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ABSTRACT
Return-Oriented Programming (ROP) is a popular and prevalent in-
filtration technique. While current solutions based on code random-
ization, artificial diversification and Control-Flow Integrity (CFI)
have rendered ROP attacks harder to accomplish, they have been
unsuccessful in completely eliminating them. Particularly, CFI-
based approaches lack incremental deployability and impose high
performance overhead – two key requirements for practical appli-
cation. In this paper, we present a novel compiler-level defense
against ROP attacks. We observe that stack pivoting – a key step
in executing ROP attacks – often moves the stack pointer from
the stack region to a non-stack (often heap) region, thereby vio-
lating the integrity of the stack pointer. Unlike CFI-based defenses,
our defense does not rely on the control-flow of the program. In-
stead, we assert the sanity of stack pointer at predetermined exe-
cution points in order to detect stack pivoting and thereby defeat
ROP. The key advantage of our approach is that it allows for in-
cremental deployability, an Achilles heel for CFI. That is, we can
selectively protect some modules that can coexist with other unpro-
tected modules. Other advantages include: (1) We do not depend
on ASLR – which is particularly vulnerable to information disclo-
sure attacks, and (2) We do not make any assumptions regarding
the so called “gadget". We implemented our defense in a proof-
of-concept LLVM-based system called PBlocker. We evaluated
PBlocker on SPEC 2006 benchmark and show an average run-
time overhead of 1.04%.

1. INTRODUCTION
With the advent of hardware mechanisms that prevent data ex-

ecution (e.g., DEP, NX), attacks that reuse existing code are on a
rise. Particularly, Return-Oriented Programming (ROP) [32] gleans
code fragments terminated by ret instruction (or more broadly, an
indirect branch instruction) called “gadgets" from executable sec-
tions of program code, and chains such gadgets to perform mean-
ingful malicious tasks. In a seminal paper, Shacham [32] showed
that ROP is Turing complete. Since, several real world attacks
⇤This work was done when the author was a student at Syracuse
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employ ROP to bypass DEP. State-of-the-art binary-level defenses
against ROP approach the problem from three different paradigms:
gadget elimination, control-flow integrity (CFI) and artificial diver-
sification or randomization. Defenses based on gadget elimination
statically analyze a binary and perform semantics-preserving trans-
formation in order to eliminate gadgets [28, 27]. CFI-based de-
fenses enforce CFI, a program property [3] that requires the flow
of control during the execution of a program to adhere to a stat-
ically determined control flow graph. Due to the lack of precise
program semantics, binary-level CFI defenses (e.g., BinCFI [43],
CCFIR [42]) enforce an approximate control-flow graph (CFG) and
as a consequence, they enforce coarse-grained CFI policies. Fi-
nally, defenses based on artificial diversification (e.g., [40], [17])
randomize at various granularities, the locations of modules in the
memory thereby making it hard for an attacker to locate the gad-
gets.

Firstly, defenses based on gadget elimination often lack cover-
age due to the vast number of gadgets in binaries and the intrusive-
ness of the approach. For example, Pappas et al. [28] disrupt or
eliminate no more than 76.9% of all the gadgets in all PE modules
in Windows 7 and Windows XP. That still leaves an attacker with
23.1% (or 6,320,777) gadgets to construct an attack. Secondly, as
demonstrated by Carline and Wagner [8], and Göktaş et al. [21],
state-of-the-art binary-level CFI defenses (e.g., BinCFI [43], CC-
FIR [42]) suffer from low precision due to their coarse-grained na-
ture. Most practical implementations of CFI including those based
on shadow stack impose high performance overhead [15]. Runtime
hardware-based CFI defenses ROPecker [11] and kBouncer [29]
have also been shown inadequate when confronted by a determined
adversary [8]. Moreover, CFI-based approaches often lack incre-
mental deployability and offer all-or-nothing protection. That is,
either all modules are protected or no modules are protected. Fi-
nally, artificial diversification as a solution is vulnerable to disclo-
sure attacks [6, 35, 25]. By injecting and reusing the predictable
just-in-time (JIT) code into a program’s memory, Snow et al. [35]
show that randomization is also not an effective solution. Funda-
mentally (also highlighted by [8]), defenses against ROP define a
“gadget" to be a short sequence of instructions terminated by an
indirect branch instruction, which is not necessarily true. In fact,
[8] and [21] demonstrate attacks that utilize large and legitimate
sequence of instructions – sometimes entire functions – as gadgets.

A key component of most ROP attacks is stack pivoting, a tech-
nique that positions the stack pointer to point to the ROP payload
– an amalgamation of data and pointers to gadgets. In this paper,
we observe that during any point in a program, the stack pointer
must point to the stack region of the currently executing thread.
We also observe that during ROP, each gadget behaves like an in-
struction with complex semantics, and the stack pointer performs



the role of a program counter. Therefore, within the realm of ROP,
traditional CFI (i.e., integrity of instruction pointer) transforms into
integrity of stack pointer. By performing compiler-level modifica-
tions during code generation, we ensure that modifications to the
stack pointer lie within a predetermined region and stop attempts
by an adversary to pivot the stack to point to the ROP payload that
is located outside the stack region.

