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Abstract

Software exploits are one of the major threats to the In-
ternet security. A large family of exploits works by corrupt-
ing memory of the victim process to execute malicious code.
To quickly respond to these attacks, it is critical to automati-
cally diagnose such exploits to find out how they circumvent
existing defense mechanisms. Because of the complexity of
the victim programs and sophistication of recent exploits,
existing analysis techniques fall short: they either miss im-
portant attack steps or report too much irrelevant informa-
tion. In this paper, based on the observation that the key
steps in memory corruption exploits often involve pointer
misuses, we propose a novel solution, PointerScope, to use
type inference on binary execution to detect the pointer mis-
uses induced by an exploit. These pointer misuses high-
light the important attack steps of the exploit, and there-
fore convey valuable information about the exploit mecha-
nisms. Our approach complements dependency-based solu-
tions to perform more comprehensive diagnosis of sophis-
ticated memory exploits. We prototyped PointerScope and
evaluated it using real-world exploit samples and demon-
strated that PointerScope can successfully capture the key
attack steps, which significantly facilitates attack response.

1 Introduction

Software exploits are one of the major threats to the In-
ternet security. A large family of exploits works by cor-
rupting memory of the victim process to execute malicious
code. To quickly respond to such attacks, defenders crit-
ically need techniques that can automatically diagnose an
exploit and understand the inner-working of an exploit.

The main difficulty in diagnosing memory-corruption
exploits is caused by the constantly-evolving attack tech-
niques. Memory-corruption exploits have existed for
decades, but recent attack techniques are getting more and
more sophisticated. For example, due to the wide adop-
tion of memory-corruption prevention mechanisms, such as

address-space-layout randomization (ASLR) [3, 9], attack-
ers are no longer able to directly execute malicious code
they have injected. They need to resort to additional tech-
niques to bypass the defense mechanisms and locate their
malicious code. As a result, recent memory-corruption at-
tacks often consist of a sequence of key steps. A major chal-
lenge to attack diagnosis is to get the complete picture of
the attack, including all steps from the initial vulnerability
exploit to the malicious code execution.

Existing techniques of attack diagnosis mainly focus
on a single step of the attacks. For example, some tech-
niques [22, 37] perform analysis on a memory snapshot at
the moment when the attack is detected. The effectiveness
of such memory analysis is limited by available informa-
tion in the snapshot, because the evidence of previous attack
steps may have already been destroyed before the attack is
detected.

It has been observed that traditional memory exploits of-
ten involve misuse of pointers [13]. By analyzing several re-
cent memory-corruption exploits, we found that this obser-
vation can be extended to most of the key steps in a sophis-
ticated attack, which misuses other types of data as point-
ers, especially pointers that control program execution, such
as return addresses and virtual function pointers. Based
on this observation, we propose a novel technique, called
PointerScope, for automated exploit diagnosis by detecting
and analyzing pointer misuses. That is, from the execution
of a binary executable, we automatically infer the type of
each of registers and memory locations. As pointer misuse
is one of the most important characteristics of key attack
steps, our approach detects misuses as type conflicts when
other types of data are used as pointers, especially control
pointers. Then we identify the instructions and operands in-
volved in the type conflict, and understand how an exploit
happens and how it circumvents existing defense mecha-
nisms.

To evaluate the efficacy of our approach, we have imple-
mented a prototype system of PointerScope and evaluated it
using real-world memory-corruption exploits. The experi-
ments demonstrate that PointerScope detected pointer mis-
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Figure 1. Stack layout in an SEH exploit.

uses as the key attack steps and highlighted a small number
of instructions from a trace of multi-million instructions.

In summary, we have made the following main contribu-
tions:

• We propose to identify and analyze pointer misuses
as a generic approach for diagnosing sophisticated
memory-corruption exploits. Our approach comple-
ments existing dependency-based solutions, and diag-
noses the exploits to reveal details of the attacks’ key
steps.

• We define a small type system on x86 architecture and
devise a type inference algorithm to resolve type infor-
mation during the binary execution. Pointer misuses
can then be detected as type conflicts.

• We implement a prototype system of PointerScope
and evaluate it using seven real-world exploit samples,
demonstrating the capability and effectiveness of this
tool.

Paper Organization The remainder of this paper is or-
ganized as follows. Section 2 uses an example of sophisti-
cated memory-error exploits to motivate our solution. Sec-
tion 3 details the design of PointerScope. Section 4 de-
scribes our prototype implementation challenges and Sec-
tion 5 discusses the experimental results. Section 6 presents
the limitations of the current system and future work. We
discuss related work in Section 7. Section 8 concludes the
paper.

2 Background

In this section, we describe a motivating example of so-
phisticated memory-error exploits and discuss the need for
new solutions for diagnosing the key steps of such exploits.

A Motivating example. Structured Exception Handling
(SEH) [27] is a mechanism for handling program excep-
tions on Windows. Under this mechanism, a thread regis-
ters the handlers for its exceptions, and Windows maintains
the registered exception handlers of a thread in a list of ex-
ception registration records in the thread’s Thread Informa-
tion Block, which is located at the bottom of the stack. Each
record has a function pointer field, pointing to the exception
handler function. Windows requires that exception handlers
have the following function signature:

__cdecl _except_handler(
struct _EXCEPTION_RECORD *ExceptionRecord,
void * EstablisherFrame,
struct _CONTEXT *ContextRecord,
void * DispatcherContext
);

When an exception occurs, Windows locates the excep-
tion registration record, prepares all the parameters on top
of the stack, and invokes the exception handler. Among the
parameters to the exception handler, the second parameter,
EstablisherFrame, is the address of the current excep-
tion registration record.

The SEH mechanism has been abused by attackers as
a key step to circumvent stack protections [26]. Because
of the deployment of defense mechanisms against memory-
error exploits, such as address-space layout randomization,



attackers cannot easily locate the malicious code they in-
ject into the victim process. In this attack, the SEH mech-
anism is leveraged to allow attackers to reliably locate the
injected code. We illustrate the attack in Figure 1. First, the
attack overflows an unbounded buffer to corrupt the stack
all the way to the bottom of the stack, overwriting both
the return address and the exception registration records.
The overwritten return address is set to an invalid address
(e.g., 0xffffffff), which triggers an exception when the corre-
sponding function returns, illustrated on the left-hand part
of Figure 1. In response to this exception, the Windows
SEH mechanism prepares the parameters to the exception
handler and stores them on top of the stack, illustrated on
the right-hand part of Figure 1. Note that the second pa-
rameter (EstablisherFrame at the address 0x0013c43c)
points to the current exception registration record, which
is at the address 0x0013de14. To take advantage of this
pointer, the attacker overwrites the function pointer (at the
address 0x0013de18) to the exception handler with an ad-
dress pointing to an instruction sequence in memory: pop
%esi; pop %ecx; ret (we call this sequence as a PPR
slice in short). In this example, this variable value is
0x71ab8e4a, which points to a PPR slice in the library
ws2 32.dll. When the call to the exception handler ex-
ecutes this PPR slice, the two items on the stack top, the re-
turn address and ExceptionRecord, are popped out, and
the EstablisherFrame parameter is used as the return ad-
dress, leading the control flow to the address 0x0013de14,
which is the start of the exception registration record. The
attacker has prepared a short jump instruction (jmp $8,
represented as binary 0xeb06), which redirects the control
follow to the shellcode placed at the address 0x0013de1c.
Note that in this attack, the attacker does not need to lo-
cate the injected shellcode. It is done by exploiting the SEH
mechanism.

