
Polyglot: Automatic Extraction of Protocol Message Formatusing
Dynamic Binary Analysis

Juan Caballero∗, Heng Yin†∗, Zhenkai Liang∗, Dawn Song‡∗
∗Carnegie Mellon University †College of William and Mary ‡UC Berkeley

{jcaballero, zliang, dawnsong}@cmu.edu hyin@cs.wm.edu

Abstract

Protocol reverse engineering, the process of extracting the
application-level protocol used by an implementation, with-
out access to the protocol specification, is important for
many network security applications. Recent work [17] has
proposed protocol reverse engineering by using clustering
on network traces. That kind of approach is limited by the
lack of semantic information on network traces. In this pa-
per we propose a new approach using program binaries. Our
approach,shadowing, uses dynamic analysis and is based
on a unique intuition—the way that an implementation of
the protocol processes the received application data reveals
a wealth of information about the protocol message format.
We have implemented our approach in a system calledPoly-
glot and evaluated it extensively using real-world imple-
mentations of five different protocols: DNS, HTTP, IRC,
Samba and ICQ. We compare our results with the manually
crafted message format, included in Wireshark, one of the
state-of-the-art protocol analyzers. The differences we find
are small and usually due to different implementations han-
dling fields in different ways. Finding such differences be-
tween implementations is an added benefit, as they are im-
portant for problems such as fingerprint generation, fuzzing,
and error detection.

∗This material is based upon work partially supported by the Na-
tional Science Foundation under Grants No. 0311808, No. 0433540, No.
0448452, No. 0627511, and CCF-0424422. Partial support wasalso pro-
vided by the International Technology Alliance, and by the U.S. Army
Research Office under the Cyber-TA Research Grant No. W911NF-06-
1-0316, and under grant DAAD19-02-1-0389 through CyLab at Carnegie
Mellon. The views and conclusions contained here are those of the authors
and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of ARO, NSF, or the
U.S. Government or any of its agencies.

c©ACM, 2007. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published inCCS’07.

1 Introduction

Protocol reverse engineering, the process of extracting the
application-level protocol used by an implementation with-
out access to the protocol specification, has become in-
creasingly important for network security. Knowledge of
application-level protocol message format is essential for
many network security applications, such as vulnerability
discovery [11, 20, 26, 31], intrusion detection systems [19],
protocol analyzers for network monitoring and signature-
based filtering [10, 33], fingerprint generation [12], applica-
tion dialogue replay [18, 23, 30], detecting services running
on non-standard ports [25], and mapping traffic to applica-
tions [21]. Many protocols in use, especially on the enter-
prise network [25, 32], are closed protocols (i.e., no publicly
available protocol specification). Even for protocols with
a publicly available specification, certain implementations
may not exactly follow the specification. Protocol reverse
engineering aims to extract the application-level protocol
used by an implementation, without access to the protocol
specification. Thus, protocol reverse engineering is an in-
valuable tool for the above network security applications.

Currently, protocol reverse engineering is mostly a
painstaking manual task. Attempts to reverse engineer
closed protocols such as the MSN Messenger and Samba
protocols from Microsoft [4, 1], the Yahoo Messenger pro-
tocol [3], or the OSCAR and ICQ protocols from AOL [7,
2], have all been long term efforts lasting many years. In ad-
dition, protocol reverse engineering is not a once-and-done
effort, since existing protocols are often extended to support
new functionality. Thus, to successfully reverse engineera
protocol in a timely manner and keep up the effort through
time, we need automatic methods for protocol reverse engi-
neering.

Despite the importance of the problem of automatic pro-
tocol reverse engineering, there has been very little research
done on the topic. Recently, Cui et. al. [17] proposed using
clustering to extract the protocol message format from net-
work traces. The fundamental limitation of their approach
is the lack of protocol semantics in network traces, which in
turn generates other problems, as we explain at the end of
the section.

Approach: In this paper we proposeshadowing, a new
approach for automatic protocol reverse engineering. In-
stead of extracting protocol information purely from net-
work traces, we leverage the availability of a program bi-
nary implementing the protocol. Compared to network
traces, which only contain syntactic information, program
binaries also contain semantic information about how the
program processes and operates on the protocol data. In ad-
dition, they are the main source of information about the
implementationof a protocol. Thus, by extracting protocol
information from the program binary implementing the pro-
tocol, rather than purely from network traces, our approach
can be more accurate and provide richer information about
the protocol and its implementation. We call our approach
shadowingbecause we closely monitor the program as it
processes an input.

Given the program binary, we could extract protocol in-
formation from it by using either static or dynamic anal-
ysis. Purely static analysis of binaries is difficult due to
challenges such as memory aliasing analysis or unresolved
indirect jumps. In this paper, we focus on using dynamic
analysis for automatic protocol reverse engineering. In the
near future, we plan to extend our work to combine dynamic
analysis with static analysis.

Shadowing uses dynamic analysis and is based on a
unique intuition—the way that an implementation of the
protocol processes the received application data reveals a
wealth of information about the protocol. In particular, by
monitoring all the operations done by a program while pro-
cessing its input, we can extract the format of the received
data.

Scope of the problem: Protocol reverse engineering is a
complex task that involves extracting: 1) theprotocol mes-
sage format, which describes the message format for the
messages that comprise the protocol, and 2) theprotocol’s
state machine, which specifies the protocol states and the
transitions between states according to the messages sent or
received. In this paper, we focus on extracting the protocol
message format, because 1) it is a necessary step to extract
the protocol’s state machine, and 2) as we will show, it is
challenging enough in its own right.

Our approach to extract the protocol message format is
to process one message at a time and output the message
format for each given message. Our problem is then to au-
tomatically extract the message format, when given as input
a program binary implementing the protocol, and a mes-
sage received by that program. The main challenge to ex-
tract the message format is to find the field boundaries in the
message. Protocols include both fixed-length and variable-
length fields. The difficulty with fixed-length fields is to
determine the boundary between consecutive fields to avoid
joining two fixed-length fields together or splitting a single
fixed-length field into many. The difficulty with variable-
length fields is that protocols can use different elements to
mark the field boundary such as 1)direction fields, that store
information about the location of another target field in the

message, for example length fields and pointer fields, and
2) separators, i.e., constant values that mark the boundary
of the field. Thus, we first need to locate those elements to
identify the field boundaries. Another challenge in extract-
ing the protocol message format is to identify theprotocol
keywords. Keywords are protocol constants that appear in
the messages sent over the network. In this paper we present
techniques to address all these challenges.

To realize our shadowing approach, we have designed
and implemented a system, calledPolyglot. Our system
works on stripped binaries and does not require the avail-
ability of source code or any debugging information in the
binaries. We have extensively evaluated our approach using
eleven implementations from five different protocols: DNS,
HTTP, IRC, Samba and ICQ. We have included both clients
and servers working under Windows and Linux. The pro-
tocols analyzed, include difficult to find elements such as
length fields, pointer fields, separators and keywords. We
compare our results with the manually crafted message for-
mat, included in Wireshark, one of the state-of-the-art pro-
tocol analyzers. The differences we find are small and usu-
ally due to different implementations handling fields in dif-
ferent ways. Finding these differences between implemen-
tations is an added benefit, as they are important for prob-
lems such as fuzzing [31], error detection [11] and finger-
print generation [12].

Contributions: In summary, this paper makes the follow-
ing contributions:

• New approach for extracting the protocol message
format using program binaries: We propose to use
a new paradigm calledshadowingto automatically ex-
tract the message format from some input application
data. Our approach is based on the intuition that ana-
lyzing how a program processes its input allows us to
understand the format of the received data. This is in
contrast to previous techniques that try to infer proto-
col information purely from network traces [17].

• New techniques for detecting direction fields: Di-
rection fieldsare fields used to mark the boundary of
variable-length fields, such as length fields or pointer
fields. Currently, the only available techniques to de-
tect some types of direction fields are the ones used
in [17, 18]. Those techniques are limited because they
need to assume the encoding of the length field. We
propose the first techniques to detect direction fields,
without making assumptions about the encoding used
by the direction field.