Our solution presents several advantages over prior binary-level
ROP defenses:

1. We take a non-control-flow approach and make no assump-
tions regarding the size or instruction semantics of gadgets.
In fact, our solution is oblivious to the concept of a “gadget",
and operates at an instruction level.

2. Our solution does not depend on ASLR. Our threat model
allows for ASLR to be turned off and yet, defend against
ROP.

3. Our solution allows for incremental deployment. That is,
only specific modules can be protected, and the protected
modules can inter-operate with unprotected modules.

4. Finally, our solution defends against ROP attacks where pay-
load is located outside the stack region (e.g., heap) with a low
overhead of ⇠1%.

Using the LLVM compiler architecture, we implemented our
compiler-level solution in proof-of-concept prototypes called PBlocker
and PBlocker+. PBlocker asserts the sanity of stack pointer
whenever the stack pointer is modified, whereas PBlocker+ as-
serts the sanity of stack pointer at the end of each function. PBlocker
imposed an overhead of 1.04% for SPECINT 2006 benchmark,
1.99% for binutils and 0.7% for coreutils, whereas PBlocker+
imposed an overhead of 2.9% on SPECINT 2006 benchmark.

The rest of the paper is organized as follows: Section 2 provides
a technical background on ROP attacks and stack pivoting. Sec-
tion 3 and 4 present our solution and the relevant security analysis
respectively. We evaluate our solution in Section 5. We present the
related work and conclude in Section 6 and 7.

2. TECHNICAL BACKGROUND AND MO-
TIVATION

We briefly review the various steps involved in ROP attacks. One
particular step: Stack Pivoting is fundamental in understanding the
rest of the paper.

2.1 ROP Attacks
Rerturn-Oriented Programming (ROP), an extension of return-

to-libc, is a well established attack technique. During ROP attack,
an attacker reuses fragments of code called “gadgets" in existing
executable code regions. Traditionally, a gadget is a short sequence
of instructions terminated by a ret instruction. By chaining mul-
tiple gadgets in the program, one can achieve meaningful compu-
tation [32]. Other variants of ROP [7], use a pop reg followed
by an indirect jmp reg instruction instead of a ret instruction
as the last instruction of the gadgets. Without loss of generality, in
this work, we use the term ROP to include traditional ROP and its
variants.

Instructions in x86 are of variable-width, therefore it is possible
that potentially useful gadgets can be constructed by starting at an
offset within an intended instruction. Instructions in such gadgets
are termed unintended instructions.

A schematic overview of steps involved in a ROP attack is pre-
sented in Figure 1. Also, Figure 2 presents the concrete steps in

an ROP attack. The attacker first injects the payload into the vic-
tim process’ memory. Here, and in the remainder of the paper, we
refer to ROP payload or payload as the combination of data and
addresses of the gadgets used in the ROP attack1. In Figure 2, the
payload resides as data at address 0x8000.

In theory, an attacker can inject ROP payload into any segment
that is writable. In practice however, a vast majority of browser
exploits utilize a popular and convenient technique called Heap
Spray, wherein the payload is dumped onto the heap. Depend-
ing on the nature of the vulnerability and constraints specific to the
attack, an attacker may choose to or need to inject payload in a
specific writable section of the program memory.

The second step exploits the vulnerability in the victim process.
This step is independent of the nature of vulnerability (e.g., use-
after-free, integer overflow, buffer overflow). At the end of this
step, the attacker controls the program counter. S/he may also con-
trol certain registers depending on the nature of the attack. For ex-
ample, in Figure 2, a vulnerability in the victim process allows the
attacker to control registers eax and ebx. The attacker achieves
malicious code execution by loading eax with the address of the
payload (0x8000) and ebx with address of a special type of gadget
called “stack pivot".

The third step is the execution of stack-pivot gadget, which loads
the address of the location where ROP payload is stored into the
stack pointer. This step definitively transforms the execution to the
ROP domain, and the stack pointer assumes the role of the program
counter. Stack-pivoting is crucial for the attacker to convert an in-
stance of single arbitrary code execution into continuous execution
of malicious logic.

Finally, an indirect branch instructionat the end of the stack pivot
gadget triggers the execution of the chain of gadgets directed by
the payload (in Figure 2, 0x51c0577f , 0x77c30083, 0x51c05534,
etc.). Often, the scope of ROP is limited to bypassing the DEP.
An executable is injected into a data page and an API such as
VirtualProtect or mprotect is used to set the data page
as executable. Our solution is independent of the scope/goals of
ROP and therefore we do not dwell into the details of bypassing
DEP.

