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Abstract 1 Introduction

Protocol reverse engineering, the process of extractiag th
Protocol reverse engineering, the process of extractieg #pplication-level protocol used by an implementation with
application-level protocol used by an implementationhwit out access to the protocol specification, has become in-
out access to the protocol specification, is important fereasingly important for network security. Knowledge of
many network security applications. Recent work [17] hagplication-level protocol message format is essential fo
proposed protocol reverse engineering by using clusteri@ny network security applications, such as vulnerability
on network traces. That kind of approach is limited by théiscovery [11, 20, 26, 31], intrusion detection system$,[19
lack of semantic information on network traces. In this parotocol analyzers for network monitoring and signature-
per we propose a new approach using program binaries. Qaged filtering [10, 33], fingerprint generation [12], apai
approachshadowing uses dynamic analysis and is basefbn dialogue replay [18, 23, 30], detecting services ragni
on a unique intuition—the way that an implementation @ non-standard ports [25], and mapping traffic to applica-
the protocol processes the received application dataleevéians [21]. Many protocols in use, especially on the enter-
a wealth of information about the protocol message formgtise network [25, 32], are closed protocols (i.e., no pipli
We have implemented our approachin a system cétégt available protocol specification). Even for protocols with
glot and evaluated it extensively using real-world implex publicly available specification, certain implementasio
mentations of five different protocols: DNS, HTTP, IRCmay not exactly follow the specification. Protocol reverse
Samba and ICQ. We compare our results with the manuallygineering aims to extract the application-level protoco
crafted message format, included in Wireshark, one of th€ed by an implementation, without access to the protocol
state-of-the-art protocol analyzers. The differences ne fispecification. Thus, protocol reverse engineering is an in-
are small and usually due to differentimplementations hayaluable tool for the above network security applications.
dling fields in different ways. Finding such differences be- Currently, protocol reverse engineering is mostly a
tween implementations is an added benefit, as they are Hﬁl‘nstaking manual task. Attempts to reverse engineer
portant for problems such as fingerprintgeneration, fugzintssed protocols such as the MSN Messenger and Samba
and error detection. protocols from Microsoft [4, 1], the Yahoo Messenger pro-

tocol [3], or the OSCAR and ICQ protocols from AOL [7,

2], have all been long term efforts lasting many years. In ad-

- — ] dition, protocol reverse engineering is not a once-andedon
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work traces. The fundamental limitation of their approach
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Approach: In this paper we proposghadowing a new message, for example length fields and pointer fields, and
approach for automatic protocol reverse engineering. R)}-separatorsi.e., constant values that mark the boundary
stead of extracting protocol information purely from nef the field. Thus, we first need to locate those elements to
work traces, we leverage the availability of a program hidentify the field boundaries. Another challenge in extract
nary implementing the protocol. Compared to netwoikg the protocol message format is to identify fivetocol
traces, which only contain syntactic information, prograkeywords Keywords are protocol constants that appear in
binaries also contain semantic information about how thiee messages sent over the network. In this paper we present
program processes and operates on the protocol data. Int@chniques to address all these challenges.
dition, they are the main source of information about the To realize our shadowing approach, we have designed
implementatiorof a protocol. Thus, by extracting protocohnd implemented a system, calledlyglot Our system
information from the program binary implementing the pravorks on stripped binaries and does not require the avail-
tocol, rather than purely from network traces, our approaghility of source code or any debugging information in the
can be more accurate and provide richer information abaitiaries. We have extensively evaluated our approach using
the protocol and its implementation. We call our approaeleven implementations from five different protocols: DNS,
shadowingbecause we closely monitor the program asHTTP, IRC, Samba and ICQ. We have included both clients
processes an input. and servers working under Windows and Linux. The pro-
Given the program binary, we could extract protocol ifocols analyzed, include difficult to find elements such as
formation from it by using either static or dynamic analength fields, pointer fields, separators and keywords. We
ysis. Purely static analysis of binaries is difficult due t@mpare our results with the manually crafted message for-
challenges such as memory aliasing analysis or unresolfeaf, included in Wireshark, one of the state-of-the-art pro
indirect jumps. In this paper, we focus on using dynamiecol analyzers. The differences we find are small and usu-
analysis for automatic protocol reverse engineering. én tally due to differentimplementations handling fields in-dif
near future, we plan to extend our work to combine dynanfgyent ways. Finding these differences between implemen-
analysis with static analysis. tations is an added benefit, as they are important for prob-
IJpgs such as fuzzing [31], error detection [11] and finger-

Shadowing uses dynamic analysis and is based Ogrlntgeneration [12],

unigue intuition—the way that an implementation of th
protocol processes the received application data revealSamtributions: In summary, this paper makes the follow-
wealth of information about the protocol. In particular, bing contributions:

monitoring all the operations done by a program while pro-

cessing its input, we can extract the format of the received® New approach for extracting the protocol message
data. format using program binaries: We propose to use

] o a new paradigm calleshadowingo automatically ex-
Scope of the problem: Protocol reverse engineeringis a  tract the message format from some input application

complex task that involves extracting: 1) thetocol mes- data. Our approach is based on the intuition that ana-
sage formatwhich de_scnbes the message format for the |yzing how a program processes its input allows us to
messages that comprise the protocol, and 2ptheocol’s understand the format of the received data. This is in

state machinewhich specifies the protocol states and the ¢gntrast to previous techniques that try to infer proto-
transitions between states according to the messagesrsent 0 ¢g| information purely from network traces [17].
received. In this paper, we focus on extracting the protocol, New techniques for detecting direction fields: Di-
message format, because 1) it is a necessary step to extractyection fieldsare fields used to mark the boundary of
the protocol’s state machine, and 2) as we will show, itis  yariable-length fields, such as length fields or pointer
challenging enough in its own right. fields. Currently, the only available techniques to de-
Our approach to extract the protocol message format is tect some types of direction fields are the ones used
to process one message at a time and output the messagein [17, 18]. Those techniques are limited because they
format for each given message. Our problem is then to au- need to assume the encoding of the length field. We
tomatically extract the message format, when given as input propose the first techniques to detect direction fields,
a program binary implementing the protocol, and a mes- without making assumptions about the encoding used
sage received by that program. The main challenge to ex- by the direction field.
tract the message formatis to find the field boundariesin the New techniques for detecting separators: Separa-
message. Protocols include both fixed-length and variable- tors are constant values that can be used, instead of di-
length fields. The difficulty with fixed-length fields is to rection fields, to mark the boundary of variable-length
determine the boundary between consecutive fields to avoid fields. We propose what we believe are the first tech-

joining two fixed-length fields together or splitting a siag! nigues to discover separators using no prior assump-
fixed-length field into many. The difficulty with variable- tion about the separator values. Thus, our techniques
length fields is that protocols can use different elements to can handle unknown protocols that use separators, in-
mark the field boundary such asdijection fieldsthat store dependently of the separator value. In contrast, previ-

information about the location of another target field in the  ous work assumes separators can only be used in text



protocols and assume that separators only take a few | Attribute Value

predefined values such as white space or tab [17]. Field Start Start position in message
¢ Finding multi-byte fixed-length fields: We present a Field Length Fixed-size, Variable-size

method to find the boundary of multi-byte fixed-length | Field Boundary| Fixed, Direction, Separator

fields, by examining how the program groups together | Field Type Direction, Non-Direction

the input bytes. The intuition is that fields are semantic | Field Keywords| Position and value of the

