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ABSTRACT
App-level virtualization becomes increasingly popular. It allows
multiple instances of an application to run simultaneously on the
same Android system, without requiring modification of the An-
droid firmware. These virtualization-capable apps are used by more
than 100 million users worldwide. We conduct a systematic study
of the implementation of app-level virtualization and the security
threats that their users may face. First, we survey more than 160
apps collected from several popular app markets which can provide
application virtualization capability. We find that these apps are
implemented based on a similar design, and apps running in such a
virtual environment are not completely isolated from each other.
Second, we analyze malicious virtualized guest apps, and identify
several areas of potential attack vectors, including privilege escala-
tion, code injection, ransomware, etc. Malicious virtualized guest
apps can launch reference hijacking attacks. Once a legitimate app
is running in the virtual context, all of its sensitive data will be
exposed to the host app. Third, we find a new type of repackaging
attack. In our collection of 2 million app data set, we find that 68
apps pack and load malwares by using the virtualization technology
to evade antivirus detection, 91 apps pack some legal apps for the
purpose of wide distribution, and insert screen ads to gain profits
at its startup. Finally, we discuss a variety of mitigation solutions
for users, developers and vendors.
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1 INTRODUCTION
Android is the most widely used mobile operating system today
with the biggest market share of the worldwide smart phone sales
volume. The Android smart phone is a personal hand-held device,
in which there are a large amount of personal private data. To en-
sure the user privacy on a native Android system, android system
employs sandboxing techniques to protect one application from
another. The implementation of the sandboxing is based on manda-
tory access control of SELinux [15]. Within this sandbox, each
application can only access its own files and a handful of system
services. This design does not allow execution of multiple instances
of an application at the same time.

In some cases, users may want to run multiple instances of
an application on the mobile device. For example, a user might
have two WeChat (a popular messaging app in China) accounts
for personal and business purposes respectively. The user in this
scenario doesn’t want to switch accounts by logging in and log-
ging out repeatedly, or use two different smart phones. An attrac-
tive solution to this problem is application-level virtualization: a
virtualization app (HostApp) can load and run other applications
(GuestApps) inside the HostApp, due to its convenience and no need
for system modification. The most popular virtualization HostApps
(e.g., under package names com.lbe.parallel, com.qihoo.magic, and
com.excelliance.dualaid) claim over 100 million users’ downloads.
VirtualApp 1 is the most popular app-level virtualization frame-
work published on Github for developers to build and distribute a
custom HostApp fastly.

While app-level virtualization is an attractive solution, it is non-
trivial to achieve compatibility and security simultaneously. Similar
app-level virtualization technologies like Boxify [4] and NJAS [5]
provide highly secure sandboxing by placing a virtualized malicious
app into an isolated process with zero permissions. However, this
design has not been adopted. Instead, to ensure good compatibility
(i.e., apps can run properly in the virtual environment), we find
most of the existing virtualization-capable apps are implemented
with differentiated designs. We inspect their impact on the app
isolation mechanism and security enforcement of access controls.
Unfortunately, our experiments show that several Android security
principles are broken in the existing HostApps. The data of any
victim GuestApps can be easily stolen and tampered by another ma-
licious one. Even if some HostApps implemented their own access
control strategies, we find that attackers can easily bypass most of
them. We also discover a new repackaging attack. Attackers use
1https://github.com/asLody/VirtualApp.
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open-source virtualization frameworks to pack both legitimate and
malicious apps for wide distribution and evading static detection
methods. Through virtualization, the repackaging detection based
on traditional code similarity comparison will fail. Recently, Zhang
et al. [25] study the security problems caused by app virtualization.
However, their study does not distinguish whether the problems
are caused by HostApps or GuestApps. They study the problem
of malicious GuestApps, but do not discuss what types of attacks
can be launched by virtualization platform. Moreover, they do not
conduct large-scale measurement study to verify the effectiveness
of the mitigations. Tongbo et al. [19] propose a detection method
based on processes and file directories to identify whether a guest is
running in a virtual environment. This method is not effective, since
it can easily be hijacked by HostApps to return false information
to the guest.

In this paper, we conduct a comprehensive study on app-level
virtualization, with respect to its popularity, security threats and
potential mitigations. We propose several more effective methods
and verify their effectiveness with real HostApps in markets.

In summary, we make the following contributions:
• We study popular open-source virtualization frameworks,
and 160HostAppswhich have beenwidely used.We describe,
in detail, how app-level virtualization works.

