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Abstract—Owing to the popularity of the PDF format and the
continued exploitation of Adobe Reader, the detection of malicious
PDFs remains a concern. All existing detection techniques rely
on the PDF parser to a certain extent, while the complexity of
the PDF format leaves an abundant space for parser confusion.
To quantify the difference between these parsers and Adobe
Reader, we create a reference JavaScript extractor by directly
tapping into Adobe Reader at locations identified through a
mostly automatic binary analysis technique. By comparing the
output of this reference extractor against that of several open-
source JavaScript extractors on a large data set obtained from
VirusTotal, we are able to identify hundreds of samples which
existing extractors fail to extract JavaScript from. By analyzing
these samples we are able to identify several weaknesses in each
of these extractors. Based on these lessons, we apply several
obfuscations on a malicious PDF sample, which can successfully
evade all the malware detectors tested. We call this evasion
technique a PDF parser confusion attack. Lastly, we demonstrate
that the reference JavaScript extractor improves the accuracy of
existing JavaScript-based classifiers and how it can be used to
mitigate these parser limitations in a real-world setting.

I. INTRODUCTION

Even though Adobe’s Acrobat Reader, more commonly
known as Adobe Reader, has become increasingly secure
through the addition of advanced security mechanisms such as
a sandbox [5], new exploits continue to be found with 44 CVEs
published in 2014 [1] and 128 published in 2015 at the time of
writing [2]. Due to the continued exploitation of Adobe Reader
along with the ubiquity of the PDF format, the detection
of malicious PDF files remains a concern, with Kaspersky
reporting that Adobe Reader was the third most exploited target
in 2014 and attracted 5% of the overall attacks [18].

Malicious PDF detection in commercial anti-virus products
relies heavily on signature detection and is insufficient to detect
PDFs containing zero-day exploits or advanced persistent
threats. To address this limitation, two classes of systems have
been proposed to detect malicious PDF files specifically: 1)
structure and metadata based detectors [29], [32], [38] and 2)
JavaScript-based classifiers [23], [25], [37], [26].

Structure and metadata based detection methods distinguish
benign and malicious PDFs by determining which structural
features and metadata are most associated with each class.
However, the essential malice of PDF exploits does not orig-
inate in file structures but rather in embedded payloads (e.g.,
JavaScript code) that bear malicious intent. Therefore, these
detectors can be easily evaded by the mimicry attack [39],
[38] and the reverse mimicry attack [28], which hide harmful
code in PDF files that exhibit structural features and metadata
associated with benign files.

To fundamentally address PDF exploits, it is necessary to
analyze the contents of documents and search for malicious
payloads. Prior work [23] reveals that JavaScript is the most
common malicious content in PDF exploits for two major
reasons: 1) the implementation of the Adobe JavaScript APIs
exposes vulnerabilities and 2) JavaScript code is used to en-
able advanced exploitation techniques, such as heap spraying.
Almost all of the malicious PDF documents in our sample set
collected from VirusTotal contain JavaScript, indicating that
the extraction and analysis of embedded JavaScript is essential
to malicious PDF detection.

To this end, prior JavaScript-based classifiers [23], [25],
[37] have attempted to parse PDF documents, extract
JavaScript from them, and then analyze this JavaScript to
classify it as benign or malicious. These works all depend
on their ability to accurately extract JavaScript from PDFs.
With the exception of MPScan[26], which uses a modified
version of Adobe Reader similar to the one presented in this
work, each of these works rely either on open-source parsers
or their own home-grown parsers. Because all of these parsers
are incomplete and have oversimplified assumptions in regards
to where JavaScript can be embedded, these detection methods
are not accurate or robust.

In this paper, we aim to conduct a systematic study on
a new evasion technique called the PDF parser confusion
attack, which aims to confuse the PDF parsers in malware
detectors in order to evade detection. In essence, this evasion
attack exemplifies the chameleon and werewolf attacks that
deliberately abuse file processing in malware detectors [22].
However, compared to other file types (e.g., ZIP, ELF and
PE) that have been investigated in this previous work, the
combination of the complexity of the PDF format and Adobe
Reader’s leniency in parsing these files potentially offers a
much larger attack space. Unfortunately, this attack space has
not been studied sufficiently in the security community.
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To enable a systematic study we have developed a reference
JavaScript extractor by directly tapping into Adobe Reader,
which is arguably the most popular and most targeted PDF
viewer [19]. To develop this reference extractor, we present a
mostly automatic dynamic binary analysis technique that can
quickly identify a small number of candidate tap points, which
can be further refined by simple manual analysis. We then
perform a differential analysis on this reference extractor and
several popular extractors, using over 160,000 PDFs collected
from VirusTotal. For each extractor we identify hundreds of
samples which it cannot correctly process, but that contain
JavaScript according to the reference extractor.

By delving into these discrepancies between the reference
extractor and the existing extractors we have identified several
new obfuscations, and further quantified their impact when
used in parser-confusion attacks on JavaScript extractors and
malware detectors. By combining several of these obfusca-
tions, we demonstrate that a malicious PDF can successfully
evade all the malware detectors evaluated, including signature-
based, structure/metadata-based, and JavaScript-based detec-
tors.

These findings suggest that the key to effective countermea-
sures is a high-fidelity parser that closely mimics the parsing
logic of Adobe Reader. One possible solution is to directly
deploy our reference JavaScript extractor for JavaScript-based
detectors. Our experiment shows that this deployment scheme
not only incurs acceptable runtime overhead, but also produces
much higher detection accuracy. Our experiments show that
after replacing the original parser with our reference extractor,
the detection rate of PJScan [23] increases from 68% to 96%
for a specific version of Adobe Reader, based on a fairly
rudimentary classifier.

Paper Contributions. In summary, this paper makes the
following contributions:

• We propose a mostly-automatic, platform independent
tap point identification technique to correctly identify
tap points related to JavaScript parsing and execution
in Adobe Reader which are used to develop a reference
JavaScript extractor.

• Using our reference extractor we systematically evalu-
ate the shortcomings of existing JavaScript extraction
tools. We have identified hundreds of PDF samples
(both benign and malicious), which existing extractors
failed to extract JavaScript from. We manually inves-
tigate many of them, and identify their root causes.

• We construct several PDF parser confusion attacks by
combining several of the obfuscations identified in our
analysis. These evasions have proved to be effective
in successfully evading all of the malware detectors
we tested.

• We discuss several mitigation techniques. In particular,
we demonstrate that with our reference JavaScript
extractor, the detection rate of an existing classifier
increases significantly from 68% to 96% on our sam-
ple set, and present a possible deployment scenario
for the reference extractor.

We plan to release the complete data set and also launch
a public service for our reference JavaScript extractor, to help
security researchers conduct further research on this problem.
A list of MD5 hash values are available for part of the data
set and can be found at https://goo.gl/qtbuOC.

II. BACKGROUND

A. Metadata and Structural Features Based Detection

Since signature-based malicious PDF detectors [31] are
susceptible to various conventional malware polymorphism
techniques [16], [17], [34], efforts have been made to find
more robust malicious PDF detection methods. Based off of the
observation that malicious files usually have little or no content
aside from their payloads, and that benign files usually have
an extensive set of diverse contents, several systems have been
presented to quantify these structural differences to facilitate
malicious PDF detection and classification.

PDF Malware Slayer [29] uses the PDF keywords identified
in a sample by the popular PDFiD tool [35] as a feature set
which they use to train a random forests PDF classifier. The
primary limitation of this system lies in its use of the PFDiD
tool which merely performs simple string matching to identify
the existence of a subset of PDF keywords, and therefore
cannot recognize strings encoded by a filter or differentiate the
strings in the document structure from those in its contents.

PDFrate [32] similarly uses a random forests classifier, but
utilizes a much more descriptive feature set. It parses PDF files
to retrieve 202 different structural aspects of a sample such as
the number and types of objects in the file, their size, aspects
of their contents, pages in the document, and the size of the
file. Again, this work is largely limited by its parser, a program
developed by the authors which utilizes regular expressions to
extract these features which cannot decode encoded streams in
the file or parse their contents.

Taking a similar approach Šrndić and Laskov [38] devel-
oped a system which extracts the tree-like structure of the
objects within a PDF as a feature set for classification. Despite
its accuracy in an offline experiment, the use of this system
in an operational test demonstrates this system cannot always
correctly identify new threats.

