
Dark Hazard: Learning-based, Large-scale Discovery
of Hidden Sensitive Operations in Android Apps

Xiaorui Pan∗, Xueqiang Wang∗, Yue Duan†, XiaoFeng Wang∗, and Heng Yin†
∗Indiana University Bloomington

Email: {xiaopan, xw48, xw7}@indiana.edu
†University of California, Riverside

Email: yduan005@ucr.edu, heng@cs.ucr.edu

Abstract—Hidden sensitive operations (HSO) such as stealing
privacy user data upon receiving an SMS message are increasingly
utilized by mobile malware and other potentially-harmful apps
(PHAs) to evade detection. Identification of such behaviors is
hard, due to the challenge in triggering them during an app’s
runtime. Current static approaches rely on the trigger conditions
or hidden behaviors known beforehand and therefore cannot
capture previously unknown HSO activities. Also these techniques
tend to be computationally intensive and therefore less suitable for
analyzing a large number of apps. As a result, our understanding
of real-world HSO today is still limited, not to mention effective
means to mitigate this threat.

In this paper, we present HSOMINER, an innovative machine-
learning based program analysis technique that enables a large-
scale discovery of unknown HSO activities. Our approach lever-
ages a set of program features that characterize an HSO branch1

and can be relatively easy to extract from an app. These features
summarize a set of unique observations about an HSO condition,
its paths and the relations between them, and are designed to be
general for finding hidden suspicious behaviors. Particularly, we
found that a trigger condition is less likely to relate to the path
of its branch through data flows or shared resources, compared
with a legitimate branch. Also, the behaviors exhibited by the
two paths of an HSO branch tend to be conspicuously different
(innocent on one side and sinister on the other). Most importantly,
even though these individual features are not sufficiently accurate
for capturing HSO on their own, collectively they are shown to be
highly effective in identifying such behaviors. This differentiating
power is harnessed by HSOMINER to classify Android apps,
which achieves a high precision (>98%) and coverage (>94%),
and is also efficient as discovered in our experiments. The new tool
was further used in a measurement study involving 338,354 real-
world apps, the largest one ever conducted on suspicious hidden
operations. Our research brought to light the pervasiveness of
HSO activities, which are present in 18.7% of the apps we
analyzed, surprising trigger conditions (e.g., click on a certain
region of a view) and behaviors (e.g., hiding operations in a
dynamically generated receiver), which help better understand

1A branch, unless otherwise specified, refers to a branching structure, which
contains a condition and multiple paths.

the problem and contribute to more effective defense against this
new threat to the mobile platform.

I. INTRODUCTION

The permeation of mobile technologies today also exposes
their users to new kinds of security and privacy risks. Notably in
the past years, mobile threats continues to be on the rise [12],
not only from malware and other potentially harmful apps
(PHA) such as back-doors, fraud apps, ransomware, spyware,
etc., as reported by Google [23], but sometime even from large
organizations’ products that also exhibit unexpected behaviors
like collecting private information (e.g., precise locations)
without consent, installing unwanted programs, aggressively
advertising, etc. To counteract these threats, major app stores
today have beefed up their security vetting, putting various
malware scans in place. Particularly, Google Play and other big
stores run submitted apps for a short period of time to catch
their suspicious behaviors [43]. While such protection works on
less sophisticated PHAs, it leads to further evolution of attack
techniques, bringing in a new set of apps that deliberately
hide their sensitive behaviors behind the events triggered only
in their target situations. For example, a PHA only pops up
advertisements and collects a user’s contacts when it runs
on a physical device (not an emulator) and interacts with a
human (Section II). Understanding and effective detection of
these hidden sensitive operations (HSO, including both hidden
behaviors and their triggering conditions) is becoming the new
frontier in the fight against mobile malice.

HSO in mobile apps. Actually, HSO has been extensively
studied in desktop malware, for example, attempts to identify
the presence of a virtual machine (VM) and change behaviors
to evade detection [19] [9]. Similar tricks are also played by
mobile PHAs and in some cases, legitimate apps. An example
is gaming apps, which stop providing services when they run
in an emulator. On the other hand, the unique software and
hardware resources on mobile devices enable apps to cover their
behaviors with a wider spectrum of triggers, that is, conditions
under which the hidden operations will be performed. Examples
include locations or SMS messages (e.g., collecting personal
information only at a specific location), as reported by the prior
studies [34], and user input patterns, system servers and other
system events, as newly discovered in our study (Section IV).
In general, although it is perceived that HSO does exist in
mobile ecosystems, little has been done so far to gain an in-
depth understanding of its security impact and technical trend,
as well as unexpected tricks already out there.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23265