This attack example has the following key steps: 1) an
exception is triggered by returning to an invalid memory
address; 2) a corrupted exception routine is invoked in re-
sponse; 3) a PPR slice is executed, which transfers control
to injected code on the stack; and 4) the injected code is
executed.

Challenges to taint-based analysis. This attacks illus-
trated some of the difficulties faced by taint-based ap-
proaches in attack diagnosis. Using taint analysis, we
can observe that the overwritten return address at address
0x0013c7e0 is tainted by external inputs. However, the con-
trol transfer in the third step does not get its target address
from attackers. Instead, it is the SEH handling mechanism
that pushes the target address onto the stack, so the address
is not affected by external inputs from attackers. Therefore,
taint analysis techniques cannot effectively identify the third
key step in the above example, although they have no prob-
lem in identifying the initial exploit (the first step), as well

as the execution of injected code (the fourth step). Under-
standing the complete picture of this attack is important in
identifying the weakness of the exception handling mecha-
nism, leading to solutions that can prevent the class of at-
tacks. For example, Windows updates its exception han-
dling mechanism to SafeSEH to prevent this type of attacks.

In general, dependency analysis, such as taint analy-
sis [25] and backward slicing [5], has demonstrated its
power and effectiveness in memory exploit detection and di-
agnosis. However, to identify the key steps of an exploit and
reason about the causal relationships among them, we need
to take into account all kinds of dependency relationships,
including direct data dependency, indirect data dependency,
and control dependency: Direct data dependency considers
data movement from a location to another; Indirect data de-
pendency incorporates the dependency between a memory
address and the memory content pointed to by this index;
Control dependency, on the other hand, models the depen-
dency between a control decision and a data variable that is
set based on this control decision. However, conservatively
considering all these dependencies would extract enormous
amount of dependencies, most of which are actually irrel-
evant to the exploit. Therefore, in reality, all the existing
binary analysis techniques only consider a subset of these
dependencies. For example, taint analysis mainly consid-
ers direct data dependency, and may selectively enable in-
direct data dependency using heuristic policies. A recent
technique [17] expands this type of approaches by tracking
a subset of control dependency. In consequence, important
key steps and causal relationships may be unfortunately ex-
cluded from the diagnosis report.

Our observation. Exploits to computer systems involve
using program features in an unintended way. For exam-
ple, in memory-error exploits, attacks often rely on pointer
misuses. Considering the above example, in the first key
step, an exception is triggered by using an invalid address
as return address (control pointer). In the second key step,
the process uses an overflowed function pointer to the ex-
ception handler. In the third step, the last instruction of
the PPR slice, ret, takes the value at the stack as the re-
turn address, which is the second parameter to the excep-
tion handler. This argument has been pushed onto stack as
an EstablisherFrame pointer, pointing to the current ex-
ception registration record.

Pointer misuse, a crucial characteristic in these key steps
for a successful attack, is the result of the flexibility of the
x86 instruction set. However, the programs produced by
compilers use the instructions in a rather consistent way.
In particular, the pointer values, especially control pointers,
are rarely derived from data of other types. Following this
observation, we aim to detect and analyze pointer misuses
by summarizing the common usage of instructions and de-
tect misuses of pointers.
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Figure 2. Overview of PointerScope. Core components of PointerScope are illustrated in dark nodes.

3 Design of PointerScope

Given an exploit and its corresponding vulnerable pro-
gram, the primary goal of PointerScope is to highlight the
exploit’s key steps in the huge amount of instructions and
help security analysts to understand the overall attack mech-
anisms.

3.1 Approach overview

Figure 2 depicts the overview of our approach, where the
core components of PointerScope are shown in dark color.
The execution monitor dynamically runs the vulnerable pro-
gram with the given exploit, and collects a detailed execu-
tion trace. It also collects available auxiliary information,
such as the memory locations of loaded modules and sym-
bols file (e.g., pdb files for Windows DLLs), to facilitate
further analysis. The diagnosis engine processes the execu-
tion trace and auxiliary information, and uses the data type
scope to infer data types of registers and memory locations
during the execution of the vulnerable program. The data
type scope detects pointer misuses as type conflicts. Based
on the result of the data type scope, the diagnosis engine
generates the diagnosis report by extracting the causal de-
pendency relationships between the conflicts.

The main challenge faced by PointerScope is to infer
data types from instructions, and to define the consistency
rules among such types. Note that unlike recent solutions
in type inference on binaries [21, 23], the purpose of Point-
erScope is not to reveal the rich program information avail-
able in high-level languages. Instead, it aims to facilitate
exploit diagnosis by detecting type conflicts on instructions.

3.2 Detecting pointer misuse

In order to detect pointer misuses, we need to get the type
information of instruction operands to distinguish pointers
and other data. For this purpose, we define the data types
and the set of constraint rules for x86 instructions. We focus
on the 32-bit x86 instruction set in this paper.

Type Description
INT Integer
CTR Control pointer
DTR Data pointer
OTR Types other than integer and pointer
PTR pointer, supertype of CTR and DTR
ANY can be any type
NTR Non-pointer
CFL conflict

Table 1. Types defined in PointerScope.

Type definitions Table 1 lists the types defined in Pointer-
Scope. The top portion of Table 1 lists the primitive types:
INT for integers, CTR for control pointers, DTR for data
pointers, and OTR for other types. Integers include index,
offset, counter and so on; Control pointers are memory ad-
dresses for code; Data pointers are memory addresses for
data; Others are for all other types of variable, which we do
not need to distinguish for the application of pointer mis-
use detection. The bottom portion of Table 1 lists aggregate
types, which are combined from primitive types. Aggregate
types are used to group types that can be treated similarly
into a super-type, so that the type system in PointerScope
will not be unnecessarily complex.

Because the objective of PointerScope is to help exploit
diagnosis, we keep the type system as simple as possible
to avoid overwhelming conflicts that may confuse security
analysts.

Instruction type constraints The type constraints posed
by instructions on their operands can be classified into two
categories. First, some instructions generate constraints
to the types of its operands. For example, multiplications
(mul/imul) and divisions (div/idiv) operate on integers.
Therefore, if any of these instructions is executed, we can
infer that the operands must be INT. Second, certain instruc-
tions (e.g., data transfer instructions mov, push, and pop)
propagate type from the source operand to the destination
operand.
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We studied the x86 instruction set and defined the type
constraints of common instructions. We summarize the con-
straints that common general purpose x86 instructions put
on their operands in Table 4 of the Appendix.

Note that the task of deciding an instruction’s type con-
straint is complicated by a few factors. First, an instruc-
tion’s behavior may depend on the value of its operands.
For example, the cmove instruction conditionally moves
data from its source operand to its destination operand. Sec-
ond, some instructions have implicit operands. For exam-
ple, the call instruction creates a return address on the
stack, which is also a control pointer.