units and thus programs need to use multi-byte fields field’s keywords

as a single unit. Even though our technique has limita- ) _ o
tions, it is still a significant improvement over previous ~ Table 1: Field format attributes used in this paper.
work, which cannot find boundaries between consec-
utive binary fields, and thus have to assume that eagépicts the different protocol states and the transitians b
byte that shows binary encoding is a separate field [1&}een states according to the messages sent or received. As
» New techniques for extracting protocol keywords: explained in Section 1, in this paper we focus on extract-
Current techniques for extracting keywords find proténg the protocol message format and leave the study of the
col keywords by looking for tokens that occur repeaprotocol’s state machine for future work.
edly at the same position in multiple messages [17,The protocol message formag the set of the protocol’s
21, 25]. In contrast, our techniques extract the kejhessage formatsvhere a message format is a sequence of
words present on a single message. Thus, previgiésd formas and a field format is a group of attribute-value
work might miss keywords which appear in differengairs.
positions across multiple messages (e.g., in HTTP).Our approach to extract the protocol message format is
Our solution would still identify the keywords in eacho process one message at a time and output the message
message and the different locations where they occ@érmat for the given message. We assume synchronous pro-
. . . tocols to identify the message boundaries. In this paper,
~ The remainder of the paper is organized as follows. S¢¢s consider five pivotal attributes in the field format: the
tion 2 defines our problem. In Section 3 we describe the gpqq start position in the message, the field length, the field
proach and system architecture. Then, in Sections 4-6 §ndary, the field type and the field keywords. Table 1
present our techniques to find the field boundaries and thg,ys these five attributes. The field start attribute captur
protocol keywords. We evaluate our system in Section 7 ajpg position of the field in the given message. The field
summarize related work in Section 8. Finally, we preseghgih attribute states if the field has a fixed length (and the
future work in Section 9 and conclude in Section 10. ¢4 responding value) or if it has variable length. Then, the
field boundary attribute determines how the program finds
the boundary of the field (i.e., where the field ends). For
fixed-length fields, the value is alwa¥#xedsince the pro-
ram knows a priori the length. For variable-length fields,
can beseparator i.e., a constant value that marks the
oundary of the field, odirection i.e., a field that stores
information about the location of another target field in the
. message.
2.1 Terminology and Scope of the Problem The field type attribute provides semantic information

Protocol terminoloay can sometimes be intricate and m%bOUt the field. Currently, we only consider whether a field
9y or is not, a direction field. Finally, the field keywords at

) o |
not be standard. Thus, for clarity, we first introduce thg, ; X : :
terminology we will use in this paper. qubute contains a list of protocol keywords contained ia th

. ] field, specifically their value and position. We defikey-
Protocol elements: Protocols have a hierarchical strucyordsto be protocol constants that appear in the protocol
ture comprised oessionswhich are comprised of a se-ppjication data. There are other protocol constants hat d
quence ofmessagesvhich are in turn comprised of a sengt appear in the protocol application data and thus are not
quence ofields where dieldis the smallest contiguous seyeywords, such as the maximum length of a variable-length
quence of application data with some meaning. For exafiqd, known to the parties but never sent over the network.
ple, an HTTP session may contain multiple messages suckytracting the keywords is important because they al-
as several GET requests to fetch different contents (ejgy to differentiate which parts of the field are protocol-
one for the HTML file, another for an image, etc), and afependant and which are user or session dependant. This
HTTP GET message may contain several fields such asiffygrmation is useful for multiple problems such as finger-
Scope of the problem: Reversing a protocol is a complexection. In addition, keywords can be used to map traffic to
task that involves extracting: 1) th@otocol message for- specific protocols, which in turn can be used to identify tun-
mat, which describes the format of the messages that comeled protocols, such as P2P traffic over HTTP, and services
prise the protocol, and 2) thgrotocol’s state machinghat running on non-standard ports [21, 25].

2 Problem Definition

In this section we introduce the terminology used in this p
per, then the scope of the problem, and finally, the probl
definition.



S ; Keyword | Keywords
Program . Separator eparators | extraction _l
binary Execution extraction Message
Execution trace Message format| format
, > . T
— Monitor extraction
Message Direction field
extraction Direction fields
Figure 1: System Architecture.
2.2 Problem Definition messages (possibly with keywords present in multiple dif-

. . ) ferent positions). We leave the automatic extraction ohsuc
This paper deals with the problem of extracting the protgroperties for future work.

col message format. The protocol message format include$o summarize, our problem statement is as follows:

multiple message formats. Our problem is then, given_a L . .
number of messages received by a program binary im Iéoblem Definition: Given an implementation of a proto-

menting the protocol, to individually extract the messa 8' in the form of a program b|r_1ary and a message received
format of each of those messages. y that program, our problem is to output the message for-

The main challenge in extracting the message formamat, with no a priori knowledge about the protocol that the

to find the field boundaries. Protocols include both fixe _Sessage belongs to. Extracting the message format consists

lenath and iable-lenath fields. For fixed-lenath field f two main tasks: 1) find the field boundaries for fixed-
ength and variable-lengtn TIelds. - +or Tixead-iengin Teld ngth and variable-length fields, which includes identify
the boundary is known a priori by the program. The dif-

ficulty is to determine the boundary between consecut&] yw;dsseip;]aézté)ﬁi;r&d direction fields, and 2) identify the

fixed-length fields, to avoid joining two fixed-length fields
together or splitting a single fixed-length field into two. We
deal with the problem of finding the boundary of fixed3 ~Approach and System

length fields in Section 6. Archit ]
For variable-length fields, the program needs to deter- chitecture

mine the field boundary dynamically. Here, the difficulty, {his section we present our approach and introduce the
is that protocols can use different elements to mark the fl%tem architecture of Polyglot.

boundary such as Hjrection fields that store information 4 approach, using dynamic analysis for protocol re-

about the location of another target f|¢ld in the messagg cq engineering, is based on a unique intuition—the way
for example length fields and pointer fields, ands2pa- hat an implementation of a protocol processes the received
rators, .e., constant values that mark the boundary of “&?} lication data reveals a wealth of information about the

f'?'d- Thus, we first r_lee_d to locate these elem_ents. We degiiocol message format. Using this intuition, we propose

with the problem of finding the boundary of variable-lengtly,, yo\ing a new paradigm based on dynamically analyz-

fields using direction fields in Section 4.1, and using SRRy how a program binary processes its input to extract the
rators in Section 5.1. ) . format of the received application data.

Another challenge in extracting the message format, istg enaple dynamic analysis for automatic protocol re-
to identify the keywords contained in each field. We degbse engineering, the high-level architecture of Polyglo
with .the problem of extracting the protocol keywords ifs two phases. First, we watch over the program execu-
Section 5.2. tion as it processes a given message. This phase generates a
More complex properties: Polyglot extracts the messagéaecord of the program’s processing, which contains all nec-
format of a single message. However some properties mighsary information about the execution. Second, we analyze
require analyzing information about multiple messages #ie record of the program’s processing and extract informa-
multaneously. For example, some protocols such as HTti¢h about the field boundaries and the keywords that form
allow some of their fields to be ordered differently. Wehe basis for the message format.
term a field with this property to be ffoating field This Figure 1 shows the system architecture. The first phase is
in turn, means that keywords associated with a floating fietdplemented by thexecution monitof37]. It takes as input
can appear in different positions in the message. Currenthe program’s binary and the application data, and dynam-
given two messages with the same keywords in differéaally monitors how the program processes the application
positions, we can identify for each individual message whidata. The output of the execution monitor is etecution
keywords it contains. Clearly, without looking at multipléracethat contains a record of all the instructions performed
messages, we cannot determine that the keywords (and thgithe program. The execution trace forms the input to our
associated fields) are floating, i.e., they can appear a&frdiflanalysis in the second phase.
ent positions. Thus, we rely on an analyst to infer this kind The execution monitor implements dynamic taint analy-
of properties when given the message formats for multigis [13, 14, 15, 28, 34, 35]. In dynamic taint analysis, input



data of interest is marked (i.e., tainted) when it arrived anode the position of a field in a list of items. One example of
any instruction that operates on the tainted data (e.g.; mavcounter field is the number of DNS authoritative records
ing it to another location or performing an arithmetic ordogn a DNS response.
ical operation), propagates the taint information to the-de
tination. For our purposes, we taint any data received fr%
the network. Thus, the execution trace contains, for each’
tainted register and memory location used in an instructidrhe intuition behind our techniques for direction field de-
the offset positions that were used to compute its value. Fection is the following. The application data is stored in
example, if the method field in Figure 2 is moved to a pramemory buffer before it is accessed (it might be moved
cessor register (e.g., EAX), the register gets tainted path from disk to memory first). Then a pointer is used to access
sitions O through 3, corresponding to the original offset the different positions in the buffer. Now when the pro-
the received data. Dynamic taint analysis is well undestogram has located the beginning of a variable-length field,
and we provide its details in Appendix A. whose length is determined by a direction field, it needs to