This lack of understanding is mainly attributed to the
challenges in finding the hidden operations, particularly pre-
viously unknown ones, on a large scale. Most desktop HSO
malware today has been captured using some levels of dynamic
analysis, the only viable solution for finding evading behaviors
from binary code. The analysis, however, is limited by its
coverage and scalability. For Android apps, their byte-code is
more accessible and can therefore be inspected using static
analysis. The trouble is that determining the presence of
triggers is notoriously hard: essentially, a trigger is just a
branch condition (also called a check in our study), one of
the most common program structures; it is hard to link such
a condition to the intention for hiding suspicious activities.
Current solutions rely on either carefully specified security-
sensitive behaviors (e.g., permission-protected methods, read
from sensitive Content Providers [51]) or well defined trigger
conditions [34] to avoid false positives. A prominent example
is TriggerScope [34], which utilizes a set of narrow conditions,
as supported by symbolic execution, to identify suspicious
triggers. The problem is that the condition here needs to be
precise and therefore restrictive (e.g., comparison between a
time value and a constant), which limits the approach only to
known types of triggers (time, location and SMS in the paper).
Likewise, the specific behaviors used for detection only work
on a known set of suspicious activities covered by triggers. As
a result, none of the existing techniques are capable of finding
unknown HSO. Also, the use of heavyweight techniques (e.g.,
symbolic executions) renders the approaches like TriggerScope
less suitable for a large-scale study.

Our approach. In this paper, we present a new technique that
makes possible large-scale discovery and analysis of previously-
unknown HSO within Android apps. Our approach, called
HSOMINER, is built upon a set of unique features shared
across different types of HSO. More specifically, an HSO tends
to check only system inputs (e.g., time, SMS, keys entered by
the user, etc.), rather than its hosting app’s internal inputs, for
triggering hidden behaviors. Further, such behaviors, performed
by the hidden path of the trigger condition, are very different
from the operations on the other path that serve to cover the
sensitive activities when they are not triggered (e.g., sending
SMS vs. simply exiting the current method). Most interestingly,
except their control dependency, the trigger and the hidden
behaviors tend to be unrelated: e.g., consider a time bomb that
uses time to determine when to perform malicious activities
(e.g., stealing private data); rarely does the time also serve as
an input to the activities. Fundamentally, a trigger is meant
to check whether an app is running in the target situation
(right moment, location or device), which is often orthogonal
to what the app intends to do in that situation (data stealing,
SMS sending, etc.). This is different from a normal branch, in
which the operations on either path are often connected to the
condition through data flows or shared resources (e.g., if the
camera is ready, take a picture through the camera).

None of these features is dependent on specific trigger
conditions or sensitive behaviors, which potentially allows them
to be used to find previously unknown HSO. Also importantly,
they are relatively easy to extract from a program and even
though each individual of them may not be accurate enough for
detection (incurring false positives), collectively they provide a
more precise description of suspicious hidden activities. In our

research, we utilize lightweight program analysis techniques to
recover these features from the branching structures within an
Android app, and run a machine learning algorithm to identify
those involving HSO. Our evaluation shows that HSOMINER
achieved a precision over 98% and a recall above 94%, at a
speed of 13 minutes per app over the apps with a much larger
size (typically around 8.43 MB) than those studied in the prior
research [34], [51]. This level of performance enabled us to
conduct a measurement study on HSO at an unprecedented
scale: we scanned over 338,354 Android apps (including
124,207 from Google Play and 214,147 from VirusTotal), and
discovered 63,372 containing HSO; among them, 1773 involve
the HSO techniques never reported before (Section IV).

Findings. Our measurement of HSO, the largest of its kind,
brings to light the pervasiveness of hidden activities across
the Android ecosystem: about 18.7% of the apps were found
to involve some suspicious behaviors they attempt to cover.
In addition to known triggers, such as time, location and
SMS, we found that suspicious behaviors (e.g., sending SMS)
are protected by monitoring various system events, including
incoming Intent, new package added, screen locked etc. and by
detecting the presence of human users: e.g., setting a threshold
for the interval between two consecutive clicks on the screen.
Even for the old tricks, such as identifying an emulator, new
techniques have been employed, such as checking certain bits
of /system/bin/linker to find out whether the app is running on
an X86 system. Further, HSO techniques seem to evolve with
Android, leveraging new functionalities added to the OS and
new services it supports: an example is a PHA that uses the
device manager to hide the behaviors of stealing user data.
Further our study shows that HSO code has been disseminated
through the libraries shared across technical forums/repositories
such as GitHub and pudn [14]. Also new techniques proposed
in the academia have been quickly picked up by PHA authors.
For example, Anti-emulation techniques proposed on HITCON
2013 [10] were found to be used in real-world PHAs.