When an instruction takes two typed operands as input,
we need to decide the type of the output operand. For typ-
ical scenarios, the result is straightforward, such as adding
two integers and adding a pointer and an integer. The main
challenge is caused by the special usage of instructions for
purposes such as performance optimization. We summarize
the common cases by analyzing common instruction pat-
terns, and define the output type of an instruction for such
special cases. For example, bit operations and, xor, or are
commonly used in special ways: and %eax, %eax and or
%eax, 0 are used for zero test, while xor %eax, %eax is
used to set %eax to zero. We summarize them in Appendix.
As another example, lea $0x8(%eax, %ebx), %ecx is
not always for memory access. Instead, it is often used as
an efficient way to compute %eax+%ebx+$0x8 and store
the result in the register ecx. We discuss more about such
cases in Section 4.

External type constraints Type constraints from external
sources are also important. Many APIs and system calls are
documented, so type definitions in their argument lists can
be used to create type constraints.

char *strncpy(char *dst, const char *src,
size_t num);

For example, the above function prototype indicates that
the first two arguments are data pointers and the third ar-
gument is a 32-bit integer. If available, we may also use
type information in debugging symbols to create type con-
straints.

Another source of type information is the binary exe-
cutable itself. Meta-data in the binary reveal operand type
information. Particularly, the relocation table lists the ad-
dresses of constant numbers that need to be updated during
relocation. These constant numbers are address references
either to a data variable or a function entry. So we resolve
them as PTR. On the contrary, the constant numbers that do
not appear in the relocation table are resolved as NTR. The
only exception is 0, which can be either a NULL pointer or a
zero value, and its address does not appear in the relocation
table. So it has to be ANY for its initial type.

Type inference and conflict detection The algorithm we
use for type inference is based on the classic type infer-
ence algorithm for a high-level programming language, Al-
gorithm W [15]. We adapt this algorithm to suit our purpose
of exploit diagnosis.

First, in binary programs, we treat memory locations and
registers as variables. Unlike variables in a high-level pro-
gramming language, variables in binary programs are fre-
quently reused. Registers and local stack locations are often
used to store different types of data at different execution
stages. Therefore, for a destination operand, we cannot ac-
cumulate its constraints and detect type conflicts during the
binary execution. Instead, we always perform a strong up-
date on the destination operand with the most precise type
at each execution moment. Type refinement and conflict
detection are only performed on source operands. In other
words, type refinement and conflict detection are performed
on variable reads, not on variable writes. This strategy is
also used to deal with union, where a field may have mul-
tiple types under different execution contexts.

Second, in the Algorithm W, all the type constraints of
variables are accumulated throughout the entire program,
and then the most precise type is resolved for each variable.
In our case, we need to resolve the most precise type for
each variable on the fly to detect type conflicts as early as
possible. Therefore, we need to take an eager approach in
identifying variable type. That is, whenever a more precise
type is resolved, this new type information will be imme-
diately propagated to the other variables sharing the same
type, so that all of these variables have the most precise
type at this point of execution.

Based on the adapted algorithm, the data type scope
tracks the data type information of memory locations and
registers. It generates alerts when other type of data are
misused as pointers, or when data pointers are misused as
control pointers.



M@0xbfffebcc[4]

0x080484b0 ret

Type Usage (CTR)

0x42050faf add %edx,0xfffffa90(%ebp)

Type Origin (NTR)

temporal

Figure 4. The key-step graph of a simple for-
mat string exploit.

3.3 Generating key-step graphs

After the data type scope identifies pointer misuses, the
diagnosis engine extracts the causal dependencies for these
conflicts to reveal the key steps of the given exploit. To
assist security analysts, we represent these dependency re-
lationships using a graph. This key-step graph consists of a
set of vertices V and a set of edges E.

• Set of vertices V . A vertex is either an instruction or
a variable involved in a pointer misuse. Each conflict
will be represented in at least three vertices: a vertex
for the variable with a pointer misuse, a vertex for the
instruction that defines the original type of this vari-
able, and a vertex for the instruction that causes type
conflicts.

• Set of edges E. An edge represents the relationship
among vertices. We use edges to record type relation-
ship. There are three kinds of edges. “Type Origin”
edge is from the instruction that defines or resolves
the current type of a variable to the variable vertex
that has a conflict type. “Type Usage” edge originates
from the variable with pointer misuse to the instruction
that causes the pointer misuse when using this vari-
able. ”Temporal Order” edge manifests the temporal
relations between the instruction vertices.

Figure 4 shows the key-step graph for the following sim-
ple format string exploit, where an integer counter in the
printf instruction is used to overwrite the return address.

printf("%p%p%p%n");

To better illustrate the attack, we use different shapes to
represent different types of vertices. The ellipse vertices are
variables involved in the pointer misuses; the shaded rect-
angles with round corner are the instructions where pointer
misuses are detected; the rectangles are the instructions that

define the existing type of the variables. The labels of the
variable vertices indicate the variable’s type (M@ for mem-
ory and R@ for register), the variable’s unique identifier
(memory address or register name), as well as the variable’s
size measured in bytes (denoted as a number in the square
brackets after the variable’s unique identifier). The labels
of the instruction vertices indicate the instruction’s address,
disassembled instruction. It can also include the optional
operand information, as well as the function and library the
instruction belongs to.

In this example, the pointer misuse is generated on the
ret instruction at the instruction address 0x080484b0. It
uses variable at the address 0xbfffebcc as a control pointer
(return address), but the variable is inferred as an integer
from an add instruction at the address 0x42050faf. This
attack is a tradition attack without sophisticated attack steps,
so there is only a single key step in the attack.

Usage of the key-step graph. Note that this key-step
graph illustrates the big picture of an exploit, but it does
not convey the complete knowledge of the exploit. One us-
age of the key-step graph is to show the similarity among
attacks. For example, all attack techniques based on the
SEH mechanism will have similar key-step graph. Alterna-
tively, the diagnosis result by PointerScope can be further
enhanced by dependency-based diagnosis. For example, us-
ing the standard slicing approach [5], we can extract instruc-
tions related to one attack step for investigators to investi-
gate, including all the instructions that create and propagate
the misused variables.

4 Implementation

In this section, we describe the implementation of Point-
erScope in general, and discuss a few challenges we faced
in implementation.

4.1 Implementation details

We prototyped PointerScope on the Linux system. The
execution monitor component is based on the TEMU [35,
39] component of BitBlaze [1, 34], which extends the
QEMU [8, 29] whole system emulator to generate instruc-
tion traces for specified programs. Basing PointerScope
on TEMU has three advantages for vulnerability diagno-
sis. First, PointerScope can be easily extended to support a
new guest OS. Currently, it supports Windows 2000, Win-
dows XP, and multiple Linux versions. Second, this emula-
tion environment makes it easy to set up different configu-
rations and software packages to test exploits. Third, it also
provides a good isolation between the exploit testing envi-
ronment within virtual machine and the analysis environ-
ment on the host. Hence, even though the exploit may have



compromised the testing environment, the host machine re-
mains intact. For each instruction executed by the program,
our execution monitor records the raw instruction and the
content of all its operands, including the implicit operands.
The data type scope and diagnosis engine are implemented
as standalone utilities, in about 3.6K line of C code.