• We systematically study the threats brought by app-level
virtualization with respect to both HostApps and GuestApps.
We find out that a malicious GuestApp is able to launch a
variety of privilege escalation attacks, code injection attacks,
ransomeware attacks, and phishing attacks. Further, a mali-
cious HostApp can launch numerous hijacking attacks and
launch a novel repackaging attack. We find 68 HostApps
indeed package malware using this novel attack method to
evade antivirus detection.

• We present a comprehensive discussion on mitigation tech-
niques. For GuestApps, we propose and evaluate several
app-level virtualization detection techniques. For HostApps,
we propose numerous mitigations at application and system
levels.

2 MULTI-INSTANCE EXECUTION
2.1 Background
An Android application runs in a separate sandboxing environ-
ment that isolates data and code execution of one application from
another. Android assigns a unique Linux user ID (UID) to an applica-
tion when it is installed. The UID is used to distinguish the identity
of an application, which constitutes the foundation of sandboxing
for Android applications. At runtime, the application runs under
its assigned UID in a separate process. Based on this UID, Android
software stack enforces access control rules that govern the appli-
cation sandboxing. UID-based sandboxing imposes a limitation on
multi-instance execution of an app on Android. A very common
challenge rooting in this problem is how to log into two accounts
for an app at the same time. To address this challenge, mobile
phone vendors and developers begin to explore the multi-instance
execution techniques.

There are several techniques for multi-instance app execution.
(1) Multi-User Execution. The native Android system that supports
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Figure 1: The overview of application virtualization frame-
work.

1 <activity
2 android:name0="com.lody.virtual.client.stub.

StubActivity$C0"
3 android:configChanges="mcc|mnc|locale|touchscreen|

......"
4 android:process=":p0"
5 android:taskAffinity="com.lody.virtual.vt"
6 android:theme="@style/VATheme"
7 </activity >

Figure 2: The code example for dummy component declared
in VirtualApp.

multiple accounts allows launching different app instances with dif-
ferent accounts. This technique is more reliable and stable. However,
switching accounts is expensive and inconvenient. Most mobile
phone vendors ban these features. (2) Android System Modification.
Some vendors like Samsung, Huawei and Xiaomi modify Android
system and provide the function for running multi-instances of an
app on their device ROM without switching the system account.
Nevertheless, it needs to modify the system, and only supports a few
important apps. (3) App ID Modification. The app ID is modified by
repackaging, which makes the additional instances of the app run
under different IDs. Each instance runs in the sandboxing environ-
ment independently, isolated from each other. However, tampering
the original app ID value is illegal. Many apps use self-checking to
determine whether they are repacked. (4) App-Level Virtualization.
A virtualization app (called HostApp) is able to provide a virtualized
runtime environment to launch multiple instances of an app (called
GuestApp). This technique gains popularity, due to its convenience
of use and no need for system modification. Below, we will discuss
the technical details of this technique.

2.2 App-Level Virtualization
Android application life cycle. We briefly describe the life cy-

cle of an android application from installation to execution. Any
application before execution needs to be installed. Android Pack-
age Manager (PM) parses an application apk file and installs it on
the phone. After installation, applications are often loaded by the
launcher based on the user UI interactions. The launcher, an An-
droid app, makes an IPC call to the Activity Manager Service (AMS),
and drives the AMS to start the user-selected app based on its UID.
If the app is not started, the zygote process, a process similar to the



Linux init, creates a process with the requested UID, and prepares
the codes and data for the process that will be initialized. Finally,
the AMS can run the app by simply loading its main activity based
on its configuration in the manifest.xml file.

Challenges and goals. The goal of app-level virtualization is to
run an app while being able to control its execution. However,
running an app without first installing it is a challenging task. This
is because the launcher and activity manager expect the app to be
first installed. In addition, the HostApp would like to be able to
control the app execution.

The design. A HostApp usually has the following components:
Launcher; Virtual Framework; and Hook module. Figure 1 depicts
how these components interact with the GuestApps and the An-
droid Framework. The Launcher is responsible for the installation,
startup, and removal of GuestApps. The Virtual Framework needs
to emulate several core system services (e.g., PackageManager, Ac-
tivityManager and so on), which facilitate the tasks of managing
multiple GuestApps. The Hook module is responsible for inter-
cepting the interaction between the GuestApps and critical system
services. Next, we explain how these components achieve the vir-
tualization goal and address the challenges.

The launcher first parses the .apk file and gets the component
name of the entry main component that is declared in the manifest
file of GuestApp. Note that this is different from the normal appli-
cation launching as discussed above. Then, the launcher will start
a dummy component defined with “process” attribute tag (see in
Figure 2). Then the Application process will load the hook module
in its initialization process. The hook module communicates with
the HostApp through IPC calls. This is how HostApp applies vir-
tualization and controls the key system APIs calls invoked by the
GuestApp. The Application process represents the runtime context
of the HostApp. Finally, using the Java reflection technology, the
value of ActivityThread’s field of the bound application object is
replaced with that of GuestApp. To wrap up, the new process, the
new class loader and the new application context constitute the
basic blocks for the GuestApp’s execution.