Contributions. The contributions of the paper are summarized
as follows:

• New technique. We developed HSOMINER, a novel machine-
learning based program analysis technique for automated detec-
tion of hidden sensitive operations, including those previously
unknown, on a large scale. HSOMINER is built upon a set of
simple yet salient program features, leveraging their collective
differentiating power to identify HSO. In this way, we keep
the features general, thereby allowing the technique to work
on new types of triggering conditions and suspicious behaviors.
Also, the high-level idea of using lightweight program features
and machine learning to avoid complicated code analysis could
find its application in other security domains.

• New discoveries. Using HSOMINER, we carried out so far
the largest study on HSO. In the study, over 330K recent
apps were scanned, which led to the discovery of over 60K
apps with hidden behaviors. Analysis of these apps further
reveals new HSO techniques and their evolving trends. This is
invaluable for better understanding of the mobile HSO risks and
the enhancement of our defense against this emerging threat.

Roadmap. The rest of the paper is organized as follows:
Section II presents the background of our research; Sec-

2

/system/bin/linker

tion III elaborates our design, implementation and evaluation of
HSOMINER; Section IV describes our large-scale measurement
study and findings; Section V surveys the related prior research;
Section VI discusses the limitations of our techniques and
potential future research, and Section VII concludes the paper.

II. BACKGROUND

In this section, we explicate the HSO activities studied in
our research and existing HSO techniques, particularly those
used in Android apps. We also present the assumptions made
in our study.

HSO and Android. As mentioned earlier, we use the term
“hidden sensitive operations” (HSO) to describe the branch
condition (the trigger) that hides security-sensitive behaviors
and the behaviors along one path of the trigger that can only
be invoked when the condition is satisfied. Such HSO tricks
have long been utilized by malware authors to evade dynamic
analysis. Here, the trigger condition serves to determine whether
the malware is running in its target environment, which is
typically found through a set of heuristics: for example, looking
for differences in the outputs of certain APIs, the presence
of virtual machine (VM) related system files or observable
performance degradation related to virtualization, etc. [18].
Further, detection of human interactions and the use of various
analysis engines (e.g., FireEye Multi-Vector Virtual Execution
Engine [11]) also becomes popular in desktop HSO. In the case
that such behaviors are not triggered, sophisticated malware
can even display a message to disguise the disruption of its
service as configuration troubles [20].

Similarly, tricks for detecting emulator form the mainstay
of the HSO techniques employed by Android apps. These
approaches tend to exploit information leaks on QEMU and Vir-
tualBox, including their unique system files and constant values
in the results of certain API calls like getDeviceId, IMEI,
Build.FINGERPRIN, getLine1Number [48]. Moreover,
a mobile device today is characterized by its abundant built-in
sensors and strong support for user interactions, which also
opens new avenues for hiding sensitive code: for example,
checking the presence of camera to find out whether an app
indeed runs on a phone or the patterns of clicks on the screen
to determine whether indeed a human (instead of an automatic
tester) is using the device (Section IV-C).

To defeat the HSO for evading emulators and other analysis
environments, techniques have been proposed to cover the traces
of these environments [45]. As an example, without protection,
a call to android.os.Build.MODEl immediately returns
google_sdk in the Android emulator; to avoid this exposure,
one can enhance the emulator by hooking such APIs and
forcing them to output fake values that mimic those of real-
world devices: e.g., SM-G920F. Alternatively, popular apps
can be installed on real phones and analyzed there. A problem
is that such anti-HSO measures entirely rely on the knowledge
about specific HSO behaviors, and therefore tend to be less
effective on unknown HSO. So discovery and understanding
of new HSO behaviors becomes important to mitigate this
potential security threat.

