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Abstract—In recent years, there has been increasing interest
in using deep learning for binary analysis tasks. Particularly,
Transformer-based pre-trained language models have attracted
enormous attention and obtained encouraging results. Numerous
research attempts modified the Transformer network architec-
ture and designed new pre-training tasks explicitly tailored
for individual downstream binary analysis tasks, and positive
results were reported. However, it remains unclear whether these
architectural changes and their associated pre-training tasks
are beneficial to other downstream binary analysis tasks, and
whether a vanilla Transformer model can perform equally well
via fine-tuning.

In order to provide guidance for future explorations in this
direction, in this paper, we evaluate four custom Transformer-
based models (i.e. jTrans, PalmTree, StateFormer, and Trex)
and their pre-training tasks on four downstream applications.
According to our evaluation results, we have the following
surprising observations: aside from MLM (Masked Language
Model), many existing pre-training tasks seem either too noisy or
too challenging for the Transformer model to learn effectively; the
vanilla BERT model is comparable or superior to these custom
Transformers in all the four downstream applications. Moreover,
our evaluation suggests that improvements in fine-tuning are
generally more beneficial than introducing new pre-training
tasks or making architectural modifications. Consequently, we
conclude that recent architectural modifications and additional
pre-training tasks for Transformer models may offer limited
impact that does not sufficiently justify their associated costs.

Index Terms—Deep Learning, Binary Analysis, Language
Model, Representation Learning

I. INTRODUCTION

Binary analysis, which encompasses a range of techniques

for extracting and inferring information from machine code,

has been a critical research area in the field of computer

security. In recent years, there has been a growing trend of

applying deep learning models to binary analysis tasks such as

function boundary identification [1], [2], binary code similarity

detection [3], [4], [5], [6], [7], [8], [9], [10], function prototype

inference [11], value set analysis [12], vulnerability detec-

tion [13], etc. Inspired by the remarkable progress in large

language models (LLMs), recent research has demonstrated

the efficacy of Transformer-based language models [14] in

various binary analysis tasks [5], [15], [16], [10], [17], [18],

owing to the shared characteristics of programming languages

(PL) including assembly language and natural languages (NL).

This work was done while Yu Qu was a postdoctoral researcher at
University of California, Riverside.

Almost all these Transformer-based assembly language

models (ALMs) have proposed custom pre-training tasks with

the purpose of improving the model’s understanding on pro-

gram semantics. For instance, some works [16], [10], [5]

employ topological features of binary programs, and design

pre-training tasks to capture control flow information, while

others [17], [18], [15] aim to capture the operational semantics

of assembly code. The majority of them also performed

modifications on the model architecture along with their pre-

training tasks. For example, jTrans [10] models jump rela-

tionships by modifying positional embeddings, and predicts

jump targets to enable the model to understand jump instruc-

tions and the structural connections between basic blocks.

StateFormer [17] captures def-use relations and value changes

over registers by incorporating new layers of embedding to

represent numerical values and applying Neural Arithmetic

Unit (NAU) [19] to handle those numerical values.

Despite substantial progress in this area, several questions

remain unanswered. First, while existing research papers

demonstrate that the proposed architectural modifications are

suitable for individual tasks, their generalizability to other

tasks remains unclear. For instance, jTrans [10] is designed for

function similarity search, and its evaluation was limited to this

single task using different baseline models. StateFormer [17]

focuses on fine-grained type inference, yet did not assess its

approach on other downstream tasks, despite the potential ben-

efits of understanding data changes over execution traces for

various binary analysis tasks. An exception is PalmTree [16],

which has been evaluated on several downstream tasks, but its

focus was solely on instruction-level representation learning,

leaving its performance at the function level unexplored.

Second, some existing works lack a systematic and extensive

comparison with pre-trained LLMs such as BERT [20] and

ALBERT [21]. While jTrans includes a limited ablation study

on BERT, it does not provide a comprehensive comparison

across all evaluations. Similarly, StateFormer did not compare

its model with a pre-trained BERT model, instead evaluating

a Transformer model without pre-training as one of their

baselines.

To better understand the contributions of these ALMs, we

aim to address a fundamental question in this paper: how

do these existing designs affect downstream tasks in binary

analysis? This question can be broken down into several

sub-questions. First, we seek to determine which pre-training

tasks are beneficial for multiple downstream tasks. While



some pre-training tasks have proven effective for specific

downstream tasks, it is unclear whether these tasks can also

benefit others or if they might be counterproductive. Second,

we aim to evaluate the effectiveness of various architectural

modifications.

To address these questions, we conducted multiple evalua-

tions. We selected four ALMs from the binary analysis domain

and assessed their performance on four different downstream

tasks. Two of these tasks, binary code similarity detection

and function type inference, are the original tasks for the

models. The third task, algorithm classification, is novel to all

the models. The fourth task, Function Name Prediction, was

recently introduced by SymLM [18]. Additionally, we applied

the pre-training tasks specifically designed for these ALMs to

the standard BERT model, which served as our baseline.

From our evaluation results, we have the following obser-

vations:

(1) Architectural changes have a limited impact on both pre-

training and fine-tuning.

(2) After fine-tuning, the performance gaps between different

models are small.

(3) The vanilla BERT models are comparable to or superior

to the custom models in the four downstream tasks we

evaluated.

Consequently, we conclude that recent architectural mod-

ifications to Transformer models, along with tailored pre-

training tasks, appear to be unnecessary. Our research suggests

that enhancements in fine-tuning techniques might be a more

effective way to improve model performance.

We will release the source code of our evaluation framework

and related training and testing datasets upon acceptance for

publication.

II. BACKGROUND

The Transformer model [14] revolutionized natural language

processing (NLP) and has been widely adopted in various

domains. When applied to computer security and binary analy-

sis, researchers often modify the Transformer architecture and

introduce additional pre-training tasks to better capture the

unique characteristics of assembly languages. In this section,

we survey the use of Transformer models in different research

papers, focusing on architectural changes, new pre-training

tasks, and downstream tasks.

A. Architecture

On the one hand, assembly languages are similar to nat-

ural languages, because they have their own syntactic and

grammatical rules. Consequently, language models like the

BERT model depicted in Figure 1 can be employed to tackle

binary analysis tasks. On the other hand, compared to natural

languages, assembly languages are more strictly defined and

each instruction has a definite semantic meaning. Furthermore,

arithmetic and logic operations, which are rarely found in

natural languages, are prevalent in assembly languages. Given

these distinctive characteristics of assembly languages, numer-

ous research papers have proposed architectural changes to

language models to better capture the syntactic and semantic

features.