The Virtual Framework relays the communication of the GuestApp
with the Android framework. This is essential not only because the
HostApp wants to control GuestApp execution (to achieve virtual-
ization goals) but also because the GuestApp execution would fail
otherwise. For instance, if we want to start an activity defined in
the GuestApp, it leads to a failure in the AMS. This is because the
GuestApp’s activity is not defined in the host app’s manifest file.
Note that the effective manifest file is still the HostApp’s manifest
file not the GuestApp’s. The virtual framework solves the problem
by predefining several stub components in HostApp’s manifest file,
and implementing a virtual Activity Manager Service (VAMS) to
maintain the life cycle of the app components. Similarly, the Virtual
Framework relays communication with other Android Manager
services.

The Hook module is the gate to the GuestApp for the HostApp.
As mentioned before, the IPC and system calls will be hooked by
the Hook Module and sent to the Virtual Framework. The Virtual
Framework desires to hook all system call functions associated
with file reading and writing (e.g., open(), mkdir(), execve() and
so on) through the Hook Module. All of these function calls are

encapsulated in the Libc.so dynamic library. The Hook Module
can use dynamic library interception technology (e.g., GOT Hook,
Inline Hook) within a process to achieve the interception of these
functions. For example, when a GuestApp runs in a virtual environ-
ment, the Hook Module uses I/O redirection technology to redirect
the GuestApp’s file directory to a specific file directory allocated
in the virtual environment. Finally, a GuestApp’s read-write file
operations will be relocated to an exclusive sub directory of the
HostApp. Therefore, the GuestApp has its own runtime file system
to ensure that it can run in the virtual environment.

3 SURVEY
We conducted a survey on a wide range of both HostApps and
GuestApps. Our survey sheds light on the popularity of apps, the
HostApps implementation technology and finally the malice of the
apps. We collect a total of about 160 HostApps from several main-
stream app markets e.g. Baidu, Yingyongbao, AppChina, Anzhi, 360
and Google Play. We also collect several open-source virtualization
frameworks from Github. The analysis of the apps is mostly man-
ual with the support of some existing dynamic and static analysis
tools. For example, we use the Apktool 2 to decompile the apk
and get the source code. Some samples use packing mechanisms
to protect themselves against reverse engineering. For these apps,
we use unpacking tools proposed to get the hidden code of these
samples. These tools are DexHunter [27], AppSpear [24] and Dri-
odUnpack [10]. In the rest of this section, we report our findings
on the aspects outlined above. For each of the findings, we start
by a question. We provide a take-home message before providing
details on the analysis.

Which HostApps are popular?
The most popular HostApp (com.excelliance.dualaid) has been

downloaded more than 90 million times. The most popular app-
level frameworks are VirtualApp, DroidPlugin and so on. The open
source DroidPlugin (5554 stars, 2343 forks in Github) framework is
one of the most popular virtualization capable frameworks. From
the statistics, we can see that the application virtualization has
become an inseparable part in the Android application ecosystem.
Many developers use the app virtualization technology to build
interesting applications for different needs.

Which GuestApps are popular?
We want to know what important applications are loaded and

run by the HostApps from the HostApps descriptions. We collect
the application descriptions while downloading the HostApps. We
analyze the descriptions manually and extract some key words.
We find that the largest demands to use the HostApps are social
communication apps, such as Twitter, Facebook,WeChat andWeibo,
which consists 53.7% of the total uses. Users can log on the app
with two different Twitter or WeChat accounts for the personal and
business purposes respectively. The second demand is to launch
multiple instances of shopping apps. By this way, users can use
multiple accounts to get a discount for shopping. These apps store
a large amount of user sensitive data.

How are the HostApps implemented?

2https://ibotpeaches.github.io/Apktool/.



There are different ways to implement app-level virtualization
technology (e.g., DroidPlugin, VirtualApp). However, most of them
share similar design guidelines as explained in Section 2.2. We
find that most of the apps are implemented by reusing existing
app virtualization frameworks. We analyze the frequency of the
framework reuses, and find that the two most popular open source
frameworks are VirtualApp and DroidPlugin, which comprise 67.9%
of the share. The result shows that many developers are willing to
use open-source virtualization frameworks to develop their apps.

Are the virtualization applications malicious?