• New techniques for detecting separators: Separa-
tors are constant values that can be used, instead of di-
rection fields, to mark the boundary of variable-length
fields. We propose what we believe are the first tech-
niques to discover separators using no prior assump-
tion about the separator values. Thus, our techniques
can handle unknown protocols that use separators, in-
dependently of the separator value. In contrast, previ-
ous work assumes separators can only be used in text

2

protocols and assume that separators only take a few
predefined values such as white space or tab [17].

• Finding multi-byte fixed-length fields: We present a
method to find the boundary of multi-byte fixed-length
fields, by examining how the program groups together
the input bytes. The intuition is that fields are semantic
units and thus programs need to use multi-byte fields
as a single unit. Even though our technique has limita-
tions, it is still a significant improvement over previous
work, which cannot find boundaries between consec-
utive binary fields, and thus have to assume that each
byte that shows binary encoding is a separate field [17].

• New techniques for extracting protocol keywords:
Current techniques for extracting keywords find proto-
col keywords by looking for tokens that occur repeat-
edly at the same position in multiple messages [17,
21, 25]. In contrast, our techniques extract the key-
words present on a single message. Thus, previous
work might miss keywords which appear in different
positions across multiple messages (e.g., in HTTP).
Our solution would still identify the keywords in each
message and the different locations where they occur.

The remainder of the paper is organized as follows. Sec-
tion 2 defines our problem. In Section 3 we describe the ap-
proach and system architecture. Then, in Sections 4–6 we
present our techniques to find the field boundaries and the
protocol keywords. We evaluate our system in Section 7 and
summarize related work in Section 8. Finally, we present
future work in Section 9 and conclude in Section 10.

2 Problem Definition

In this section we introduce the terminology used in this pa-
per, then the scope of the problem, and finally, the problem
definition.

2.1 Terminology and Scope of the Problem

Protocol terminology can sometimes be intricate and may
not be standard. Thus, for clarity, we first introduce the
terminology we will use in this paper.

Protocol elements: Protocols have a hierarchical struc-
ture comprised ofsessions, which are comprised of a se-
quence ofmessageswhich are in turn comprised of a se-
quence offields, where afield is the smallest contiguous se-
quence of application data with some meaning. For exam-
ple, an HTTP session may contain multiple messages such
as several GET requests to fetch different contents (e.g.,
one for the HTML file, another for an image, etc), and an
HTTP GET message may contain several fields such as the
method, the URL, and the version, as illustrated in Figure 2.

Scope of the problem: Reversing a protocol is a complex
task that involves extracting: 1) theprotocol message for-
mat, which describes the format of the messages that com-
prise the protocol, and 2) theprotocol’s state machine, that

Attribute Value
Field Start Start position in message
Field Length Fixed-size, Variable-size
Field Boundary Fixed, Direction, Separator
Field Type Direction, Non-Direction
Field Keywords Position and value of the

field’s keywords

Table 1: Field format attributes used in this paper.

depicts the different protocol states and the transitions be-
tween states according to the messages sent or received. As
explained in Section 1, in this paper we focus on extract-
ing the protocol message format and leave the study of the
protocol’s state machine for future work.

Theprotocol message formatis the set of the protocol’s
message formats, where a message format is a sequence of
field formats and a field format is a group of attribute-value
pairs.

Our approach to extract the protocol message format is
to process one message at a time and output the message
format for the given message. We assume synchronous pro-
tocols to identify the message boundaries. In this paper,
we consider five pivotal attributes in the field format: the
field start position in the message, the field length, the field
boundary, the field type and the field keywords. Table 1
shows these five attributes. The field start attribute captures
the position of the field in the given message. The field
length attribute states if the field has a fixed length (and the
corresponding value) or if it has variable length. Then, the
field boundary attribute determines how the program finds
the boundary of the field (i.e., where the field ends). For
fixed-length fields, the value is alwaysFixedsince the pro-
gram knows a priori the length. For variable-length fields,
it can beseparator, i.e., a constant value that marks the
boundary of the field, ordirection, i.e., a field that stores
information about the location of another target field in the
message.

The field type attribute provides semantic information
about the field. Currently, we only consider whether a field
is, or is not, a direction field. Finally, the field keywords at-
tribute contains a list of protocol keywords contained in the
field, specifically their value and position. We definekey-
words to be protocol constants that appear in the protocol
application data. There are other protocol constants that do
not appear in the protocol application data and thus are not
keywords, such as the maximum length of a variable-length
field, known to the parties but never sent over the network.

Extracting the keywords is important because they al-
low to differentiate which parts of the field are protocol-
dependant and which are user or session dependant. This
information is useful for multiple problems such as finger-
print generation, application dialogue replay and error de-
tection. In addition, keywords can be used to map traffic to
specific protocols, which in turn can be used to identify tun-
neled protocols, such as P2P traffic over HTTP, and services
running on non-standard ports [21, 25].

3

Execution
Monitor

Keyword
extractionSeparator

extraction

Direction field
extraction

Message format
extraction

Message
format

Keywords

Execution
trace

Program
binary

Message

Separators

Direction fields

Figure 1: System Architecture.

2.2 Problem Definition

This paper deals with the problem of extracting the proto-
col message format. The protocol message format includes
multiple message formats. Our problem is then, given a
number of messages received by a program binary imple-
menting the protocol, to individually extract the message
format of each of those messages.

The main challenge in extracting the message format is
to find the field boundaries. Protocols include both fixed-
length and variable-length fields. For fixed-length fields,
the boundary is known a priori by the program. The dif-
ficulty is to determine the boundary between consecutive
fixed-length fields, to avoid joining two fixed-length fields
together or splitting a single fixed-length field into two. We
deal with the problem of finding the boundary of fixed-
length fields in Section 6.

For variable-length fields, the program needs to deter-
mine the field boundary dynamically. Here, the difficulty
is that protocols can use different elements to mark the field
boundary such as 1)direction fields, that store information
about the location of another target field in the message,
for example length fields and pointer fields, and 2)sepa-
rators, i.e., constant values that mark the boundary of the
field. Thus, we first need to locate these elements. We deal
with the problem of finding the boundary of variable-length
fields using direction fields in Section 4.1, and using sepa-
rators in Section 5.1.

Another challenge in extracting the message format, is
to identify the keywords contained in each field. We deal
with the problem of extracting the protocol keywords in
Section 5.2.

More complex properties: Polyglot extracts the message
format of a single message. However some properties might
require analyzing information about multiple messages si-
multaneously. For example, some protocols such as HTTP
allow some of their fields to be ordered differently. We
term a field with this property to be afloating field. This
in turn, means that keywords associated with a floating field
can appear in different positions in the message. Currently,
given two messages with the same keywords in different
positions, we can identify for each individual message what
keywords it contains. Clearly, without looking at multiple
messages, we cannot determine that the keywords (and their
associated fields) are floating, i.e., they can appear at differ-
ent positions. Thus, we rely on an analyst to infer this kind
of properties when given the message formats for multiple

messages (possibly with keywords present in multiple dif-
ferent positions). We leave the automatic extraction of such
properties for future work.

To summarize, our problem statement is as follows:

Problem Definition: Given an implementation of a proto-
col in the form of a program binary and a message received
by that program, our problem is to output the message for-
mat, with no a priori knowledge about the protocol that the
message belongs to. Extracting the message format consists
of two main tasks: 1) find the field boundaries for fixed-
length and variable-length fields, which includes identify-
ing the separators and direction fields, and 2) identify the
keywords in each field.

3 Approach and System
Architecture

In this section we present our approach and introduce the
system architecture of Polyglot.

Our approach, using dynamic analysis for protocol re-
verse engineering, is based on a unique intuition—the way
that an implementation of a protocol processes the received
application data reveals a wealth of information about the
protocol message format. Using this intuition, we propose
shadowing, a new paradigm based on dynamically analyz-
ing how a program binary processes its input to extract the
format of the received application data.