Assumptions. We consider a situation where the app developer
utilizes all kinds of system events to determine when to trigger
hidden sensitive operations. Note that we do not assume any

specific forms of trigger conditions (e.g., comparison between
a time value and a constant, as did in the prior research [34]),
as long as the triggers involve system (device build info, state
of a sensor, etc.) or user inputs (Section III-B); nor do we limit
the hidden operations to a set of manually selected security-
sensitive behaviors, as long as such operations indeed involve at
least one API that once abused, can cause harm to the app user
(Section III-C). Examples of such sensitive APIs are provided
by the Android official security documentation [7]2. Further,
just like all prior effort on static analysis of HSO [37], [33],
we do not consider the apps whose branch conditions have
been deeply obfuscated. Finally, as also found in the prior
research [34], legitimate apps can also exhibit some evasive
behaviors. A prominent example is gaming apps, many of
which stop running within the emulator. So it is important
to note that this study aims at understanding such behaviors,
not directly detecting PHAs, though discovery of HSO often
indicates the presence of potentially-harmful behaviors.

III. FINDING HSO
Here we elaborate the design, implementation and evaluation

of our techniques.

A. Overview
The design of HSOMINER focuses on the structure of

a branch, which exhibits unique features when it involves
hidden behaviors, regardless of the details of the operations.
Such features can be observed from the relations between the
branch’s individual components, including its condition and
paths, and the relation between the components and system
events. More specifically, a trigger condition is always related
to system inputs (time, location, screen touches, etc.), whereas
a non-HSO branch may rely on an app’s local data alone
(e.g., a comparison between a loop variable with a constant).
Further comparing the paths controlled by the trigger, one with
sensitive operations and the other not (serving as a cover for
the former), we can see a significant discrepancy between their
behaviors (e.g., retrieving accurate location data on one path
and displaying UI elements on the other), with the latter acting
less alarmingly to avoid any suspicion about the whole branch.
Also interestingly, a trigger is much less likely than a legitimate
condition to share resources with the sensitive operations: as
an example, for a legitimate Intent handler, after the content
of an incoming Intent is checked, the follow-up operations
will also happen on the Intent; in the case that the branch just
serves as a disguise for an HSO, however, the operations can
be completely unrelated to the Intent (data stealing, sending out
SMS and others). From these three categories of relations, our
approach extracts 7 features (see Section III-B) that describe
the connections between a condition and system events and
between the condition and its security-sensitive path, and also
the behavior distance between two paths. These salient features,
as demonstrated by their differentiating powers (Section III-B),
are then used collectively to capture an HSO branch.

Architecture. Figure 1 illustrates the architecture of
HSOMINER, which includes a pre-processor, a feature extractor
and a classifier. The pre-processor unpacks an app’s APK
and then decompiles and converts its code into intermediate

2The list contains only a subset of APIs we consider sensitive (Section III-C)

3

Fig. 1: Overview of components in HSOMINER.

Fig. 2: A possible implementation of HSO.

language, which is ultimately transformed into a global control-
flow graph (CFG). The CFG, built on top of Soot [15],
comprises a set of subgraphs according to the app’s entry points.
The subgraphs are further linked together with asynchronous
tasks, lifecycle of Android components and inter-procedural
invocations. HSOMINER automatically processes these sub-
graphs, identifies potential conditional branches, and outputs
them for feature extraction. To fully understand the triggers
involved in conditional statements, a backward data dependency
graph (DDG) is constructed for the variables appearing in the
statements, while the behaviors of paths are directly identified
during construction of the CFG. The pre-processor also clusters
packages in apps (Section III-C), which helps to minimize the
set of entry points to be analyzed.

The feature extractor takes trigger conditions and their
corresponding paths as its inputs and outputs a set of features
collected from them (Section III-B). These features, together
with a set of confirmed HSO or Non-HSO training instances,
are utilized to learn a classification model, which serve to detect
other HSO apps.

Example. Here we use an example in Figure 2 to explain
how HSOMINER works. The highlighted branch condition
!containsAV in the figure checks whether any Anti-Virus
scanner exists on the current device. If not, the app collects the
user’s phone number and precise location (which are sent out
later); otherwise, it just attaches blank content to the message.

When analyzing the branch, HSOMINER traces back to the
program location where the boolean variable containsAV

is defined and finds that it has been determined by a system
input returned by getInstalledPackage, which includes
the list of all installed packages. Also looking at the difference
between the two paths, our approach discovers that sensitive
APIs getPhoneNumber and getLatitude are present on
one path and neither show up on the other. Finally, the condition,
which is related to the package list, does not have any data
dependency or other resource sharing (e.g., through a common
object) with the statements on the security-sensitive path. As a
result, our classifier flags the branch as suspicious. Following
we describe the details of the features selected and individual
system components.