Figure 1 depicts the architectures of several prominent

Transformer-based models. StateFormer introduces a numeri-

cal representation module that incorporates the Neural Arith-

metic Nunit (NAU) [19], which has been proven to be benefi-

cial for capturing the semantics of numerical values involved in

arithmetic operations. This module replaces the conventional

embedding layer and learns representations for numerical

tokens. More specifically, apart from token, position, and

segment embeddings, StateFormer introduces the architecture

and DataState layers. The architecture layer is to differentiate

instruction set architectures (ISAs), as the model is trained for

multiple platforms. The DataState layer receives embeddings

from the NAU. The embeddings of all five layers are then

averaged and fed into the Transformer layers.

Similar to StateFormer, Trex [9] uses the microtrace-based

model to generate function token embeddings, but proposed

to use a Long Short-Term Memory (LSTM) network to model

numerical values involved in arithmetic operations.

jTrans [10] introduces a modification to the positional

embedding layer to model the jump instructions and enable

ALMs’ awareness of control flow information. For each jump

pair, its source token’s embedding, also called jump em-

bedding, shares parameters with its target token’s positional

embedding. This design is based on the fact that the source

and target of jump instructions are not only as similar as two

consecutive tokens, but also have a strong contextual connec-

tion. It is worth noting that this architectural modification is

exclusive to help the training process. When the trained model

is used for inference, this modification is removed.

BinBert [15] concatenates two kinds of inputs: assembly

codes and strand-symbolic expressions. A [SEP] token is

used to distinguish between assembly code and symbolic

expressions. A language embedding layer is also added to

the model to differentiate the assembly code and the strand-

symbolic expressions. The expressions are generated by a

symbolic execution engine which is built on angr [22].

NeuDep [23] further revises the Transformer model. This

model acquires the ability to reason about approximate mem-

ory dependencies by leveraging the execution behavior of

generic binary code during pre-training. To achieve this goal,

the authors combined the self-attention layer with the per-byte

convolution network by applying a fusion module. The model

takes three kinds of sequences as input: the instructions, traces,

and code addresses. Instructions are encoded by the self-

attention layers, while traces and code addresses are embedded

by convolution layers. Subsequently, the fusion module is

employed to integrate three embeddings, and the resulting

fused embeddings are then passed through an additional self-

attention layer for the final encoding. The output of this layer

represents the final embedding.

UniASM [7] introduces two pre-training tasks: Assembly

Language Generation (ALG) and Similar Function Prediction

(SFP). In ALG, two functions compiled from the same source

code with different compilation options are treated as a single
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Fig. 1: Architectural Differences among BERT, StateFormer/Trex, jTrans, BinBert, and NeuDep

sentence input, aiming to recover masked tokens based on the

first function to teach the model instruction equivalency. SFP

uses a batch-wise softmax layer to maximize the similarity

between positive pairs and minimize the similarity of negative

pairs.

Yu et al. [5] employs four pre-training tasks to capture

control flow graph features. In addition to utilizing MLM

to capture token-level features, the authors introduced three

additional tasks: Adjacency Node Prediction (ANP), Block

Inside Graph (BIG), and Graph Classification (GC).

In addition to the papers mentioned above, there exist nu-

merous research papers that combine Transformer-based mod-

els with other techniques or models. For instance, BinShot [24]

uses DeepSemantic [25] for instruction normalization to al-

leviate the out-of-vocabulary (OOV) problem. SROBR [26]

combines BERT with graph attention networks (GATs) [27] to

incorporate control flow features. CodeFormer [28] combines

BERT with graph neural networks (GNNs) to capture control

flow features. However, they do not introduce any architectural

changes or new pre-training tasks to the Transformer model,

so they are not the main focus of this paper.

B. Pre-training Tasks

Pre-training tasks typically involve self-supervised learning

on a large corpus which helps a model learn syntactic and

semantic information. These tasks can be generally categorized

into token-level and sentence-level tasks. Token-level pre-

training tasks (depicted in Figure 2a,) usually involve masking

certain tokens and requiring the model to predict the masked

tokens based on their contextual information. Sentence-level

pre-training tasks (depicted in Figure 2b) employ a pooling

mechanism to extract a representation for the entire input. The

sentence-level tasks also have a classification head, for training

purposes. BERT first introduces the Masked Language Model

(MLM), a token-level task, and Next Sentence Prediction

(NSP), a sentence-level task, for pre-training. These tasks have

demonstrated strong performance in comprehending natural

languages. However, assembly languages have some unique

characteristics. For instance, certain semantic meanings, such

as arithmetic operations and control transfer instructions, can-

not be solely learned from the corpus. Some information, such

as instruction addresses and lengths, is neither explicitly pro-

vided nor inferable. These distinctions have prompted various

research papers to introduce novel pre-training tasks tailored

to assembly languages, with some demonstrating performance

enhancements over the standard BERT model for specific

tasks.

jTrans [10] introduces Jump Target Prediction (JTP) to help

the model learn control flow information. This task requires

the model to predict jump targets of randomly selected jump

instructions. The nature of this task, which poses a significant

challenge even to human experts, requires the model to de-

velop a deep understanding of the control flow, resulting in

improved performance.

StateFormer introduces Generative State Modeling

(GSM) [17] to teach the model the data and control flow

behaviors. This approach involves training the model to

predict the changed values of registers and memories after

the execution of each instruction. By incorporating this pre-

training task, StateFormer ensures that the model understands

operational semantics.

In BinBERT [15], Execution Language Modeling (ELM)

is introduced. This pre-training task is similar to MLM.

The ELM predicts not only assembly tokens but also to-

kens in corresponding symbolic expressions. Strand-Symbolic

Mapping (SSM) is the other pre-training task proposed by

BinBERT. In this task, an instruction strand and a symbolic

expression are provided as inputs, and the model is tasked with
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Fig. 2: Two types of pre-training tasks

determining whether the given symbolic expression belongs to

the set of expressions representative of the strand.

PalmTree [16] introduces Context Window

Prediction (CWP) and Def-Use Prediction (DUP). CWP

predicts whether two given instructions co-occur within a

context window to help the model capture implicit control

dependencies. DUP focuses on learning the def-use relations

between instructions and implicit elements like EFLAGS.

This pre-training task is revised from Sentence Ordering

Prediction, introduced by Lan et al. [21].