2.2 Stack Pivoting
A requirement for stack-pivot operation is to write to the stack

pointer. We refer to such instructions as “SP-update" instructions,
short for “stack-pointer update" instructions. Depending on the na-
ture of the write operation, we further classify SP-update instruc-
tions into:

• Explicit SP-update: These instructions perform an explicit
write operation that alters the stack pointer (e.g., mov esp,

eax; add esp, 0x10;). Explicit SP-update instructions
occur in two forms:

– Absolute SP-update: These instructions write an abso-
lute value or register into the stack pointer. For ex-
ample, mov esp, eax; xchg eax, esp; pop

esp;.
– Relative SP-update: These instructions alter the stack

pointer by a fixed offset. For example, add esp,

0x10; sub esp, 0x10;.

• Implicit SP-update: These instructions alter the stack pointer
as an implicit effect of another operation. pop eax; ret;

retn;, etc. are examples of implicit SP-updates.

1ROP payload is diffent from the malicious executable payload that
is commonly executed after DEP is bypassed.
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Figure 1: Steps involved in executing a typical ROP attack.
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Vulnerable program:
...
//eax, ebx controlled by attacker.
//eax <= 0x8000
//ebx <= &Stack Pivot

jmp *ebx
...

0x51c0577f:
pop ecx; pop edx; ret;

0x77c30083:
mov eax, edx; ret;

0x51c05534:
mov eax, [eax]; ret;

Stack Pivot:
xchg eax, esp;
ret

Stack 
Growth

ROP PayloadGadget Chain 
Execution Exploitation

Figure 2: Example of stack pivoting

Figure 3: Classification of SP-update instructions.

Figure 3 shows the classification of various SP-update instruc-
tions. Absolute SP-update instructions can load an arbitrary value
into the stack pointer, and are therefore most popular and conve-
nient choice for pivoting. Due to the limited abilities in moving the
stack pointer, relative SP-update instructions are less capable than
absolute SP-update instructions and the implicit SP-update instruc-
tions are least capable. In fact, all the practical attacks we encoun-
tered accomplished pivoting using absolute SP-update instruction.

It is possible that abundance and easy availability of absolute
SP-update instructions is the reason why attacks do not use rela-
tive or implicit SP-update instructions for pivoting. We believe that
scarcity of absolute SP-update instructions will force attackers to
construct complex attacks by using relative and implicit SP-update
instructions for pivoting.

2.3 Legitimate Use Cases for Explicit SP-update
Instructions

There are some legitimate use cases for explicit SP-update in-
structions. Under normal execution, the stack pointer of a thread is
indicative of stack region being used by the thread. When a func-
tion is invoked, space on the stack – called function frame – is

allocated for the function, and when the function returns, the exact
amount of space that was allocated is reclaimed. Allocation and
deallocation are accomplished by simply moving the stack pointer
by the amount of stack space the function requires. Typically, when
the size of the stack required by a function is known during compile
time, the compiler inserts relative SP-update instructions to allocate
and deallocate the function stack frame. For example, in LLVM
clang compiler, frame allocation is accomplished via a sub off-
set, %rsp instruction or the push instruction, and deallocation is
accomplished through add offset, %rsp instruction. In fact, other
than frame allocation and deallocation, we found no legitimate uses
of relative SP-update instructions. It is possible that enter and
leave instructions are used to save and restore stack pointer and
the frame pointer. These instructions manifest as absolute stack
pointer updates.

Furthermore, while infrequent, the compiler sometimes intro-
duces absolute SP-update instructions to initialize the stack pointer.
When the size of a function’s stack frame is unknown during com-
pile time (e.g., when the function allocates stack space dynamically
using alloca), the compiler inserts code to calculate the appro-
priate frame size at runtime and using an absolute SP-update in-
struction, initializes the stack pointer with the correct value. There
are also legitimate uses of absolute SP-update instructions when
the stack is unwound (e.g., during an exception). In such cases, the
value of the stack pointer is calculated and initialized at runtime. C
compilers that target flavors of Windows OS utilize a helper routine
called _chkstk when the local variables for a function exceed 4K
and 8K for 32 and 64 bit architectures respectively. The function
_chkstk checks for stack overflow and dynamically grows the
stack region using an absolute SP-update instruction if the stack
growth is within the thread’s allowable stack limit. More on dy-
namic stack allocation is presented in Section 3.4.

3. PBLOCKER

3.1 Threat Model and Scope
Our solution assumes an adversary who has the capability to ex-

ploit a vulnerability in a program and achieve arbitrary code execu-



tion. Further, irrespective of ASLR, we assume that the adversary
has full knowledge of the program layout and can successfully lo-
cate useful gadgets in the memory. Strong ASLR will only improve
the protection provided by our solution. We impose no restrictions
on the size of the gadgets and allow an adversary to utilize large
gadgets – like ones used in [21] and [8] – that can successfully
evade state-of-the-art binary-level CFI defenses.

ROP

Stack Pivot

Pivot Less
Stack

Outside Stack 
(e.g., Heap)

ROP Payload 
Location

Technique Pivoting 
Instruction

Intended

Unintended

Figure 4: Scope of PBlocker.