We conduct an analysis for the samples we collect. We upload
160 samples we collected to VirusTotal 3, and select 20 apps with
greater risk and perform static analysis [3] and manual investiga-
tion. The results show that most of the HostApps are potentially
unwanted programs (PUPs). The capabilities that virtualization
technology offers can be used for malicious purposes. Malwares
abuse the most popular open source plugin frameworks, “Droid-
Plugin” and “VirtualApp”. Both frameworks can launch arbitrary
Android apps without being first installed on the phone. Attackers
exploit virtualization technology for evading anti-virus detection,
loading malicious programs at runtime, initiating hijacking attacks
and launching privilege escalation attacks. In the next section, we
elaborate more on the threats imposed by Android application
virtualization.

4 THREATS
In this section, we present a comprehensive threat analysis for
Android application virtualization. The threats that users face orig-
inate from either of the two: HostApps or GuestApp. The former
is the case when the HostApp is developed by an adversary for
malicious purposes. Running a hijacking attack by the HostApp is
an example of the possible attacks that we further elaborate on in
Section 4.2. The adversary in case of HostApp has more freedom
and control over the victim’s phone, and the threats that users face
are more dangerous.The latter is the case when the HostApp is
developed by a trusted source but at least one GuestApp loaded by
the HostApp is malicious. The GuestApp is either installed by the
user unintentionally, or compromised by an attacker for instance
through a malicious third party library. An example of the threats is
privilege escalation attack for which we implement a Proof Of Con-
cept (POC). We further elaborate on malicious GuestApp threats in
Section 4.1.

4.1 Malicious GuestApp
ThreatModel: There are two security flaws that allow aGuestApp

to behave maliciously. First, a GuestApp is not limited to the per-
missions it defines in its AndroidMainifest.xml file. The HostApp
will apply for almost all the permissions and capabilities in advance
to support a variety of GuestApps execution. This means that a
malicious GuestApp is able to use privileges that are not listed in
its AndroidMainifest.xml file but are listed in the host Android-
Mainifest.xml file. We analyzed the permissions of more than 160
HostApps we collected from multiple app markets. We counted the

3https://www.virustotal.com.

Table 1: Vulnerabilities in HostApps

Package Name Permission Storage Component
com.excelliance.dualaid × × ×
com.qihoo.magic × † ×
com.lbe.parallel × × ×
com.lbe.parallel.intl × † ×
com.godinsec.private_space × × ×
com.ludashi.dualspace × × ×
com.excelliance.multiaccounts × † ×
com.parallel.space.lite × † ×
com.baidu.multiaccount × × ×
com.morgoo.droidplugin × × ×
com.lody.virtual × × ×

number of permissions for each app. The result shows the distri-
bution of permission counts. 84.5% of the apps have 100 or more
permissions. Google defines 25 permissions as dangerous permis-
sions [2]. 73.2% of the apps have 20 or more dangerous permissions.
Highly privileged applications are more attractive targets for ad-
versaries, and each extra permission extends the attack surface
more. Second, a GuestApp can access other GuestApps’ private
files. In the virtual environment, we find that the various isolation
mechanisms advocated by Android systems are broken. We chose
more than 10 popular HostApps to test security isolation from
three aspects (permissions, storage, components). The test results
are shown in Table 1, × indicates that the HostApp does not verify
accesses to the sensitive resources, † indicates that the HostApp
enforces access controls, but the malicious GuestApp can easily by-
pass it. For example, com.excelliance.multiaccounts enforces access
controls by string comparison when GuestApp accesses a specific
file or directory. Thus, a malicious GuestApp can use a relative path
to bypass it and access the target file of other benign GuestApp. In
the following paragraphs, we explain the scenario for each attack.

Privilege escalation attack: A malicious GuestApp can perform
tasks without declaring the required permissions. We mention that
the HostApps apply for many permissions and capabilities in ad-
vance to support a variety of functionalities for the GuestApps. For
instance, the malicious payload controlled by an attacker is able
to access and leak secret data such as user browsing histories and
cookies. Further, many apps store valuable data, such as the chat
records of WeChat or the login token of Weibo in their private
directories. The malicious GuestApp can easily steal all these data.

Code injection attacks: A malicious GuestApp can tamper the
executable files of another GuestApp. These executable files are
loaded via dynamic loading. Many GuestApps may load executable
files (e.g., .dex files, .jar files, .so files, etc.) at runtime that are
stored in their private directories. The malicious GuestApp is able
to tamper or replace these files and hence launch a code injection
attack. Our DirDemo can successfully launch this attack because it
can write and execute the accessed files.