4.2 Challenges in inferring types

Information from instruction addressing. The first
challenge is caused by instruction addressing. The x86
instruction set supports various addressing modes. Each
addressing mode has its typical pattern, which reveals in-
formation about the typical type of instruction operands.
However, the operands may be used differently by the com-
piler. In particular, the x86 instruction set supports the ad-
dressing mode base-index with displacement, where a mem-
ory address is composed in the format of base + index

+ displacement. For example, the instruction movl

$0x8(%eax, %ebx), %ecx stores the memory content of
%eax + %ebx + $0x8 into the register ecx. Typically,
the first register eax is the base, which is a pointer; The
second register ebx is the index, which is an integer. How-
ever, the compiler may exchange the base register with the
index register or even with the displacement, for exam-
ple, $0x8(%ebx, %eax), as both instructions produce the
same result. We need to decide which register represents
the base.

We observed that, in most cases, the resulting memory
address is close to the value in the base register. Therefore,
we use the value of the registers as a hint and treat the regis-
ter whose value is closest to the memory operand’s address
as the base register, which is a pointer.

Special usage of lea. Another challenge is from the spe-
cial usage of instructions. A typical example is lea. It
is designed to load effective addresses, but it is often used
as an optimized way to carry out numerical calculation.
For example, lea $0x8(%eax, %ebx), %ecx computes
%eax+%ebx+$0x8 and puts the result into the register ecx.
So we should treat the lea instruction as a numerical cal-
culation, without resolving the computation result as an ad-
dress. Another example is the instructions shl and shr.
They are considered as multiplication and division opera-
tions in our implementation. These two instructions are
originally for bit operations, but they are widely used for
multiplication and division.

Equivalent instruction sequences. A third challenge is
from equivalent instruction sequences:

not %ebp
or $0x3,%ebp
not %ebp

In the above real-world example, the instruction se-
quence produces the same result as a single instruction and

$0xfffffffc,%ebp, which is used to align a pointer by
clearing its lowest two bits. However, after applying the
not operation twice on ebp, which has a pointer type,
the type information is lost under our common type rules.
Looking at individual instructions separately will not catch
the instructions’ intention, and thus make wrong type as-
signments. Similarly, the sub and neg instructions can have
the similar effects on pointer as not.

In this implementation, we solve this problem by recog-
nizing the common patterns and treat them as special cases.

Handling memory copy operations. Programs often
copy a memory region from one variable to another area in
a byte-by-byte fashion. In PointerScope, every write opera-
tion creates a new variable. So truncation and combination
will happen to the new copy of variables in the destination
region and the original type information is lost.

To solve this problem, we keep a dependency reference
for every byte inside a variable. For example, before using
a variable A, we will check the dependency of every byte in
A. If all bytes in A depend on another variable B, Pointer-
Scope assigns the type of B to A first. In this way, we can
recover variable information from memory copy operations.

5 Evaluation

We evaluated our approach using a few real-world ex-
ploits on both the Windows and the Linux platform. For
sample collection, we selected recent non-trivial memory-
corruption attacks that have exploits available in the MetaS-
ploit [24] framework. Not surprisingly, most of the attacks
are drive-by download attacks. Such attacks commonly
rely on sophisticated exploit techniques to bypass the ex-
isting defense mechanisms, and malicious web pages of-
ten go through heavy transformations in the browser, which
bring significant challenge to the traditional dependency-
based analysis techniques. Thus we believe PointerScope’s
result on such attack will demonstrate the potential of our
technique. The vulnerabilities and exploits are summarized
as follows.

• CVE-2010-0249: Microsoft IE HTML Object Mem-
ory Corruption. Windows platform.

• CVE-2009-3672: Microsoft IE “Style” Object Remote
Code Execution. Windows platform.

• CVE-2009-0075: Microsoft IE Document Object Han-
dling Memory Corruption. Windows platform.

• CVE-2006-1016: Microsoft IE Javascript IsCompo-
nentInstalled Overflow. Windows platform.



CVE Attack Technique Runtime Conflicts Trace Size Slice Size
CVE-2010-0249 Uninitialized memory; heap spray 18m23s, 8m30s 11 307,987,560 48,404,242
CVE-2009-3672 Incorrect variable initialization; heap-spray 3m10s, 31s 2 22,759,299 955,325
CVE-2009-0075 Uninitialized memory; heap spray 25m, 21m16s 6 411,323,083 44,792,770
CVE-2006-0295 Heap overflow; heap spray 3m5s, 1s 3 808,392 34,883
CVE-2006-1016 Stack overflow; SEH exploit 4m59s, 1m33s 3 64,355,691 1,334,253
CVE-2006-4777 Integer overflow; heap spray 1m45s, 40s 3 2,632,241 1,669,751
CVE-2006-1359 Incorrect variable initialization; heap spray 11m58s, 13s 2 8,336,193 29,520
CVE-2010-3333 Stack overflow vulnerability; SEH exploit 18m53s, 7m24s 1 236,331,307 814,305
CVE-2010-3962 Incorrect variable initialization; heap spray 10m36, 15s 2 9,281,019 78,704

Table 2. Summary of evaluation. The “Runtime” shows two pieces: the first is the time spent on
generating the execution trace and the second is the time spent on generating the key-step graph
from the trace. The “Conflict” lists the number of pointer misuses detected. “Trace size” is the total
number of instructions in the execution trace. “Slice size” is the number of instructions in the slice
that the exploit is dependent on.

• CVE-2006-0295: Firefox location.QueryInterface
code execution. Linux platform.

• CVE-2006-4777: Microsoft IE Daxctle.OCX
KeyFrame Method Overflow. Windows platform.

• CVE-2006-1359: Microsoft IE createTextRange Code
Execution. Windows platform.

• CVE-2010-3333: Microsoft Word RTF pFragments
Stack Buffer Overflow. Windows platform.

• CVE-2010-3962: Microsoft IE CSS SetUserClip
Memory Corruption. Windows platform.

5.1 Summary of effectiveness and performance

The result of our evaluation is summarized in Table 2.
The execution traces’ sizes range from about 30K instruc-
tions to 411M instructions. Accordingly, it took Pointer-
Scope from 1.26 second to about 27 minutes to diagnose
the exploits. In each diagnosis, a significant portion (more
than 60%) of time was spent on generating the trace.

PointerScope detected all control hijacking behaviors
through pointer misuse detection, and correctly character-
ized the attacks’ key steps. We will analyze the details of
selected exploits later in this section.

In addition, we collected the following statistics on how
PointerScope can improve the efficiency of attack analysis
by comparing with dynamic program slicing technique [5]
and dynamic taint analysis [25]. Starting from the instruc-
tion i that transfers control into malicious payload, we use
program slicing on the execution trace to extract all the in-
structions that influence the instruction i via direct and in-
direct data dependency. The number of instructions in this
slice is listed in the column “Slice Size”. As a reference,

we also list the total number of instructions in the execu-
tion trace for each exploit sample. We can see that although
dynamic program slicing can generally extract a small slice
relative to the total trace size, the sheer size of a slice is
still huge (from tens of thousands to several million instruc-
tions).