Further, we assume that the attacker has injected the ROP pay-
load into the victim memory and requires to perform stack pivoting
in order to trigger the execution of the gadget chain. In fact, the
only requirement for our solution to be a fruitful defense against
ROP is that the stack pivoting be required in order to carry out the
attack. A schematic representation of scope of our solution is pre-
sented in Figure 4. Our solution can protect against all ROPs that
require stack pivoting and pivot outside the stack region.

Certain rare forms of ROP that do not use stack pointer as the
program counter are known to exist [9, 34], and are out of our
scope.

Pivoting within Stack Region.
Instances of ROP where the ROP payload is located on the stack

are rare. However, with wide deployment of PBlocker and simi-
lar defenses, we believe that attackers can and will deploy payloads
on the stack.

As shown in Figure 5(a), the attacker first injects the payload
into variables in function f2. When f3 is invoked, she exploits a
vulnerability in f3 and pivots the stack by adding an offset to stack
pointer to point to the base of the payload in f2’s stack frame. Sim-
ilarly, in Figure 5(b), the attacker pivots into the stale portion of the
stack. First, she injects payload into f6’s stack frame. When f6

returns to its caller f5, a vulnerability in f5 is exploited. Finally,
a pivot that subtracts an offset from the stack pointer to point to the
base of the payload is executed.

Such pivots are complex to accomplish due to two challenges.
Firstly, the attacker must find sufficient stack space to inject the
payload. Secondly, the attacker must predict the exact location of
the payload on the stack. The second challenge can be particularly
hard if the location of the stack is randomized (which is often the
case). For example, in the APT3 Phishing Campaign [19] attack,
attackers inject a custom class with a function that accepts a large
number of arguments. The arguments are placeholders for ROP
payload. While we do not explore the solution to intra-stack pivot-
ing in the current paper, we intend to pursue it in future work.

3.2 Overview

Stack Localization Property.
The execution of stack-pivot during a ROP attack signifies the

transformation from regular execution to ROP. Post stack-pivot, the
stack pointer assumes the role of program counter. Specifically, we
observe that similar to how arbitrary code execution violates the
integrity of control-flow (i.e., integrity of instruction pointer), piv-
oting the stack violates the integrity of stack pointer. Particularly,
we define the following property that is an invariant during any
point of execution.
Stack Localization (P1): At any point during execution of a pro-
gram, stack frame (represented by stack pointer) of the currently
executing function lies within the stack region of the currently exe-
cuting thread.
Note that P1 is true because each thread contains a dedicated stack
region where the thread’s stack is maintained. Under normal opera-
tion, the stack region must be in accordance with the stack allocated
by the OS kernel.

Code Instrumentation.
When the payload is outside the stack region, stack-pivoting vi-

olates P1. We present PBlocker and PBlocker+, two imple-
mentations that enforce Stack Localization. Since stack pointer is
indicative of the stack frame, P1 is nothing but:

StackBase

Thread

< StackPointer < StackLimit

Thread

While P1 is an invariant and must be true at all points during
the execution, it is not necessary to assert it at every point. In fact,
PBlocker asserts P1 only after an absolute SP-update instruction.
This was sufficient to protect against all practical stack pivoting
operations we looked at. After each absolute SP-update instruction,
PBlocker retrieves the stack region allocated for the currently
executing thread and asserts that stack pointer lies within the stack
region. The assertion is performed using code that is instrumented
through a LLVM compiler pass.

Furthermore, in order to protect against future attacks that may
utilize relative and implicit SP-update instructions, we implement
PBlocker+ that performs function-level enforcement. Particu-
larly, through instrumentation, PBlocker+ asserts the sanity of
stack pointer at the end of each function (i.e., before each ret in-
struction).

By defending against stack pivot, our solution can afford the
attacker precise knowledge of gadgets in the memory. This fea-
ture distinguishes PBlocker and PBlocker+ from approaches
based on gadget elimination. Consider the code that is embedded
into JavaScript code of some real-world exploits:
t r y { l o c a t i o n . h r e f = ’ms�h e l p : / / ’ } ca tch ( e ) { }

The above code loads hxds.dll, a MS Office help library that is
non-relocatable and is always loaded at the same location in the
memory. Moreover, it contains absolute SP-update instructions that
can be used to execute a pivot. By loading hxds.dll, an attacker ef-
fectively invalidates ASLR. This is analogous to code-reuse attacks
described by Snow et al. [35], but without any JIT code.

Elimination of Unintended SP-update Instructions.
As a final step, we eliminate all the unintended explicit SP-update

instructions. PBlocker and PBlocker+ protect against use of
intended SP-update instructions as gadgets. However, an attacker
can utilize the unintended instructions that could result due to mis-
aligned instruction access. Considerable research has gone into re-
moving unintended gadgets from the program (e.g., G-Free [27],
in-place code randomization [28]). We simply leverage these ef-
forts to render PBlocker or PBlocker+ protected binaries free
of unintended SP-updates.