To enable dynamic analysis for automatic protocol re-
verse engineering, the high-level architecture of Polyglot
has two phases. First, we watch over the program execu-
tion as it processes a given message. This phase generates a
record of the program’s processing, which contains all nec-
essary information about the execution. Second, we analyze
the record of the program’s processing and extract informa-
tion about the field boundaries and the keywords that form
the basis for the message format.

Figure 1 shows the system architecture. The first phase is
implemented by theexecution monitor[37]. It takes as input
the program’s binary and the application data, and dynam-
ically monitors how the program processes the application
data. The output of the execution monitor is anexecution
tracethat contains a record of all the instructions performed
by the program. The execution trace forms the input to our
analysis in the second phase.

The execution monitor implements dynamic taint analy-
sis [13, 14, 15, 28, 34, 35]. In dynamic taint analysis, input

4

data of interest is marked (i.e., tainted) when it arrives and
any instruction that operates on the tainted data (e.g., mov-
ing it to another location or performing an arithmetic or log-
ical operation), propagates the taint information to the des-
tination. For our purposes, we taint any data received from
the network. Thus, the execution trace contains, for each
tainted register and memory location used in an instruction,
the offset positions that were used to compute its value. For
example, if the method field in Figure 2 is moved to a pro-
cessor register (e.g., EAX), the register gets tainted withpo-
sitions 0 through 3, corresponding to the original offset in
the received data. Dynamic taint analysis is well understood
and we provide its details in Appendix A.

In the second phase, we analyze the execution trace to
locate the field boundaries and the keywords. Note that cur-
rently our analysis is offline (using the execution trace), but
it could also be performed online, integrated with the exe-
cution monitor. This phase consists of four modules: the
separator, direction field, keywordandmessage format ex-
traction modules, which we now describe.

First, the direction field and theseparator extraction
modulestake care of finding the boundaries of variable-
length fields. We introduce them in Sections 4.1 and 5.1
respectively. Next, thekeywordextraction module takes as
input the separators and the execution trace and outputs the
keywords. We present the keyword extraction module in
Section 5.2. Finally, themessage formatextraction module
takes care of finding the boundaries of fixed-length fields
and of combining all previous information to generate the
message format. It takes as input the previously found sep-
arators, direction fields and keywords, as well as the execu-
tion trace, and outputs the message format.

4 Direction Field Extraction

In this section we describe our techniques for identifying
direction fields, which store information about the location
of another target field in the message.

4.1 Direction Field Extraction

4.1.1 What is a direction field?

Direction fieldsare fields that store information about the
location of another field in the message (called thetarget
field). The most common direction fields arelengthfields,
whose value encodes the length of a target field. The target
field usually has variable-length and the length field allows
to find the end of the target field. Figure 3 shows an ex-
ample length field and its target. In addition to length fields,
other types of direction fields are:pointerfields andcounter
fields. Pointer fields, encode the displacement of a field start
with respect to some other position in the message. One ex-
ample of an pointer field is the compression scheme used in
DNS labels to avoid repetition, which represents a position
from the beginning of the DNS header. Counter fields en-

code the position of a field in a list of items. One example of
a counter field is the number of DNS authoritative records
in a DNS response.

4.1.2 Techniques for identifying direction fields:

The intuition behind our techniques for direction field de-
tection is the following. The application data is stored in
a memory buffer before it is accessed (it might be moved
from disk to memory first). Then a pointer is used to access
the different positions in the buffer. Now when the pro-
gram has located the beginning of a variable-length field,
whose length is determined by a direction field, it needs to
use some value derived from the direction field to advance
the pointer to the end of the field. Thus, we identify di-
rection fields when they areusedto increment the value of
a pointer to the tainted data. For example, in Figure 3 we
identify the length field at positions 12-13 when it is used
to access positions 18-20.

Length field Variable-length field Fixed-length field

12 14 18

Target FieldDirection field

13 15 16 17 19 20

Figure 3: Direction field example.

We consider two possibilities to determine whether a field
is being used as a direction field: 1) Either the program
computes the value of the pointer increment from the di-
rection field and adds this increment to the current value of
the pointer using arithmetic operations; or 2) the program
increments the pointer by one or some other constant in-
crement using a loop, until it reaches the end of the field,
indicated by a stop condition.

Below, we describe how to identify the direction fields in
these two cases.

Incrementing the pointer using arithmetic operations:
For the first case, the program performs an indirect mem-
ory access where the destination address has been computed
from some tainted data. Thus, when we find an indirect
memory access that: 1) accesses a tainted memory position,
and 2) where the destination address has been computed
from tainted data (i.e., the base or index registers used to
compute the memory address were tainted), we mark all the
consecutive positions used to compute the destination ad-
dress as part of a length field. In addition, we mark the
smallest position in the destination address as the end of
target field. For example, in Figure 3 if the instruction is ac-
cessing positions 18-20, and the address of the smallest po-
sition (i.e., 18) was calculated using taint data coming from
positions 12-13, then we mark position 12 as the start of a
direction field with length 2, and position 18 as the end of
the target field. If a direction field is used to access multiple
positions in the buffer, we only record the smallest position
being accessed. For example, if we have already found the
length field in Figure 3 directs to position 18, and it appears

5

G E T

Separator

/ H T T P / 1 . 1 \r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Positions

\n

15

Sep.Method Sep.URL Version

Figure 2: Simple HTTP GET query. When the program moves or operates on the input data, the destination gets tainted
with the original offset position of the input data.

again in an indirect memory access to position 27, we still
consider the end of the target field to be position 18.

Incrementing the pointer using a loop: For the second
case, since the pointer increment is not tainted (i.e., it is
a constant) then the previous approach does not work. In
this case we assume that the stop condition for the pointer
increment is calculated using a loop. Thus, we look for
loops in the trace that have a tainted condition.

Our loop detection component extracts the loops present
in the execution trace. For this, we search for sections of re-
peated code that include a backwards jump, that is, a jump
to a lower instruction pointer. After extracting the loops we
check if the loop stop condition is generated from tainted
data, if so we flag the loop as tainted. Every time the pro-
gram uses a new position, we check if the closest loop was
tainted. If so, we flag a direction field.

Our techniques are not complete because there are other
possibilities in which a program can indirectly increment
the pointer, for example using switch statements or condi-
tionals. But, these are hardly used since the number of con-
ditions could potentially grow very large, up to maximum
value of the direction field. We plan to incorporate support
for other types of indirect increments in the future.

Variable-length fields: Direction fields are normally used
to locate the end of the target field, since the target field usu-
ally has variable length. To determine the start of the target
variable-length field, without assuming any field encoding,
we use the following approach. Direction fields need to ap-
pear before their target field, so they can be used to skip
it. Most often, as mentioned in [18] they precede the tar-
get field in the field sequence. After we locate a direction
field, we consider that the sequence of bytes between the
last position belonging to the direction field and the end of
the target field, corresponds to a variable length field. For
example, in Figure 3, when the length field at positions 12-
13 is used to access positions 18-20, we identify everything
in between (i.e., 14-17) to be a variable-length field. Thus,
if a fixed-length field follows the variable length field and
it is not used by the program either because the field is not
needed or not supported by the program, then we will in-
clude the fixed-length field as part of the variable length
field.

Note that our approach detects direction fields by looking
at pointer increments and thus, it is independent of the en-
coding used in the direction field. In contrast, previous work

uses techniques for identifying length fields that assume the
length is encoded using some pre-defined encoding, such as
the number of bytes or words in the field [17, 18]. Thus,
those techniques would miss direction fields if they use
other encodings, which do not belong to the set of pre-
defined encodings being tested.

Pointer decrements: So far, we have described techniques
that consider only pointer increments. There are some types
of direction fields such as backward pointers, commonly
used in DNS replies, which are used to decrement a pointer
rather than increment it. Suppporting pointer decrements
would require modifying our techniques to account for tar-
get fields that have already been explored. We believe the
needed modifications to be small and plan to implement
them in the near future.