While metadata and structure based malicious PDF de-
tection systems have been shown to be both efficient and
effective, they are fundamentally susceptible to evasion. Prior
studies [38], [39] have demonstrated, either anecdotally or
in a systematic study of PDFrate [9], that these classifiers
are subject to so-called mimicry attacks. In these attacks,
the structural features of a malicious sample are modified to
resemble that of a PDF document already classified as benign.
Because the malicious behaviors exercised by PDF malware
do not necessarily depend upon specific structural features,
this technique can evade these classifiers while preserving the
efficacy of the original exploits.

A second type of attack, the reverse mimicry attack, has
also been presented [28]. Whereas a mimicry attack adds be-
nign attributes to malicious samples, the reverse mimicry attack
takes a sample classified as benign and makes it malicious.
The launch of such attacks is even easier because it does not
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TABLE I: Existing PDF Classifiers

Technique Detectors Detection Parser Evasion
Capability Requirement Techniques

Signature-based AV Scanners Varies Low - Medium Malware Polymorphism [16], [17], [34]
Shafiq et al. [31]

PDF Malware Slayer [29] Mimicry Attack [39], [38]
Metadata & Structure -based PDFrate [32] Medium Medium Reverse Mimicry Attack [28]

Šrndić and Laskov [38]
Liu et al. [25]

JavaScript-based MDScan [37] Varies High
PJScan [23]

require knowledge of the targeted classification system, which
mimicry attacks largely depend on.

B. JavaScript Based Detection

The evasions of these systems demonstrate that malicious
PDF detection techniques that rely only upon structural and
metadata similarities are insufficient. Given that most mali-
cious PDFs use JavaScript to either trigger or set up exploits,
prior classifiers focus on the extraction and analysis of embed-
ded JavaScript instead. Since these detection methods depend
on JavaScript analysis for classification, an accurate parser is
essential to correctly interpret the entire PDF file and precisely
locate JavaScript.

Liu et al. [25] attempt to identify and instrument automat-
ically executing JavaScript in a document, so as to attribute
suspicious behavior exhibited by Adobe Reader at runtime
to the executing JavaScript. The runtime observations along
with other heuristics are then used to compute a score for
classification. This system is limited by its overly simplistic
JavaScript extraction, only associating JavaScript with two
keywords, and assuming that they must always appear in plain-
text. In fact JavaScript can be embedded in multiple layers,
using extensions to the format (e.g., XFA), and can be encoded
by using diverse PDF features, such as object streams and
filters.

Realizing that malicious JavaScript often utilizes the Adobe
JavaScript API to read the contents of objects in a PDF,
MDScan [37] parses a PDF not only to extract embedded
JavaScript, but to load the internal structure of the document
as well. The extracted JavaScript is then run in a modified
JavaScript engine, augmented to support certain elements of
the Adobe JavaScript API which the authors reverse engi-
neered, so that calls to these supported API functions mimic
the behavior of Adobe Reader. While this system provides
a more complete platform for dynamically analyzing this
JavaScript, it is inherently incomplete due to partial API sup-
port, which is non-trivial, error-prone, and considerably time-
consuming to improve. This work realizes that JavaScript can
be encoded in various ways, but it only associates JavaScript
with one keyword, which is a severe limitation.

PJScan [23] extracts JavaScript and uses the tokenized
JavaScript as the feature set used to train a One-Class Support
Vector Machine. This system falls short of accuracy primarily
due to its PDF parser libpdfjs, which is built upon a third-
party parser, Poppler [10]. While Poppler claims to implement
the entire PDF ISO 32000-1 specification [24], it does not

claim to address the discrepancies between the specification
and the closed-source implementation of Adobe Reader, all of
the addendums to the specification, or all of the specifications
extensions such as XFA.

Without considering the shortcomings specific to each de-
tector, these JavaScript-based PDF classifiers are all limited by
their JavaScript extraction capabilities. Not only must PDFs be
parsed correctly, but these detectors have to statically identify
all of JavaScript components embedded in the document. Be-
cause JavaScript can be embedded in many different ways, or
even using extensions to the specification which these detectors
do not implement, they are unlikely to always produce all of
the JavaScript in a document, especially those which have been
obfuscated.

To resolve these parsing issues, Lu et al introduced MPScan
which hooks Adobe Reader’s JavaScript engine to produce
the JavaScript executed by Adobe Reader when opening a
document, which is then classified as malicious or benign using
shellcode and heap-spray detection techniques[26]. While the
authors are able to mitigate all of these parsing issues, they
are only able to hook one version of Adobe Reader, and do
not present any technique for identifying the points to hook
the binary or describe how they did so. In the absence of
this information, one must assume they did so through manual
analysis, which is an arduous task for a program as large and
complex as Adobe Reader, and which must be repeated for
every new version of Adobe Reader.

C. Summary and Hypotheses

As presented in Table I, prior PDF classifiers have been
evolving to grasp the semantics of malicious payloads to defeat
rudimentary attacks which create polymorphic malware or
imitate benign file structures.

Hypothesis 1: A key observation is that all previous
detection methods rely on parsing and interpreting PDF files
to a certain extent. Consequently, their detection accuracy
critically depends on the quality of their PDF parsing and
JavaScript extraction. Thus, we hypothesize that a delicate
attack can be launched to evade all these classifiers, provided
it can successfully confuse the PDF parsers that are utilized in
detection.

Hypothesis 2: We also realize that, in order to perform
accurate and robust PDF classification, it is crucial to actually
examine the embedded JavaScript payloads in PDF files. As
a result, we hypothesize that the improvement of JavaScript
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Fig. 1: Tap Point Identification.

extraction can facilitate the detection of malicious documents
that are not detected by existing JavaScript-based PDF classi-
fiers.

III. REFERENCE JAVASCRIPT EXTRACTOR

To verify our hypothesis, we need to develop a reference
JavaScript extractor so as to quantitatively measure the discrep-
ancies between existing PDF parsers deployed in detectors and
Adobe Reader.

A. The Need For a New Technique

MPScan demonstrated that a JavaScript extraction tap
point can be manually identified in Adobe Reader. While the
amount of effort required is not described, given the size and
complexity of Adobe Reader–IDA Pro identifies 91,753 and
133,835 functions in the main AcroRd32.dll component alone,
for the 9.5.0 and 11.0.08 versions of Adobe Reader we worked
with, respectively–it could not have been a simple task.

Since a reference extractor can only precisely mimic the
behavior of a single version of Adobe Reader, our three tap
points must be identified for each version of Adobe Reader
that is to be protected, making the manual application of this
technique infeasible as a general solution to the problem of
malicious PDF detection. By developing a technique which is
repeatable and automatable we can reliably produce reference
extractors for many versions of Adobe Reader with minimal
effort. Such a technique can also conceivably be applied
to extract executable code from other file formats, such as
embedded VBA macros in Microsoft Office documents. While
we are unable to automate this process completely, we have
been able to automate the majority of the analysis. Overall,
we have found that once the technique has been implemented
to develop one reference extractor, it only takes a few hours
of manual effort develop a new reference extractor based on a
different version.

B. Overview

Figure 1 depicts the workflow to build our reference
extractor. We first open three classes of labeled PDF samples
(i.e., well-formed PDFs with JavaScript, well-formed PDFs
without JavaScript and malformed PDFs) with Adobe Reader
in an execution monitor [20] to collect memory access and

execution traces. In the end, we perform offline analysis on
the traces to identify three tap points that are associated
with JavaScript extraction, PDF processing termination and
processing error. We can then create the reference JavaScript
extractor by modifying Adobe Reader at these three tap points.

In particular, we identify these points by comparing the dis-
tinctive traces of multiple classes. By processing the memory
access traces of well-formed PDFs with automatically execut-
ing JavaScript, we identify JavaScript extraction tap points,
where embedded JavaScript code is extracted and executed.
By examining the divergent execution traces of well-formed
and malformed files, we discover processing termination tap
points and processing error tap points, which represent the end
of file processing in these two classes, respectively.

It is worth noting that we define the well-formedness of
a PDF file based on the behavior of Adobe Reader when
opening file. We do not rely on the PDF specification for such
a determination, because 1) some specification items are vague
and cannot be easily interpreted, and 2) the implementation of
Adobe Reader in fact deviates from the specification in order to
increase compatibility. Thus, we consider PDFs which Adobe
Reader opens successfully to be well-formed. Conversely, we
consider a PDF to be malformed if Adobe Reader opens an
alert indicating it was unable to open the sample. The sample
sets used to perform our analysis were manually constructed
by opening samples with Adobe Reader to determine if they
are well-formed or malformed according to our definition, and
through manual analysis to determine whether or not they
contained any automatically executing JavaScript.