C. Downtream Tasks

In general, downstream tasks refer to real-world applications

or problems that the model is trained to solve, after being pre-

trained on a large corpus of data. Downstream tasks are good

evaluation methods, enabling us to determine the efficacy of

architectural changes and custom pre-training tasks. They also

provide insights into the generalizability of these changes and

additions.

a) Function Similarity Search: Function Similarity

Search, a.k.a. Binary Code Similarity Detection (BCSD) is one

of the most extensively studied downstream tasks in binary

analysis and has been evaluated in jTrans [10]. It measures

the similarity between a pair of functions and is a building

block of various critical research problems such as function

name recovery, vulnerability detection, and patch analysis.

Similarities can be defined using numerous distance metrics

such as cosine distance and Euclidean distance, or learned via

machine learning models [29]. In this paper, we use cosine

distance to measure similarities, and consider two functions

as similar if they are compiled from the same source code,

irrespective of different compilers and compilation options.

In order to learn “similarities”, different architectures and

objective functions have been proposed. The Siamese network

takes function pairs as input and makes positive pairs have

the highest similarity while negative pairs have the lowest

similarity. The max margin contrastive loss [30] ensures that

the distance between a negative function pair exceeds a certain

margin. The triplet loss [31] takes an anchor, a positive, and a

negative function as input and tries to maximize the distance

between the positive and the negative pair. The Normalized

Temperature-scaled Cross-Entropy (NT-Xent) loss [32], on the

other hand, takes one positive pair and N negative pairs as

input and tries to maximize the distance between the positive

pair and all negative pairs. In jTrans [10], the term “contrastive

learning” refers to the triplet loss. Nonetheless, in this paper,

we use the NT-Xent loss for fine-tuning the function similarity

search task, as it has demonstrated superior performance

compared to other objective functions [33]. A variant of this

downstream task is called Algorithm Classification which is

first proposed by TBCNN [34]. More details about the task

can be found in §III-E3

b) Type Inference: Type inference [17], [35], [36], [37]

is the process of determining the source-level data types, such

as integers, structures, and arrays, that are associated with

registers or memory regions. This information is valuable for

various binary analysis tasks, including reverse engineering

and vulnerability detection. On the other hand, type inference

is particularly challenging because the information about data

types is lost during compilation. Recovering such information

requires a deep understanding of instruction semantics, control

flow, and other relevant factors. Consequently, type inference

can serve as a metric to measure how well the models

understand assembly languages.

c) Function Name Prediction: As its name suggests,

the task predicts function names in stripped binaries. Function

names often serve as summaries of function behaviors, and

thus are very valuable in various security applications such as

reverse engineering and code reuse detection. However, similar

to type inference, this task presents significant challenges

due to the loss of high-level information during compilation.

Constructing meaningful function names requires the model

to comprehend instruction behaviors. The function name pre-

diction task has been evaluated by Jin et al. [18].

d) Function Type Recovery: This is a semantic recovery

task to predict the number and primitive types of the arguments

of a function. EKLAVYA, introduced by Chua et al. [11], is

the first neural network model for this task. Similar to type

inference and function name prediction, the lack of high-level

information poses a significant challenge in function argument

recovery, making it a suitable evaluation metric for assessing

the capabilities of models.

e) Other Downstream Tasks: In addition to foundational

tasks like instruction or function identification, downstream

tasks such as Value Set Analysis and Call Graph Recovery

pose deeper semantic challenges that test a model’s under-

standing of program behavior.

Value Set Analysis is a static program analysis technique

used to determine the possible values that variables or data

objects can hold at different points in a program. DEEPVSA

by Guo et al. [12] is the first machine-learning approach

for this task, and it classifies each accessed memory region

into one of the following: stack, heap, or global. Unless the

memory addresses have been explicitly specified, inferring

memory regions from instruction contexts requires a good

understanding of instruction semantics and common memory

access patterns and is thus challenging and suitable as an

evaluation metric for the models.



Call Graph Recovery, often referred to as Indirect Jump

Prediction, poses another significant challenge. Indirect jumps

or calls are commonly used in object-oriented programming

languages to enable dynamic function execution during run-

time. However, this practice introduces uncertainty in deter-

mining the callees until the program is actually executed,

thereby hindering the reconstruction of call graphs (CGs)

and applications that rely on CG, for example, binary code

similarity detection and data flow analysis. Unfortunately, the

existing static and dynamic analysis approaches suffer from

low precision or recall. Recently, Zhu et al. [38] demonstrated

that this problem can be solved by deep neural networks

(DNNs), making it a good candidate to evaluate the models’

performance.

While these ML-based methods show promise, they are

still in the early stages of exploration. Their effectiveness

relative to traditional techniques—such as symbolic execution

and heuristics—remains to be thoroughly evaluated in these

specific tasks.

III. EVALUATION PLAN

In this section, we first introduce the models that are

evaluated (§III-A), evaluation setup (§III-B), and data prepa-

ration (§III-C). Then the evaluations of pre-training tasks

are discussed in §III-D and the downstream evaluations are

described in §III-E.

A. Models to be Evaluated

Considering the multitude of Transformer-based approaches

for various downstream tasks, it is infeasible to evaluate

every single one. Therefore, we establish specific criteria for

selecting models to be evaluated. First, the pre-trained models

must be publicly available, as an official implementation or

a pre-trained model shared by the author ensures accurate

reproduction of performance. We partially rewrite the source

code from certain works with open-source code to match our

data format. Second, the papers must be recently published at

premier academic conferences in computer security, software

engineering, and machine learning. Third, the approaches must

be purely Transformer-based, as our target is to evaluate

the customization of Transformer models. Composite models,

which require joint training with other models, are beyond

our scope. The approaches must include architectural modifi-

cations or special pre-training task designs and must be de-

signed for binary code rather than source code or intermediate

representation (IR), due to significant differences in semantic

structure and preprocessing methods.

According to previous requirements, We collect models

shown in Table I to perform our evaluation. The source code of

these models is publicly available. Furthermore, the dataset of

StateFormer is also available for multiple architectures, and the

dataset is large-scale. Hence, to simplify our work, we choose

to use the pre-trained model provided by the StateFomer and

use the dataset to train other models.