5 Separator and Keyword
Extraction

In this section we describe our techniques for identifying
separators and keywords.

5.1 Separator Extraction

5.1.1 What is a separator?

Separators are elements used by protocols to mark the
boundary of variable-length fields. Aseparatoris a pair of
two elements: 1) a constant value, and 2) a scope. The con-
stant value marks the boundary of the field, while the scope
contains a list of position sequences in the application data,
where the separator is used.

If the separator is used to separate fields, then it will have
to be compared against each byte in the application data and
its scope will be the position sequence that encompasses
all positions, from zero to the number of bytes received.
For example, in Figure 2 the Carrier-Return plus Line-Feed
(\r\n) sequence at positions 14 and 15 is a field separator,
and its scope would be 0 through 15. On the other hand,
the scope of an in-field separator, used to separate different
elements inside a field, will usually be the position sequence
where the field appears. For example, in Figure 2 the slash
character could be used to separate the HTTP keyword from
the version number, and its scope would be 6 through 13.

6

Protocols can have multiple separators, usually for differ-
ent scopes: one for message end, another for field end and
possibly various in-field separators. Also, sometimes mul-
tiple separators can be used at the same scope. For example
in HTTP both the space (0x20) and the tab (0x09) are in-
field separators, used in different fields to separate the field
name from the field data.

Separators are part of the protocol specification and are
known to the implementations of the protocol. They can be
used in binary, text or mixed protocols. For example sepa-
rators are used in HTTP which is mainly a text protocol and
also used in Samba which is mainly a binary protocol. Sep-
arators can be formed by one or more bytes. For example
HTTP uses Carrier Return plus Line Feed (0x0d0a) as field
separator, while Samba uses a null byte (0x00) to separate
dialect strings inside a Negotiate Protocol Request.

5.1.2 Techniques for identifying the separators:

To find the field boundaries, programs need to identify the
value and location of any separator that appears in the appli-
cation data. This is done by comparing the different bytes
received from the network against the separator values and
when a true comparison is seen, a field boundary has been
found1.

Clearly, not all true comparisons against constants are
separators. What distinguishes a separator from another
constant is that the separator needs to be compared against
most (usually all) the bytes in its scope. For example a
message separator would be compared against all bytes re-
ceived. The same applies to a field separator, but an in-field
separator would only be compared against the bytes in that
specific field. Since the scope of message and field sepa-
rators are the same, currently we cannot distinguish them.
We assume synchronous protocols to identify the message
boundaries.

To find the separators, we look for tokens that are com-
pared against consecutive positions in the stream of data.
Note that we do not require these comparisons to appear
in consecutive instructions, only in consecutive positions of
the buffer. That is, we do not require the program to per-
form a sequential scan of the buffer looking for the separa-
tor. This is more general since a program could for example
scan backwards to find an in-field separator.

Our concept of a comparison extends to multiple instruc-
tions that compilers use to compare operands. In addition to
normal comparison operations, we also include substraction
operations, string comparisons and some operations that
compilers use to cheaply compare if an operand has zero
value, such as performing a logical AND operation with it-
self using a test instruction.

Currently, we identify separators in a three-step process:
First, we generate a summary of all the program’s compar-
isons involving tainted data. Then, we use this summary to
extract byte-long separator values. Finally, we extend sep-

1If the data contains the separator value, escape sequences can be used.

X XXXXXX

X

X

X

XXX

0x47 (G)

0x45 (E)

0x54 (T)

0x2f (/)

0x0a (\n)

6543210

Offset Positions

Tokens

Figure 4: Token table. Each entry in the tokens-at-position
table represents one column of the token table. Each entry
in token-series represents one row of the token table.

arator bytes into multi-byte separators, if needed. We now
explain these three steps in detail.

1) Generating the token tables: The first step is to extract
a summary of all the programs’s comparisons. This sum-
mary is shown in Figure 4 as a conceptualtoken table, that
displays the comparisons performed by the Apache web-
server on the first 7 bytes of a HTTP GET request. The
rows represent token values that appear in comparisons and
the columns represent positions in the application data. A
token is a byte-long value. An X in the table means that
the token from that row was compared, at some point in the
program, against the positions from that column.

We implement this conceptual token table using two hash
tables: thetokens-at-positiontable and thetoken-seriesta-
ble. The token-series table contains for each token, all the
buffer positions to which the token was compared, thus each
entry corresponds to a row of the token table. The tokens-
at-position table contains for each buffer position, the or-
dered list of tokens that it was compared against, thus each
entry corresponds to a row of the token table. The tokens-
at-position and the token-series tables are also used in the
keyword extraction module.

To populate the tables, we scan the execution trace and
for each comparison found that involves at least a tainted
byte, we update the tables with the token, the position, the
value it was compared against, and the result of the compar-
ison.

2) Extracting byte-long separators: Our intuition is that
any comparison between a tainted byte and a non-tainted
byte, can potentially denote a separator. Thus we scan the
token-series table and for each token, we extract the list of
consecutive buffer positions it was compared with. We re-
quire a minimum series length of three, to avoid spurious
comparisons. We also require the token to appear in at least
one position in the series to avoid easy obfuscation by gen-
erating innocuous comparisons. The output of this phase
is a list of byte-long separators with the associated context
(i.e., positions) where they are used.

3) Extending separators: When a separator value con-
sists of multiple bytes, such as the field separator in HTTP
(0x0d0a), the program can use different ways to find it, such
as searching for the complete separator, or only searching

7

for one separator byte and when it finds it, checking if the
remaining separator bytes are also present. Thus, in our
previous phase we might have identified only one byte of
the separator or all the bytes but as independent byte-long
separators.

In this last phase, we try to extend each candidate sepa-
rator. For each appearance of the byte-long separator in its
context, we check the value of the predecessor and succes-
sor positions in the application data. If the same value al-
ways precedes (or succeeds) the byte-long separator being
analyzed, and the program performs a comparison against
that value, then we extend the separator to include that
value. We do not extend byte-long separators that appear
less than a minimum number of times in the session data
(currently four) to avoid incorrectly extending a separator.
Also, we don’t extend any separator beyond a maximum
length (currently four), since long separators are uncom-
mon.

Note that our approach does not assume any separator
value. Thus, we can potentially support any unknown pro-
tocol that uses separators. This is in contrast to previous
work that assumes the separators to be white space, tab or
any non-printable byte [17].

Multiple valid separators for the same scope: Proto-
cols might use multiple separators for the same scope. For
example, HTTP allows both space and tab as valid separa-
tors in the Status-Line. Thus, in Figure 2 any of the spaces
at offsets 3 and 5 could be replaced by a tab. Note that,
even if multiple separators are allowed, the application re-
ceiving the message does not know apriori which separa-
tor was used and therefore it needs to compare the received
data against each of the valid separators in the context. This
presents us with a trade-off. As explained in step 2 above,
we require a token to appear in at least one position in the
sequence of comparisons before marking it as a byte-long
separator. This helps to avoid easy obfuscation by gener-
ating innocuous comparisons, but it does not allow us to
detect other valid separators in the context if they are not
present in the message. Thus, currently our default behav-
ior favors robustness against obfuscation, but we allow the
analyst to manually change this default behavior to allow
detection of other separators not present in the message.

5.2 Keyword Extraction

5.2.1 What is a keyword?

We have defined keywords to be protocol constants that ap-
pear in the received application data. As explained in Sec-
tion 2, in this work, we do not attempt to extractall proto-
col constants, since there are constants, such as the maxi-
mum length of a field, that never appear in the application
data. The problem is to extract thesubsetof all protocol
constants, that are 1) supported by the implementation, and
2) present in the application data received by the program.
Thus, we want to identify which segments of the applica-
tion data correspond to protocol keywords supported by the

implementation. In the near future, we plan to combine our
dynamic approach with additional static analysis to locate
other protocol constants that do not appear in the applica-
tion data.