In the second phase, we analyze the execution tracause some value derived from the direction field to advance
locate the field boundaries and the keywords. Note that ctire pointer to the end of the field. Thus, we identify di-
rently our analysis is offline (using the execution trace}, brection fields when they angsedto increment the value of
it could also be performed online, integrated with the exa-pointer to the tainted data. For example, in Figure 3 we
cution monitor. This phase consists of four modules: thdentify the length field at positions 12-13 when it is used
separator direction field keywordandmessage format ex-to access positions 18-20.
traction moduleswhich we now describe.

First, the direction field and theseparator extraction 12 13 14 15 16 17 18 18 20
modulestake care of finding the boundaries of variable- [Lengthfield] Variable-length field | Fixed-length field
length fields. We introduce them in Sections 4.1 and 5.1 <+———* T aroet Fiold
respectively. Next, theeywordextraction module takes as ~ D'ection field 9
input the separators and the execution trace and outputs the i L
keywords. We present the keyword extraction module in Figure 3: Direction field example.
Section 5.2. Finally, thenessage formagxtraction module ) - _ )
takes care of finding the boundaries of fixed-length fields\We consider two possibilities to determine whether a field
and of combining all previous information to generate tie being used as a direction field: 1) Either the program
message format. It takes as input the previously found s€pmputes the value of the pointer increment from the di-
aratorsy direction fields and keywordsl as well as the exefﬁption field and adds this increment to the current value of

tion trace, and outputs the message format. the pointer using arithmetic operations; or 2) the program
increments the pointer by one or some other constant in-

crement using a loop, until it reaches the end of the field,

4 Direction Field Extraction indicated by a stop condition.
Below, we describe how to identify the direction fields in

In this section we describe our techniques for identifyirf§€Se two cases.
direction fields, which store information about the locatiodncrementing the pointer using arithmetic operations:
of another target field in the message. For the first case, the program performs an indirect mem-
ory access where the destination address has been computed
. . . . from some tainted data. Thus, when we find an indirect
4.1 Direction Field Extraction memory access that: 1) accesses a tainted memory position,
4.1.1 Whatis a direction field? and 2) where the destination address has been computed

from tainted data (i.e., the base or index registers used to
Direction fieldsare fields that store information about theompute the memory address were tainted), we mark all the
location of another field in the message (called tdwget consecutive positions used to compute the destination ad-
field). The most common direction fields dengthfields, dress as part of a length field. In addition, we mark the
whose value encodes the length of a target field. The targeiallest position in the destination address as the end of
field usually has variable-length and the length field allowarget field. For example, in Figure 3 if the instruction is ac
to find the end of the target field. Figure 3 shows an esxessing positions 18-20, and the address of the smallest po-
ample length field and its target. In addition to length fieldsition (i.e., 18) was calculated using taint data comingifro
other types of direction fields arpointerfields ancdcounter positions 12-13, then we mark position 12 as the start of a
fields. Pointer fields, encode the displacement of a field stdirection field with length 2, and position 18 as the end of
with respect to some other position in the message. One e target field. If a direction field is used to access mudtipl
ample of an pointer field is the compression scheme usegositions in the buffer, we only record the smallest positio
DNS labels to avoid repetition, which represents a positibeing accessed. For example, if we have already found the
from the beginning of the DNS header. Counter fields elength field in Figure 3 directs to position 18, and it appears

2 Techniques for identifying direction fields:




Positions
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Method Sep. URL Sep. Version Separator

Figure 2: Simple HTTP GET query. When the program moves oraipse on the input data, the destination gets tainted
with the original offset position of the input data.

again in an indirect memory access to position 27, we stibes techniques for identifying length fields that assurae th
consider the end of the target field to be position 18. length is encoded using some pre-defined encoding, such as

Incrementing the pointer using a loop: For the second the number of bytes or words in the field [17, 18]. Thus,

case, since the pointer increment is not tainted (i.e., itf0S€ téchniques would miss direction fields if they use
a constant) then the previous approach does not work. Ofj€r encodings, which do not belong to the set of pre-
this case we assume that the stop condition for the poirfi&fined encodings being tested.
increment is calculated using a loop. Thus, we look félointer decrements: So far, we have described techniques
loops in the trace that have a tainted condition. that consider only pointer increments. There are some types

Our loop detection component extracts the loops presehwdirection fields such as backward pointers, commonly
in the execution trace. For this, we search for sections-of ksed in DNS replies, which are used to decrement a pointer
peated code that include a backwards jump, that is, a jufagher than increment it. Suppporting pointer decrements
to a lower instruction pointer. After extracting the loops wwould require modifying our techniques to account for tar-
check if the loop stop condition is generated from taintgt fields that have already been explored. We believe the
data, if so we flag the loop as tainted. Every time the praeeded modifications to be small and plan to implement
gram uses a new position, we check if the closest loop wiaem in the near future.
tainted. If so, we flag a direction field.

Our techniques are not complete because there are other
possibilities in which a program can indirectly incremer?  Separator and Keyword
t_he pointer, for example using switc_h statements or condi- Extraction
tionals. But, these are hardly used since the number of con-
ditions could potentially grow very large, up to maximun}, yis section we describe our techniques for identifying
value of the direction field. We plan to incorporate Suqugéparators and keywords.
for other types of indirect increments in the future.

Variable-length fields: Direction fields are normally used .

to locate the end of the target field, since the target field usud Separator Extraction

aIIy_ has variable_length_. To determine the start of the arge1 1 Wwhatis a separator?

variable-length field, without assuming any field encoding,

we use the following approach. Direction fields need to aBeparators are elements used by protocols to mark the

pear before their target field, so they can be used to skipundary of variable-length fields. geparatoris a pair of

it. Most often, as mentioned in [18] they precede the tawo elements: 1) a constant value, and 2) a scope. The con-

get field in the field sequence. After we locate a directiatant value marks the boundary of the field, while the scope

field, we consider that the sequence of bytes between tloatains a list of position sequences in the applicatioa,dat

last position belonging to the direction field and the end wiere the separator is used.

the target field, corresponds to a variable length field. Forlf the separator is used to separate fields, then it will have

example, in Figure 3, when the length field at positions 1 be compared against each byte in the application data and

13 is used to access positions 18-20, we identify everythiig) scope will be the position sequence that encompasses

in between (i.e., 14-17) to be a variable-length field. Thusl positions, from zero to the number of bytes received.

if a fixed-length field follows the variable length field andFor example, in Figure 2 the Carrier-Return plus Line-Feed

it is not used by the program either because the field is 1fot\n) sequence at positions 14 and 15 is a field separator,

needed or not supported by the program, then we will iand its scope would be 0 through 15. On the other hand,

clude the fixed-length field as part of the variable lengthe scope of an in-field separator, used to separate differen

field. elements inside a field, will usually be the position seqeenc
Note that our approach detects direction fields by lookimghere the field appears. For example, in Figure 2 the slash

at pointer increments and thus, it is independent of the @maracter could be used to separate the HTTP keyword from

coding used in the direction field. In contrast, previouskvothe version number, and its scope would be 6 through 13.