Ransomware attacks: A malicious GuestApp can encrypt and
delete another GuestApp’s files. Then, the attacker would ask the
user for a certain amount of ransom. The users can restore the
original files only if they pay the ransom. Especially, some apps like
DropBox as a guest app have the ability to automatically propagate
files to cloud servers and other client devices. The files encrypted



by malicious GuestApp can be uploaded to the cloud with the
Dropbox’s auto-sync mechanism.

Phishing attacks: The malicious GuestApp can find out what
process is running in the foreground, and launch a phishing attack
to capture the user sensitive inputs. In the Android versions higher
than 5.0, the third-party apps can not get the foreground applica-
tion process information by calling the getRunningTasks() function.
However, this restriction is not applied to the virtual environment.
More information about phishing attacks is described in paper [17].

Clone attacks: When a malicious GuestApp A and normal one
B run in the same HostApp, A can secretly pack all runtime files
related to B and upload to remote sever. Perhaps an attacker can
log into the victim’s legitimate app directly without authentication.
A popular framework VirtualXposed 4 is a simple app based on
VirtualApp that allows users to use an Xposed Module without
needing to root, unlock the bootloader, or flash a custom system
image. Attackers can easily use this framework to simulate a specific
mobile device environment.

4.2 Malicious HostApp
Threat Model: A malicious HostApp is riskier than a malicious

GuestApp. There are twomain attacks that amalicious HostApp can
launch. The first attack is hijacking in which a HostApp can stop the
execution of another application (running outside virtualization)
and resume the execution within the virtualization environment
under its control. The goal is to hijack some important sensitive
information such as input data of users. In the second attack, a
HostApp can pack a malware and execute it later as a GuestApp.
This is an antivirus evasion approach, and works effectively. The
reason is that a malicious HostApp doesn’t need any additional
functionality to the default ones that a benign one has. In the
following paragraphs, we explain each attack in detail and our
POC.

Hijacking: Several instances of the hijacking attack just explained
are found in the wild. Xuan et al. [23] implemented a hijacking at-
tack example called DroidPill. DroidPill enables attackers to hi-
jack the execution of a legitimate application using virtualiza-
tion they build. Another example is Trojan-Spy.AndroidOS.Twitter
that launches Twitter through the integrated VirtualApp frame-
work [20]. After the successful startup of Twitter, the modified
VirtualCore module hooks the getText function of the EditText
class. The goal is hijacking user input at the Twitter login window.
After the user’s login credentials are captured, the malware uploads
it to a remote server.

Antivirus evasion: Attackers can use the underlying virtualiza-
tion technology to evade antivirus detection. The application vir-
tualization frameworks provide functionalities that are used by
both benign and malicious applications. Henceforth, an antivirus
can not raise an alert based on a virtualization functionality. We
further elaborate on the techniques that the attackers might use
to evade detection using virtualization and the difference with the
conventional packing techniques. For example, VirtualApp (VA) is a

4https://github.com/android-hacker/VirtualXposed.

popular app-level virtualization framework. It allows virtual instal-
lation, execution, and uninstallation of arbitrary apps. Note that the
apps running in VA do not need to be installed in Android system.
Attackers use VA for packing a malware. Alternatively, attackers
can load a GuestApp dynamically or fetch it from a remote server at
runtime. In this way, the virtualization frameworks doesn’t contain
any suspicious code.

After packing, the package name, app name and certificate are
different from before. Therefore, static detection methods based on
package name, certificate or other similar features will fail. When
static engines scan suspicious applications, the application informa-
tion (e.g., package name, certificate, code, etc.) is VA’s information
that is not malicious. Using virtualization for repacking offers ad-
vantages in comparison to the traditional repacking methods. The
traditional repacking method is to decompile an application into
Java code, modify the class Application or Activity, embed some
ads or malicious payloads, recompile and pack it into a complete
apk file. In contrast, by virtualization the attacker does not need to
change the original APK for repacking; he can use dynamic code
execution through hooking to execute the malicious code. Further,
in comparison to the traditional repackaging, detection methods
based on code similarity comparison also fails. In the detection
process, the code that is compared with the original apk belongs to
the HostApp. Obviously, the similarity is not meaningful because
the malicious code is not the HostApp itself.

We find several instances of packing using virtualization tech-
niques in the wild. Attackers use these techniques to pack both
legitimate apps and malware. We find that about 91 samples pack
legitimate apps with virtualization frameworks. In one instance,
the attacker uses virtualization framework com.cx.pluginlib to pack
air.Stickman app. The packed app package name is air.ab.Stickman.
The attackers insert screen ads to gain profits. In another case, we
find the same developer using this technology to produce about
73 packed legitimate apps for promotion. We also found about
68 samples that pack malware. We found that 40 apps use VA
to wrap an encrypted APK file. Some of these packed malwares
are packaged with frameworks such as com.morgoo.droidplugin
and com.excelliance.kxqp.platform.gameplugin. We decrypt the en-
crypted APK files and upload them to VirusTotal. Almost all the
apps are labeled as Riskware, Trojan and Risktool, such as SMSSend
and SMSpay.