Work-flow of our defense is presented in Figure 6. The imple-
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Figure 5: Pivoting within the stack region.
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Figure 6: Work-flow of PBlocker. It comprises of an LLVM
code generation pass that performs instrumentation, and a runtime
component that provides target specific implementations.

mentation comprises of PBlocker Pass (or PBlocker+ pass), a
LLVM code generation pass that performs instruction-level instru-
mentation to capture the SP-updates, and a runtime that provides
the implementation of the core functionality like assertion of P1.
More details are provided in Sections 3.3.

3.3 Design and Implementation
The algorithm for PBlocker is presented in Algorithm 1. Given

a Program, EnforceLocalization iterates over each instruc-
tion in the program and identifies absolute SP-update instructions.
When such an instruction is found, a call to CoarseCheck is in-
serted after the instruction. Similarly, Algorithm 2 presents Enfor-
ceLocalizationP lus implemented by PBlocker+. For each re-
turn instruction in the program, a call to CoarseCheck is inserted
before the instruction.

The goal of CoarseCheck is to assert P1 – that is, the value of
stack pointer lies within the stack region of the currently executing
thread. Every thread of execution has associated with it, a Thread-
Specific Data (TSD) structure (Thread Information Block (TIB) in
flavors of Windows OS), that contains information regarding the
currently executing thread. For example, TIB contains addresses
of bottom and top of stack, process ID, thread ID, exception han-
dling related information, etc. TSD structure is directly mapped to
the base of gs or fs segment registers for 64 and 32 bit variants
respectively. First, StackBase and StackLimit of the current
thread is retrieved from the TDS of the thread. If the StackPtr

does not lie within the interval (StackBase, StackLimit), a vio-
lation of P1 is inferred, and the execution is aborted.

EnforceLocalization and EnforceLocalizationP lus are
implemented within LLVM MachineFunction passes. The im-
plementation dependent CoarseCheck is implemented within a
target-dependent runtime. During the compilation, after the LLVM
target code generation, for each absolute SP-update instruction, a
call to CoarseCheck is inserted.

Algorithm 1 Given the llvm bitcode Program, PBlocker in-
serts a call to CoarseCheck after each absolute SP-Update in-
struction.
1: procedure ENFORCELOCALIZATION(Program)
2: for each Inst in Program do
3: if Inst is SP -Update

Absolute

then
4: Save Live Registers
5: InsertCall CoarseCheck(StackPtr)
6: Restore Saved Registers
7: end if
8: end for
9: end procedure

10: procedure COARSECHECK(StackPtr)
11: StackBase TSD.GetStackBase()
12: StackLimit TSD.GetStackLimit()
13: if StackPtr /2 (StackBase, StackLimit) then
14: abort()

15: end if
16: end procedure

Algorithm 2 Given the llvm bitcode Program, PBlocker+ in-
serts a call to CoarseCheck before each ret instruction.

1: procedure ENFORCELOCALIZATIONPLUS(Program)
2: for each Inst in Program do
3: if Inst is a return then . If this is return instruction
4: Save Live Registers
5: InsertCall CoarseCheck(StackPtr)
6: Restore Saved Registers
7: end if
8: end for
9: end procedure

‘leave’ Instruction.
Some compilers implement the function epilogue using leave

– a 1 byte x86 instruction. The semantics of leave instruction is
analogous to: mov esp, ebp; pop ebp. Because mov esp,



voi d f oo1( i nt  y)  {
voi d * p = al l oca( y) ;
. . .
}

foo1:
push %rbp
mov %rsp, %rbp
sub $0x20, %rsp
...
mov %rsp, %r8
sub %rax, %r8
mov %r8, %rsp
...
mov %rbp, %rsp
pop %rbp
ret

Allocation
Deallocation

1

2

31, 2
3

Figure 7: Dynamic allocation of stack space using alloca. Com-
piled using clang-600.0.51, based on llvm-3.5.

ebp is an absolute SP-update instruction, leave is also an abso-
lute SP-update instruction.

It is worth noting that some compilers (e.g., clang) prefer sub
instruction to acquire stack and add instruction to reclaim stack as
opposed to enter and leave instructions.

3.4 Dynamic Stack Allocation
When stack space is dynamically allocated using a function like

alloca, the user does not need to explicitly free the memory. Im-
plementations of alloca are often provided by the compiler. At
the time of invocation, the stack pointer is adjusted to claim the
additional stack space, and when the function returns, the stack
pointer is restored to its original value to account for frame deallo-
cation. If the compiler can statically compute the requested size, it
can perform the stack allocation using a relative SP-update instruc-
tion, otherwise it uses an absolute SP-update instruction.