Protocols can have multiple separators, usually for differ Offset Positions

ent scopes: one for message end, another for field end and 0123 456
possibly various in-field separators. Also, sometimes mul- ox0a (\n) [x [ x [x [x [x [x[x
tiple separators can be used at the same scope. For example 0x47 (G) | x
in HTTP both the space (0x20) and the tab (0x09) are in- Tokens
field separators, used in different fields to separate the fiel 0x45 (E) X
name from the field data. 0x54 (T) X

Separators are part of the protocol specification and are ox2f (/) x| x| x

known to the implementations of the protocol. They can be

used in binary, text or mixed protocols. For example se gure 4: Token table. Each entry in the tokens-at-position

rators are 958d in HTTP. Wh.'Ch IS mamly_ a text protocol able represents one column of the token table. Each entry
also used in Samba which is mainly a binary protocol. Sep-

in token-series represents one row of the token table.
arators can be formed by one or more bytes. For example
HTTP uses Carrier Return plus Line Feed (0x0d0a) as field
separator, while Samba uses a null byte (0x00) to sepatgigor pytes into multi-byte separators, if needed. We now
dialect strings inside a Negotiate Protocol Request. explain these three steps in detail.

1) Generating the token tables: The first step is to extract

5.1.2 Techniques for identifying the separators: a summary of all the programs’s comparisons. This sum-
To find the field boundaries, programs need to identify tmagilgjss?hogvgénmgg?srgni %Sezg?r;lggp;tﬁﬁg fgéecthh:tweb_
valye and Iocatic_)n_of any separatorth_at appears in the-applier on the first 7 bytes of a HTTP GET request. The
cation data. This is done by comparing the different bytgs;  represent token values that appear in comparisons and
received from the network against the separator values &g .ojumns represent positions in the application data. A
when a true comparison is seen, a field boundary has bgai. . is a byte-long value. An X in the table means that
found", ) ) the token from that row was compared, at some pointin the

Clearly, not all tru_e comparisons against constants Yfdgram, against the positions from that column.
separators. What distinguishes a separator from anoth&fye jmplement this conceptual token table using two hash
constant is that the separator needs to be compared agaifiés: theokens-at-positiomable and th@oken-seriesa-
most (usually all) the bytes in its scope. For exampleygs The token-series table contains for each token, all the
message separator would be compared against all byteg)grer nositions to which the token was compared, thus each
ceived. The same applies to a field separator, but an |_n-f| ry corresponds to a row of the token table. The tokens-
separator would only be compared against the bytes in thahosiion table contains for each buffer position, the or
specific field. Since the scope of message and field segare |ist of tokens that it was compared against, thus each
rators are the same, currently we cannot distinguish thetRy corresponds to a row of the token table. The tokens-
We assume synchronous protocols to identify the messagensition and the token-series tables are also used in the
boundaries. keyword extraction module.

To find the separators, we look for tokens that are com-q populate the tables, we scan the execution trace and
pared against consecutive positions in the stream of d@fa.each comparison found that involves at least a tainted
Note that we do not require these comparisons t0 appggfe we update the tables with the token, the position, the

in consecutive instructions, only in consecutive posioh 51ye it was compared against, and the result of the compar-
the buffer. That is, we do not require the program to pggyp,

form a sequential scan of the buffer looking for the separ,
tor. This is more general since a program could for exam
scan backwards to find an in-field separator.

| Extracting byte-long separators: Our intuition is that
any comparison between a tainted byte and a non-tainted
uk%yte, can potentially denote a separator. Thus we scan the

Our concept of a comparison extends to multiple instr en-series table and for each token, we extract the list of
tions that compilers use to compare operands. In additior{% : . . ’ .
onsecutive buffer positions it was compared with. We re-

normal comparison operations, we also include substractf®" - . i i
fé a minimum series length of three, to avoid spurious

operations, string comparisons and some operations Ha . : ;

compilers use to cheaply compare if an operand has zZgpgnparisons. We also_requwe th_e token to appearin at least

value, such as performing a logical AND operation with igne_pos_mon in the series to avoid easy obfuscat|on_ by gen-

self using a test instruction erating innocuous comparisons. _The output (_)f this phase

. . ) . is_a list of byte-long separators with the associated cantex

Currently, we identify separators in a three-step process: -
. ; I;€., positions) where they are used.

First, we generate a summary of all the program’s compai- )

isons involving tainted data. Then, we use this summary3b Extending separators: When a separator value con-

extract byte-long separator values. Finally, we extend s&ts of multiple bytes, such as the field separator in HTTP
(Ox0d0a), the program can use different ways to find it, such

LIf the data contains the separator value, escape sequearcbe ased. as searching for the complete separator, or only searching




for one separator byte and when it finds it, checking if theplementation. In the near future, we plan to combine our
remaining separator bytes are also present. Thus, in dunamic approach with additional static analysis to locate
previous phase we might have identified only one byte ather protocol constants that do not appear in the applica-
the separator or all the bytes but as independent byte-ldiog data.
separators. Any protocol, whether text-encoded, binary-encoded or
In this last phase, we try to extend each candidate sepaxed can use keywords. Keywords can be strings (i.e., the
rator. For each appearance of the byte-long separator irHETP Hostfield name) or numbers (i.e., the version in the
context, we check the value of the predecessor and suctBdieader). One can be misled to think that in text-encoded
sor positions in the application data. If the same value gkotocols, keyword extraction is trivial, but given the-dif
ways precedes (or succeeds) the byte-long separator béngnt text encodings and the problem of distinguishing a
analyzed, and the program performs a comparison agakestword from other data (i.e., user or session data), this is
that value, then we extend the separator to include timat commonly so.
value. We do not extend byte-long separators that appear
less than a minimum _nu_mber of times in '_[he session d%t_a_z Techniques for identifying the keywords:
(currently four) to avoid incorrectly extending a separato
Also, we don't extend any separator beyond a maximukeywords are known a priori by the protocol implemen-
length (currently four), since long separators are uncotations. Thus, when application data arrives, the program
mon. compares the keywords against the received application
Note that our approach does not assume any separdte.. Our intuition is that one can locate the protocol con-
value. Thus, we can potentially support any unknown pretants present in the session data by followingthe com-
tocol that uses separators. This is in contrast to previqugisonsbetween tainted and untainted data.
work that assumes the separators to be white space, tab qihe keyword extraction process is comprised of two
any non-printable byte [17]. phases. The first phase is identical to the first phase of the

Multiple valid separators for the same scope: Proto- Separator extraction module, that is, to populate the token
cols might use multiple separators for the same scope. RbPOsition and token-sequences tables. The second phase
example, HTTP allows both space and tab as valid sepdtéfers in that it focuses on the true comparisons, rathem th
tors in the Status-Line. Thus, in Figure 2 any of the spac@sthe comparisons. It consists of exploring, in ascending
at offsets 3 and 5 could be replaced by a tab. Note th@fider, each position in the tokens-at-position table. Eche
even if multiple separators are allowed, the application fosition, if we find a true comparison, then we concatenate
ceiving the message does not know apriori which sepaffae non-tainted token to the current keyword. If no true
tor was used and therefore it needs to compare the receit@anparison was performed at that position, we store the
data against each of the valid separators in the contexs. THirrent keyword and start a new one at that position. We
presents us with a trade-off. As explained in step 2 abo#s0 break the current keyword and start a new one if we
we require a token to appear in at least one position in tied a separator value in the middle of the keyword. Note
sequence of comparisons before marking it as a byte-Idhgt our approach is general, in that it does not assume that
separator. This helps to avoid easy obfuscation by gerf&€e multiple bytes that form the keyword appear together in
ating innocuous comparisons, but it does not allow us e code or that they are used sequentially.