In addition to the models mentioned above, we also em-

ployed the pre-training tasks proposed by these models to

train BERT models. Specifically, we trained BERT-JTP using

the jTrans pre-training task JTP, BERT-GSM using the State-

Former pre-training task GSM, and BERT-CWP and BERT-

DUP using the CWP and DUP pre-training tasks proposed

in PalmTree [16], respectively. To thoroughly evaluate the

performance of these pre-training tasks, we train models of

different sizes. This is because some pre-training tasks that

may be too hard to train on a standard-sized model might be

more feasible to train on a larger model.

B. Evaluation Setup

We utilized the code provided by the authors of jTrans,

StateFormer, Trex, and PalmTree, making necessary modifica-

tions to match our data format. Additionally, we implemented

the BERT model ourselves as the baseline and pre-trained it on

the same configuration for a fair comparison. To make a fair

evaluation for all the models, we refer to the original papers

of evaluated models and try to apply the most practical hy-

perparameter configurations for all the standard-sized models.

They were trained and fine-tuned with the same number of

epochs. We also trained two larger-sized models to validate

the effects of customization on larger-scale models, which we

refer to as the “L” and “XL” models. Detailed hyperparameter

information for these three sizes is provided in Table II.

Due to the utilization of special tokens for unique pre-

training tasks and architecture designs, we cannot use com-

pletely identical vocabularies across all models. For instance,

jTrans has jump target tokens that share weights with position

tokens. StateFormer and Trex have value tokens that are used

by the GSM task. Apart from this, we have made every effort

to use the same pipeline to ensure that the vocabulary remains

as consistent as possible, except for the model-specific special

tokens mentioned above.

C. Data Preparation

We pre-trained all models on the same dataset, which

comes from the StateFormer paper. This dataset consists of the

latest versions of 33 open-source software projects, including

widely used and large projects like OpenSSL, ImageMagick,

and Coreutils. We pre-trained the models on x86-64 binaries

compiled by GCC-7.5 with four different optimizations (O0-

O3), and on three obfuscation strategies (bogus control flow

[bcf], control flow flattening [cff], and instruction substitu-

tion [sub]), which were implemented using Hikari based on

Clang-8. We used Ghidra to disassemble binaries, removed

small functions that have less than 10 instructions, and then

randomly split the dataset to 80%-20% for training and testing

to avoid data contamination. Here, training includes the pre-

training of BERT, BERT-JTP, BERT-GSM, BERT-DUP, BERT-

CWP and jTrans. It also includes the fine-tuning for any pre-

training evaluation and two of the downstream evaluations

described in §III-D and §III-E. Testing means our evaluation

or any validation results we displayed during pre-training and

fine-tuning.

For the evaluation of Algorithm Classification, we used a

dataset specifically designed for it. More details are included



TABLE I: Evaluated Models

Model Name Architectural Features Pre-training Tasks Downstream Tasks

BERT N/A MLM N/A
jTrans Embedding Layer MLM, JTP Function Sim Search
StateFormer NAU GSM Type Inference
Trex LSTM MLM, MTP Function Sim Search
PalmTree N/A MLM, CWP, DUP Intrinsic & Extrinsic

TABLE II: Hyperparameters on different sized models

Models Layers hidden # heads # param Models Layers hidden # heads # param

BERT 12 768 12 87M jTrans 12 768 12 88M
BERT-L 12 1024 16 156M jTrans-L 12 1024 16 156M
BERT-XL 24 1024 16 307M jTrans-XL 24 1024 16 308M

in §III-E3. For Function Name Prediction, due to the need

for fine-tuning with specialized labeled data, we performed

fine-tuning and evaluation using the dataset provided by

SymLM [18]. Specific details can be found in §III-E4.

D. Evaluating Pre-training Tasks

Intuitively, the most straightforward way to assess the

effectiveness of a pre-training task is to evaluate the model’s

performance on this pre-training task directly. This experi-

ment explores the impact of additional pre-training tasks and

architectural modifications by comparing the performance of

different models on the pre-training tasks.

This research question comprises two sub-questions. Firstly,

we investigate whether a language model pre-trained solely

through MLM can acquire the same knowledge as models

designed for specific tasks and rapidly apply this knowledge

through fine-tuning. For example, if a vanilla BERT model,

swiftly fine-tuned with a prediction head, can predict jump

targets similarly to jTrans, it suggests that JTP pre-training is

ineffective.

Secondly, we aim to determine whether architectural modifi-

cations introduced alongside pre-training tasks further improve

training efficiency. For instance, if a BERT model pre-trained

with MLM and JTP achieves performance comparable to

jTrans on the JTP task, it indicates that specialized designs

like jTrans’ embedding layer may be unnecessary.

For these two questions, we will compare three different

models: vanilla BERT, BERT with special pre-training tasks

(BERT-JTP and BERT-GSM), and customized ALMs (jTrans

and Stateformer). To assess whether pre-training tasks and

architectural modifications enhance model performance, we

connect pre-trained models with an untrained prediction head

and perform supervised fine-tuning. The fine-tuning task is

the same as the pre-training task that needs to be evaluated.

Since models are pre-trained on the same tasks, they should

converge faster and outperform a vanilla BERT model. Below,

we outline the two pre-training tasks.

1) Generative State Modeling: Generative State Model-

ing (GSM) is a pre-training task proposed by StateFormer [17]

to capture value changes involved in arithmetic operations.

In this pre-training task, StateFormer is required to predict

the values of registers and memories after the execution of

each instruction. We consider StateFormer and BERT in this

experiment. We try to apply the GSM task on the vanilla BERT

model without modifications to the architecture.

StateFormer uses NAU to encode values as input and utilizes

a multi-layer Feedforward Network to predict values during

pre-training. It minimizes the Mean Squared Error (MSE)

between the predicted 8-byte values and the ground-truth 8-

byte values for only masked tokens. Note that MSE treats

the output byte tokens as numerical values. Since the ground

truth should be an integer between 0 and 255, and the loss

is a float between 0 and 1, according to the design of the

Stateformer [17], we will multiply the predicted result by 256

and round it to calculate the specific predicted value. This is

entirely consistent with the evaluation method employed in the

original work when probing stateformer on real-world code.

To make the BERT model ready for this evaluation, we

generally follow the design of StateFormer and make neces-

sary modifications. We add “mov” instructions before our data

sample to initialize registers with input values. For instance,

if the register rax has been assigned the value 0xf30f1efa at

the beginning, we put mov rax, 0xf30f1efa before the first

instruction.