For example, in Figure 7, in function foo1, the argument to
alloca is a variable. Therefore, the compiler allocates 0x20 bytes
(marking 1) required by the function, then adjusts stack pointer
(%rsp) using an absolute SP-update instruction, by subtracting a
value corresponding to the argument to alloca (marking 2). When
the function completes execution, the stack pointer is simply re-
stored to the value at function entry (marking 3). Because an abso-
lute SP-update instruction (marking 2) is used, PBlocker inserts
a call to CoarseCheck after mov %r8, %rsp.

3.5 Explicit SP-update Injection through JIT
Due the unavailability of code for static-analysis based defenses,

gadgets injected into Just-In Time (JIT) code by an attacker are par-
ticularly hard to protect against. However, code generator within a
JIT engine can be modified to instrument all explicit SP-update in-
structions to enforce P1. Also, during code generation, unintended
SP-update instructions can be avoided by using verified byte se-
quences for the generated code.

3.6 Interleaved Data and Code
It is possible that code and read-only data are interleaved in the

executable section of a binary. While such a binary violates the
fundamental tenets of DEP, unfortunately they do exist. In fact,
several DLLs in Windows system directory contain read-only data
interleaved within the code sections. For example, such read-only
data in uxtheme.dll contain absolute SP-update instructions. Gad-
get elimination solutions can not eliminate gadgets in such read-
only data. As a source code level implementation, PBlocker
ensures that no data is contained within executable regions. Par-
ticularly, during the code generation phase, all data (read-only and
writable) are allocated in separate non-executable sections and only

executable code is allocated within the read-only executable sec-
tions.

4. SECURITY ANALYSIS
In this section we first differentiate between PBlocker and

PBlocker+, and CFI. Further, as already mentioned in Section 3.1
and Figure 4, though lack of pivoting (Section 4.3) and non-stack
pivots (Section 4.4) are out of our scope, we include them here to
provide a deeper understanding of the problem.

4.1 PBlocker/PBlocker+ vs CFI
CFI and PBlocker/PBlocker+ are fundamentally different.

CFI relies on a complete (or approximately complete) control-flow
graph, whereas PBlocker and PBlocker+ do not. This key
difference allows for PBlocker and PBlocker+ to be incre-
mentally deployable. That is, protected modules can seamlessly
inter-operate with unprotected modules. This allows for protection
to be applied to high-risk modules (that contain/require absolute
SP-update instructions) such as mshtml.dll, uxtheme.dll, etc.

4.2 Pivoting through Implicit SP-update In-
structions

In principle, implicit SP-update instructions can be used to per-
form stack pivoting, however they are not as powerful as the ex-
plicit SP-update instructions. Unlike explicit SP-update instruc-
tions, implicit SP-update instructions can only move the stack pointer
by small increments. Considering that an attacker has just one
attempt at stack pivoting after exploitation, unless the payload is
close to the existing value of stack pointer, pivoting through im-
plicit SP-updates is hard.

From the defense standpoint, there are multiple implicit SP-update
instructions like pop reg;, push reg;, ret; that are all fre-
quently used. Enforcing P1 after each implicit SP-update instruc-
tion is impractical. Therefore PBlocker+ collectively asserts P1
before each function returns.

4.3 Stack-Pointer-Aligned Payload

Figure 8: Stack-pointer-aligned payload.

PBlocker addresses the integrity of the stack pointer, which
is violated during stack pivoting. While stack pivoting is required
in accomplishing most real-world ROP exploits, some exceptions
exist. Specifically, if an attacker can inject the payload to a loca-
tion already pointed to by stack pointer, there is no need for stack
pivoting. This is specially the case when the attacker can over-
flow the stack and control the return address (e.g., through a buffer
overflow). For example, in Figure 8, through a buffer overflow in
the callee function, an attacker can overwrite the return address to



point to the first gadget in the ROP payload. When the callee func-
tion returns, the ROP payload is executed.

Our solution can not protect against attacks that do not mod-
ify the stack pointer. However, buffer overflow is a well studied
problem (e.g, [13, 23, 38]) with practical implementations. Stack-
Guard [13], a popular solution incorporated into modern compilers
(e.g., -fstack-protector in GCC and clang), introduces a
randomly generated canary between the return address and the lo-
cal variables of a function. When the function returns, if the canary
is altered, an overflow is inferred. Most modern compilers not only
include support for stack canaries, but some also incorporate them
as a default setting.

4.4 Non-Stack-Pointer Pivots
The key requirement for code execution is a reliable means to re-

peatedly move the program counter. Under normal execution, x86
hardware increments the instruction pointer after every instruction,
similarly, under traditional ROP ret; or pop reg; jmp reg;

instructions allow for movement of the stack pointer that assumes
the role of program counter. In principle, as long as an attacker has
access to repeated indirect branching, code-reuse attacks can not be
eliminated.

For example, an attacker can point a general purpose register
(say edx) to the payload, and find an amicable gadget that repeat-
edly performs update-load-branch as discussed by Checkoway et
al. [9]. Such attacks can not be defeated by PBlocker. However,
the availability of pop, ret that automatically move the stack
pointer would be missing in such non-stack pivots, and their prac-
ticability is unclear.