While we use an existing work as the basis for JavaScript
extraction [15], this technique is insufficient for the devel-
opment of the reference extractor for three reasons. Firstly,
because it relies on an execution monitor for extraction it
is too slow to process any significant number of samples.
Secondly, the technique focuses on extracting all targeted
information while the monitoring system is run and so provides
no mechanism for determining when all of the data has been
extracted, which we need in order to expediently process
samples. Lastly, the technique does not handle the situation
where no targeted information exists or it cannot be extracted,
i.e. a PDF contains no JavaScript or Adobe Reader fails to
process the PDF because it is malformed.

To address these limitations, our technique is different from
the previous one in three aspects. Firstly, in contrast to this
previous work, which focuses on the instructions that access
data and thus performs analysis solely on memory traces, we
take into account both data accesses and control transfers. The
addition of control flow analysis is necessary because not all
of the information we wish to extract from Adobe Reader can
always be determined by monitoring only memory accesses.
For example, determining if Adobe Reader has encountered
an error or has finished opening a PDF can likely only be
determined by examining the program’s state. Secondly, this
previous work monitors memory accesses on an “operation”
level and only groups contiguous memory accesses within a
fixed number of memory accesses. However, this grouping is
not well-suited to segmented memory access patterns, which
are likely to appear in JavaScript processing. We instead
keep track of memory access on the granularity of “operation
groups” so as to capture contiguous operations spread over
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many access. Lastly, the original technique selects instructions
as tap points, which can only yield the targeted data to a full
system emulator. In the interest of performance we adapt the
technique to locate functions so that existing function hooking
techniques can be used.

Detailed explanations are presented in the following sub-
sections. In all, we have tailored the existing technique to
identify the JavaScript extraction tap point and extended it to
identify the new processing error and processing termination
tap points which are needed by the reference extractor.

C. JavaScript Extraction Tap Points

Definition. We consider a JavaScript extraction tap point to
be a function, in which Adobe Reader extracts and executes
JavaScript code from PDF documents. Formally, such a tap
point is defined as a triple:

(caller, function entry point, argument number),

where the caller indicates the calling context of the function
and the argument number is the index of the function parameter
which holds a reference to a null-terminated string containing
JavaScript.

We maintain the calling context of the tap point function
to increase the accuracy of identification. Some common
functions, such as memcpy, are likely to be invoked by multiple
callers in a program. Only some of these calls are associated
with JavaScript operations, however, so the introduction of
context awareness can significantly help eliminate false iden-
tification.

We define tap points at the function level instead of the
instruction level because function entry points are more re-
silient to conditional execution and provide a cleaner interface
for hooking. For example, depending on the length of a string,
different instructions in memcpy are used to copy the string.

Despite the advantage of function-level tap points, in prac-
tice, we have to initially identify instruction-level tap points,
which we call raw tap points. Each raw tap point is defined
formally as a pair:

(caller, program counter1),

where the caller is also the caller of the host function and
the program counter uniquely represents the address of the
instruction.

Once a raw tap point is discovered, data-flow analysis is
needed to correlate the identified instruction with a certain
argument of the host function. Hence, we can eventually
retrieve the function-level tap points.

Memory Access Trace. The identification of raw JavaScript
extraction tap points is performed by analyzing the memory
accesses made by Adobe Reader while opening PDFs which
contain automatically executing JavaScript. All of these mem-
ory accesses are logged in a memory trace, where each access
m is formatted as a tuple:

m = (caller, program counter, type, data, addr)

1For the brevity of presentation, we assume Address Space Layout Random-
ization (ASLR) is disabled. When ASLR is enabled, we in fact use module
name plus offset to specify this raw tap point.

1, 2, 100, 101, 102, … , 999, 1000, 3, 4

Prior work:

Our technique:

Group 1 Group 2 Group 3

Group 1

Group 2

Memory Access Sequence:

Fig. 2: A Comparison of Identifying Contiguous Memory
Operations between Prior and This Work

That is, the calling context, the address of the instruction
producing the access, the type of the access (either a read
or a write), the data written or read, and the address of
memory being accessed. In the cases where one layer of calling
context is not sufficient, we can increase context sensitivity
by adding another layer of caller information. We refer to
the set of memory traces collected for these samples as
MJS = [M0,M1, ...,Mn], where each Mi denotes the trace
for an individual sample.

Identification of Raw Tap Points. Once the memory traces in
MJS have been collected, we perform offline analysis in two
steps to identify the raw tap points. First, we group the memory
accesses in each trace into contiguous memory operations then
we examine these memory operations to search for JavaScript
strings.

We keep track of memory accesses on the “operation
group” level instead of the individual operation level in order
to tolerate intermittent memory accesses that often happen in
JavaScript processing where strings are likely to be parsed and
executed segment by segment. The prior work only monitors
a limited window (i.e., five) of operations at once and any
operations beyond this limit, even if contiguous to a previous
one, cannot be correlated with the previous operations. Fig-
ure 2 demonstrates the advantage of our approach compared
to the prior work [15]. In this example, only three groups
(i.e., {1,2}, {100...1000} and {3,4}) are identified by the prior
work, though the accesses to memory region 3 and 4 continue
the operations on 1 and 2. To address this limitation, we
keep track of memory operations at a higher granularity and
directly monitor several access groups at the same time. Thus,
the sequential accesses to the memory regions from 100 to
1000 becomes one single group; both accesses to {1,2} and
{3,4} can be observed within a window and therefore can
be further grouped as one. While it is possible for the prior
work to increase the window size in order to properly group
the segmented memory accesses, this drastically increases the
computation overhead.

We define contiguous memory operations as a list of
instructions with the same calling context which access consec-
utive locations in memory in the same way. Formally, a group
of contiguous memory operations, g, is defined as a triple:

g = (start, end,m list),

where the start and end are the beginning and ending addresses
of the contiguous access, respectively, and m list is a list of
the individual memory accesses [mstart, ...,mend]. To group
these memory operations, we present Algorithm 1.
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The algorithm takes a memory access trace M as an input
and outputs a list of contiguous memory access groups. We
also introduce a working list, WQ, which serves as a LRU
cache to store a fixed number of access groups. In practice,
a cache size of ten was sufficient, though it is possible that
potential tap points are lost as a result of being prematurely
pushed out of the cache. While this size can be increased,
it increases the amount of memory necessary to perform the
analysis.

To identify these groups, we iterate over each memory
operation m in the trace M . If a read operation m matches an
existing group, g in cache WQ in terms of calling context and
the address read by m exactly succeeds the last one accessed
by g, we perform Extend(), which inserts m at the end of g. If
a read operation m falls in the middle of an existing group we
move that group to the front of the cache to avoid discarding
groups which have been recently accessed. Otherwise, m falls
out of the boundary of each existing group which indicates the
presence of a new contiguous memory access group. We create
this new group using m and add it to the front of the cache,
removing and saving the least recently used group if necessary.
In the cases where m in fact writes into an existing group g
in the cache, we invalidate the old group by removing it from
the cache and saving it to output.

Once the contiguous memory operations have been col-
lected for a sample, they are examined to find the automatically
executed JavaScript code. Since the in-memory encoding of
the JavaScript is not known, both UTF-8 and UTF-16 repre-
sentations have to be searched for. If a JavaScript string is
discovered, these memory operations are considered to be raw
tap points.

Algorithm 1 Contiguous Memory Operation Identification

1: M ← [m0,m1, ...mn]
2: WQ← an empty list of g
3: for each memory operation m in M do
4: if m.type = read then
5: if ∃g ∈WQ | g.end+1 = m.addr and g.caller =

m.caller then
6: Extend(g,m)
7: else if ∃g ∈ WQ | g.start ≤ m.addr ≤ g.end

and g.caller = m.caller then
8: WQ.move to front(g)
9: else #m falls out of all g in WQ.