Recognizing packaged samples. The above results are ob-
tained by using the tool developed by ourselves. In the Scanning
Process, the first step is to check whether the virtualization tech-
nology is integrated in the sample. As we discussed in Section 2.2,
the virtual framework will pre-define several stub components in
HostApp’s manifest file to provide proxies between the GuestApp
and the Android framework. These stub components have similar
configurations to each other. If more than 80 percent of the compo-
nents are similar to each other, we consider the corresponding app
is very likely has integrated virtualization technology. The second
step is to check whether it is repackaged or not. We compare the
signature of the inlined files, which are usually stored in the asset
directory with the parent apk file, and report it’s a packaged sample
if the signature of the inlined apk file is different from the parent.
However, we cannot deal with some cases if the inlined apk file



was encrypted. We then process it manually, or use VirusTotal to
scan the filtered samples and obtain the statistical conclusions.

5 MITIGATIONS
The fundamental reason behind all the security flaws is that the
GuestApps and the HostApp share the same UID, and hence, the
access permissions are shared. In this section, to eliminate the
security issues, we describe several possible solutions based on the
placement of the solution.

As we discussed in Section 4, the threat might be the HostApp
itself or the virtualized GuestApps. Malicious GuestApp can ex-
ploit the vulnerabilities of HostApps to attack benign GuestApps,
causing privacy leakage, code injection, and other security threats.
We also find that benign apps are repackaged by attackers with
virtualization frameworks. However, HostApp may also be ma-
licious, once a legitimate app is running in the virtual context,
its all sensitive data will be exposed to the host one. To mitigate
these security threats, the basic GuestApp-level mitigation is de-
tecting virtualization. Apps may want to prevent execution inside
an app-virtualization environment due to risks and lack of enough
protection. These mitigation measures or suggestions may be bene-
ficial to app developers. Furthermore, not all developers may want
to implement an expensive protection. A robust and lightweight
solution defends against these threats is required. We can protect
against malicious GuestApps by querying three types of system
information that reveal virtualization.

Detection with private directory info: The first system info that
reveals virtualization is directory info. In a virtual environment, the
app storage path is different from the real mode. An app’s stor-
age path is usually “/data/data/{package name}” in the real mode.
However, in the virtualization mode, it is the HostApp that stores
the files on behalf of the GuestApp. Hence, each GuestApp will be
assigned a subdirectory under the HostApp directory. For exam-
ple, the dataDir of the GuestApp in Parallel Space is “/data/data//-
com.lbe.parallel/parallel/0/{guest app’s package name}/data/”. Thus,
the GuestApp can judge whether it is executed in a virtual environ-
ment by invoking the system call getDataDir() to obtain location
of GuestApp’s directory and comparing it with the normal one.
However, this detection method is not effective on all HostApps.
We found that the HostApp “com.qihoo.magic” can bypass it by
returning a directory info similar to the real mode.

Detection with call stack info: The second is the call stack info.
The main idea is that since HostApp (and not the SDK) loads the
GuestApp, if the GuestApp finds an external function in the call
stackwhile loading, it is being virtualized. To this end, the GuestApp
can add a logic inside the Application.onCreate() function or
Activity.onCreate() to check the call stack. Figure 3 and Fig-
ure 4 show the call stack info of a GuestApp running on different
platforms. Checking the call stack can be done through the travers-
ing function call chain. Figure 5 shows a sample snippet of the
detection code. The logic checks whether there is a function call
which is not defined in the Android SDK between two Android
Framework API calls. Furthermore, the logic should check whether
class loader of this function is not equal to BootClassLoader. Note
that, the HostApp uses LoadedApp class to load the GuestApp.

1 java.lang.Throwable
2 at com.example.filetest.MainActivity.onCreate ()
3 at android.app.Activity.performCreate ()
4 at android.app.Instrumentation.callActivityOnCreate ()
5 //at com.lbextern.hook.handle.PluginInstrumentation.

callActivityOnCreate ()
6 at android.app.ActivityThread.performLaunchActivity ()
7 at android.app.ActivityThread.handleLaunchActivity ()
8 ......
9 at android.app.ActivityThread.main()

Figure 3: Call stack in virtual enviroment.