Any protocol, whether text-encoded, binary-encoded or
mixed can use keywords. Keywords can be strings (i.e., the
HTTP Hostfield name) or numbers (i.e., the version in the
IP header). One can be misled to think that in text-encoded
protocols, keyword extraction is trivial, but given the dif-
ferent text encodings and the problem of distinguishing a
keyword from other data (i.e., user or session data), this is
not commonly so.

5.2.2 Techniques for identifying the keywords:

Keywords are known a priori by the protocol implemen-
tations. Thus, when application data arrives, the program
compares the keywords against the received application
data. Our intuition is that one can locate the protocol con-
stants present in the session data by following thetrue com-
parisonsbetween tainted and untainted data.

The keyword extraction process is comprised of two
phases. The first phase is identical to the first phase of the
separator extraction module, that is, to populate the tokens-
at-position and token-sequences tables. The second phase
differs in that it focuses on the true comparisons, rather than
all the comparisons. It consists of exploring, in ascending
order, each position in the tokens-at-position table. For each
position, if we find a true comparison, then we concatenate
the non-tainted token to the current keyword. If no true
comparison was performed at that position, we store the
current keyword and start a new one at that position. We
also break the current keyword and start a new one if we
find a separator value in the middle of the keyword. Note
that our approach is general, in that it does not assume that
the multiple bytes that form the keyword appear together in
the code or that they are used sequentially.

In addition to protocol keywords, configuration informa-
tion such as DNS records, or HTML filenames can also be
seen when analyzing the true comparisons. To differentiate
between configuration information and protocol keywords,
we need to define file reads also to contain sensitive infor-
mation and thus data read from file also becomes tainted,
though with different taint origin, flow identifier and offset
values.

6 Fixed-length Field Extraction

In Sections 4 and 5.1 we have presented our techniques to
identify the boundaries of variable-length fields. In this Sec-
tion we present our techniques to identify the boundaries of
fixed-length fields. As defined in Section 2, a field is a con-
tiguous sequence of application data with some meaning.
As such, programs take decisions based on the value of the
field as a whole. Thus, when a field is composed of mul-
tiple bytes, those multiple bytes need to be used together,

8

forming a semantic unit that can be used in arithmetic oper-
ations, comparisons or other instructions. In addition, most
fields are independent of other fields, so bytes belonging to
different fields rarely are used in the same instruction. The
exception to this rule are special relationships such as length
fields, pointer fields or checksums.

Our approach for identifying multiple bytes belonging to
the same field is the following. Initially, we consider each
byte received from the network as independent. Then, for
each instruction, we extract the list of positions that the taint
data involved in the instruction comes from. Next, we check
for special relationships among bytes, specifically in this
paper we check for direction fields, using the techniques
explained in Section 4.1. If no direction field is found, then
we create a new fixed field that encompasses those posi-
tions. For example if an instruction uses tainted data from
positions 12-14 and those positions currently do not belong
to a length field, then we create a fixed field that starts at
position 12 and has length 3.

If a later instruction shows a sequence of consecutive
tainted positions that overlaps with a previously defined
field, then we extend the previously defined field to encom-
pass the newly found bytes. One limitation is that fixed-
length fields longer than the system’s word size (four bytes
for 32-bit architectures, eight for 64-bit architectures)can-
not be found, unless different instructions overlap on their
use. Note that fields larger than 4 bytes are usually avoided
for this same reason, since most systems have 32-bit archi-
tectures where longer fields need several instructions to be
handled. For fields longer than 4 bytes, our message for-
mat truncates them into four-byte chunks. Note that this
does not affect variable-length fields which are identified
by finding the separators and the direction fields.

Even with this limitation, our approach is an improve-
ment over previous work [17], where each binary-encoded
byte is considered a separate field. Using that approach,
two consecutive fixed-length fields, each of length 4 bytes,
would be considered to be 8 consecutive byte-long fixed-
length fields.

7 Evaluation

In this section we present the evaluation results of our
system. We have evaluated our system extensively using
11 different programs implementing 5 different protocols
(HTTP, DNS, IRC, ICQ and Samba) as shown in Table 2.
Most of the binaries analyzed are Windows servers but we
also include one ICQ client and a Samba server running on
Linux Fedora Core 5, to show that our system can poten-
tially work on any IA-32 binary. The test suite shows that
our approach can handle real protocols and real size pro-
grams, such as Apache, Bind and Samba.

The protocols under study include difficult-to-find ele-
ments such as length fields, pointer fields, and separators,
and we compare our results, obtained with no protocol
knowledge, with the manually crafted message formats in-

Program Version Type Size
Apache 2.2.4 HTTP server (Win) 4,344kB
Miniweb 0.8.1 HTTP server (Win) 528kB
Savant 3.1 HTTP server (Win) 280kB
Bind 9.3.4 DNS server (Win) 224kB
MaraDNS 1.2.12.4 DNS server (Win) 164kB
SimpleDNS 4.00.06 DNS server (Win) 432kB
TinyICQ 1.2 ICQ client (Win) 11kB
Beware ircd 1.5.7 IRC server (Win) 148kB
JoinMe 1.41 IRC server (Win) 365kB
UnrealIRCd 3.2.6 IRC server (Win) 760kB
Sambad 3.0.24 Samba server (Lin) 3,580kB

Table 2: Different program binaries used in our evaluation.
The size represents the main executable if there are several.

cluded in Wireshark2 one of the state-of-the-art protocol an-
alyzers. The results show that we correctly identify most
field boundaries and that the differences are usually due to
different implementations handling fields in different ways.
Finding these differences between implementations is im-
portant for problems such as fingerprint generation, fuzzing,
and error detection.

7.1 Message Format Results

Protocols are comprised of many different messages. For
each protocol under study, we select one representative
message and capture an execution trace while the program
processes that message. We now present the results of ex-
tracting the message format for the different messages.

DNS query: The session under study is composed of two
messages: a DNS query and a DNS reply. The query is the
same for all three servers. It requests the IP address of the
hostwww.example.netand we analyze how the request is
parsed by each DNS server. Figure 5 shows the message
format obtained from each server compared to the one from
Wireshark, shown on the left.

The results show that we correctly identify the message
format including length fields and variable fields. The word
’Unused’ in the figure indicates that there was no operation,
other than moves, performed by the program on those spe-
cific bytes. For example, we see that Bind does not perform
any check on the Identification (ID) field. Since any 16-bit
value is allowed for ID, Bind can move the field directly
into the data structure used to construct the reply, with no
further operation. Also, SimpleDNS operates on the To-
tal Queries field but it ignores the Total Answers, Author-
ity and Additional fields. This behavior is fine since those
fields are not used in the request, though it does not allow to
detect malformed requests that set those fields to values dif-
ferent than zero. Knowledge about differences between im-
plementations of the same protocol, such as unused fields,
is important for applications like fingerprint generation and
error detection.

2Previously known as Ethereal

9

Identification: Fixed

Flags: Fixed/SubByte

Total Questions: Fixed

Total Answers: Fixed

Total Additional: Fixed

Label length: Fixed

Label: Variable [7]

“example”

Label length: Fixed

Label: Variable [3]

“net”
0

Type: Fixed

Class: Fixed

Header

Query
Name

Unused

Fixed

Fixed

Fixed

Fixed

Direction

Variable

Direction

Variable

Fixed

Fixed

Fixed

Wireshark 0.99.5

Total Authority: Fixed Fixed

Bind 9.3.4

Fixed

Fixed

Fixed

Fixed

Fixed

Direction

Variable

Direction

Variable

Fixed

Fixed

Fixed

Fixed

Mara DNS 1.2.12.04

Fixed

Fixed

Fixed

Unused

Unused

Direction

Variable

Direction

Variable

Fixed

Fixed

Fixed

SimpleDNS 4.00.06

Fixed

Unused

0

2

4

6

8

10

12
13

20
21

24

27

25

Figure 5: Message format extracted from a DNS query sent to all three DNS servers. On the left we present the message
format from Wireshark.