As for dynamic taint analysis, we mark the exploit input
as tainted and track the tainted input propagating through
data dependency. Then an alarm is triggered whenever the
instruction pointer becomes tainted. We investigated two
taint propagation policies: P1: direct data dependency
only; and P2: indirect data dependency included. We made
the following observations. On one hand, for all of these
exploits except CVE-2006-0295, no alarm is raised if only
direct data dependency is tracked. This is because these
exploit inputs propagate through indirect data flows. On
the other hand, tracking indirect data dependency induced
too many alarms, ranging from about 1K to 759K. This
phenomenon coincides with Slowinska and Herbert’s find-
ing [32]. Therefore we can see that dynamic taint analysis
becomes less effective for detecting and analyzing these so-
phisticated memory-corruption attacks. In contrast, Point-
erScope detected a small number of pointer misuses, which
pinpoint the key attack steps.

5.2 Case studies

We use several representative samples to describe the de-
tailed analysis results for them.

5.2.1 Microsoft IE Javascript IsComponentInstalled
overflow

This attack is similar to the attack described in Section 2.
It exploits a stack overflow vulnerability to overwrite the



M
@

0
x
1

3
c7

e
0

[1
]

[1
4

6
5

1
6

5
4

] 
0

x
7

6
1

0
0

1
c0

 r
e
tn

$
0

x
1

8
   

   
I@

0
x
0

0
0

0
0

0
0

0
[2

] 
 M

@
0

x
0

0
1

3
c7

e
0

[4
] 

 
0

x
1

0
0

1
6

@
u

rl
m

o
n

.d
ll@

Is
A

ct
iv

e
S

e
tu

p
Fe

a
tu

re
L
o
ca

lly
In

st
a
lle

d

Ty
p
e
 U

sa
g
e
 (
CT
R)

M
@

0
x
1

3
c7

e
1

[1
]

Ty
p
e
 U

sa
g
e
 (
CT
R)

M
@

0
x
1

3
c7

e
2

[1
]

Ty
p
e
 U

sa
g
e
 (
CT
R)

M
@

0
x
1

3
c7

e
3

[1
]

Ty
p
e
 U

sa
g
e
 (
CT
R)

M
@

0
x
1

3
d
e
1

8
[1

]

[1
4

6
5

1
9

4
4

] 
0

x
7

7
f8

3
3

9
e
 c

a
ll

%
e
cx

   
   

 R
@

e
cx

[4
] 

 M
@

0
x
0

0
1

3
c4

3
0

[4
] 

 
0

x
3

3
3

7
a
@

n
td

ll.
d
ll@

E
xe

cu
te

H
a
n

d
le

r2
@

2
0

Ty
p
e
 U

sa
g
e
 (
CT
R)

M
@

0
x
1

3
d
e
1

9
[1

]

Ty
p
e
 U

sa
g
e
 (
CT
R)

M
@

0
x
1

3
d
e
1

a
[1

]

Ty
p
e
 U

sa
g
e
 (
CT
R)

M
@

0
x
1

3
d
e
1

b
[1

]

Ty
p
e
 U

sa
g
e
 (
CT
R)

M
@

0
x
1

3
c4

3
8

[4
] [1

4
6

5
1

9
4

7
] 

0
x
7

1
a
b
8

e
4

c 
re

t
   

M
@

0
x
0

0
1

3
c4

3
8

[4
] 

 
0

x
8

e
2

d
@

w
s2

_3
2

.d
ll@

D
P

R
O

V
ID

E
R

::
~

D
P

R
O

V
ID

E
R

Ty
p
e
 U

sa
g
e
 (
CT
R)

[1
0

1
3

0
3

9
] 

0
x
7

7
e
7

9
b
c5

 m
o
v

(%
e
a
x
,%

e
b
x
),

%
a
l

   
  M

@
0

x
7

ff
b
0

2
8

f[
1

] 
 R

@
a
l[

1
] 

 
0

x
1

9
b
6

3
@

ke
rn

e
l3

2
.d

ll@
_G

e
tM

B
N

o
D

e
fa

u
lt

@
2

4

Ty
p
e
 O

ri
g
in

 (
N
TR

)
Ty

p
e
 O

ri
g
in

 (
N
TR

)
Ty

p
e
 O

ri
g
in

 (
N
TR

)
Ty

p
e
 O

ri
g
in

 (
N
TR

)
Ty

p
e
 O

ri
g
in

 (
N

TR
)

Ty
p
e
 O

ri
g
in

 (
N
TR

)
Ty

p
e
 O

ri
g
in

 (
N
TR

)
Ty

p
e
 O

ri
g
in

 (
N
TR

)

te
m

p
o
ra

l

[1
4

6
5

1
9

1
1

] 
0

x
7

7
f6

1
7

d
d
 p

u
sh

l
0

x
4

(%
e
b
x
)

   
   

M
@

0
x
0

0
1

3
d
e
1

8
[4

] 
 M

@
0

x
0

0
1

3
c4

8
c[

4
] 

 
0

x
1

1
7

6
3

@
n

td
ll.

d
ll@

_R
tl

D
is

p
a
tc

h
E

x
ce

p
ti

o
n

@
8

te
m

p
o
ra

l

Ty
p
e
 O

ri
g
in

 (
D
TR

)
te

m
p
o
ra

l

te
m

p
o
ra

l

Fi
gu

re
5.

K
ey

-s
te

p
gr

ap
h

fo
r

IE
Ja

va
sc

ri
pt

Is
C

om
po

ne
nt

In
st

al
le

d
ov

er
flo

w
.



stack, including the return address and the exception regis-
tration record. The overwritten return address triggers an
exception. When preparing to call the exception handler,
Windows pushes the exception registration record’s address
r on the stack as one of the arguments to exception han-
dler. This is a key step that enables the attack to navigate
to the injected code. Finally, the overwritten exception han-
dler leads to a ret instruction that uses the address r, and
activates the injected code.

The attack graph is shown in Figure 5. It includes
three conflicts, where two variables of data type are used
as control pointers and a data pointer is used as control
pointer. From the graph, we can see that the conflict-
causing variable, the return address, is pushed onto the
stack as a data pointer in the exception handling func-
tion RtlDispatchExcpetion. Moreover, the ret in-
struction was reached by a call instruction from the func-
tion ExecuteHandler2 in the library ntdll.dll, which
causes a pointer misuse when using data as control point-
ers. This variable used by the call is the overwritten ex-
ception handler pointer on the stack. Therefore, with help
of PointerScope, we correctly capture the key steps for this
SEH-based attack.