1 java.lang.Throwable
2 at com.example.filetest.MainActivity.onCreate ()
3 at android.app.Activity.performCreate ()
4 at android.app.Instrumentation.callActivityOnCreate ()
5 at android.app.ActivityThread.performLaunchActivity ()
6 at android.app.ActivityThread.handleLaunchActivity ()
7 ......
8 at android.app.ActivityThread.main()

Figure 4: Call stack in real Android system.

1 public class MainActivity extends ActionBarActivity {
2 @Override
3 protected void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 setContentView(R.layout.activity_main);
6 // Get the function call stack list
7 StackTraceElement [] stacks = Thread.currentThread

().getStackTrace ();
8 // Traversing function call stack chain
9 // and detecting instrumentation
10 for (StackTraceElement st : stacks){
11 String className = st.getClassName ();
12 String methodName = st.getMethodName ();
13 //...... do checking
14 }
15 }
16 }

Figure 5: A code snippet for determining whether a
GuestApp is running in a virtual environment based on the
structure of function call stack info.

Detection with maps info: The existing mitigations are not so
effective because a malicious HostApp can simply hook the library
functions and return false information to mislead the GuestApps. To
protect against this, the GuestApp should make direct system calls
using native codes. For instance, to retrieve the runtime directory
of the GuestApp, we can take the following measure. We can add
the logic of obtaining the current process PID in the native layer.
Once the value of the PID is obtained, we can find the runtime
directory of the current process by reading the memory mapping
file, which is stored in directory “/proc/pid/maps”. If the runtime
directory is different from that of the real mode, the GuestApp
should warn the user and stop the execution. In order to avoid
neutralization, the GuestApp must obfuscate the codes and use
dynamic code execution. See Figure 6 for a detailed code snippet.



int checkWithMapsInfo () {
vector <string > v;
int pid = (pid_t) syscall(__NR_getpid);

// Get current process name
char *process = getCurrentAppProcessName ();
if (process == NULL) return 0;
size_t len = strlen(process);
int i = 0;
// Get the content of current process by reading the
file '/proc/pid/maps' and store all info in a vector
getSoMapsPathInfo(pid , "libvenvdetect -lib.so", v);
for (auto itt = v.begin(); itt != v.end(); itt++) {

string path = *itt;
const char *lib = path.c_str();
if (strstr(lib , process) != NULL) {

// APP_SO_DATA_APP_PATH = "/data/app/"
// SO_DATA_APP_LEN = strlen(APP_SO_DATA_APP_PATH)

if (startsWith(lib , APP_SO_DATA_APP_PATH)) {
if (strncmp(lib + SO_DATA_APP_LEN ,

process , len)) {
i++;

}
}

}
}
return i;

}

Figure 6: A code snippet for determining whether a
GuestApp is running in a virtual environment based on the
structure of maps info.

Table 2: Effectiveness of different detection schemes.

Package Name Private Directory Info Call Stack Maps Info
com.excelliance.dualaid ✓ ✓ ✓
com.qihoo.magic × ✓ ✓
com.lbe.parallel ✓ ✓ ✓
com.lbe.parallel.intl ✓ ✓ ✓
com.godinsec.private_space ✓ ✓ ✓
com.ludashi.dualspace ✓ ✓ ✓
com.excelliance.multiaccounts × ✓ ✓
com.parallel.space.lite ✓ ✓ ✓
com.baidu.multiaccount ✓ ✓ ✓
com.morgoo.droidplugin × ✓ ✓
com.lody.virtual ✓ ✓ ✓

Evaluation: Weevaluate the effectiveness of the detection schemes
mentioned above. The detection results are listed in Table 2, where
ticking means effective. We can see that detection using call stack
and maps info is more robust than the others.

6 DISCUSSIONS
We discuss that how GuestApp detects whether it is being virtu-
alized and then avoid being attacked by a malicious GuestApp or
HostApp. However, not all HostApps are malicious. To ensure the
security of GuestApps, the developer of legitimate HostApp should
play the role of the Android Framework and implement the access
control policies. Here, we discuss several possible solutions.

6.1 Enhancing the security by modifying
HostApps

Under the current implementation, the Android framework can
not provide access control for the GuestApps. Therefore, legitimate

HostApps must strictly use the blacklisting and signature mecha-
nisms to detect malicious GuestApps. In addition, HostApps must
hook sensitive API calls and perform access control before fulfilling
GuestApps requests. However, as we mentioned, a GuestApp can
subvert this by directly making system calls using native codes.
Therefore, a HostApp mitigation must also prevent native system
calls. HostApps can do this using Isolated Process introduced in
Android version 4.1 and higher. An isolated process has fewer priv-
ileges than a regular app process. It runs under a separate UID
assigned randomly on process startups. This randomly assigned
UID differs from any existing UIDs. The sandbox system Boxify is
based on Isolated Process [4]. Boxify securely isolates untrusted
apps in a completely de-privileged execution environment. Isolated
process establishes a strong security boundary between the un-
trusted GuestApps and Binder IPC reference monitor as they run in
separate processes with different UIDs. However, the implementa-
tion of a virtualization system based on isolated process is difficult.
The restrictions of isolated process may affect the functionality of
GuestApps.