DNS query using pointer: DNS allows using a com-
pression scheme which eliminates the repetition of domain
names in a message. An entire domain name or a list of la-
bels at the end of a domain name is replaced with a pointer
to another occurance of the same name [27]. To verify the
detection of an pointer field, we create a DNS query with
a forward pointer, So the first name iswww and a pointer
to the next name, which holds the valueexample.net. The
complete query iswww.example.net. This type of forward
pointer is only allowed by the SimpleDNS server. The re-
sults show that the pointer field and the length fields are
properly identified, the rest of the fields are similar to the
standard DNS query above. For brevity, the message for-
mat is shown in Figure 8 in Appendix B.2.

ICQ login: The session under study is a login session,
where the client sends a fake username and password to the
server, and the server replies denying the session. We ex-
tract the field format from the reply sent by the server.

Again, we properly identify the direction fields. The
main difference with the DNS results is that there are some
unused fixed-length fields following the variable-length
fields, and those fixed-length fields are incorrectly merged
into the variable-length one. This happens because the ICQ
client is adding a constant of value 2 to the value of the
length field to skip both the follow-up variable-length target
field and the unused field simultaneously. This shows that
our techniques are able to identify the pointer increments
but are not currently able to describe how the increment
was derived from the direction field value, which would be
needed to observe that a constant of value two was added
to the length field. For brevity, the message format is pre-
sented in Figure 7 in Appendix B.1 and it shows the Value
ID fields being merged with the variable-length Field Data
fields preceding them.

HTTP GET query: The session under study is a HTTP
GET request for theindex.htmlwebpage and it correspond-

Separator Apache Savant Miniweb
0x0d0a (’CRLF’) field field field
0x2f (’/’) in-field in-field -
0x2e (’.’) in-field in-field in-field
0x20 (’ ’) - in-field in-field
0x3a20 (’: ’) in-field - -

Table 3: Separators extracted from an HTTP GET request
sent to all three HTTP servers.

ing reply. We analyze the GET request. So far, we have
shown the message format for protocols that use direction
fields to mark the boundary of variable-length fields. But,
separators can also be used to mark those boundaries.

Table 3 shows the results from the separator extraction
module for the three HTTP servers. The HTTP GET request
used, includes several separators but does not include any
direction fields. Thus, the message format is determined by
the location of the separators. Each row represents a separa-
tor value, shown both in hexadecimal and ASCII, and each
table entry states if the field was used or not by the server.
For brevity, rather than the full scope (i.e., all sequences
where it appeared), we show a tag with values field/in-field
to indicate the scope of the separator.

The results show that the three servers use a similar set of
separators. For all three servers, the field separator has been
properly expanded to two bytes (0x0d0a). The space char-
acter (0x20), or semicolon and space for Apache, is used
to parse the fields, separating the field name from the field
data. Another separator is the dot character (0x2e), used to
find the file extension in all three servers, plus being used
by Apache to parse the IP address in theHostfield. Finally,
Apache and Savant use the slash character (0x2f) to find the
beginning of the path in the URL.

Samba negotiate protocol request: The session under
study is a Sambanegotiate protocolrequest and its cor-

10

Name: Variable [14]

Message Type: Fixed

Length: Length

Server Component: Fixed

NetBios

Samba

Wireshark 0.99.5

Command: Fixed

NT Status: Fixed

Flags: Fixed

Flags2: Fixed

Process ID High: Fixed

Signature: Fixed

Reserved: Fixed

Tree ID: Fixed

Process ID: Fixed

User ID: Fixed

Multiplex ID: Fixed

Word Count: Length

Requested Dialects: Variable

[144]

Byte Count: Length

Fixed

Fixed

Fixed

Samba 3.0.24

Fixed

Unused

Fixed

Fixed

Unused

Fixed

Unused

Requested Dialects: Variable

[144]

Direction

Name: Variable [23]

Name: Variable [24]

Name: Variable [23]

Name: Variable [10]

Wireshark 0.99.5

Name: Variable [10]

Name: Variable [6]

Name: Variable [14]

Name: Variable [11]

Samba 3.0.24

0

1

4

8
9

13
14

16

18

26

28

30

32

34

36
37

39

39
40

63
64

88
89

112
113

123
124

134

135

149
150

156
157

172
171

182

Name: Variable [13]

Variable [22]

Name: Variable [23]

Name: Variable [22]

Name: Variable [9]

Name: Variable [9]

Name: Variable [5]

Name: Variable [13]

Name: Variable [10]

Requested
Dialecs

Buffer Format: Fixed

Buffer Format: Fixed

Buffer Format: Fixed

Buffer Format: Fixed

Buffer Format: Fixed

Buffer Format: Fixed

Buffer Format: Fixed

Buffer Format: Fixed

Buffer Format: Fixed

Separator

Separator
Unused

Unused
Separator

Unused
Separator

Unused
Separator

Unused
Separator

Unused
Separator

Unused
Separator

Unused
Separator

Unused

Figure 6: Message format extracted from a Samba negotiate protocol request. On the left we present the message format
from Wireshark.

responding reply. We analyze the request. So far, the
extracted message format have used either only direction
fields or only separators to mark the boundary of variable-
length fields. The Samba negotiate protocol request uses
both. It uses length fields to mark the end of the Samba re-
quest, and the null byte (0x00) to mark the end of variable-
length strings. Figure 6 shows the results, after both sepa-
rators and direction fields have been extracted. On the left
is the message format while on the right we zoom into the
requested dialectsfield which uses the separators.

The message format shows both theSamba word count
andbyte count(near the bottom) combined together into a
single direction field. This is because the server uses both
fields simultaneously to establish the total length of the re-
quest (2*wordCount + byteCount). The Netbios length field
near the top is reported as a fixed-length field because al-
though the server combines the two bytes of the field into a
two-byte field, it does not uses the resulting field. Instead,
it uses the Samba word count and byte count fields to iden-
tify the end of the Samba request. In the requested dialects
field, we can see the separators being used at the end of each
string, and that the Samba server ignores the one byte field
describing the type of each string (i.e., the buffer format).

7.2 Keyword Results

We now present the keyword extraction results. Table 4
shows the keywords found in the same HTTP GET request
used in the separator’s results. An entry with valueYes
means that the keyword was found at the proper position,
while an entry with valueNSmeans that the keyword was
not found because the server in its default configuration
does not support those keywords. Thus, the server in other

configurations, for example when loading different modules
in Apache, might support those keywords.

The results show no missing supported keywords. They
also show some instances, where there is a partial keyword
match (shown with the partial keyword in the table entry).
This happens because there might be two keywords that
start the same. Thus, when the server compares the received
keyword, with its set of supported keywords, it will obtain a
sequence of true comparisons up to the first difference, and
that sequence of true comparisons is output by our module
as a partial match. For example, Savant supports theAccept
andAccept-Languagefields but not theAccept-Encodingor
Accept-Charset fields. For the unsupported fields, there is a
partial match withAccept. Note that these partial keywords
still mark protocol-dependant data in the message.

Table 5 shows additional keywords, with the number of
occurrences in parenthesis, that were found in the HTTP
GET query. It includes the HTTP version and anotherKeep-
Alivekeyword, which is different from the one shown in Ta-
ble 4. This one is the field data for theConnectionfield in
Table 4. We obtained similar results for an IRC login re-
quest. An interested reader can find them in Appendix B.3.

8 Related Work

We divide the Related Work into groups dealing with proto-
col reverse engineering, other work related to protocol mes-
sage format extraction, and dynamic taint analysis applica-
tions.

Protocol Reverse-engineering: Successful protocol re-
versing projects have so far relied on manual techniques,
which are slow and costly [4, 1, 3, 7, 2]. Our work pro-

11

Keyword Apache Savant Miniweb
GET Yes Yes Yes
Host Yes NS Yes
User-Agent NS Yes NS
Accept Yes Yes NS
Accept-Language Accept Yes NS
Accept-Encoding Accept- Accept- NS
Accept-Charset Accept- Accept- NS
Keep-Alive NS NS NS
Connection Yes Yes Yes

Table 4: Keywords present in a HTTP GET query sent to
all three HTTP servers and whether they were properly ex-
tracted by our system.