detect other valid separators in the context if they are notn addition to protocol keywords, configuration informa-
present in the message. Thus, currently our default beh@@? such as DNS records, or HTML filenames can also be
ior favors robustness against obfuscation, but we allow tB@en when analyzing the true comparisons. To differentiate
analyst to manually change this default behavior to alld¥¢tween configuration information and protocol keywords,

detection of other separators not present in the messageve need to define file reads also to contain sensitive infor-
mation and thus data read from file also becomes tainted,

) though with different taint origin, flow identifier and offise
5.2 Keyword Extraction Va|u35_ J

5.2.1 Whatis a keyword?

We have defined keywords to be protocol constants that &p- Fixed-length Field Extraction

pear in the received application data. As explained in Sec-

tion 2, in this work, we do not attempt to extradt proto- In Sections 4 and 5.1 we have presented our techniques to
col constants, since there are constants, such as the mideiatify the boundaries of variable-length fields. In thexS
mum length of a field, that never appear in the applicatition we present our techniques to identify the boundaries of
data. The problem is to extract tlsebsetof all protocol fixed-length fields. As defined in Section 2, a field is a con-
constants, that are 1) supported by the implementation, sigdous sequence of application data with some meaning.
2) present in the application data received by the prografys such, programs take decisions based on the value of the
Thus, we want to identify which segments of the applicéield as a whole. Thus, when a field is composed of mul-
tion data correspond to protocol keywords supported by tlide bytes, those multiple bytes need to be used together,



forming a semantic unit that can be used in arithmetic opet- Program Version | Type Size
ations, comparisons or other instructions. In additionstmo | Apache 2.2.4 | HTTP server (Win)| 4,344kB
fields are independent of other fields, so bytes belonging foMiniweb 0.8.1 | HTTP server (Win) 528kB
different fields rarely are used in the same instruction. The g%am 93'31 . BLTSPsZiZ?r(\SVVi\Q;) gggtg
1?x?:deptlon to thf|_s |r(lj”e arehspelz(mal relationships such aglen MaraDNS | 1.2.12.4| DNS server (Win) | 164kB
ields, pointer fields prc _ec_ sums._ . SimpleDNS | 4.00.06 | DNS server (Win) 432kB
Our approach for |dent|fy.|ng mullt_lple bytes belpnglng 10 Finyico 12 ICQ client (Win) 11KB
the same field is the following. Initially, we consider each™Beware ircd| 1.5.7 | IRC server (Win) 148KkB
byte received from the network as independent. Then, fdr joinMe 1.41 IRC server (Win) 365kB
each instruction, we extract the list of positions that Hiett UnreallRCd| 3.2.6 | IRC server (Win) 760kB
data involved in the instruction comes from. Next, we check Sambad 3.0.24 | Samba server (Lin)| 3,580kB

for special relationships among bytes, specifically in this

paper we check for direction fields, using the techniquégble 2: Different program binaries used in our evaluation.

explained in Section 4.1. If no direction field is found, thehhe size represents the main executable if there are several

we create a new fixed field that encompasses those posi-

tions. For example if an instruction uses tainted data from

positions 12-14 and those positions currently do not belogigded in Wiresharkone of the state-of-the-art protocol an-

to a length field, then we create a fixed field that Stal’thﬂyzers_ The results show that we correctly identify most

position 12 and has length 3. field boundaries and that the differences are usually due to
If a later instruction shows a sequence of consecutii#ferent implementations handling fields in different way

tainted positions that overlaps with a previously defingtinding these differences between implementations is im-

field, then we extend the previously defined field to encomertant for problems such as fingerprint generation, fugzin

pass the newly found bytes. One limitation is that fixeénd error detection.

length fields longer than the system’s word size (four bytes

for 32-bit architectures, eight for 64-bit architectureajp-

not be found, unless different instructions overlap onrth&-l Message Format Results

use. Note that fields larger than 4 bytes are usually avoidggyiocols are comprised of many different messages. For

for this same reason, since most systems have 32-bit arghishy protocol under study, we select one representative

tectures where longer fields need several instructions torP@ssage and capture an execution trace while the program
handled. For fields longer than 4 bytes, our message fgfscesses that message. We now present the results of ex-
mat truncates them into four-byte chunks. Note that tm%cting the message format for the different messages.

does not affect variable-length fields which are identifi%iNS query: The session under study is composed of two

by finding the separators and the direction fields. messages- a DNS query and a DNS reply. The query is the

Even with this limitation, our approach is an improve-
ment over previous work [17], where each binary-encod%ﬁme for all three servers. It requests the IP address of the

: - . - twww.example.nedand we analyze how the request is
byte is considered a separate field. Using that approa S ;
two consecutive fixed-length fields, each of length 4 byt fsed by each DNS server. Figure 5 shows the message

would be considered to be 8 consecutive byte-long ﬁxe\ﬁl_fmatobtalned from each server compared to the one from
length fields. ireshark, shown on the left.

The results show that we correctly identify the message
format including length fields and variable fields. The word
'Unused’ in the figure indicates that there was no operation,
other than moves, performed by the program on those spe-
Fic bytes. For example, we see that Bind does not perform

In this section we present the evaluation results of oﬂ S ' . .
. check on the Identification (ID) field. Since any 16-bit
system. We have evaluated our system extensively us afue is allowed for ID, Bind can move the field directly

11 different programs implementing 5 different protocoys .
(HTTP, DNS, IRC, ICQ and Samba) as shown in Table g5 1'® 0a1@ Structure used to construct the reply, with no
Most of the binaries analyzed are Windows servers but peration. - AISO, sSimp p

Queries field but it ignores the Total Answers, Author-

also include one ICQ client and a Samba server running; and Additional fields. This behavior is fine since those

Linux Fedora Core 5, to show that our system can pmpée'lds are not used in the request, though it does not allow to

7 Evaluation

tially work on any IA-32 binary. The test suite shows th . )
o approach can hanlereal prolocolsand ea size S 81O el oL SeL ese Tl o vuesf
grams, such as Apache, Bind and Samba. ; ’ 9 '
: - ' lementations of the same protocol, such as unused fields,
The protocols under study include difficult-to-find ele= o S ; .

. . ' is important for applications like fingerprint generatiorda

ments such as length fields, pointer fields, and separatgrs '
. . error detection.

and we compare our results, obtained with no protocol

knowledge, with the manually crafted message formats in-2Previously known as Ethereal




Wireshark 0.99.5 Bind 9.3.4 Mara DNS 1.2.12.04 SimpleDNS 4.00.06

A0 Identification: Fixed Unused Fixed Fixed
2 Flags: Fixed/SubByte Fixed E:i:g Fixed
Header 4 ions: i i Jnused
Total Questions: Fixed Fixed Fixed Fixed
6 Total Answers: Fixed Fixed Fixed
8 Total Authority: Fixed Fixed Fixed Unused
A 10 Total Additional: Fixed Fixed Fixed
A2 Label length: Fixed Direction Direction Direction
13
Label: Variable [7
B ! . m Variable Variable Variable
‘example’
Query
Name 20 Label length: Fixed Direction Direction Direction
2 Label: Variable [3
“net” Bl Variable Variable Variable
24 0 Fixed Fixed Fixed
25 Type: Fixed Fixed Fixed Fixed
27 . N Fixed
¥ Class: Fixed Fixed Unused Fixed

Figure 5: Message format extracted from a DNS query sent thrale DNS servers. On the left we present the message
format from Wireshark.