10: gnew ← CreateNewGroup(m)
11: WQ.add to front(gnew)
12: end if
13: else #m is a write.
14: if ∃g ∈WQ | g.start ≤ m.addr ≤ g.end then
15: WQ.remove and save(g)
16: end if
17: end if
18: end for

Tap Points Refinement. Once raw tap points are discovered,
we conduct a use-def chain analysis to see if the identified
memory operations can be traced back to any function argu-
ments. If so, the candidates of JavaScript extraction tap points
are found. Since static analysis may introduce inaccuracy, we
then perform runtime testing to validate these candidates.

The search for candidates is repeated for every memory
trace with the set of potential tap points being reduced to
those which produce the embedded JavaScript in all memory
traces processed. A small amount of manual analysis is then
used to determine which of these candidates is to be used and
how the JavaScript can be extracted from them. In practice,
this amounts to examining the tap points in a disassembler to
identify one which easily yields the JavaScript. If no suitable
tap point can be found, this offline analysis can be repeated
including an additional level of calling context.

D. Processing Termination and Processing Error

Definition. In addition to the extraction of automatically
executing JavaScript, it is also necessary to determine if Adobe
Reader can successfully open a file or if will fail to do so
because of some error. We define these states as

Processing Termination: The point at which Adobe Reader has
successfully completed all of its initial processing associated
with opening a PDF. Any automatically executing JavaScript
must have executed before this point, and all elements on the
page must be completely rendered.

Processing Error: Before completing its initial processing of
a PDF Adobe Reader has encountered an error causing it to
abort its processing. In this case, Adobe Reader will open an
alert describing to the user the error it has encountered.

Adobe Reader’s behavior will always fall into one of
these two cases. Aside from producing useful information
about the sample, Adobe Reader’s reaching of one of these
cases indicates when there is no more automatically executing
JavaScript to extract. By terminating the process whenever one
of these is reached cases is reached, we can expediently process
samples.

We define the processing termination and processing error
tap points to simply be the program counters of instructions,
which when executed, indicate that Adobe Reader has reached
each of these states. In practice, we found that the program
counter alone was sufficient to identify these points but calling
context can be added if needed.

Execution Trace. The identification of the the processing
termination and processing error tap points is performed by
analyzing only the instructions executed by Adobe Reader.
Since only the execution of these tap points is used to reveal
information about the program’s state, this analysis can be
simplified by performing it on the basic blocks executed,
without loss of generality. The traces produced are thus lists
containing the addresses of the first instruction of every basic
block executed.

In particular, sets of these traces, ETJS , ETWF and
ETMF , were collected for well-formed PDFs with JavaScript,
well-formed PDFs without JavaScript, and malformed PDFs
(i.e. those which cause Adobe Reader to produce an error),
respectively. More concretely, ETJS consists of traces col-
lected from the samples used to generate the memory traces
as well as additional malicious PDFs which were manually
identified as containing JavaScript. The traces in ETWF were
obtained from benign samples which were manually verified
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to not contain JavaScript. Lastly, ETMF contains traces for
malformed samples both with and without JavaScript, and for
files which are of different formats entirely, such as PE and
DOCX.

Each trace in ETJS and ETWF was collected until Adobe
Reader had appeared to finish its initial processing of a sample,
while traces in ETMF were collected until Adobe Reader
raised the alert indicating it could not open the file.

Processing Termination. A basic block selected for the pro-
cessing termination tap point must meet three requirements:
1) the basic block is always executed once and only once
when processing well-formed PDFs; 2) it is never executed
by Adobe Reader when processing malformed PDFs; 3) it is
only executed after the JavaScript extraction tap point if the
PDF contains JavaScript.

According to requirement 1, we compute a set
BBWFUnique which contains basic blocks common to
all traces in ETWF that appear only once in each trace.
Based on requirement 2, we need to then exclude from
BBWFUnique all the basic blocks executed in any trace
in ETMF . We collect these basic blocks in a set BBMF

and then exclude it: (BBWFUnique − BBMF ). Due to
requirement 3, we have to first find the set BBJSTrunc that
holds all basic blocks executed in any trace in ETJS after the
JavaScript extraction tap point is reached, and then compute
the intersection as the set of potential processing termination
tap points:(BBWFUnique − BBMF ) ∩ BBJSTrunc. Any of
the basic blocks in this set can be selected as the processing
termination tap point.

Processing Error. A basic block associated with the pro-
cessing error tap point must meet two requirements: 1) the
basic block is always executed once and only once when
processing malformed PDFs; 2) it is never executed by Adobe
Reader when processing well-formed PDFs. To meet these
two requirements, we compute three intermediate sets of basic
blocks. Specifically, we first compute a set BBMFUnique that
contains all basic blocks, common to all traces in ETMF ,
which appear only once in each of these traces. Then we
exclude all basic blocks that are executed for well-formed
PDFs, both with and without JavaScript. To this end, we
collect two sets BBJS and BBWF , which represent all basic
blocks in the sets ETJS and ETMF , respectively. Thus, the
set of potential processing error tap points is computed as
BBMFUnique − (BBJS ∪ BBWF ). Again, any of the basic
blocks in this set can be used as the processing error tap point.

E. Tap Point Action

Once the tap points have been identified, Adobe Reader
needs to be modified so as to log the JavaScript produced
at the JavaScript extraction tap point and to terminate when
the processing termination and processing error tap points are
reached. If the tap point definition includes calling context,
these modifications also need to determine at runtime if
their current execution matches that context, otherwise the
program’s behavior should not be altered. By checking the
existence of the log file and examining the process’ exit code,
which is specific to each tap point, it is easy to programmat-
ically determine which tap points were reached and if any
JavaScript was extracted.

It is often the case that multiple JavaScript statements are
executed automatically during the initial processing of a file.
Usually we expect to catch all of them, and thus, Adobe Reader
is allowed to run until it reaches either the processing error
or the processing termination tap point. However, to handle
unexpected cases, we set a timeout every time the JavaScript
extraction tap point is reached. This configurable timeout limits
the amount of time Adobe Reader spends processing a specific
JavaScript statement by terminating the process if the time
limit is reached. A timeout of one second was chosen for our
evaluation to allow sufficient time for execution while allowing
us to process a large number of samples.

We choose to perform hot patching instead of dynamic
instrumentation (e.g., Pin [27]) due to performance concerns.
The Microsoft Detours library [21] was selected to modify
the binary primarily because of its simplicity and ease of use,
but a small amount of manual effort is required to interface
this library with the tap points. In the case of the JavaScript
extraction tap point, this amounts to identifying the calling
convention and arguments of the target function. For the
processing error and processing termination tap points we do
not need to be concerned with this analysis since they cause the
process to terminate immediately. Note that Adobe Reader’s
sandbox mechanism which prevents the process which pro-
cesses PDFs from performing certain actions, such as file
creation, must first be disabled.

IV. DIFFERENTIAL ANALYSIS

A. Experiment Setup

To evaluate the effectiveness of the reference JavaScript
extractor and to identify the limitations of existing extractors,
we produced two different extractors based on Adobe Reader
versions 9.5.0 and 11.0.08, and then compared them against
each other and several other open source tools which provide
similar functionality. The libpdfjs [7] tool is the JavaScript
extractor which utilizes the Poppler PDF rendering library and
powers the PJScan malicious PDF detector. Origami [8] is a
framework for PDF parsing, analysis, and creation which is
packaged with a JavaScript extraction tool using this frame-
work. The JavaScript unpacking tool jsunpack-n [6] attempts
to extract and analyze JavaScript from many formats, but
contains a module which specifically extracts JavaScript from
PDFs. Lastly, the PDFiD tool is not a JavaScript extractor but
merely scans a document for the appearance of certain key-
words. VirusTotal uses this tool to tag samples as containing
JavaScript or not [36], among other things, and the results
included here for this tool are those reported by VirusTotal.

All of these tools were run against a set of 163,306 PDF
files procured from VirusTotal over the month of February,
2015. Every tool evaluated was given twenty seconds to
process each sample before the tool was considered to timeout
and terminated. The Origami and jsunpack-n tools were run
on a machine with 6GB of RAM and a 2.93GHz CPU running
Ubuntu 14.04.