Once the key steps of the attack are identified, we employ
data dependency analysis on each step to help us understand
the attack mechanism. The first pointer misuse is on the in-
struction retn $0x18, it is the return instruction in func-
tion IsActiveSetupFeatureLocallyInstalled. But
by following data dependency, we can see that the return
address is combined by the bytes which have been copied
by a mov instruction, not from a call instruction. This
is the typical scenario of stack overflow. For the sec-
ond pointer misuse is on the instruction call %ecx from
function ExecuteHandler2. This call instruction, simi-
lar with retn $0x18, use a variable combined by bytes
copied by instruction mov (%eax,%ebx),%al. And if we
check the assembly code of function ExecuteHandler2,
we know the call target is an exception handler. So this
pointer misuse is caused by overwritten exception han-
dler. Another interesting fact is that both pointer misuses
are caused by a single overflow. The last pointer mis-
use is on a simple return instruction. Its return address
is 0x0013de14. There was a pushl 0x4(%ebx) from
function RtlDispatchException, which pushed a vari-
able at 0x0013de18 onto the top of stack. So we know
0x0013de18 is a data pointer. Since %ebx + 0x4 is data
pointer, it is easy to understand that %ebx + 0x0, whose
value is 0x0013de14, is also data pointer. This is misuse
from data pointer to control pointer. By checking the assem-
bly code and definition of function ExecuteHandler2, we
understand that the variable pushed onto stack is the param-
eter EstablisherFrame for exception handler.

Putting every piece together, we get a com-
plete story of the attack, which employed a
buffer overflow to overwrite the return address of
IsActiveSetupFeatureLocallyInstalled and the
SEH structure on the bottom of the stack. It used a invalid
value to trigger an exception and hijacked control flow
by the overwritten exception handler. Finally, it located
shellcode by parameter EstablisherFrame, which is
prepared by function ExecuteHandler2.

We can also look for root cause of the ex-
ploit. The vertex retn $0x18 in function
IsActiveSetupFeatureLocallyInstalled is the
conflict where the corrupted return address is used. The
pointer misuse is caused by using a few data bytes as a
pointer. After locating instructions that write into these
bytes in the trace, we found a big loop that starts to
write at the address 0x0013c4ed. This is at the beginning
of the overflowed buffer. It is at the offset 755 of the
function’s stack frame. Since the corrupted return address
is highlighted, we identified the vulnerable function
IsActiveSetupFeatureLocallyInstalled. Such
information helps developers to quickly identify and fix the
problem.

5.2.2 Microsoft IE “Style” object remote code execu-
tion

This attack is caused by a vulnerability in the class
CDispNode’s member function SetExpandedClipRect.
It uses an index value from the HTML page to compute an
offset o from an array a, and find a flag variable located
at o bytes before the instance of CDispNode. It then sets
the second bit of the flag (or $0x2, %eax). However, the
array a’s first entry is incorrectly initialized as zero, which
makes the offset o zero when the index value is zero. There-
fore, the address of the CDispNode instance is taken as the
address of the flag. Now the flag is actually the pointer to
the instance’s virtual function table. When the function ORs
the flag with 0x2, the pointer to the virtual function table is
incremented by 2. As a result, the pointer to the first virtual
function is taken from an address off by 2, which happen to
be an address pointing to the heap. A call to the first virtual
function will execute code attackers prepared on the heap.

As Figure 6 illustrates, there are two pointer misuses.
The instruction at the bottom is the step where the control
transfers to attacker’s code. This is an interesting case in
which both the operand content and operand address have
conflicts. Following the operand content conflict, we found
this instruction used parts of two other pointers as the tar-
get for call. This is clearly wrong. To find the reason,
we followed the conflict in the operand address, where we
found the address (data pointer) is from the output of an or

instruction (integer).



R@eax[4]

[16940584] 0x7490e854 call *0x2c(%eax)
      M@0x74831546[4]  M@0x0013e0d4[4] 

0xfe838@mshtml.dll@CLayout::GetFirstContentDispNode

Type Usage (PTR)

M@0x74831544[4]

Type Usage (CTR)

M@0x74831548[4]

Type Usage (CTR)

[16934872] 0x749120f2 call *0x2c(%eax)
      M@0x74831544[4]  M@0x0013e068[4]  
0x102098@mshtml.dll@CLayout::SizeDispNode

Type Origin (CTR)
[16937930] 0x74943a14 call *0x30(%eax)

      M@0x74831548[4]  M@0x0013dde4[4]
0x13393f@mshtml.dll@CDispNode::GetNodeClipTransform

temporal

Type Origin (CTR)

[16940456] 0x74a291f2 or $0x2,%eax
       I@0x00000000[1]  R@eax[4]  

0x2191d4@mshtml.dll@CDispNode::SetExpandedClipRect

temporal

Type Origin (NTR)

temporal

Figure 6. Key-step graph for Microsoft IE “Style” Object Remote code execution vulnerability.

After the key steps of the attack are identified, we use
data dependency analysis and slicing on each step to help
us understand the attack mechanism. This call instruction
contains two misuses. The first one is on the call target.
From data dependency of call target we know that this tar-
get actually is combined by two parts. Each of those two
parts came from a variable who is used to be call target.
Then let us look at the address of the highlighted call tar-
get. It is computed like %eax + 0x2c. This is a typical
style of virtual function call and %eax is supposed to be
the base of virtual function table. And it is easy to find
out from data dependency that the three eax that are used
by non-highlighted instruction call *0x2c(%eax), call
*0x30(%eax) and or $0x2,%eax is the same variable.
But this variable is change by instruction or $0x2,%eax

in Figure 6, which is not supposed to happen.

After we understand the malicious control transfer is
triggered by the or instruction, we performed backward
slicing on its operands, and found the root cause of this
exploit nine instructions away. It is an instruction at the
address 0x74a291da, which uses the incorrectly initialized
first entry of a. Therefore, PointerScope significantly re-
duces the amount of analysis needed in identifying the root
cause of this exploit.

5.2.3 Microsoft IE object tag buffer overflow

This attack exploits a buffer overflow vulnerability in han-
dling the MIME type of the Object HTML tag. The vul-
nerable code converts each “/” character in the MIME type
string into the sequence “ / ” after checking the destination
buffer size using the size of the original MIME type. Thus,
a MIME type with lots of “/” characters will overflow the
destination buffer and overwrite the return address.

PointerScope identified that the injected code started to
execute after a ret instruction, whose return address is cre-
ated by a push instruction that pushes the esp register on
the stack. The push instruction was preceded by another
instruction causing pointer misuse. It is the ret instruction
that uses the overflowed return address. The above three in-
structions are executed in a sequence. Thus, this attack puts
its shell code right after the overflowed return address, and
“returns” to an instruction sequence push %esp; ret. By
understanding these key steps, we understand that this is an-
other mechanism that redirects the execution into the shell
code on the stack when the stack location cannot be pre-
dicted.



Program False Positive Trace Size
AcroRd32.exe 3 328,429,372

calc.exe 0 51,573,864
cmd.exe 0 120,69,909

firefox.exe 3 277,982,830
(www.google.com)

iexplore.exe 1 119,996,863
(about:blank)
iexplore.exe 2 317,299,855

(www.google.com)
msmsg.exe 0 64,033,207
mspaint.exe 0 80,211,147
notepad.exe 0 66,073,327
Skype.exe 5 205,427,083

winword.exe 5 194,218,192

Table 3. Summary of false positive evaluation.
The “False Positive” lists the number of dis-
tinct false positive. “Trace size” is the total
number of instructions in the execution trace.

5.3 False Positive Analysis

Benign program execution may also trigger pointer mis-
uses for performance optimization or other reasons. Since
we aim for offline security analysis, having a small number
of false positives is not a big concern. Furthermore, we can
use a white-list to filter out the known false positives from
the final diagnosis report.