6.2 Enhancing the security by modifying
Android System

Our assumption in the previous subsection was that the HostApp
is trustworthy. Otherwise, the HostApp may use the methods we
discussed to attack the GuestApp and bypass the GuestApp miti-
gation; a malicious HostApp can use process isolation to prevent
the GuestApp from revealing virtualization. In order to mitigate
a malicious HostApp threat, an explorable solution is to modify
the Android system. The threats can be mitigated by doing access
control at the operating system level. The operating system can
use runtime information such as call stack and process info to see
whether the app is running on the real operating system. If so, there
is no need for any further action. Otherwise, the operating system
should use package name, UID and PID to build the permission
verification mechanism. More specifically, PackageManagerService
should complete the access control according to a set of policies.
For instance, the virtualized apps can call the sensitive APIs only if
the policy permits. Alternatively, modify the multi-user mechanism
of the operating system to apply multiple instances. The multi-user
solution provided by the operating system is definitely more se-
cure than using HostApps developed by third-parties. The other
option is blocking app-level virtualization technology partially or
outright. App-level virtualization breaks the security model on
which Android is based. Android P 5 introduces the restrictions for
using non Android SDK interfaces, commonly known as hidden
APIs. Android P allows only calling standard interfaces provided
by Google whether it is a native or JAVA layer call. This probably
breaks the HostApps because almost all virtualization frameworks
invoke hidden APIs to implement virtualization.

7 RELATEDWORK
The relatedworks can be classified into three groups. The first group
of works target application virtualization and sandboxing. Related
works in this group include three types. The first tries to insert codes
into target app’s bytecodes for behavior monitoring [1, 8, 9, 12, 28].
5https://developer.android.com/preview/restrictions-non-sdk-interfaces.



The second tries to achieve security enhancement by implementing
hook on the virtual machine and local libraries [22]. The third uses
application virtualization technology and isolated processes for
application sandboxing [4, 5, 23]. Instaguard [7] is a new hot patch
method allowing immediate deployment for mobile devices.

The second group of works propose solutions to regulate the
behaviors of the applications. Smalley et al. [18] extend the SELinux
to the Android system, implementing Mandatory Access Control
(MAC) on both the kernel and the framework layers. Bugiel et al.
[6] use MAC mechanism to mitigate privilege escalation attacks
in Android. Roesner et al. [13] propose user-driven access control.
This access control grants permissions based on the user actions in
the context of an application rather than via manifests or system
prompts. There are many related works on the access control and
application privilege [11]. Wu et al. [21] analyze the security risks
brought by the network open ports in Android applications.

The third group of works propose solutions to regulate the be-
haviors of the third-party libraries. Shekhar et al. [16] and Zhang
et al. [26] run the ad libraries as a separate process so that develop-
ers have no need to apply for any permissions for such libraries,
which helps restrict the malicious behavior of ad libraries effectively.
Seo et al. [14] extend Android permission system by providing in-
app privilege separation and develop a novel security mechanism,
called inter-process stack inspection that is effective to isolate third-
party libraries’ permissions from their host apps. Meanwhile, they
leverage Hardware Fault Isolation approach to implement native
sandboxing and confine memory access strictly by executing JNI
in the restricted memory domain.

8 CONCLUSION
In this paper, we conducted a systematic study of the implementa-
tion of app-level virtualization and the security threats that will be
faced by users. We investigated a batch of virtualization-capable
applications developed by third parties. We find that these apps are
very popular among users and implemented with the same design
logic. They can load the GuestApp running in an environment that
is not completely isolated from each other. Hence, for malicious vir-
tualized apps or integrated third-party libraries, we revealed several
potential attacks (privilege escalation, code injection, ransomware,
etc.). We also found the virtualization technology has been abused
by malwares which can launch several new attacks. The attacker
can implement hijacking attacks without carrying any phishing
code or repackage malware inside virtualization frameworks for
evading antivirus detection. We find 159 samples with repackaging
from several app markets. 68 of them packed malware for wide
distribution. Finally, we discussed a variety of mitigation solutions
for users, developers and vendors.
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