We first pre-train BERT with the default settings. The

dataset for pre-training is the same as StateFormer’s. Then,

we pre-train BERT with MLM and GSM (denoted as BERT-

GSM) without modifying the architecture. Moreover, we keep

all the constant numbers since the model has to take numerical

information to make predictions. Our evaluation is on the byte

level with the following formula,

MSE =
1

n

n
∑

i=1

(xi − x̂i)
2 (1)

where xi is the ground truth and x̂i is the prediction value gen-

erated by the model. For accuracy calculation, we transform

the output values into integers before making a comparison.

2) Jump Target Prediction: Jump Target Prediction (JTP)

is a pre-training task proposed by jTrans [10] to capture

control transfer relations. In JTP, the jTrans model is trained to

predict jump targets of jump instructions. We conduct the same

experiment to see whether the vanilla BERT model can learn

control transfer information without changing the architecture.



To accomplish this, we add a fully connected network to the

pre-trained language model where the masked jump targets are

fed as inputs and the predicted jump locations are generated

as outputs. We mask 70% of the jump targets for training, and

compare two training strategies: using JTP as a fine-tuning

task only (BERT), and using JTP in both pre-training (along

with the MLM task) and fine-tuning (denoted as BERT-JTP).

We use accuracy as the metric in this evaluation and compare

BERT-JTP with BERT and jTrans.

E. Evaluating Downstream Tasks

Our downstream tasks are selected from previous works

and include function similarity search, function type inference,

and algorithm classification. We chose tasks based on the

selected ALMs and their evaluated tasks. For all four tasks, we

set BERT, BERT-CWP, BERT-DUP, BERT-JTP, BERT-GSM,

jTrans, and StateFormer as our candidate models. BERT-CWP

and BERT-DUP are included to further investigate how pre-

training tasks designed for instruction embedding influence

function-level task performance. Meanwhile, we have also

evaluated larger-sized models across all downstream tasks.

To ensure the accuracy of our conclusions, we conducted

rigorous statistical tests. We performed t-tests on multiple

instances to determine differences between experimental re-

sults. Since this work primarily investigates the superiority of

customized models over vanilla BERT models, we conducted

t-tests between BERT and all other models and calculated their

p-values.

1) Function Similarity Search: Binary function similarity is

a building block of many binary security applications such as

vulnerability and plagiarism detection. It takes two functions

as input and produces a numeric value that represents the

similarity between the functions. We conduct this evaluation

to see how different models perform on this well-defined

research problem and whether the vanilla BERT model can

achieve similar performance. We also follow the function pool

evaluation idea of jTrans [10] where each function is compared

with every function in the pool. The larger the pool size, the

more challenging and realistic this problem becomes.

Let there be a function pool F, and its corresponding

ground-truth pool G. For a given query f ∈ F, we try to find

its target ground-truth pair fgt ∈ G. The retrieval performance

can be evaluated using the following two metrics, Where I

denotes an indicator function and is defined as below.

Recall@k =
1

F

∑

fi∈F

I
(

Rankgtfi ≤ k
)

,

I(x) =

{

0, x = False,

1, x = True.

(2)

MRR =
1

F

∑

fi∈F

1

Rankgtfi
(3)

Since our models generate function-level embeddings via

Transformer networks and measure similarity using cosine

distance, we consider two configurations: one with fine-tuning

and one without. Without fine-tuning, we utilize the bare

model for generating embeddings and employ cosine distance

for measuring their dissimilarity. Conversely, with fine-tuning,

we apply contrastive learning to refine the comparison models.

More specifically, given a query function f , its ground-truth

target fp, and negative samples fn1, fn2, ..., fni,

loss = −log
esim(f,fp)/τ

∑i=1
N esim(f,fni)/τ

(4)

We divided our dataset into training and testing subsets.

Additionally, we set the pool size to 10,000 and then conducted

30 random samplings to obtain multiple values for MRR and

Recall.

2) Type Inference: This downstream task aims to map

untyped low-level registers or memory regions, specified by

memory offsets, to their corresponding source-level types.

We adopt the same experimental design as StateFormer [17].

Specifically, given a sequence of assembly instructions, the

model needs to predict the type labels for each operand token

in the instructions. It is a classification task, in which some

tokens are predicted as the types of function arguments, local,

static, or global variables they are associated with, while other

tokens do not possess any types. We stack a classification

head after different pre-trained models and fine-tune them for

type inference. The recovered source-level types can be of

different granularities across existing works [39], ranging from

primitive types such as int and float to more complex types like

struct, array, and recursive types such as trees and lists. We

select the most fine-grained type labels from StateFormer [17],

which contains 36 different type labels. A detailed list of types

can be found in Table VII in the Appendix.

As mentioned in StateFormer [17], the dataset for type

inference is highly imbalanced, because most of the tokens

have the no-access label. Hence, we choose to use the same

metrics utilized by StateFormer (i.e., precision, recall, and

F1 score) to measure the actual performance. Let TP (True

Positive) denote the number of correctly predicted labels,

FP (False Positive) denote the wrong ones, TN (True

Negative) denote no-access tokens which have been cor-

rectly predicted and FN (False Negative) denotes tokens

with other types being predicted as no-access. And we have

Precesion = TP/(TP + FP ), Recall = TP/(TP + FN),
F1 = 2 ∗ Precision∗Recall

Precision+Recall . We also conducted 10 random

samplings of the test set and repeated the experiments multiple

times to avoid the randomness of the results.

3) Algorithm Classification: This downstream task aims to

differentiate algorithms used in different binaries. In this task,

the model needs to classify the assembly code according to

its functionality. Some works [34], [40] treat this task as a

code clone detection task, which is similar to the Function

Similarity Search described in the previous sections.

We use the POJ-104 dataset [34] for this task. The POJ-104

dataset originates from a pedagogical programming open judge

(OJ) system [34] that automates the evaluation of submitted



TABLE III: The difference between Datasets

Dataset #Functions per binary Binary Sizes #Classes #Functions per class

POJ104 1-2 ∼50KB 50 ∼500
Function Sim Search more than 10 100KB-10MB pool size less than 10

source code for specific problems by executing the code.

As depicted in Table III, the POJ-104 dataset significantly

differs from the one utilized in Function Similarity Search.

Moreover, the fine-tuning scale is much smaller compared to

Function Similarity Search, which poses a greater challenge

for the models to capture and learn the features of this

dataset effectively. In essence, this task resembles few-shot

learning for the models. Consequently, if a model gains more

advantages from the customization of architectures and the

pre-training tasks, it is expected to exhibit more pronounced

benefits in the obtained results.

