a simple statistical
method, Sequential Probability Ratio Test, to quickly fil-
ter out innocent connections and identify the spam laundry
path with high probability. To further reduce false positives
and false negatives, we propose a noise reduction technique
to make spammer-tracking more accurate after gathering
consecutive correlation detection results. We implement a
prototype of DBSpam using libpcap on Linux, and conduct
trace-based experiments to evaluate its effectiveness. Our
experimental results reveal that DBSpam can be tuned to
detect spam proxies and sources with low false positives and
false negatives in seconds. After detecting spam proxies and
related spam sources, DBSpam can effectively throttle or
block spam traffic.
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