We conducted experiments for false positive evaluation
using a collection of Windows utilities, such as Notepad,
Internet Explorer, etc. We used those utilities to perform
their typical operations, such as surfing common web por-
tals and edit documents. We took traces of these operations
and analyzed the conflicts. The result is shown in Table 3.
We summarized the common patterns causing conflicts into
the special cases used in our type operation described in
Section 4 and Appendix.

We encountered some interesting false positives in our
experiment. These false positives cannot be handled by
PointerScope’s type operation algorithm.

The first false positive comes from the function
sbh alloc block from page in mshtml.dll.

mov 0x8(%ebp ) ,% ecx
mov (%ecx ) ,% e d i
mov %edi , 0 x8(%ebp )
l e a 0 xf8 (%ecx ) ,% e s i
add %edx , (% ecx )
sub %edx , 0 x4(%ecx )
imul $0xf ,%ecx ,% ecx
l e a 0x8(% e d i ) ,%eax
s h l $0x4 ,% eax
sub %ecx ,% eax

Suppose %ecx is p1 and %edi is p2. The above instruc-
tions actually compute (p2 + 8)*16 - p1*15, which is
p1 + (p2 - p1 + 8)*16. According to the instructions
before this code segment, the ecx contains a memory ad-
dress that is aligned to page boundaries, which should be a
pointer to an empty page. And p2 is the first member of a
structure at the beginning of the empty page. So the effect
of this computation is to generate a pointer pointing to an-
other structured data in the page, as indicated by p1 + (p2

- p1 + 8)*16. However, the original computation (p2 +

8)*16 - p1*15 seems meaningless. We believe this is the
result of compiler optimization.

The tracing on Microsoft Word shows a complex encod-
ing and decoding process. From the report, we can de-
rive that it first encodes an internal variables using a series
of bit operations byte by byte, and then decodes it when
using those variables later. Here is a piece of code from
winword.exe trace file.

mov (% e d i ) ,% c l
mov 0x27(%esp ) ,%ebx
and $0xf f ,% ecx
and $0xf f ,%ebx
xor %ebx ,% ecx
xor $0x100 ,% ecx
shr $0x1 ,% ecx
and $0xf f ,% eax
shr $0x1 ,% eax
xor %eax ,% ecx
sar $0x1 ,% ecx

In this code slice, variables are treated as raw data.
We cannot restore the original type information inside this
structure due to the complex encoding and decoding oper-
ation. So we have to filter this kinds of false positives by
white-listing.

For Skype, most of false positives come from one
special case when it takes a fixed value directly as a pointer,
which is calculated from an immediate through a fixed
series of operations. Actually, the call instruction is using
an immediate as target address. Our data type scope will
recognize this scenario as a conflict of using INT as PTR.
We need handle this through a special pattern to recognize
using fixed value as a pointer by tracking operations on
immediate. Here is a code slice from Skype.

mov 0 x29de027f ,% eax
ror 0x10 , %eax
add 0 x47a7bc4 ,% eax
neg %eax
add 0 x75a1292 ,% eax
c a l l %eax



6 Limitations and Future Work

In this section, we discuss the limitations of our current
implementation and future work.

Integer overflows The current type system of Pointer-
Scope cannot be used to diagnose integer overflow attacks,
which is caused by the confusion between signed and un-
signed integers. We may extend the type system to distin-
guish signed and unsigned integers. However, this extend
type system may introduce lots of innocent type conflicts
that appear frequently in normal program execution. For
instance, conflicts between signed and unsigned integers
can be commonplace in normal programs. Nevertheless, it
would still be an interesting research problem how to elimi-
nate innocent type conflicts in an extended type system. We
plan to investigate this problem in the follow-up work.

Self-modifying Code We noticed that for some normal
program executions, PointerScope falsely detected several
type conflicts. These conflicts came from self-modifying
code. A variable is firstly used as a data pointer to write
into a code region, and then used as a control pointer to
jump into the code region. It causes a type conflict be-
tween DTR and CTR. This is not an uncommon case, espe-
cially in Windows. To allow self-generating code, we can
use a learning-based approach to identify the normal code-
generation locations, and use a white-list of these locations
to avoid reporting these innocent type conflicts.

Dependency among key steps PointerScope identifies
the key steps, but does not analyze the dependencies among
the steps. PointerScope may also miss key steps that do not
incur type conflict. As the next step, we propose to combine
PointerScope with dependency-based analysis, such as taint
analysis, to perform more complete diagnosis to memory-
corruption attacks.

Although the key-step graph highlights important steps
of an exploit, manual efforts are still needed to analyze the
exploit comprehensively. In the follow-up work, we will
also investigate in automated solutions that can further re-
duce manual efforts.

7 Related Work

Attack Diagnosis Techniques. Some existing diagnosis
techniques [12, 18, 20, 25, 28, 38, 40] automatically analyze
the attack and illustrate how this attack has happened.

BackTracker [18] builds up a dependency graph between
OS objects, such as processes, files, sockets, and so on, and
this dependency graph can be used to trace back the origin
of an intrusion. In comparison, exploit diagnosis needs to

reason about dependency between instructions, so a depen-
dency graph in the OS object level is too coarse grained.

Dynamic taint analysis [25] keeps track of the data de-
pendency originated from untrusted user input at instruction
level, and detects an exploit on a dangerous use of a tainted
input. Then a data dependency graph can be constructed
from the detection point. However, as a study shows, when
tracking indirect data dependency is blindly enabled, the
amount of tainted data and dependency information will ex-
plode, generating tremendous amount of false alarms and ir-
relevant dependency relationships. Moreover, taint analysis
may miss important attack steps because these steps depend
on the tainted input via control flow. DTA++ [17] enhances
traditional taint analysis by handling a targeted subset of
control flow. Based on dependency analysis, Argos [28]
detects zero-day attacks and generates network-level signa-
tures to prevent future attacks, while Vigilante [12] gener-
ates host-level filters. PointerScope and taint analysis have
complementary advantages: PointerScope highlights im-
portant instructions among a huge amount of dependencies,
while taint analysis focuses on such instructions to generate
detailed diagnosis.

Several solutions [19, 20, 38, 40] perform dependency
analysis to analyze a piece of malware and extract valu-
able insights about its attack mechanism. In particular,
Panorama [40] and HookFinder [38] also generate depen-
dency graphs to facilitate security analysts.

Two exploit diagnosis systems take memory analysis ap-
proach [22, 37]. When an exploit attack is detected, these
tools capture the memory snapshot on this moment, and
then try to find evidence on this memory snapshot to reason
about the root cause of this attack. It is infeasible for this
static analysis approach to understand the entire process of
an exploit attack.

Defense and evasion techniques in memory-error ex-
ploits. There are a wide-range of solutions to detect and
prevent software exploits. Techniques, such as control-
flow integrity (CFI) [4], data-flow integrity (DFI) [10], and
WIT [6] proactively defeat exploits by enforcing program
integrity models, which are derived through extensive anal-
ysis of program and often need program source code. In
contrast, PointerScope aims to diagnose exploits by infer-
ring types from binary execution, which can complement
the above solutions when they are not applicable. Defense
mechanisms like StackGuard [36], PointGuard [13], ASLR
(i.e., address space layout randomization) [3, 9], and DEP
(i.e., data execution prevention) [2] are implemented and
deployed in software and the operating system to defeat
software exploits. They break some of the key steps of an
exploit, while the goal of PointerScope is to get the com-
plete picture of exploits for diagnosis.