To maintain as much similarity as possible with the con-

figuration used for downstream evaluation, we also employed

different optimization levels and three obfuscation strategies.

We trained and tested the model using a total of 56,439

binaries.

This task aims to retrieve R targets for a given binary

from the fine-tuning/testing sets, with the Mean Average Pre-

cision (MAP) as the evaluation metric, where R is the number

of other binaries in the same class. Each data sample is labeled

with one of 104 programming problems (50 of which compile

correctly). Some source files contain multiple functions, which

we address by concatenating all assembly code and removing

compiler-added helper functions. We employ 10-fold cross-

validation, splitting the dataset by class to avoid randomization

bias. Training involves 40 classes (with 10 for validation),

while testing uses the remaining 10. The average training set

comprises approximately 17,500 binaries, with the testing set

containing around 4,200 binaries.

We use the Mean Average Precision (MAP) as the eval-

uation metric. MAP = 1
M

∑M
m=1 AP (m) Where M is the

number of query functions, AP (m) is the average precision

score when having query function m. We prepared two evalu-

ations for this downstream task, with and without fine-tuning.

We use the same fine-tuning process proposed by [40]. Still,

we use the same models as Function Similarity Search in this

evaluation.

4) Function Name Prediction: This downstream task aims

to predict function names in stripped binaries. In this task, the

model needs to predict the name of a given function based on

its semantics. Given a function f, we define the function name

prediction task as a multi-class and multi-label classification

problem. In detail, we first encode a function f using any

transformer model and generate a function embedding E.

Then, we aim to train a decoding function R that maps E

to a function name set W, which consists of a set of tokens

W = t1, t2, ..., ti. Here, the function tokens ti can represent

common English words, programmers’ commonly used abbre-

viations, numbers, and so on. W belongs to a function name

vocabulary V(V ⊇ W). And we have W = R(E)

In this evaluation, we utilize the framework of SymLM [18],

which provides an open-source implementation. Furthermore,

SymLM is implemented using the open-source pre-trained

model from Trex [9], which is also one of our evaluation

targets. However, we faced challenges in reproducing their

fine-tuning process due to the absence of a publicly available

dataset (with only a dataset generation tool being provided

by the author). Additionally, the fine-tuning process proved to

be excessively time-consuming, taking approximately 8 days

to complete the fine-tuning of SymLM with the Trex model

and an MLP decoder. These limitations hindered our ability to

replicate their experimental setup precisely. Hence, we utilized

the x86 dataset released along with the code of SymLM,

which has 43,436 function samples for training, 5,043 for

validation, and 10,954 for testing with mixed optimization

levels. To evaluate different models, we choose to use the

same metrics as in Type Inference (precision, recall, and

F1 score). More specifically, given the ground truth function

name set W = {w1, w2, w3, ..., wn}, and predicted function

name Ŵ = {ŵ1, ŵ2, ŵ3, ..., ŵm}, they define a membership

function:

✶(W, ŵ) =

{

1, ŵ ∈ W

0, ŵ /∈ W
(5)

which indicates whether the predicted token ŵm is in the

ground truth set W . Based on this indicator function, we then

calculate the true positive, false positive, and false negative:

tp =
∑

ŵi∈Ŵ

✶(W, ŵ), fp =
∥

∥

∥
Ŵ

∥

∥

∥
− tp, fn = ∥W∥ − tp, (6)

where the ∥•∥ denotes the number of tokens in the name set.

Subsequently, we get precision, recall and F1-score using the

formula described in section §III-E2. Similar to the previous

downstream evaluations, we also sampled the testing set 10

times and obtained multiple results to mitigate the randomness.

IV. EVALUATION RESULTS

A. Pre-training Tasks

1) Generative State Modeling: Table IV shows the results

of the Generative State Modeling task. We noticed that the

dataset contains a significant number of 0 values (attributable

to the small values of many constant numbers, which result in

zero-padding in the high digits). Thus, we introduce “Accuracy

w/o 0” to evaluate the model’s accuracy on predicting non-zero

values. We also put an accuracy curve during training in the

appendix.

The experimental results show that the prediction accuracy

is quite low, which is expected given the complexity of

modeling data changes in assembly code through a regression



task. BERT-GSM shows faster learning in the early stages, but

all models exhibit high instability with fluctuating accuracy

during training. Additionally, BERT-XL does not perform

better in this task, likely due to the inherent difficulty of GSM

for language models.

TABLE IV: Results of Pre-training Tasks

Generative State Modeling Jump Target Prediction

Model Acc Acc w/o 0 Model Acc

BERT 0.141 0.063 BERT 0.780
BERT-GSM 0.179 0.092 BERT-JTP 0.797
BERT-XL 0.148 0.056 BERT-XL 0.903

Stateformer 0.129 0.053 jTrans 0.822
jTrans-XL 0.756

2) Jump Target Prediction: As described in §III-D2, we

choose BERT, BERT-JTP, and jTrans to evaluate the Jump

Target Prediction task. Table IV presents the evaluation results.

In the appendix, we also show the accuracy during fine-tuning

in Figure 6.

We observe that after fine-tuning, jTrans only slightly

outperforms BERT and BERT-JTP. Analysis of the training

process reveals that jTrans initially trains faster than other

models but is quickly caught up by BERT and BERT-JTP.

Notably, the larger BERT-XL consistently outperforms jTrans-

XL.

Our evaluation of the pre-training task indicates that

modifications to the model architecture do not signifi-

cantly improve the performance of the associated pre-

training tasks. For overly challenging Generative State

Modeling, even the new component NAU does not aid

the model in learning the associated pre-training task

better.

B. Downstream Tasks

1) Function Similarity Search: The results of the function

similarity search experiments are presented in Figure 3. Before

fine-tuning, the MRR and Recall of all the models are below

0.20. Among these, the vanilla BERT’s performance is similar

to most models, while jTrans, jTrans-L, and jTrans-XL exhibit

significantly lower performance than BERT in terms of MRR

and recall@1 (p− value < 0.05). However, after fine-tuning,

the performance of large-scale models (BERT-L and BERT-

XL) significantly outperforms other models, while the remain-

ing models demonstrate similar performance. It is worth noting

that no model exhibits a significant advantage over the vanilla

BERT model. jTrans does not outperform the BERT model

as originally reported [10], because the dominant influence is

the application of contrastive learning during the fine-tuning

process. Based on this evaluation, we can conclude that neither

architectural changes nor custom pre-training tasks introduce

any tangible benefits. More advanced contrastive learning has

a dominant effect.