The most recent operating system supported by the libpdfjs
tool is Ubuntu 11.04, and so it was run in a virtual machine
running this version. The Adobe Reader tool must also be run
inside of a Windows virtual machine, which was running XP
service pack 3 specifically. Both of these virtual machines were
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TABLE II: JavaScript Extractions

Version 9.5.0 Version 11.0.08
Reference
Extractor

libpdfjs jsunpack-n Origami PDFiD Reference
Extractor

libpdfjs jsunpack-n Origami PDFiD

Total 4397 4625 5053 4508 4398 4704 4625 5053 4508 4398
Matches - 3940 4247 3863 3721 - 4269 4537 4167 3904
Invalid (ben./mal.) - 7 (7/0) 26 (10/16) 23 (0/23) - - 0 (0/0) 16 (0/16) 23 (0/23) -
Zero (ben./mal.) - 450 (20/430) 124 (113/11) 511 (76/435) 676 (253/423) - 435 (6/429) 151 (140/11) 514 (80/434) 800 (377/423)
Inconclusive - 356 500 318 677 - 356 500 318 494

run on the same bare metal machine as the other extractors and
were each given 4GB of RAM. Though this is slightly less
than given the other tools, in practice, memory usage does not
appear to be a limitation for any of the extraction tools.

Since the Adobe Reader tool actually executes the
JavaScript extracted from a sample, we must be careful to
prevent any potential exploit of Adobe Reader from having an
impact on the processing of future samples. In order to prevent
this, a snapshot of the virtual machine in a clean state was
taken and then restored before processing each new sample. A
list of hashes corresponding to certain sections of the results
can be found at https://goo.gl/qtbuOC with descriptions for
each.

B. Summarized Results

The total number of samples for which each tool extracts at
least one JavaScript item and the comparison of their results
against each reference extractor is listed in Table II. Notice
that in the case of PDFiD, the number of samples it identi-
fies as containing JavaScript are listed. Combined, the open-
source extractors we evaluated produced JavaScript for 5250
unique samples. Our version 9.5.0 reference extractor produces
JavaScript from 4397 samples of which 2956 are benign and
1441 are malicious, and our version 11.0.08 reference extractor
produces JavaScript from 4704 samples, of which 3261 are
benign and 1443 are malicious, when considering samples with
at least 15 detections on VirusTotal as malicious. In total, all
of the extractors produced JavaScript for 5267 unique samples.

Table III shows the comparison between the two different
reference extractors. The files that each extractor could produce
JavaScript for are largely similar and all of the extractions
produced matched the similarity metric described below. Of
the extractions unique to a specific reference extractor, all but
two were benign, which were only produced by the version
11.0.08 extractor. Both of these samples are malformed in
ways which allow for multiple interpretations, and it appears
that the different versions of Adobe Reader select different
ones. The large number of extractions unique to the version
11.0.08 extractor are largely caused by samples using features
not supported by the older version of Adobe Reader and the
extractions unique to the 9.5.0 extractor are largely caused by
samples using features which are now deprecated.

It is extremely difficult to verify the correctness of these
extractions due to the lack of ground truth. Therefore, we
instead attempt to identify which extractions produce at least a
partial match against the JavaScript discovered by the reference
extractor. Even though we assume the JavaScript produced by
our reference extractor is correct, it extracts only the JavaScript
code that is automatically executed upon opening a PDF, which
is possibly only a subset of the JavaScript in the document.

Since the other extractors attempt to produce all JavaScript
embedded in the document, the JavaScript produced by a
reference extractor should match at least some of the JavaScript
produced by the other extractors. If such a partial match is
found for a PDF sample, we call it a “match”. If an extractor
produces nothing for a sample from which an extraction is pro-
duced by our reference extractor, we refer to this as a “zero”. If
an extractor produces an extraction which does not match the
extraction of our tool at all, and which is manually verified to
be invalid, this is considered as an “invalid extraction”. Since
PDFiD only does not actually extract JavaScript, the notion of
an invalid extraction does not apply to this tool.

To be safe, we do not reason about the validity of extrac-
tions produced for samples for which the reference extractor
produced nothing. As a result, the amount of invalid extractions
presented represents only the lower bound. We call these
instances “inconclusive”.

To identify matched extractions, we first look for a sub-
string match. Since different extractors produce extractions
with slight variations in whitespace, such as different end-of-
line sequences, and the existing extraction tools often have
trouble handling non-ASCII encodable characters, we do not
consider them in this search. If a substring match cannot be
found, we then use the Python difflib [4] library to efficiently
compute a similarity heuristic between the extractions. If an
extraction appears to have a least 50% in common with the
one produced by the our tool, it is considered a match.

While in majority of the samples, the JavaScript produced
by the existing extractors match that of our tool, the results
do reveal that prior extractors miss JavaScript extractions for
a significant amount of PDF documents. On average these
extractors miss JavaScript code in 10.1% of the files and
PDFiD cannot detect the existence of JavaScript in 17.01% of
the samples when compared to the version 11.0.08 reference
extractor. The situation is even more severe for malicious
PDFs. On average, each existing extractor fails to extract
JavaScript from 22.47% of the malicious samples identified
as containing JavaScript by the reference extractor.

Note that the samples in the “invalid” and “zero” categories
for each of the extractors are broken down into benign and
malicious categories, as identified by the detectors from Virus-
Total. Many of the malicious samples analyzed from these cat-
egories have obfuscations which appear to be mounting parser
confusion attacks, indicating that attackers are already aware
of several parser weaknesses and are actively exploiting them
in an attempt to evade detection. The jsunpack-n extractor is
the most effective in processing these samples, and appears to
have been coded to specifically address many of the evasions.
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TABLE III: JavaScript Extractions (Version 9.5.0 vs 11.0.08)

9.5.0 Only 11.0.08 Only Common Total
21 328 4376 4725

While these samples have been classified by many detectors
on VirusTotal as malicious, the weaknesses they exploit to
evade extraction are still effective against these detectors as
demonstrated in Section V, indicating that this classification is
likely based on factors outside of JavaScript analysis. The fact
that JavaScript cannot be extracted from many benign samples
either indicates that these extractors are incomplete or parse
PDFs differently from Adobe Reader.

C. Tap Point Verification

Our reference extractor does not produce JavaScript from
546 samples (only 10 of which meet our definition of mali-
cious) which at least one of the other extractors is able to. To
demonstrate that the reference extractor is only unable to ex-
tract JavaScript from PDFs which do not contain automatically
executing JavaScript or are malformed, and not because of a
failing of the technique or because of an incorrectly selected
tap point, we further perform a verification. By opening these
samples with the original Adobe Reader binary in an execution
monitor, we can observe the program’s behavior to determine
if it processes any of the JavaScript produced by the other
extractors.

Each of these samples is opened by Adobe Reader and then
given thirty seconds to load the EScript.api module, knowing
that it contains the JavaScript engine. If the module is loaded
within this time, Adobe Reader is allowed to run for another
four minutes to collect a memory trace.

Of the 546 samples, only 274 actually loaded the ES-
cript.api module. For the remaining 274 samples, we group
memory operations from their traces into contiguous opera-
tions and then compare the data accessed by these operations
against the extractions produced by the other tools. Of all of the
contiguous operations produced in these samples, only 1006
unique matching strings were identified.

The vast majority of these strings are module or function
names from the Adobe JavaScript API or JavaScript keywords.
Some small JavaScript fragments were identified. Manual
analysis indicates that these fragments are only substring
matches between JavaScript statements produced within the
module, possibly executed as part of the JavaScript engine’s
initialization. No complete JavaScript statement from any
extraction was identified in these contiguous operations, in-
dicating that the reference extractor has correctly captured all
of the automatically executed JavaScript in well-formed PDFs.

D. Lessons

Having identified samples which contained JavaScript but
which were not processed correctly by one of the extractors,
we set out to determine the causes of these failings. In many
cases, the cause of these failings was easily identified as an
incomplete parser implementation, as many of the tools are
aware of some of their limitations and will output messages

trailer << /Root 1 0 R /Size 8 >>

(a) Original Trailer

trailer << /Root %!@#!@#
1 0 R /Size 8 >>

(b) Trailer With Injected Comment

/XFA ‘[(config)42 0 R(template)%195 0 R
111 0 R(datasets)44 0 R(localeSet)45 0 R]’

(c) Abbreviated XFA Entry With Injected Comment

Fig. 3: Comment Injections

indicating that they have encountered an aspect of the spec-
ification they cannot handle. In other cases, the source code
of the extractor and the sample itself were manually analyzed
to determine the cause of the failing, which was usually the
result of a design error or an implementation bug

By examining the samples for which a single extractor
uniquely produced the correct output, we were able to identify
why the extractor was successful whereas the others were not.
Thus, while only performing this analysis on a relatively small
subset of these samples, we were able to identify several weak-
nesses in these extractors. Table IV outlines these limitations
and their impacts on the JavaScript extractors, which can be
generally broken down into four categories.