DNS query using pointer: DNS allows using a com- | Separator Apache | Savant | Miniweb
pression scheme which eliminates the repetition of domain 0x0d0a (CRLF’) |  field field field
names in a message. An entire domain name or a list of la- 0x2f ('/’) in-field | in-field -
bels at the end of a domain name is replaced with a pointer 0x2e (') in-field | in-field | in-field
to another occurance of the same name [27]. To verify the 0x20 (") - in-field | in-field
detection of an pointer field, we create a DNS query with| 0x3a20 (*: ') in-field - -

a forward pointer, So the first namewsvw and a pointer

to the next name, which holds the valeample.netThe Table 3: Separators extracted from an HTTP GET request
complete query isvww.example.netThis type of forward sentto all three HTTP servers.

pointer is only allowed by the SimpleDNS server. The re-

sults show that the pointer field and the length fields are
properly identified, the rest of the fields are similar to tﬁng reply. We analyze the GET request. So far, we have

. Shown the message format for protocols that use direction
standard DNS. query abqve. For b_reV|ty, the message f??é'lds to mark the boundary of variable-length fields. But,
mat is shown in Figure 8 in Appendix B.2.

separators can also be used to mark those boundaries.
ICQ login:  The session under study is a login session, Table 3 shows the results from the separator extraction
where the client sends a fake username and password tam@@ule for the three HTTP servers. The HTTP GET request
server, and the server replies denying the session. We @ed, includes several separators but does not include any
tract the field format from the reply sent by the server.  direction fields. Thus, the message format is determined by
Again, we properly identify the direction fields. Thehe location of the separators. Each row represents a separa
main difference with the DNS results is that there are sortwe value, shown both in hexadecimal and ASCII, and each
unused fixed-length fields following the variable-lengttable entry states if the field was used or not by the server.
fields, and those fixed-length fields are incorrectly mergedr brevity, rather than the full scope (i.e., all sequences
into the variable-length one. This happens because the |@Qere it appeared), we show a tag with values field/in-field
client is adding a constant of value 2 to the value of tle indicate the scope of the separator.
length field to skip both the follow-up variable-lengthtatg The results show that the three servers use a similar set of
field and the unused field simultaneously. This shows thsiparators. For all three servers, the field separator leas be
our techniques are able to identify the pointer incrememigoperly expanded to two bytes (0x0d0a). The space char-
but are not currently able to describe how the incremeadter (0x20), or semicolon and space for Apache, is used
was derived from the direction field value, which would b parse the fields, separating the field name from the field
needed to observe that a constant of value two was addeath. Another separator is the dot character (0x2e), used to
to the length field. For brevity, the message format is piind the file extension in all three servers, plus being used
sented in Figure 7 in Appendix B.1 and it shows the Valug Apache to parse the IP address in Hustfield. Finally,
ID fields being merged with the variable-length Field Datapache and Savant use the slash character (0x2f) to find the
fields preceding them. beginning of the path in the URL.

HTTP GET query: The session under study is a HTTBamba negotiate protocol request: The session under
GET request for thendex.htmwebpage and it correspondstudy is a Sambaegotiate protocorequest and its cor-
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Wireshark 0.99.5 Samba 3.0.24 Wireshark 0.99.5 Samba 3.0.24

A 0 Message Type: Fixed Fixed A 39 Buffer Format: Fixed Unused
. 1 40 N
NetBios Length: Length Fixed Name: Variable [23] Variable [22]
\J Separator
A 4 63 Buffer Format: Fixed Unused
Server Component: Fixed Fixed 64 Name: Variable [24] Name: Variable [23]
Separator
8 Command: Fixed Fixed 88 Buffer Format: Fixed Unused
9 89 o
. Name: Variable [23] Name: Variable [22]
NT Status: Fixed Unused Separator
112 Buffer Format: Fixed Unused
13 Flags. Fixed Fixed Requested| 113 ) Name: Variable [9]
14 . Dialecs Name: Variable [10] .
Flags2: Fixed Fixed Separator
123 5
16 Process ID High: Fixed = Buffer Format: Fixed Unuéed
Samba 18 Name: Variable [10] Name: Variable [9]
: Separator
Signature: Fixed 134 Buffer Format: Fixed Unused
135 o
26 Reserved: Fixed Unused Name: Variable [14] Name: Variable [13]
. Separator
- nused
2 Tree ID: Fixed 1‘5‘3 Buffer Format: Fixed u.
30 P \D: Fixed Name: Variable [6] Name: Variable [5]
rocess ID: Fixe: Separator
32 User ID: Fixed Eixed i:s Buffer Format: Fixed nused
. . Name: Variable [13]
i Multiplex ID: Fixed §] d Name: Variable [14]
ultiplex ID: Fixe nuse Separator
36 Word Count: Length 171 Buffer Format: Fixed Unused
37 ] Direction 172 Name: Variable [10;
Byte Count: Length \ Name: Variable [11] . (101
39 Separator
Requested Dialects: Variable Requested Dialects: Variable 182 2Eparal
144 144]
v [144] [144]

Figure 6: Message format extracted from a Samba negotiateqm request. On the left we present the message format
from Wireshark.

responding reply. We analyze the request. So far, tbenfigurations, for example when loading different modules
extracted message format have used either only directiof\pache, might support those keywords.
fields or only separators to mark the boundary of variable-The results show no missing supported keywords. They
length fields. The Samba negotiate protocol request uaéso show some instances, where there is a partial keyword
both. It uses length fields to mark the end of the Samba neatch (shown with the partial keyword in the table entry).
quest, and the null byte (0x00) to mark the end of variabl€his happens because there might be two keywords that
length strings. Figure 6 shows the results, after both septart the same. Thus, when the server compares the received
rators and direction fields have been extracted. On the ledlyword, with its set of supported keywords, it will obtain a
is the message format while on the right we zoom into teequence of true comparisons up to the first difference, and
requested dialecteld which uses the separators. that sequence of true comparisons is output by our module
The message format shows both @mba word count as a partial match. For example, Savant supportétoept
andbyte couni(near the bottom) combined together into andAccept-Languaggelds but not the\ccept-Encodingr
single direction field. This is because the server uses bgitcept-Charset field$-or the unsupported fields, there is a
fields simultaneously to establish the total length of the ngartial match withAccept Note that these partial keywords
quest (2*wordCount + byteCount). The Netbios length fiektill mark protocol-dependant data in the message.
near the top is reported as a fixed-length field because alfable 5 shows additional keywords, with the number of
though the server combines the two bytes of the field int@acurrences in parenthesis, that were found in the HTTP
two-byte field, it does not uses the resulting field. Instea@ET query. Itincludes the HTTP version and anotkeep-
it uses the Samba word count and byte count fields to idédive keyword, which is different from the one shown in Ta-
tify the end of the Samba request. In the requested dialdals 4. This one is the field data for ti@nnectiorfield in
field, we can see the separators being used at the end of atthe 4. We obtained similar results for an IRC login re-
string, and that the Samba server ignores the one byte figlest. An interested reader can find them in Appendix B.3.
describing the type of each string (i.e., the buffer format)

7.2 Keyword Results 8 Related Work

We now present the keyword extraction results. TableV4e divide the Related Work into groups dealing with proto-
shows the keywords found in the same HTTP GET requé8f "éverse engineering, other work related to protocokmes
used in the separator’s results. An entry with vakes Sage format extraction, and dynamic taint analysis applica
means that the keyword was found at the proper positidns-

while an entry with valulNS means that the keyword wasProtocol Reverse-engineering: Successful protocol re-
not found because the server in its default configuratigersing projects have so far relied on manual techniques,
does not support those keywords. Thus, the server in otimbiich are slow and costly [4, 1, 3, 7, 2]. Our work pro-
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Keyword Apache | Savant | Miniweb 64 bytes of the session data. In addition, protocol ana-

GET Yes Yes Yes lyzers have been widely used in network security [8, 6].
Host Yes NS Yes Since many protocols exist and their specification is some-
User-Agent NS Yes NS times complex, there have been languages and parsers pro-
Accept Yes Yes NS posed for simplifying the specification of network proto-
Accept-Language Accept Yes NS cols [10, 16, 33].