Server Additional keywords found
Apache ’HTTP/’ (1); ’e’ (1) ; ’Keep-Alive’ (1)
Savant ’HTTP/1.’ (1); ’Keep-Alive’ (1); ’:’ (4)
Miniweb N/A

Table 5: Additional keywords in the HTTP GET query.

vides new automatic techniques that can be used to reduce
the cost and time associated with these projects.

Lim et al [24] addressed the problem of automatically
extracting the format from files and application data out-
put by a program using binaries. Their approach needs the
user to identify the output functions and their corresponding
parameters. This information is rarely available. Our ap-
proach differs in that we do not require any a priori knowl-
edge about the program, only the program binary.

Reverse engineering a protocol strictly from network
traces was first addressed in the Protocol Informatics
Project [9] that used sequence alignment algorithms. Re-
cently, Cui et al [17] have also proposed a method to derive
the message format strictly from application data. Our ap-
proach leverages the availability of a protocol implementa-
tion, and monitors the program’s processing of the network
input.

Additional work on protocol message format: There
has been additional work that can be used in the proto-
col reverse-engineering problem. Kannan et al [22] studied
how to extract the application-level structure in application
data. Their work can be used to find multiple connections
belonging to the same protocol session.

Application dialogue replayers [18, 23, 30], aim to replay
an original protocol session involving two hosts, to a third
host that did not participate in the original session. These
tools need to update user or session dependant information
in the protocol session. Thus, they may effectively extracta
partial session description.

Ma et al [25] use a network-based approach for automati-
cally identifying traffic that uses the same application-layer
protocol, without relying on the port number. Their ap-
proach extracts a partial session description from the first

64 bytes of the session data. In addition, protocol ana-
lyzers have been widely used in network security [8, 6].
Since many protocols exist and their specification is some-
times complex, there have been languages and parsers pro-
posed for simplifying the specification of network proto-
cols [10, 16, 33].

Dynamic Taint Analysis: Previous work has used dy-
namic taint analysis to tackle problems such as: exploit de-
tection [13, 15, 28, 35], worm containment [14, 34], signa-
ture generation [29], and cross-site scripting detection [36].
We propose to use dynamic taint analysis as a technique to
understand how a program processes the received applica-
tion data.

9 Discussion

In this section we discuss the limitations of our approach
and how we plan to address them in the future.

Input messages: One fundamental limitation is that we
can only obtain the format from the messages given to our
analysis. If some messages never appear, we know nothing
about them. We plan to incorporate static analysis to our
dynamic analysis techniques to deal with this limitation.

Other field format attributes: Currently, our field de-
scription only captures a few field attributes. Other at-
tributes such as the field data type (e.g., integer/string),or
the field encoding (e.g., big-endian / litte-endian or ASCII/
EBDIC / Unicode) are currently not extracted. Also, some
field properties such as whether a field is floating, that is, if
it can appear in any order in the field sequence, that require
analyzing multiple message formats simultaneoulsy are left
up to the analyst. Finally, our analysis works on byte gran-
ularity. Thus, currently we are not able to distinguish fields
shorter than one byte, such as flags fields.

Field semantics: Our system provides limited descrip-
tion about how fields are used. We identify direction fields
but we do not identify other field uses such as timestamps,
checksums or addresses. We expect to be able to extract
more complete semantic information about fields by using
symbolic execution to understand the way the program han-
dles them.

Message boundaries: In this paper, we have focus on
finding the field boundaries in a message, assuming a syn-
chronous protocol, which helps us to identify the message
boundaries. But sessions can contain multiple messages, so
we need to identify the message boundaries as well. We
hope to address the problem of identifying message bound-
aries in future work.

Robustness against obfuscation:Although we have tried
to keep our analysis as general as possible, currently, our
techniques are not fully resistant against obfuscation. Thus,
a protocol architect determined to hide her protocol mes-
sage format might be able to do so. We plan to study tech-
niques more robust against obfuscation in future work.

12

10 Conclusion

In this paper we have proposed a new approach for protocol
reverse engineering by using dynamic analysis of program
binaries implementing a protocol. Compared to previous
work that uses only network traces [17], our approach can
extract more accurate information because the program bi-
nary contains richer protocol semantics.

Our approach,shadowing, is based on the intuition that
the way that an implementation of the protocol processes
the received application data reveals a wealth of data about
the protocol message format. To extract the message for-
mat from the different messages that comprise a protocol
we have developed new techniques for identifying difficult-
to-find protocol elements such as direction fields, separa-
tors, multi-byte fixed-length fields and keywords. Our tech-
niques are more general than previously proposed ones, and
allow us to extract more refined message formats.

We have implemented our approach in a system called
Polyglot and evaluated it over real world implementations
of five different protocols: DNS, HTTP, IRC, Samba and
ICQ. Our results show accurate message format with mini-
mal differences compared to the manually crafted formats
in a state-of-the-art protocol analyzer. The minimal dif-
ferences we find are usually due to different implementa-
tions handling fields in different ways. Finding such differ-
ences between implementations is an added benefit, as they
are important for problems such as fingerprint generation,
fuzzing, and error detection.

11 Acknowledgements

We would like to thank all members of the BitBlaze group
for helpful discussions. We would also like to thank
Christopher Kruegel, Weidong Cui, and the anonymous re-
viewers for their help to improve this paper.

References

[1] How Samba Was Written.
http://samba.org/ftp/tridge/misc/frenchcafe.txt.

[2] Icqlib: The ICQ Library.
http://kicq.sourceforge.net/icqlib.shtml.

[3] Libyahoo2: A C Library for Yahoo! Messenger.
http://libyahoo2.sourceforge.net.

[4] MSN Messenger Protocol.
http://www.hypothetic.org/docs/msn/index.php.

[5] Qemu: Open Source Processor Emulator.
http://fabrice.bellard.free.fr/qemu/.

[6] Tcpdump. http://www.tcpdump.org/.

[7] The UnOfficial AIM/OSCAR Protocol Specification.
http://www.oilcan.org/oscar/.

[8] Wireshark, Network Protocol Analyzer.
http://www.wireshark.org.

[9] M. A. Beddoe. Network Protocol Anal-
ysis Using Bioinformatics Algorithms.
http://www.baselineresearch.net/PI/.

[10] N. Borisov, D. J. Brumley, H. J. Wang, and C. Guo.
Generic Application-Level Protocol Analyzer and Its
Language.Network and Distributed System Security
Symposium,San Diego, CA, February 2007.

[11] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and
D. Song. Towards Automatic Discovery of Deviations
in Binary Implementations with Applications to Error
Detection and Fingerprint Generation.USENIX Secu-
rity Symposium,Boston, MA, August 2007.

[12] J. Caballero, S. Venkataraman, P. Poosankam, M. G.
Kang, D. Song, and A. Blum. FiG: Automatic Fin-
gerprint Generation.Network and Distributed System
Security Symposium,San Diego, CA, February 2007.

[13] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M.
Rosenblum. Understanding Data Lifetime Via Whole
System Simulation. USENIX Security Symposium,
San Diego, CA, August 2004.

[14] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L.
Zhou, L. Zhang, and P. Barham. Vigilante: End-to-
End Containment of Internet Worms.Symposium on
Operating Systems Principles,Brighton, United King-
dom, October 2005.

[15] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos: Ar-
chitectural Support for Protecting Control Data.ACM
Transactions on Architecture and Code Optimization,
December 2006.

[16] D. Crocker and P. Overell. Augmented BNF for Syn-
tax Specifications: ABNF. RFC 4234 (Draft Stan-
dard), 4234, October 2005.

[17] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Auto-
matic Protocol Description Generation from Network
Traces. USENIX Security Symposium,Boston, MA,
August 2007.

[18] W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz.
Protocol-Independent Adaptive Replay of Application
Dialog. Network and Distributed System Security
Symposium,San Diego, CA, February 2006.