Schuster et al. introduce COOP [34], code reuse attacks for C++
programs. They leverage loops that execute virtual functions as
program counter. By controlling the loop counter and the array
of virtual functions that are executed, they achieve arbitrary code
execution. In such code-reuse attacks, there is no need for stack
pivoting.

5. EVALUATION
We implemented a prototype for PBlocker and PBlocker+

as a compiler-level solution. The instrumentation phase (Figure 6)
was implemented by adding a code-generation pass to the LLVM-
3.5.0 compiler. As a proof-of-concept, we also implemented the
target-dependent runtime for 64 bit Linux (version 3.2.0). Our
LLVM pass comprises of 315 lines of C++ code for PBlocker
and 330 lines of C++ code for PBlocker+. The runtime for Linux
consists of 20 lines of assembly code.

5.1 Performance
We evaluate the performance of PBlocker and PBlocker+

on SPECINT 2006 benchmark, and performance of PBlocker on
GNU coreutils (ver 8.23.137) and GNU binutils (ver 2.25). The
results for SPEC benchmark for PBlocker+ and PBlocker are
presented in Figure 10 and 9 respectively, and results for coreutils
and binutils are presented in Figure 11. Overall, we found that
PBlocker and PBlocker+ impose very little overhead. Av-
erage overhead of PBlocker was found to be 1.04% for SPEC
benchmark, 1.99% for binutils and 0.7% for coreutils. This is due
to the infrequent use of absolute SP-update instructions in the bi-
nary. For example, 5 out of 9 programs that we tested in coreutils
contained no absolute SP-update instructions.

Furthermore, PBlocker+, which is a more conservative and
strict defense imposed 2.9% overhead for the SPECINT bench-
mark.

96# 98# 100# 102# 104# 106# 108#

400.perlbench#
401.bzip2#
429.mcf#

445.gobmk#
456.hmmer#
458.sjeng#

462.libquantum#
464.h264ref#

471.omnetpp#
473.astar#

483.xalancbmk#
Average#

PBlocker# Vanilla#(baseline)#

Figure 9: Performance of PBlocker for SPEC INT 2006 bench-
mark normalized against vanilla LLVM-3.5.0. The x-axis is ad-
justed in order to clearly indicate the overhead.
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Figure 10: Performance of PBlocker+ for SPEC INT 2006
benchmark normalized against vanilla LLVM-3.5.0. Policy is en-
forced before each function returns. The x-axis is adjusted in order
to clearly indicate the overhead.

5.2 Pivoting in Practice
In Table 1, we present some modules in Windows OS and the

common absolute SP-update instructions within them. We found
xchg eax, esp; to be the most common pivoting instruction.
Also, in Table 3, we present a corpus of recent exploits on Metas-
ploits [1] and the instructions they utilize to accomplish pivoting.
Unsurprisingly, they use the xchg eax, esp; instruction. It
must be noted that exploits on Metasploit are proof-of-vulnerability,
and pivoting is independent of the vulnerability. That is, depending
on the attack specifics, a feasible pivot can be utilized for multiple
exploits. However, in practice absolute SP-update instructions are
most popular to perform stack pivot.

Moreover, hxds.dll – the help library for MS Office is not relocat-
able and always loads at the same address. An attacker can simply
load and utilize the pivot gadgets within the module. PBlocker
and PBlocker+ are particularly useful in protecting such non-
relocatable modules. PBlocker can defeat pivoting in all cases
listed in Table 1 except the gadget at uxtheme.dll:0x6ce8ab5e be-
cause uxtheme.dll contains readonly data interleaved with code in
the .text segment, and data item char s_keyPublic1[] is
at address 0x6ce8ab38.

5.3 SP-Update Instructions vs Gadgets



Table 1: Absolute gadgets in Windows OS.
Program Gadget Module Gadget Address Pivot Instruction Relocatable PBlocker defeats pivot?

Office 2007 hxds.dll 0x51c2213f xchg eax, esp NO X
Office 2010 hxds.dll 0x51c00e64 xchg eax, esp NO X
Win XP SP3 msvcrt.dll 0x77C3868A xchg eax, esp Yes X
Java Runtime NPJPI.dll 0x7c342643 xchg eax, esp Yes X

Apple QT QickTime.qts 0x20302020 pop esp Yes X
Adobe Flash flashplayer.exe

v11.3.300.257 0x1001d891 xchg eax, esp Yes X
Win 7 uxtheme.dll 0x6ce7c905 mov esp, ebp Yes X
Win 7 uxtheme.dll 0x6ce8ab5e mov esp,

[edi + 0xffffffcd]