Accept-Encoding| Accept- | Accept- NS
Accept-Charset | Accept- | Accept- NS
Keep-Alive NS NS NS
Connection Yes Yes Yes

Dynamic Taint Analysis: Previous work has used dy-

namic taint analysis to tackle problems such as: exploit de-

tection [13, 15, 28, 35], worm containment [14, 34], signa-

ture generation [29], and cross-site scripting detects®). [

Yge propose to use dynamic taint analysis as a technique to
derstand how a program processes the received applica-

Table 4: Keywords present in a HTTP GET query sent
all three HTTP servers and whether they were properly

tracted by our system. ion data.
Server | Additional keywords found 9 Discussion
Apache | 'HTTP/ (1);’e’ (1) ; 'Keep-Alive’ (1) . . . o
Savant | 'HTTP/1. (1); 'Keep-Alive’ (1); " (4) In this section we discuss the limitations of our approach
Miniweb | N/A and how we plan to address them in the future.

Input messages: One fundamental limitation is that we
Table 5: Additional keywords in the HTTP GET query. can only obtain the format from the messages given to our
analysis. If some messages never appear, we know nothing
about them. We plan to incorporate static analysis to our
vides new automatic techniques that can be used to redgggamic analysis techniques to deal with this limitation.

the cost and time associated with these projects. her field f i . | field d
Lim et al [24] addressed the problem of automatical ther field format attributes: .Current.y, ourfield de-
cription only captures a few field attributes. Other at-

extracting the forma_t f“"f” fiI_es and gpplication data o ibutes such as the field data type (e.g., integer/string),
put by a program using binaries. Their approach needs & field encoding (e.g., big-endian/ litte-endian or ASCII

userto |dent|fythe output fu.nct|lons and the‘F correspngdlEBch / Unicode) are currently not extracted. Also, some
parameters. This information is rarely available. Our aﬁ
t

roach differs in that we do not require anv a oriori know eld propertie_s such as Whether ineld is floating, that is, .if
gdge about the program, only the ?)rogramybin%ry. can appear in any order in the field sequence, that require

R : : tocol strictly f " nalyzing multiple message formats simultaneoulsy ate lef
everse engineering a protocol strictly Trom NEtwWoll, ¢ the analyst. Finally, our analysis works on byte gran-
traces was first addressed in the Protocol Informat

Project [9] that used sequence alignment algorithms. rity. Thus, currently we are not able to distinguish feeld

cently, Cui et al [17] have also proposed a method to denv?(]aOrter than one byte, such as flags fields.

the message format strictly from application data. Our dpteld semantics: Our system provides limited descrip-

input. checksums or addresses. We expect to be able to extract

more complete semantic information about fields by using
mbolic execution to understand the way the program han-
d é'as them.

Additional work on protocol message format: There
has been additional work that can be used in the pro
col reverse-engineering problem. Kannan et al [22] studi ) _
how to extract the application-level structure in appiimat Message boundaries: In this paper, we have focus on
data. Their work can be used to find multiple connectiofigding the field boundaries in a message, assuming a syn-
belonging to the same protocol session. chronous protocol, w_h|ch helps us to |den§|fy the message
Application dialogue replayers [18, 23, 30], aim to remaig,oundanes. _But sessions can contain multlple messages, so
an original protocol session involving two hosts, to a thifye need to identify the message boundaries as well. We
host that did not participate in the original session. Thel@Pe to address the problem of identifying message bound-
tools need to update user or session dependant informa@gRs in future work.
in the protocol session. Thus, they may effectively exteacRobustness against obfuscation:Although we have tried
partial session description. to keep our analysis as general as possible, currently, our
Ma et al [25] use a network-based approach for automagehniques are not fully resistant against obfuscationsTh
cally identifying traffic that uses the same applicatiopela a protocol architect determined to hide her protocol mes-
protocol, without relying on the port number. Their apsage format might be able to do so. We plan to study tech-
proach extracts a partial session description from the findjues more robust against obfuscation in future work.
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10 Conclusion [8] Wireshark, Network Protocol Analyzer.
http://www.wireshark.org.

In this paper we have proposed a new approach for protocol

reverse engineering by using dynamic analysis of prograff] M. A. Beddoe. ~ Network Protocol Anal-

binaries implementing a protocol. Compared to previous YSIS Using  Bioinformatics Algorithms.

work that uses only network traces [17], our approach can http://www.baselineresearch.net/Pl/.

extract more accurate information because the program[g'b]

nary contains richer protocol semantics.

ihe way that an mplementation of the protocol processes -an0uage:Netiork and Distibuted System Securiy

the received application data reveals a wealth of data about Symposiumtsan Diego, CA, February 2007.

the protocol message format. To extract the message fat] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and

mat from the different messages that comprise a protocol D. Song. Towards Automatic Discovery of Deviations

we have developed new techniques for identifying difficult-  in Binary Implementations with Applications to Error

to-find protocol elements such as direction fields, separa- Detection and Fingerprint GeneratiddSENIX Secu-

tors, multi-byte fixed-length fields and keywords. Our tech- ity SymposiumBoston, MA, August 2007.

nigues are more general than previously proposed ones, and

allow us to extract more refined message formats. [12] J. Caballero, S. Venkataraman, P. Poosankam, M. G.
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ences between implementations is an added benefit, as thay M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L.
are important for problems such as fingerprint generation,  zhou, L. Zhang, and P. Barham. Vigilante: End-to-
fuzzing, and error detection. End Containment of Internet Worms$Symposium on
Operating Systems PrincipleBtighton, United King-
dom, October 2005.

[15] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos: Ar-
We would like to thank all members of the BitBlaze group  chitectural Support for Protecting Control DatsCM
for helpful discussions. We would also like to thank  Transactions on Architecture and Code Optimization,
Christopher Kruegel, Weidong Cui, and the anonymousre- December 2006.
viewers for their help to improve this paper.

N. Borisov, D. J. Brumley, H. J. Wang, and C. Guo.
Generic Application-Level Protocol Analyzer and Its

11 Acknowledgements

[16] D. Crocker and P. Overell. Augmented BNF for Syn-
tax Specifications: ABNF. RFC 4234 (Draft Stan-
References dard), 4234, October 2005.

[1] How Samba Was Written. [17] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Auto-
matic Protocol Description Generation from Network
Traces. USENIX Security Symposiufpston, MA,
[2] lcqlib: The ICQ Library. August 2007.
http://kicq.sourceforge.net/icqlib.shtml.

http://samba.org/ftp/tridge/misc/frenchfe.txt.

_ _ [18] W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz.
[3] Libyahoo2: A C Library for Yahoo! Messenger. Protocol-Independent Adaptive Replay of Application
http://libyahoo2.sourceforge.net. Dialog. Network and Distributed System Security

[4] MSN Messenger Protocol. SymposiunSan Diego, CA, February 2006.

http://www.hypothetic.org/docs/msn/index.php.  [19] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R.
Sommer. Dynamic Application-Layer Protocol Anal-
ysis for Network Intrusion DetectionJSENIX Secu-
rity Symposiumyancouver, Canada, July 2006.

[5] Qemu: Open Source Processor Emulator.
http://fabrice.bellard.free.fr/gemu/.
6] Tcpdump. http://www.tcpdump.org/.
[6] Tep p- P P p-org [20] C. D. Grosso, G. Antoniol, M. D. Penta, P. Galinier,
[7]1 The UnOfficial AIM/OSCAR Protocol Specification. and E. Merlo. Improving Network Applications Se-
http://www.oilcan.org/oscar/. curity: A New Heuristic to Generate Stress Testing

13



[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Data.Genetic and Evolutionary Computation Confef33] R. Pang, V. Paxson, R. Sommer, and L. Peterson. Bin-
enceJune 2005. pac: A Yacc for Writing Application Protocol Parsers.