[19] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R.
Sommer. Dynamic Application-Layer Protocol Anal-
ysis for Network Intrusion Detection.USENIX Secu-
rity Symposium,Vancouver, Canada, July 2006.

[20] C. D. Grosso, G. Antoniol, M. D. Penta, P. Galinier,
and E. Merlo. Improving Network Applications Se-
curity: A New Heuristic to Generate Stress Testing

13

Data.Genetic and Evolutionary Computation Confer-
ence,June 2005.

[21] P. Haffner, S. Sen, O. Spatscheck, and D. Wang.
ACAS: Automated Construction of Application Sig-
natures.ACM SIGCOMM, Workshop on Mining net-
work data,Philadelphia, PA, October 2005.

[22] J. Kannan, J. Jung, V. Paxson, and C. E. Koksal.
Semi-Automated Discovery of Application Session
Structure. Internet Measurement Conference,Rio de
Janeiro, Brazil, October 2006.

[23] C. Leita, K. Mermoud, and M. Dacier. ScriptGen:
An Automated Script Generation Tool for Honeyd.
Annual Computer Security Applications Conference,
Tucson, AZ, December 2005.

[24] J. Lim, T. Reps, and B. Liblit. Extracting Output For-
mats from Executables.Working Conference on Re-
verse Engineering,Benevento, Italy, October 2006.

[25] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and
G. M. Voelker. Unexpected Means of Protocol In-
ference. Internet Measurement Conference,Rio de
Janeiro, Brazil, October 2006.

[26] P. McMinn, M. Harman, D. Binkley, and P. Tonella.
The Species Per Path Approach to SearchBased Test
Data Generation.International Symposium on Soft-
ware Testing and Analysis,July 2006.

[27] P. V. Mockapetris. Domain Names - Implementation
and Specification. RFC 1035 (Standard), IETF Re-
quest for Comments 1035, November 1987.

[28] J. Newsome and D. Song. Dynamic Taint Anal-
ysis for Automatic Detection, Analysis, and Signa-
ture Generation of Exploits on Commodity Software.
Network and Distributed System Security Symposium,
San Diego, CA, February 2005.

[29] J. Newsome, D. Brumley, and D. Song. Vulnerability-
Specific Execution Filtering for Exploit Prevention on
Commodity Software.Network and Distributed Sys-
tem Security Symposium,San Diego, CA, February
2006.

[30] J. Newsome, D. Brumley, J. Franklin, and D. Song.
Replayer: Automatic Protocol Replay By Binary
Analysis. ACM Conference on Computer and Com-
munications Security,Alexandria, VA, October 2006.

[31] P. Oehlert. Violating Assumptions with Fuzzing.IEEE
Security and Privacy,3(2), March 2005.

[32] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson,
and B. Tierney. A First Look At Modern Enterprise
Traffic. Internet Measurement Conference,Berkeley,
CA, October 2005.

[33] R. Pang, V. Paxson, R. Sommer, and L. Peterson. Bin-
pac: A Yacc for Writing Application Protocol Parsers.
Internet Measurement Conference,Rio de Janeiro,
Brazil, October 2006.

[34] G. Portokalidis, A. Slowinska, and H. Bos. Argos: An
Emulator for Fingerprinting Zero-Day Attacks for Ad-
vertised Honeypots with Automatic Signature Genera-
tion. ACM SIGOPS Operating Systems Review,40(4),
October 2006.

[35] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure Program Execution Via Dynamic Information
Flow Tracking.International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems,Boston, MA, October 2004.

[36] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C.
Kruegel, and G. Vigna. Cross-Site Scripting Preven-
tion with Dynamic Data Tainting and Static Analysis.
Network and Distributed System Security Symposium,
San Diego, CA, February 2007.

[37] H. Yin, D. Song, E. Manuel, C. Kruegel, and E.
Kirda. Panorama: Capturing System-Wide Informa-
tion Flow for Malware Detection and Analysis.ACM
Conference on Computer and Communications Secu-
rity, Alexandria, VA, October 2007.

A Monitoring the Execution

We implement the execution monitor using an emulator [5].
Executing a program inside an emulator allows us to mon-
itor the internal execution of the program and the in-
put/output operations it performs. The emulator has been
enhanced to supportdynamic taint analysis[13, 14, 15, 28,
34, 35]. In dynamic taint analyisis, input data that is consid-
ered important is marked (i.e., tainted) when it is received
and any instruction that operates on some of the tainted data
(e.g., moving it to another location or performing an arith-
metic or logical operation), propagates the taint information
to the destination operand.

For our purposes, we taint any information received by
the program from the network. Specifically, each input byte
is assigned ataint recordthat contains a flag to indicate that
it came from the network, some connection identifier, and
the position of that byte in the application data. Each lo-
cation, including memory, register and disk is assigned a
shadow memory, which is used to store the taint records
of the input bytes that the data in that location was gen-
erated from. As the program moves the input tainted data
to new locations, and performs operations on it, the shadow
memory for the destination location is updated with the taint
records of the input bytes it was generated from. This taint
propagation includes all instructions performed by the pro-
gram or any library that the program uses, including system
libraries and dynamically loaded libraries such as dll’s.

14

In addition to the taint data, the emulator also collects
information about each instruction, including the contentof
the operands at the time the instruction is executed. This
data is written into the execution trace, which contains all
instructions executed by the program, the data they operated
on, and the associated taint information.

B Additional Results

B.1 ICQ Login

Field data: Variable [6]

Field length: Length

Unused

Fixed

Unused

Variable [8]

Variable [65]

Fixed

Fixed

Fixed

Unused

Direction

Direction

Fixed

Command Start: Fixed

Data Field Length: Length

Field data: Variable [63]

Field length: Length

Field data: Variable [2]

Value ID: Fixed

Field length: Length

Channel ID: Fixed

Sequence Number: Fixed

Protocol Version: Variable [4]

Command Start: Fixed
Channel ID: Fixed

Sequence Number: Fixed

Data Field Length: Length

Value ID: Fixed

Value ID: Fixed

Tiny ICQ 1.2Wireshark 0.99.5

New
Connection

Close
Connection

Unused

0
1

2

4

6

0

1
2

4

6

8

10

16

18

20

83

85

87

Figure 7: Message format extracted from an ICQ login ses-
sion compared to the one from Wireshark.

B.2 DNS Query with Pointer

B.3 IRC keywords

Tables 6 and 7 show the results from the keyword extrac-
tion module for an IRC login request. Note that thePONG
keyword was not present in the JoinMe trace, because it is
a reply to aPING request that is only sent based on the
server’s configuration.

Keyword Beware JoinMe Unreal
NICK Yes Yes Yes
USER Yes Yes Yes
PONG Yes N/A Yes

Table 6: Keywords present in a IRC login request and
whether they were properly extracted by our system.

Variable

Variable

Variable

Variable
Label: Variable [3]

“www”

Label: Variable [7]
“example”

Label: Variable [3]

“net”

Identification: Fixed

Flags: Fixed

Total Questions: Fixed

Total Answers: Fixed

Total Additional: Fixed

Label length: Fixed

Label pointer: Fixed

0

Type: Fixed

Class: Fixed

Header

Query
Name

Wireshark 0.99.5

Total Authority: Fixed

SimpleDNS 4.00.06

Type: Fixed

Class: Fixed

Label length: Fixed

Label length: Fixed

Fixed

Fixed

Unused

Unused

Direction

Direction

Direction

Fixed

Fixed

Direction

Unused

0

2

4

6

8

10

12

13

16

18

20

22

23

30
31

34

35

37

Figure 8: Message format extracted from an DNS query
containing a pointer field. This type of query is only sup-
ported by the SimpleDNS server.

Server Additional keywords found
Beware ’:’ (1); ’:1301071548’ (1)
JoinMe ’ ’ (2); ’ :’ (1)
Unreal ’e’ (1); ’:’ (1); ’:A’ (1);

’PROTOCTL’ (1); ’NAMESX’ (1)

Table 7: Additional keywords found in the IRC login re-
quest.

15