2) Type Inference: Table V presents the results of the

evaluated models on type inference. Precision, recall, and F1-

score are averaged from multiple samplings, with p-values

calculated from statistical analysis between F1 scores of other

models and BERT. Notably, except for jTrans-XL, the re-

maining models perform similarly, with BERT-L achieving the

best performance. This suggests that fine-tuned models do not

show significant performance differences due to pre-training

and architecture variations. However, jTrans-XL stands out,

where its customized embedding layers negatively impact

performance.

We can also see that additional pre-training tasks for BERT

do not make any benefits for this downstream application.

In fact, these pre-training tasks appear to have confused the

BERT model, causing degradation to the performance of this

downstream task.

Based on these observations, we are confident to conclude

that the vanilla BERT model, paying no effort on architectural

modifications and extra costs for additional pre-training tasks,

is the most suitable and cost-effective choice for this task.

On the contrary, the specifically designed model, StateFormer,

is actually incapable of improving its own targeted task.

It is worth noting that the authors of StateFormer did not

conduct a head-to-head comparison between StateFormer and

Vanilla BERT but instead performed an ablation study. Since

StateFormer does not include the MLM task during its pre-

training phase, no model in the ablation study is equivalent to

Vanilla BERT. Trex, which shares a similar design, also fails

to surpass the performance of BERT.

3) Algorithm Classification: Figure 4 lists the results of the

evaluation on algorithm classification. We observe that without

fine-tuning, BERT is among the best. However, the differ-

ences between BERT and other models are not statistically

significant, except for Trex, jTrans, and jTrans-XL (i.e., with

a p-value less than 0.05). After fine-tuning, the differences

between different models are even smaller, with even less

statistical significance, meaning the p-values are generally

larger. In general, all models perform poorly on this task.

Therefore, we can see that customizations do not provide any

benefits in this task.

4) Function Name Prediction: Table VI shows the results of

function name prediction. Similar to §III-E2, precision, recall,

and F1-score here represent the mean results obtained from

multiple samplings of the test set. The p-value is derived from

the t-test between the F1-scores of other models and those

of the BERT model. We can see that larger models generally

outperform standard-sized models, with BERT-XL achieving

the best F1 score. Among models of the same size, all

models exhibit similar performances. No model demonstrates

a considerably higher F1-score compared to Vanilla BERT.
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Fig. 3: MRR/Recall@1 of Different model w/ or w/o Fine-Tuning on Function Similarity Search. Pool size = 10000.

TABLE V: Results of Type Inference (Opt-level=Mixed)

Model Precision Recall F1 P-value Model Precision Recall F1 P-value

BERT 0.903 0.904 0.904 - BERT-JTP 0.887 0.888 0.888 3.9× 10
−9

StateFormer 0.889 0.892 0.890 2.4× 10
−40 BERT-CWP 0.888 0.888 0.888 6.9× 10

−9

Trex 0.870 0.875 0.872 7.5× 10
−38 BERT-DUP 0.901 0.900 0.901 2.8× 10

−1

jTrans 0.907 0.908 0.908 2.5× 10
−8 BERT-GSM 0.901 0.902 0.902 6.2× 10

−3

jTrans-L 0.912 0.913 0.913 6.2× 10
−10 BERT-L 0.936 0.935 0.936 6.9× 10

−18

jTrans-XL 0.501 0.254 0.338 3.1× 10
−39 BERT-XL 0.897 0.889 0.893 2.0× 10

−5

TABLE VI: Results of Function Name Prediction

Model Precision Recall F1 P-value Model Precision Recall F1 P-value

BERT 0.749 0.440 0.554 - BERT-JTP 0.781 0.398 0.528 6.09× 10
−21

Stateformer 0.711 0.497 0.585 8.42× 10
−20 BERT-CWP 0.750 0.440 0.554 9.15× 10

−1

Trex 0.711 0.496 0.584 7.28× 10
−19 BERT-DUP 0.799 0.416 0.547 4.90× 10

−11

jTrans 0.760 0.452 0.567 4.43× 10
−17 BERT-GSM 0.794 0.407 0.538 3.72× 10

−18

jTrans-L 0.798 0.466 0.588 1.32× 10
−19 BERT-L 0.812 0.501 0.619 7.24× 10

−17

jTrans-XL 0.796 0.459 0.582 5.82× 10
−17 BERT-XL 0.807 0.503 0.619 3.62× 10

−20

Results of the Function Similarity Search task signify

that the advanced contrastive learning technique is very

effective, whereas specially designed pre-training tasks

and architectural changes fail to introduce any tangible

benefits. The vanilla BERT model is comparable or

superior to the specifically modified architectures in the

Type Inference, Algorithm Classification, and Function

Name Prediction.

V. DISCUSSION

This research endeavors to evaluate the efficacy of existing

pre-training tasks and architectural changes for Transformer-

based assembly language models. Nevertheless, it is crucial

to clarify that our conclusions do not negate the potential

importance of all architectural changes. Our evaluation indi-

cates that the architectural modifications in Stateformer, Trex,

and jTrans do not provide sufficient advantages in downstream

tasks to justify the costs associated with modifying the model

architecture. we did not evaluate other architectural changes

proposed in other works due to limited access to their models.

However, our study sends a signal to the research community

that architectural changes proposed in future works must

undertake a rigorous evaluation.

Likewise, our evaluation does not establish that the intro-

duction of new pre-training tasks is completely ineffective for

ALMs. On the contrary, we posit that the level of difficulty

in pre-training tasks for ALMs and the interplay between

different pre-training tasks are crucial factors that limit the

performance of ALMs. Based on the existing experimental

findings, a good pre-training task should have an appropri-

ate level of training difficulty that constantly challenges the

language model throughout the training process and forces it

to learn the desired features. Additionally, this task should

not interfere with other pre-training tasks. Besides, further

investigation and experimentation are needed to fully explore

the potential of novel pre-training tasks in advancing the

capabilities of ALMs.

Finally, our study highlights fine-tuning as the most straight-

forward and effective technique, assuming readily available

well-labeled datasets for training and testing, which is often

feasible in many binary analysis tasks. For example, diverse

sets of binaries can be generated by enumerating different

compilers and options, with ground truth obtainable from

debug symbols. Consequently, fine-tuning proves highly ef-

fective. However, it is crucial to recognize that sparse or

low-quality labeled datasets for a specific downstream binary
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Fig. 4: Results of Algorithm Classification with (top) and

without fine-tuining. The p-value shows the T-test results

between the target model and BERT. Here, StFm denotes the

StateFormer

analysis task may lead to different conclusions.