Yes X

Table 2: Explicit SP-Update instructions vs Gadgets
Suite Program Total Instructions # Absolute SP-update # Relative SP-update Total # Gadgets

rm 9470 0 117 705
cp 17403 14 170 985

factor 9907 4 118 890
sha512 9969 0 77 547

coreutils sort 19471 0 158 1053
cat 6704 4 133 475
wc 5400 0 77 490

md5sum 5659 0 71 441
split 9888 4 108 579

objdump 265075 49 1524 11673
objcopy 230226 16 1366 9921

ld 48964 1 705 2860
binutils nm 189299 16 1104 8604

ar 192428 16 1118 8936
readelf 60170 31 207 3868

Table 3: Pivoting instructions used by recent Metasploit exploits
CVE Number Instruction

2013-3897
2013-3163
2013-1347
2012-4969
2012-4792
2012-1889
2012-1535

xchg eax, esp

2014-0515 mov esp, [eax]

2013-1017 pop esp

In order to demonstrate the effectiveness of PBlocker, we list
the number of explicit SP-update instructions that PBlocker pro-
tects as opposed to the total number of gadgets in coreutils and
binutils. The results are tabulated in Table 2. Overall, we found
that absolute SP-update instructions, the most popular for stack-
pivoting are a very small fraction when compared to the total in-
structions in a program.

6. RELATED WORK

6.1 Defense against Stack Pivoting
Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) [2]

is a popular zero-day exploit prevention utility that provides de-
fense against stack pivot in ROP attacks. Core idea implemented
by EMET is based on ROPguard [20]. When execution enters a
critical function such as VirtualProtect, EMET asserts that
stack pointer lies within the stack region of the current thread. De-

Mott [18] bypass EMET by taking advantage of the gap between
time-of-check and time-of-use of stack pointer. They first perform
a stack pivot to the heap, perform ROP, and then pivot back to the
stack region just before invoking Virtual Protect. Because
EMET checks for sanity of stack pointer within the critical func-
tion, such an attack is missed.
PBlocker checks the sanity of stack pointer immediately after

every absolute SP-update instruction and can therefore stop attacks
demonstrated by DeMott.

Recent stack-based defenses make stack pivoting harder, but not
impossible to execute. In StackArmor [10], Chen et al., randomize
the location of the stack, thereby making it harder for an attacker to
guess the location of ROP payload on the stack. However, they are
still vulnerable pivoting, if an attacker can successfully locate the
payload on the stack [19].

6.2 CFI
Beginning from Abadi et al. [3], several CFI defenses have been

proposed on the source code [22, 37], at a binary level [43, 42, 16,
14] and runtime [39, 31]. While different from CFI, Kuznetsov et
al. propose CPI [24], which distinguish between code and non-
code pointers and protects code pointers. Unlike CFI, PBlocker
and PBlocker+ are not control-flow-based approaches, however
they are complementary to CFI. Coarse-grained CFI can supple-
ment PBlocker and PBlocker+ to prevent an attacker from
utilizing unintended SP-update instructions (particularly 1 byte in-
structions like leave) that can not be removed using gadget elim-
ination techniques.

More recent CFI defenses on the binary like, vfGuard [30] im-
proves the precision of CFI for C++ virtual call dispatches, and
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(a) Sampling of coreutils.
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(b) Sampling of binutils.
Figure 11: Performance of PBlocker for a few coreutils and
binutils programs normalized against vanilla LLVM-3.5.0. The x-
axis is adjusted in order to clearly indicate the overhead.

Opaque CFI [26] combines coarse-grained CFI and artificial diver-
sification in order to render disclosure attacks harder.

6.3 Artificial Diversity
The goal of artificial diversity is to randomize and hide the lo-

cation of a program’s code, data, stack, heap, etc. [4, 36, 5, 41,
12]. STIR [40] performs static instrumentation to generate binaries
that self-randomize every time the binary is loaded. Isomeron [17]
combines code randomization with execution-path randomization
wherein code fragments that can be indirectly targeted are dupli-
cated, and at runtime, a randomly chosen fragment from the dupli-
cates is invoked. Xu and Chapin [41] introduce ASLR using code-
islands in order to defend against chained return-to-libc attacks,
wherein they identify and randomize into isolated code blocks, base
pointers used in memory mappings.

Artificial-diversity-based defenses are susceptible to disclosure
attacks, and are not always an effective defense [33]. PBlocker
and PBlocker+ do not rely on ASLR for defense.

6.4 Gadget Elimination
Two main works: in-place code randomization [28], G-Free [27]

have been proposed to eliminate gadgets. Given the vast number of
available gadgets even in binaries [32], it is hard to eliminate all the
gadgets in a program. They perform semantics-preserving in-place
code randomization.

7. CONCLUSION
In this paper, we presented PBlocker, a novel defense against

ROP attacks. PBlocker enforces Stack Localization to defend
against ROP by stopping stack-pivot operations that pivot outside
the stack region. This covers most of the cases of ROP. We also
present PBlocker+, a more conservative version of PBlocker
wherein, the stack pointer is checked before each function returns.

We evaluate PBlocker on SPEC 2006 benchmark and show an
average runtime overhead of under 1.04%.
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