Implementation Bugs. Often an extractor will interpret the
specification correctly but will have a programming error in
its implementation. While many of these bugs and errors are
quite easy to fix, their enumeration is difficult.

The PDF specification states that comments, which begin
with a “%” and end with a newline sequence, shall be ignored
and treated as a single whitespace character. While this aspect
of the specification is straightforward, neither the jsunpack-n or
Origami tools always parse comments correctly. The injection
of a comment into a PDF’s trailer, as seen in figures 3a and 3b,
causes the Origami tool to terminate prematurely and prevent
the extraction of JavaScript. Similarly, comments injected into
dictionaries thwart the jsunpack-n tool. An abbreviated XML
Forms Architecture (XFA) entry in a dictionary, shown in
figure 3c, demonstrates this bug. In this case, jsunpack-n does
not realize that the “%195 0 R” string should be ignored.
Instead of looking for the object with ID “111 0” which
contains the malicious payload, it in fact looks for an object
“195 0” which does not exist.

Stream data is to be terminated by an end-of-line marker
followed by the “endstream” keyword. However, the regular
expression jsunpack-n uses to identify the stream data matches
zero or more newline characters before “endstream”. This
means that trailing bytes in streams which happen to have
values associated with newlines will incorrectly be considered
whitespace instead of stream data.

The specification allows for several different encryption
schemes and algorithms. Generating and applying the encryp-
tion keys in each of these algorithms is fairly complicated and
can depend on several other features of the document. The

9



TABLE IV: Failings and Limitations

Affected Extractors
libpdfjs jsunpack-n Origami

Implementation Bugs

Comment in trailer 7 7 3
Comment in dictionary 7 3 3
Trailing whitespace in stream data 7 3 7
Security handler revision 5 hex encoded encryption data parsing 7 3 7
Security handler revision 3, 4 encryption key computation 7 3 7
Hexadecimal string literal in encoded objects 7 3 7

Design Errors
Use of orphaned encryption objects 7 3 3
Security handler revision 5 encryption key computation
without encrypted metadata

7 3 7

Omissions
No XFA support 3 7 7
No security handler revision 5 support 3 7 7
No security handler revision 6 support 3 3 7

Ambiguities No cross-reference table and invalid object keywords 7 7 3

sets of specifications and algorithms governing how this is
performed are referred to as “security handlers” with several
revisions being developed as the specification has evolved.
According to the PDF specification, encryption algorithms can
be applied using a blank “default” password, which means
that even though certain contents of the file are stored in ci-
phertext, any parser which correctly implements the algorithm
can decrypt and examine them. Jsunpack-n appears to have
interpreted the encryption key generation algorithms correctly
for the revisions 3 and 4 security handlers; however, typos in
the function which computes them cause the extractor to crash
when they are used.

Hexadecimal string literals sometimes are not correctly
handled by jsunpack-n. When these string literals are placed
inside of encoded objects they are not properly parsed after
the object is decoded. Additionally, jsunpack-n fails to parse
hexadecimal strings that are used to store encryption data with
the revision 5 security handler.

Design Errors. These are instances where the extractor ap-
pears to have interpreted the specification incorrectly or where
shortcuts have been intentionally taken to simplify develop-
ment. These errors are common in more complicated aspects
of the specification, such as document encryption, which are
hard to interpret properly or in corner cases which break the
developer’s assumptions.

For example, jsunpack-n and Origami scan a document
for objects which define encryption parameters, and if found,
use them to decrypt all content which the specification states
should be encrypted. However, the incremental update mech-
anism in the PDF specification allows for the creation of an
updated file which is no longer encrypted. Such an update does
not remove old content, but produces a new document structure
which stops referencing older objects. Thus, the existence of
an object defining encryption parameters does not necessarily
mean the current version of the document is encrypted. These
extractors will then incorrectly decrypt data which is already
in plain-text, producing “junk” data.

The revision 5 security handler has two slightly different
key generation algorithms depending on whether or not the
document’s metadata is encrypted. These algorithms are not
correctly interpreted by jsunpack-n. Thus, it can only produce
the correct key when this metadata is encrypted.

Omissions. None of the extractors evaluated claims to have
completely implemented all of the PDF specification and
its extensions. By using these unimplemented aspects of the
specification, it is trivial for attackers to hide malicious content
from the extractor.

The libpdfjs extractor has the most omissions largely due to
its dependence on an older version of the Poppler parser, which
does not implement newer additions to the specification such as
the revision 4 and 5 security handlers. The Poppler parser does
also not support the XFA extension to the PDF specification
which is often used to embed JavaScript in PDFs. While
neither the Origami or jsunpack-n extractors fully support
XFA, they support enough of the specification to identify and
extract JavaScript embedded in this way.

Only the Origami tool supports the revision 6 security
handler which is part of the PDF 2.0 specification still under
development [14]. Even though this algorithm is not officially
part of the PDF specification, it is still used by Adobe products
and so any effective malicious PDF detector must do so also.

Ambiguities. The PDF specification is vague in certain cases,
leaving space for multiple interpretations. Similarly Adobe
Reader, in an attempt to “just work”, will often process
PDFs deviating from the specification. Since the specification
does not cover these cases, it is unclear how they should be
handled. Finding these ambiguities is very difficult, as well as
determining how they should be handled.

For example, the PDF specification states that all PDF
documents are to include a “cross-reference” table or stream
which contains information about all objects in the file and
their locations. If a document does not have this table, Adobe
Reader and all of the extractors we evaluated will attempt to
reconstruct this table by scanning the document for objects,
which is usually successful when the objects in the document
are well-formed.

Another ambiguity, which is often seen in malicious PDFs,
is to use the malformed “objend” keyword to terminate objects.
The specification states that objects should be terminated with
the “endobj” keyword, but Adobe Reader and all of the existing
extractors deviate from the specification by accepting both.
When these two ambiguities are combined in a document
which contains objects terminated with the incorrect “objend”
keyword and no cross-reference table, Origami fails to identify
the objects and cannot parse the document.
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3 0 obj
<< /JS 6 0 R /S /JavaScript /Type /

Action >>
endobj
...
6 0 obj
<< /Length 3907 >>
stream
function heapSpray(str, str_addr,

r_addr) {
...
}
endstream
endobj

(a) Malicious JavaScript and reference
are unobfuscated.

3 0 obj
<< /JS 6 0 R /S /JavaScript /Type /

Action >>
endobj
...
6 0 obj
<< /Length 1552 /Filter /FlateDecode

>>
stream
<encoded JavaScript>
endstream
endobj

(b) Malicious JavaScript is encoded, but
reference is unobfuscated.

2 0 obj
<< /Type /ObjStm /Length 1696 /Filter

/FlateDecode /N 4 /First 20 >>
stream
<encoded objects>
endstream
endobj

(c) Objects placed in streams, then en-
coded. Malicious JavaScript and refer-
ence are obfuscated.

Fig. 4: Stream Obfuscations

V. PARSER CONFUSION ATTACKS

A. Attack Definition

By systematically studying these weaknesses of the ex-
tractors and identifying their root causes, we are able to make
modifications, which we term obfuscations, to other PDF files
which exploit these weaknesses and prevent JavaScript extrac-
tion. Our understanding of the parser limitations, which caused
these weaknesses, also allowed us to develop new obfuscations
which also prevent extraction. Since Adobe Reader’s process-
ing of the file and its execution of the embedded JavaScript is
not affected, the application of these obfuscations prevents any
JavaScript based malicious PDF detection while not affecting
the efficacy of the exploit. We call the application of these
obfuscations with the specific intent of allowing a malicious
PDF to evade detection, PDF parser confusion attacks.

While we only specifically analyzed the weaknesses of
the open source extractors which we evaluated, we were able
to identify several common weaknesses in these extractors
which were likely to be present in other PDF parsers. To
determine the prevalence of these weaknesses and the strength
of parser confusion attacks, we applied our obfuscations to a
PDF containing a working exploit and then evaluated whether
or not different JavaScript extractors and malicious PDF de-
tectors were still able to correctly extract the JavaScript or
classify the sample as malicious. By identifying several strong
obfuscations and combining them, we were able to thwart all
evaluated JavaScript extractors, all commercial AV products
on VirusTotal, and the metadata based PDFrate detector.