Internet Measurement ConferencRjo de Janeiro,
P. Haffner, S. Sen, O. Spatscheck, and D. Wang. Brazil, October 2006.

ACAS: Automated Construction of Application Sig-

natures.ACM SIGCOMM, Workshop on Mining net{34] G. Portokalidis, A. Slowinska, and H. Bos. Argos: An

work data,Philadelphia, PA, October 2005. Emulator for Fingerprinting Zero-Day Attacks for Ad-
vertised Honeypots with Automatic Signature Genera-

J. Kannan, J. Jung, V. Paxson, and C. E. Koksal. jon, ACM SIGOPS Operating Systems Revitd(4),
Semi-Automated Discovery of Application Session  october 2006.

Structure. Internet Measurement Conferend&ip de
Janeiro, Brazil, October 2006. [35] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
) ) ] Secure Program Execution Via Dynamic Information

C. Leita, K. Mermoud, and M. Dacier. ScriptGen: oy Tracking.International Conference on Architec-
An Automated Script G(_aneratlo_n T_ool for Honeyd.  {ral Support for Programming Languages and Oper-
Annual Computer Security Applications Conference, ating System$oston, MA, October 2004.
Tucson, AZ, December 2005.

) - _ [36] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C.
J. Lim, T. Reps, and B. L|b||t._ Extracting Output For- Kruegel, and G. Vigna. Cross-Site Scripting Preven-
mats from ExecutablesWorking Conference on Re- 1 with Dynamic Data Tainting and Static Analysis.
verse Engineeringienevento, ltaly, October 2006. Network and Distributed System Security Symposium,

J. Ma, K. Levchenko, C. Kreibich, S. Savage, and San Diego, CA, February 2007.
G. M. Voelker. Unexpected Means of Protocol In[37] H. Yin, D. Song, E. Manuel, C. Kruegel, and E.

feren_ce. Inter_net Measurement Conferendeio de Kirda. Panorama: Capturing System-Wide Informa-
Janeiro, Brazil, October 2006. tion Flow for Malware Detection and Analysi&\CM
Conference on Computer and Communications Secu-

P. McMinn, M. H , D. Binkley, and P. Tonella. X .
evinn afman Inxey, an oneta rity, Alexandria, VA, October 2007.

The Species Per Path Approach to SearchBased Test
Data Generation.International Symposium on Soft-

ware Testing and Analysiduly 2006. A Monitoring the Execution

P. V. Mockapetris. Domain Names - Implementation _ ) )
and Specification. RFC 1035 (Standard), IETF R¥Ve implement the execution monitor using an emulator [5].

quest for Comments 1035, November 1987. Executing a program inside an emulator allows us to mon-
itor the internal execution of the program and the in-

J. Newsome and D. Song. Dynamic Taint Anaput/output operations it performs. The emulator has been
ysis for Automatic Detection, Analysis, and Signaenhanced to suppadynamic taint analysifl3, 14, 15, 28,
ture Generation of Exploits on Commodity Softwared4, 35]. In dynamic taint analyisis, input data that is cdnsi
Network and Distributed System Security Symposiugned important is marked (i.e., tainted) when it is received
San Diego, CA, February 2005. and any instruction that operates on some of the tainted data
(e.g., moving it to another location or performing an arith-

J. Newsome, D. Brumley, and D. Song. Vulnerabilitynetic or logical operation), propagates the taint infoiorat
Specific Execution Filtering for Exploit Prevention oRg the destination operand.

Commodity Software Network and Distributed Sys-  For our purposes, we taint any information received by

tem Security SymposiurBan Diego, CA, Februaryine program from the network. Specifically, each input byte
2006. is assigned #aint recordthat contains a flag to indicate that

J. Newsome, D. Brumley, J. Franklin, and D Son. came from the network, some connection identifier, and
R.eplayer: A,\ut(;matic Pr’ot(;col Repll’;ty By i3inar e position of that byte in the application data. Each lo-

Analysis. ACM Conference on Computer and Comcation, including memory, register and disk is assigned a

AN : . shadow memorywhich is used to store the taint records
munications Securitylexandria, VA, October 2006. of the input bytes that the data in that location was gen-

P. Oehlert. Violating Assumptions with FuzzingEE erated from. As the program moves the input tainted data
Security and Privacyd(2), March 2005. to new locations, and performs operations on it, the shadow

memory for the destination location is updated with thettain
R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxsomecords of the input bytes it was generated from. This taint
and B. Tierney. A First Look At Modern Enterprisgpropagation includes all instructions performed by the pro
Traffic. Internet Measurement Conferen&erkeley, gram or any library that the program uses, including system
CA, October 2005. libraries and dynamically loaded libraries such as dll's.

14



In addition to the taint data, the emulator also collects
information about each instruction, including the content
the operands at the time the instruction is executed. This
data is written into the execution trace, which contains alll
instructions executed by the program, the data they opkrate
on, and the associated taint information.

Wireshark 0.99.5 SimpleDNS 4.00.06
e 40 Identification: Fixed Fixed
B Additional Results :
Unused
Header 4 Total Questions: Fixed Fixed
B_ 1 |CQ Logln 6 Total Answers: Fixed
8 Total Authority: Fixed Unused
A 10 Total Additional: Fixed
Wireshark 0.99.5 Tiny ICQ 1.2 A 12 Label length: Fixed Direction
13 - Vari
Label: \“/arlalile [3] Variable
- Www
A0 Command Start: Fixed
1 Channel ID: Fixed Unused 16 Label pointer: Fixed Direction
New 2 Sequence Number: Fixed Query 18 Type: Fixed
Connection 4 Data Field Length: Length Fixed Name 20 Class: Fixed Variable
6 22 Label length: Fixed o Direction
Protocol Version: Variable [4] Unused 23
y
Label: Variable [7] Variabl
A O CommandStart:Fixed | “example” ariable
1 Channel ID: Fixed Unused
2 Sequence Number: Fixed
30 Label lenqgth: Fixed Direction
4 Data Field Length: Length Fixed 31 Label: Variable [3] .
— Variable
6 Value ID: Fixed Unused net
s - - - 34 0 Fixed
Close Field length: Length Direction 35 Type: Fixed
. 10 37 - Unused
Connection Field data: Variable [6] A Class: Fixed
Variable [8]
18 Value ID: Fixed A
1 R T—— P Figure 8: Message format extracted from an DNS query
20 containing a pointer field. This type of query is only sup-
Field data: Variable [63] _ ported by the SimpleDNS server.
Variable [65]
83 Value ID: Fixed
85 Field length: Length Fixed
v Field data: Variable [2] Ebcd

Figure 7: Message format extracted from an ICQ login ses-
sion compared to the one from Wireshark.

B.2 DNS Query with Pointer
B.3 IRC keywords

Tables 6 and 7 show the results from the keyword extrac- | Server | Additional keywords found
tion module for an IRC login request. Note that PONG Beware | '’ (1); 1301071548’ (1)
keyword was not present in the JoinMe trace, because itis | JoinMe | "’ (2);" " (1)

a reply to aPING request that is only sent based on the Unreal | e’ (2); " (1); A (1);

server’s configuration. 'PROTOCTL' (1); 'NAMESX’ (1)
Keyword | Beware | JoinMe | Unreal Table 7: Additional keywords found in the IRC login re-
NICK Yes Yes Yes quest.
USER Yes Yes Yes
PONG Yes N/A Yes

Table 6: Keywords present in a IRC login request and
whether they were properly extracted by our system.
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