A. Our Suggestions

Based on the experimental findings and the aforementioned

discussions, we offer the following recommendations for fu-

ture research:

• Always take the vanilla BERT or other vanilla

transformer-based models into consideration or provide

a comprehensive ablation study.

• When proposing a specialized model for a specific down-

stream task, provide a rationale for the model’s suitability

solely to this task or to conduct evaluations towards

multiple tasks.

• Try to improve training efficiency, such as applying

contrastive learning, before customizing the model.

VI. RELATED WORK

a) Deep Learning Models in Program Analysis Tasks:

Program analysis is a long-studied research area. In recent

years, Transformer-based pre-trained language models have

been widely applied to numerous binary and source code

analysis tasks, and our work only covers a subset of these

tasks. In the task of function similarity search [5], [7], [9], [15],

[41], apart from models we evaluate, there exist proprietary

models that are not included in our evaluation. OrderMat-

ters [5] uses BERT to model sequential instruction sets from

basic blocks, and CNN to model the topological features.

It concatenates the representations and uses an MLP layer

to generate embeddings for functions. COMBO [41] utilizes

not only assembly code but also source code and related

comments for similarity search. BinBert [15] and Trex [9]

benefit from dynamic information. BinBert [15] combines

assembly instructions with symbolic expressions and uses

the BERT model to encode the concatenated inputs. This

execution-aware Transformer model is proven to be able to

benefit the binary understanding. Trex [9] adopts an approach

that is highly similar to StateFormer, so it is not reevaluated

in this work.

Transformer-based models are also utilized in various other

tasks. XLIR [42] uses the Transformer-based model to match

binaries and source code at the intermediate representa-

tion (IR) level. SymLM [18] focused on function name recov-

ery. This approach jointly models the execution behavior of the

calling context and instructions with the comprehensive func-

tion semantics via a Transformer-based encoder. BinProv [43]

uses BERT to generate embeddings for provenance classi-

fication. VulHawk [13] uses a graph neural network along

with a Transformer language model to identify vulnerabilities

across architectures. Like COMBO [41] and OrderMatters [5],

VulHawk [13] also tries to merge different kinds of features

including imported functions, strings, and control-flow graphs.

There are many approaches that utilize other deep learn-

ing models to solve program analysis problems. Several

works [44], [3], [29], [5], [13], [45], [46], [47], [48] try to use

Graph Neural Network (GNN) to capture structural features

of functions, while SAFE [8] and InnerEye [49] using LSTM

with attention mechanism to encode assembly code. The GNN

is usually used to encode control flow graphs [44], [3], [29],

[5]. It has also been used in disassembly. DeepDi [1] constructs

a graph model called Instruction Flow Graph to capture differ-

ent instruction relations and use a Relational Graph Convolu-

tional Network (RGCN) to propagate instruction embeddings

for accurate instruction classification. However, these models

are out of the scope of this work.

b) Evaluations on Neural Binary Analysis Approaches:

Benchmarks play an important role in deep learning-based pro-

gram analysis research. CodeXGLUE [40] provides a bench-

mark for code intelligence problems including clone detection,

Defect Detection, Cloze test, Code completion, Text-to-code

generation, etc. The work encourages the development of

language models that have the capability to address a wide

range of program understanding and generation problems, with

the goal of increasing the productivity of software developers.

We share the same viewpoint on this matter. However, this

paper focuses only on source code-based approaches and

downstream tasks. The conclusions and insights derived from

this study cannot be directly applied to binary analysis evalu-

ations, as well as the metrics employed.

PalmTree [16] introduced an evaluation framework for in-

struction embeddings, using intrinsic and extrinsic metrics, but

it focused on instruction-level models, generating embeddings

for each instruction. In contrast, our work targets function-

level embeddings. The intrinsic evaluations by PalmTree may

not align with the goals of function-level models. PalmTree

concluded that control-flow and data-flow information can

help instruction representation learning. However, recent stud-



ies [5], [10], [9], [17], [18] have shown that learning from

longer sequences is more effective. Our evaluation also shows

that PalmTree’s pre-training tasks do not outperform the

vanilla BERT model with function-level sequences.

Marcelli et al. [50] re-implemented and evaluated existing

works on function similarity search, finding that many recent

papers show similar accuracy levels when evaluated on the

same dataset, despite claiming state-of-the-art advancements.

Our evaluation reaches a similar conclusion. While Marcelli et

al. focus on head-to-head comparisons of a single downstream

task, our work assesses the generalizability of models across

multiple downstream tasks.

VII. CONCLUSION

In this paper, we have evaluated custom Transformer-based

models and their specifically designed pre-training tasks by

collecting, tailoring, implementing, and testing four recent

models including jTrans, PalmTree, StateFormer, and Trex,

together with tailored pre-training tasks. We have evaluated

the vanilla BERT model and these models with four major

downstream tasks: Function Similarity Search, Type Inference,

Algorithm Classification, and Function Name Prediction. Ac-

cording to our evaluation, we have observed that: certain pre-

training tasks (e.g. GSM) are too challenging for the Trans-

former model to learn effectively; Architectural changes do not

bring tangible benefits for both pre-training and fine-tuning.

Moreover, improving fine-tuning (e.g., contrastive learning for

Function Similarity Search) is generally more beneficial than

introducing new pre-training tasks or making architectural

modifications.

In light of our findings, our more comprehensive evaluation

has revealed some potential issues with recent modifications to

model architectures and newly introduced pre-training tasks.

Our research indicates that the key to improving the perfor-

mance of Transformer-based models in downstream tasks lies

primarily in fine-tuning. Other architecture changes and pre-

training changes must be justified.

VIII. DATA AVAILABILITY

Our Dataset, pre-trained model, and code of evaluation will

be available at https://github.com/palmtreemodel/transformer-

evaluation
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Fig. 5: Accuracy w/o 0 during finetuing: GSM
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TABLE VII: The types that are predicted as output

Type Name

Placeholder no-access

Primitive
int, unsigned int, long, unsigned long, long long,
unsigned long long, short, unsigned short, char,

unsigned char, float, double, long double

Aggregate struct, union, enum, array
Pointer Aggregate *, Primitive *, void *