B. Attack Construction

To demonstrate the effectiveness of these attacks in evading
detection, a malicious PDF was created using a Metasploit
module [3] which exploits a “use after free” vulnerability
present in versions 9.0.0 to 11.0.3 of Adobe Reader [12] as the
payload. The payload we embedded in this malicious sample
opens a reverse shell on another machine on the network,
and for each modification applied to the original sample the
functionality of the exploit was verified.

The original Metasploit module generated some obfus-
cations which were first removed before any of ours were

added, which produces a sample clearly identified as malicious
and which can be correctly processed by all extractors. With
the exception of embedding a comment in the document
trailer, which is easily applied using a hex editor, all of these
modifications were made using the open-source qpdf tool [13]
or the PyPDF2 Python library [11].

In general, the aim behind these attacks is to obscure the
payload of a malicious sample using aspects of the specifica-
tion which a detector’s parser does not support or handles in-
correctly. Figure 4 outlines a simplified example demonstrating
how this attack works starting with the unobfuscated malicious
content in figure 4a.

By applying filters or encodings to object streams in the
document, as seen in figure 4b, the malicious JavaScript is
obscured from all detectors which do not support the encoding
used. However, the fact that the document contains JavaScript
is not hidden, which may be used with other heuristics to
classify the sample as malicious. If the objects are first placed
in streams before the stream data is encoded, as seen in
figure 4c, no indication of the embedded malicious JavaScript
remains for malware detectors which do not correctly handle
these aspects of the specification.

To evaluate the effectiveness of these attacks against the
commercial malware detectors on VirusTotal, we started with
the base unobfuscated malicious file and then applied different
obfuscations, including Flate compression, R5 & R6 security
handlers, hexadecimal encoding, etc. By determining which
obfuscations were successful and which detectors they evaded,
we were able to combine several obfuscations so as to maxi-
mize the number of evaded detectors. Although the application
of many of these obfuscations is quite easy, they are powerful
in practice.

Knowing that these parser confusion attacks are likely
insufficient to thwart metadata based detection systems on their
own, since the core content of the sample is not changed, we
mounted our parser confusion attacks in combination with a
reverse mimicry attack[28]. To mount this attack, we removed
the payload from the malicious sample and applied it to a
benign root file, a tax form taken from the IRS’ website2. We

2http://www.irs.gov/pub/irs-pdf/fw4.pdf
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TABLE V: Parser Confusion Attacks on Commercial Detectors and JS Extractors

Obfuscation MD5 Hash Detection
Ratio O1 l2 P3 j4

None ae91ec6a96dc4d477beba9be6b907568 30/55 3 3 3 3
Flate Compression, objects streams eb64df4dbd733b5aa72fb0c41995f247 24/56 3 3 7 3
Flate Compression, R5 security handler 2b1071b27f96d9cdcfc59e35040d28b7 19/56 3 7 3 7
Flate Compression, R5 security handler, objects streams 8887439e33d15bcc8716634cbcbb392e 14/54 3 7 7 7
Flate Compression, R6 security handler 4e05ad44febe26f25629f27c155a7a0e 4/57 3 7 3 7
Flate Compression, R6 security handler, object streams c82643a1388a2645409395ef3420d817 0/56 3 7 7 7
Flate Compression, R6 security handler, objects streams, comment in trailer 6b6abbce700027f7935e3eeacd43618d 0/57 7 7 7 7
JS encoded as UTF-16BE in hex string ab09a01fe61a1066f814e3ffc2548f0a 23/55 3 3 3 3
JS encoded as UTF-16BE in hex string. Flate compression, object streams b21e264efbb14b928f0121b22030c3a7 10/55 3 3 7 7
JS encoded as UTF-16BE in hex string, Flate Compression, R5 security handler,
objects streams, comment in trailer

5039c273435300a46cd42ad0de0bb4ff 1/57 7 7 7 7

1Origami 2libpdfjs 3PDFiD 4jsunpack-n

TABLE VI: PDFrate Evasion

Sample MD5 Hash Contagio
Malware Dump

George Mason
University

PDFrate
Community

Unobfuscated malicious file ae91ec6a96dc4d477beba9be6b907568 86.4% 89.6% 91%
Malware w/parser confusion attack only 6b6abbce700027f7935e3eeacd43618d 70% 65.8% 82.2%
Benign root file 303b209708842adf30b81f437c5ec0ed 0.7% 13.9% 13.5%
Root file w/parser confusion + reverse mimicry
attacks

d48a343058503f931eadec99f3a89e70 7.8% 2.3% 11.0%

then applied obfuscations which were successful in thwarting
the commercial malware detectors to this sample to evaluate
its effect on the detector. This attack is evaluated against the
PDFrate classifier[32] which has been published as a publicly
available online service[9].

C. Attack Effectiveness

Commercial Detectors and JS Extractors. Table V lists a se-
ries of different parser confusion attacks which were mounted
using this sample and their effects on both the detectors on
VirusTotal and the JavaScript extractors which we used in
our differential analysis. This table lists the “Detection Ratio”
for the AV scanners, which is the number of scanners which
identify the file as malicious over the number of scanners
which could return a result in a timely manner. Additionally,
each sample’s MD5 checksum is provided which can be used
to get additional information about the file and the scan from
VirusTotal. Researchers with sufficient access to the VirusTotal
API can also obtain copies of these files, though caution must
be exercised as they do contain working exploit.

Starting with the completely unobfuscated malicious file,
which the majority of the detectors identify as malicious, we
started applying different obfuscations. Each parser has its
own individual weaknesses, and by combining the obfuscations
in different combinations, we can exploit the weaknesses in
several parsers to reduce the detection ratio. We can also
reduce the detection ratio by layering the obfuscations in ways
which our analysis indicates a parser is unlikely to anticipate
or handle correctly. By combining these techniques with the
use of object streams to increase the amount of information
in the document which is encoded, we are able to ensure
that detection requires successful parsing while simultaneously
decreasing the chances that a detector is able to do so.

While common encodings such as Flate compression only
slightly reduce the detection ratio, the application of the
more complicated revision 5 (R5) security handler and the

obscure revision 6 (R6) handler are very effective in evading
detection. Though the Origami tool correctly implements the
revision 6 security handler, it is easily thwarted by injecting a
comment into the document trailer, producing a sample which
completely evades detection. Eventually, the sample obfuscated
using the combination of Flate compression, the revision 6
security handler, object streams and the comment injected in
the trailer produces zero detections on VirusTotal and can
defeat all the JavaScript extractors.

Similarly, by only applying the relatively simple and well-
understood UTF-16BE and hexadecimal encodings, the detec-
tion ratio is only slightly reduced. Knowing from our analysis
that many parsers handle relatively simple encodings but do
not correctly handle complex combinations, we combine these
with Flate compression and encryption to almost completely
evade detection. The fact that this can be done without the
use of the unratified revision 6 security handler indicates that
even within specifications which have existed for years there
are still many failings which need to be addressed.

Metadata Based Detectors. Table VI shows the effectiveness
of parser confusion attacks against PDFrate. We evaluated the
version of this classifier which is publicly available as an online
service. The classifier produces the likelihood that a sample
is malicious using models trained against three different data
sets, the Contagio malware dump, samples collected at George
Mason University, and samples submitted by the PDFrate
community [9]. No threshold is provided by PDFrate for
determining whether or not a sample is malicious, but the effect
of the attack is clear.

The classifier correctly identifies the unobfuscated mali-
cious file generated by Metasploit as malicious, and though
we can reduce its malicious rating using the same obfuscations
which completely thwart the detectors on VirusTotal (i.e.,
R6 security handler, objects streams, comment in trailer),
we cannot do so significantly. This is due to the fact that
PDFrate does not detect malware based on the contents of
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embedded JavaScript but rather on the file’s metadata and
that these obfuscations cannot significantly alter many of the
features used for classification (e.g. file size). In contrast, the
application of the reverse mimicry attack produces a sample
which is classified as much less malicious. However, the
sample might still appear as suspicious depending on the
threshold values used for classification.

By mounting a parser confusion attack in addition to a
reverse mimicry attack on this file, the ability of the classifier
to recognize the sample as malicious is significantly reduced,
to the point where it is classified as more benign than the
original sample by two of the classifiers. Since PDFrate’s reg-
ular expression based parser cannot perform the computation
necessary to decrypt the document, much of the document
appears to the classifier to be large streams of random data.
Thus, many of the features of the sample which would be used
to classify the sample as malicious are obscured by the parser
confusion attack.