The attackers always invent new evasion techniques to
bypass these defense mechanisms. For instance, to by-
pass DEP, a returned oriented malicious payload reuses
the existing code in vulnerable program and runtime li-
braries [31]. More specifically, small code snippets end-
ing with a return instruction are stitched together to imple-
ment Turing-complete malicious functionalities. More re-
cently, researchers showed that return-to-libc attacks can be
accomplished without using return instructions [11]. More-
over, bypassing both DEP and ASLR is possible, as a study
shows [16]. Recent news about enhanced Aurora exploit
confirms this statement [7].

As this arms race continues to escalate, the objective of
our work is to automatically capture the characteristics of
a new exploit and understand the weakness of the existing
defense system, so that the defense system can be enhanced
promptly to thwart similar exploit techniques.

Type and data structure recovery from binaries Re-
covering the type information from binary programs is valu-
able for computer security. ASI [30] proposes an approach
to identify aggregate data structures. REWARDS [23] takes
a dynamic approach to type inference for binary executa-
bles. It mainly targets memory forensics, and thus its goal
is to recover as much abstract type information as possible.
When a variable may hold multiple types, it chooses to keep
them all, to maximize the abstract type knowledge. TIE [21]
takes a static approach to type inference. It infers type for
registers and memory variables simply from a binary exe-
cutable. Laika [14] uses Bayesian unsupervised learning to
figure out data structures of binaries, and used them to de-
tect common polymorphic botnets. Howard [33] identifies
data structures more accurately through extensive dynamic
analysis.

All solutions in this category aim to extract complete in-
formation from binary programs to assist understanding and
reverse engineering of binaries. In contrast, PointerScope
aims to detect pointer misuses for exploit diagnosis, so it
needs to accurately resolve the basic type for each variable.
It also uses a much simpler type system to guide the diag-
nosis of complex attacks. For example, after analyzing the
entire execution, REWARDS may report that the type of a
union field is a set of types: pointer and integer. For the
same situation, PointerScope determines the exact type of
this union field on each related instruction to detect con-
flicts. Increasing the granularity of types of PointerScope
may help to extend the key-step identification technique be-
yond memory-corruption exploits, but it will increase the
number of false positives in type conflicts.

8 Conclusion

In this paper, we presented the design and implementa-
tion of an exploit diagnosis tool, called PointerScope. The
goal was to analyze sophisticated software exploits, which
pose substantial challenges to the existing analysis tech-
niques because of the complexity of web browsers and ex-
tensions and sophistication of exploits. To tackle this chal-
lenging problem, we leveraged a key insight that the key
steps of these memory corruption attacks are often pointer
misuses. To catch these pointer misuses, we designed a
small type system on x86 instructions and devised a type
inference algorithm to resolve type information during the
binary execution and detect type conflicts. Then we per-
formed dependency analysis on these type conflicts to un-
derstand the inner-working of an exploit. We evaluated mul-
tiple recent sophisticated memory-corruption exploits, and
demonstrated the capability and effectiveness of of Pointer-
Scope.
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A Special usage of instructions

In this section, we summarize the special usage of instructions
we identified and encountered during evaluation.

A.1 Special use of bit instructions

Special usage of and

• zero test: and is used to test whether a variable is zero or
not.

and %eax, %eax

• mask usage: and can be used to align memory address by
masking out lower bits.

• abnormal usage: We observed two unusual scenarios used by
and.

and 0xfffffffb, %eax
and 0x03, %eax

In the first scenario, assuming that the eax register is of type
PTR, we should keep it as the PTR type after and operation.
In the second scenario, no matter what type the register eax
is, it will be changed to the type INT.

• assignment:

and 0x0, %eax

In above example, and is used to set the value of eax. So
we create a rule that if the result of the and is equal to one
of the source variables, the result will inherit the type of that
source variable.

Special usage of or

• zero test: or can be used to do zero test.

or $0x0, %eax

• mask usage: or is used to mark a pointer, used by Firefox.

or $0x01, %ecx

• assignment:

or $0xffffffff, %eax

Similer with and, if the result of the or is equal to one of
the source variables, the result will inherit the type of that
source variable.

Special usage of xor

• zero set: It can be used to set a variable to zero.

xor %eax, %eax

• encode data: Sometimes xor is used to encode/decode data
with an integer key.

xor $KEY, %ebx ... xor $KEY, %ebx

Special usage of shl/shr
shl is considered a multiply operation, shr is considered a

divide operation. Those two instructions are originally for bit op-
erations, but they are widely used for multiplication and division.

For example, mostly the memcpy function takes a source
pointer, destination pointer and a byte counter as parameters. The
compiler can put the two pointers into esi and edi and the byte
counter into ecx, then run movsb directly. But for higher effi-
ciency, compiler always uses a two-bit right shift operation to the
counter before putting it into ecx and uses rep movsd instead
of rep movsb. Similarly, shl will be used when the compiler
tries to convert a double-word counter into byte counter.

Special usage setc
setc is used to store a bit of CPU’s EFLAG. This is be a

boolean variable, but it may be used as an index (INT) sometimes.

A.2 Pointer tag in Firefox

or 0x01, %ecx
and $0xfffffffc, %ecx
mov %eax, 0x24(%ecx)

From our analysis on Firefox, it shows Firefox has a special
mechanism on pointers. In Firefox, it uses jsval as a pointer.
Each jsval value encodes the type of data it points to. For exam-
ple, if lower three bits of a jsval value is 0x2, then this jsval
pointer points to DOUBLE, 0x4 for STRING, and etc. Adding
or removing tags from a data pointer is very common operations
in Firefox. Tags are added by the and instruction and removed
by the or instruction. xor is also used to remove a tag from a
pointer. We treat them as special cases.



Instruction Representative Type Constraints
Category Instructions

Data transfer MOV, CMOV, PUSH, POP Type constraint between operands
Control transfer JMP, JZ, LOOP, CALL, RET Operands are control pointer

Binary arithmetic ADD, SUB Type constraint between operands
IMUL, MUL, IDIV, DIV Operands are integer

Decimal arithmetic DAA, AAA Operands are integer
Logical AND, OR Type constraint between operands

Shift and rotate SAR, SHR, SAL, ROL, RCL Operands are integer
Bit and byte BT, BTS, SETS Operands are integer

String MOVS, LODS, STOS Type constraint between operands
CMPS, SCAS None

REP, REPZ, REPNZ Type constraint between operands. ECX is integer
IO IN, OUT, INS, OUT None

Flag control LAHF, SAHF, PUSHF, POPF Operands are integer
STC, CLC, CMC, STI, CLI None

Segment register LDS, LES, LFS, LGS, LSS None
Misc MOVBE Operands are integer

LEA Type constraint between operands
NOP, UD2 None

Table 4. Type constraints of common instructions.