VI. MITIGATIONS

To mitigate parser confusion attacks, three classes of mit-
igation methods can be utilized.

A. Runtime-Based Exploit Detection

The first possible solution is to capture the JavaScript ex-
ecution completely at runtime. Since parser confusion attacks
only defeat static parsing and further classification efforts, it
does not prevent JavaScript from being executed and thus,
observed when Adobe Reader opens the hosting PDF files.

Prior malware detection systems have been presented
which, though not designed to detect malicious PDFs specif-
ically, can detect the existence of malware by analyzing the
runtime behavior of the target application. Nozzle [30] and
ShellOS [33], for example, have both been shown to be effec-
tive in detecting attacks against Adobe Reader specifically.

While these tools are able to completely circumvent is-
sues related to parsing, they have significant overhead. These
systems also not only depend on the execution of malicious
JavaScript, but on the actual execution of an exploit in order to
classify a PDF as malicious meaning that malicious JavaScript
which selectively executes or fails to execute correctly cannot
be correctly classified.

TABLE VII: PJScan Performance

Tool True Positive False Positive
Original PJScan 68.34% (1453) 0.18% (3814)
PJScan & Adobe Reader 9.5.0 96.04% (1441) 0.32% (3521)
PJScan & Adobe Reader 11.0.08 94.02% (1021) 0.20% (3677)

TABLE VIII: Average Runtime

Tool Avg. Runtime (s)
libpdfjs 0.05
jsunpack-n 0.78
Origami 1.86
Reference JS Extractor 3.93

B. Improvement of Parsers

The second potential solution is to improve the existing
parsers that are used in malicious PDF classifiers. Since the
proposed attacks focus on the discrepancies between 3rd party
PDF parsers and Adobe Reader, the attacks can essentially be
defeated provided we can improve the quality of the parsers
and resolve these discrepancies.

However, it is in general very difficult to make one program
precisely mimic the behavior of another. Even though our ref-
erence extractor can facilitate the identification of the weakness
of other PDF parsers, there can never be any guarantee that an
improved parser faithfully follows the parsing logic of Adobe
Reader. Even if a perfect parser could be developed, this work
would have to be repeated for each version of Adobe Reader
given that they have unique parsing behaviors.

C. Deployment of Reference Extractor

Given that the improvement of existing parsers depends
on the existence of a reference extractor, it seems much more
straightforward to just use the reference extractor instead. Fig-
ure 5 demonstrates the third possibility for attack mitigation,
which deploys the reference JavaScript extractor along with a
JavaScript based classifier in a real world scenario. Since the
reference extractor can only precisely mimic the behavior of
the version of Adobe Reader upon which it is based, it is best
suited for controlled, relatively homogeneous environments
(e.g., enterprises) in which the versions of Adobe Reader being
used are known.

To demonstrate that the use of the reference extractor can
improve the accuracy of existing JavaScript based classifiers,
we compared the performance of the original PJScan detector,
which uses libpdfjs as its extractor, against a modified version
which uses the reference JavaScript extractor.

Since the PJScan tool can only classify samples which
contain JavaScript we evaluated it against only the samples
for which any extractor was able to produce JavaScript. While
we cannot be certain that each of these samples actually
contains JavaScript, the detection improvement can still be
demonstrated. Since the reference extractor is also able to
identify which samples are malformed, we precluded those
samples in its evaluation, arguing that malformed files can be
blocked without adversely affecting the end-user.

Since PJScan utilizes a One-Class Support Vector Machine
which needs to be trained against a malicious set before any
samples can be classified, a two-fold cross-validation was
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performed. Table VII shows the results of this evaluation, with
the number of samples in each set shown in parenthesis (for
the reference extractors these are the number of samples they
considered well-formed). As can be seen, we are able to greatly
improve PJScan’s ability to detect malicious PDFs by using the
reference extractors.

The obvious reason for this improvement is the fact that the
reference JavaScript extractors are able to extract JavaScript
from more of the malicious samples than libpdfjs. Of the 1453
malicious samples any tool reported as containing JavaScript,
libpdfjs is only able to produce 1021 extractions whereas
the version 9.5.0 and 11.0.08 reference extractors produce
extractions for 1429 and 1013 out of the 1441 and 1021
malicious files they identify as well-formed, respectively.

Additionally, since only the samples which can actually be
processed by each version of Adobe Reader are used to train
PJScan there is less noise in the training data and a better
model can be produced. For example, the versions of Adobe
Reader we used do not open samples containing many older
exploits which have been patched. By discarding these older
malformed samples using the reference extractors, the classifier
can be trained against and evaluated against only newer
exploits, increasing its accuracy. This also appears to be why
the version 9.5.0 extractor has slightly better performance–
since we are able to filter out newer PDFs which cannot be
opened by this version there is more similarity between the
remaining malicious samples.

We then use our obfuscated samples to test the effective-
ness of PJScan plus the reference JavaScript extractors. Results
show that when PJScan is paired with the version 11.0.08
reference extractor it can now detect all the samples used in the
parser confusion attacks provided a PDF containing the same
malicious payload is used in the training set. When paired with
the version 9.5.0 reference extractor, PJScan can detect all of
these samples except those using the R6 security handler since
it is not supported by that version.

Table VIII shows the average runtime for each of the evalu-
ated JavaScript extractors for all of the samples obtained from
VirusTotal. As can be expected, the Adobe Reader tool pays a
significant penalty for having to restore the virtual machine to
a clean state after every iteration. Note that the performance of
the reference extractor is comparable to MPScan even though
they do not appear to reset the system between samples [26].
The use of a reference monitor instead of dynamic hooking
would also require this system reset and is significantly slower
than running a VM.

In a real world implementation of this system, certain
optimizations can be performed. For instance, by placing the
virtual machine on a RAM disk instead of on a hard drive, we
can save approximately 2 seconds on VM snapshot restoration.
Since the snapshot restoration can be performed after the
extraction, the latency for receiving a sample’s analysis can be
greatly reduced and a pipeline of analyzers could be produced
to mitigate the remaining overhead.

VII. LIMITATIONS

The primary limitation of the reference extractor is its
ability to only extract code which is automatically executed by

Adobe Reader. Additionally, since we cannot afford to process
any single sample indefinitely we can fail to extract JavaScript
which delays its execution or which does not finish in the time
allotted. In practice, however, these issues do not appear to be
significant in terms of malicious PDF detection. Of the 10
malicious files which the reference extractor did not extract
JavaScript from (out of 1453) one was malformed and the
remaining nine depended on user interaction. Fundamentally
these limitations are caused by the use of dynamic analysis,
but as our evaluation has shown static analysis also has its own
limitations.

Malware often uses “anti-VM” or “anti-sandbox” tech-
niques to avoid detection by electing to not exhibit malicious
behavior in virtual environments. Although we are unaware of
any such techniques used by malicious PDFs and think that
the limited amount of information about the system available
through the Adobe Reader JavaScript API would make them
difficult to implement, we cannot claim that such checks are
impossible. For example, it might be possible for an advanced
attacker to test if the sandbox is disabled, which is required
for reference extractor to function. However, any such check
would have to depend on the execution of some JavaScript
which would be extracted and could be used to classify the
document as malicious or at least suspicious.

VIII. CONCLUSION

In this paper, we conducted a systematic study on a new
evasion technique called a PDF parser confusion attack, which
aims to confuse the PDF parsers in malware detectors in
order to evade detection. To enable a systematic study we
have developed a reference JavaScript extractor by directly
tapping into Adobe Reader and presented a mostly-automatic
technique for developing it. By delving into these discrepancies
between the reference extractor and the existing extractors we
have identified several new obfuscations and further quan-
tified their impact when used in parser confusion attacks
on JavaScript extractors and malware detectors. By combin-
ing several of these obfuscations, we produced a malicious
PDF which can successfully evade all the malware detectors
evaluated, including signature-based, structure/metadata-based,
and JavaScript-based detectors. To address parser confusion
attacks, we discuss several mitigation techniques. In particular,
we demonstrate that with our reference JavaScript extractor
the detection rate of an existing classifier has increases sig-
nificantly from 68% to 96% on our sample set and present a
possible deployment scenario for the reference extractor.
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