B. Features
As mentioned earlier, HSOMINER relies on a set of

unique program features to identify HSO activities, including
those characterizing the constraint on a trigger condition,
behavior differences across different paths and trigger-behavior
relations. Here we present such features, and demonstrate their
differentiating powers using 213 VirusTotal [16] apps confirmed
to contain HSO activities and 213 randomly chosen Google-
Play apps considered to be legitimate. The Virustotal apps were
those matching the signatures of known Android malware,e.g.,
Android.HeHe [5], RCSAndroid [22] and those reported by the
prior studies [35], [48], and the Google-Play apps were cleared
by VirusTotal and double-checked manually.

Trigger condition. The trigger of an HSO is meant to identify
the situation for invoking hidden activities. For almost all the
HSO instances discussed in the literature [5], [22], [45], [4],
[2], such a situation is characterized by some system properties
(e.g., OS or hardware traces of a mobile device) or environment
parameters (time, locations, user inputs, etc.), which are only
exposed to an app through system interfaces. As a result, an
HSO condition is expected to involve, directly or indirectly,
one or more API calls for interacting with the OS. For example,
Android time bombs tend to directly compare the current time
(returned by java.util.Calendar) with a constant [3], which is
often directly embedded within a trigger condition. As another
example, the boolean variable containsAV, as illustrated in
Figure 2, is related to the call getInstalledPackages.

It is important to note that ordinary conditions unrelated to
HSO may also involve system inputs. However, in most cases,
they use local variables only, for example, comparing a loop
variable during each iteration. Interestingly, we found that a
simple binary feature on whether any system input is involved
in a condition, denoted by SI (system input), gives a good
indication for the presence of HSO. As shown in Table I, the
F-score of SI is 0.85 (with precision at 0.812) when identifying

4

Fig. 3: Accessing MAC.

HSO instances over our ground truth dataset. The details for
extracting the feature from the apps’ bytecode is provided in
Section III-C.

Behavior differences. In the case that an HSO condition is not
satisfied, an ”exposed” path, without hidden activities, would
be taken. Intuitively, the app behaviors on this path and those
on the hidden path should be considerably different: as shown
in Figure 2, the hidden path involves a set of sensitive API calls
(getPhoneNumber and getLatitude), while the exposed
path has none. Apparently in this example, a Jaccard distance:
D = 1 − Ol∩Or

Ol∪Or
, where Ol and Or are the sets of sensitive

operations on two paths of a branch statement, describes
different behaviors between hidden and exposed paths. Such
behaviors are specified by the APIs that are considered to have
security and privacy implications, as provided by the Android
official documentation [7] and a few other lists (PScout [26]
and DroidSIFT [52]) and other system properties and Android
settings. Note that the API set we choose is more general
than that adopted in prior research. Also importantly, we place
less restrictions on the relations (e.g., the order between a
data retrieval API and sinks) of different types of APIs, which
makes it more likely to capture unknown HSO activities.

In practice, however, the situation could be more compli-
cated. Figure 3 illustrates a legitimate branch, whose paths in-
volve different sensitive APIs, even though they all perform sim-
ilar operations, that is, querying the MAC address of the device.
Interestingly, the cross path behaviors look not so different if we
focus on different groups of similar APIs and other system prop-
erties: e.g., NetworkInterface and WifiInfo can all be
used to collect network information; other examples include
system or Android properties such as ‘https.proxyHost’
and ‘android_id’, whose content can also be acquired
through the APIs like Proxy.getDefaultHost() and
TelehonyManager.getDeviceId(). To address this is-
sue, we group APIs or system keys based upon the similarity
of their functionalities. Our distance D across different paths is
calculated over the group identities of individual APIs or system
properties, which we call AD (Activity distance). Table III
shows the AD of the branch illustrated in the figure.

Further, even when both paths involve different groups of
APIs, they might still perform similar operations. Figure 4
shows another example: API groups on both paths are quite
different. The path under condition “operatorCode equals 01”
includes SMS APIs, whereas the other path does not. This case
could be flagged as HSO if AD is used alone for detection.
However, it turns out to be completely legitimate: the branch
is actually within a utility app for network providers in Russia,
which gives options to their customers to check her account
balance through SMS or Unstructured Supplementary Service
Data (USSD). Identifying such a subtle relation across paths
is clearly nontrivial. However, in our research, we observed
that the presence of shared variables and constants across the

Fig. 4: Checking account balances.

paths often indicates the existence of such a relation. In the
above example, content like the key of shared preference shows
up across the paths, for the purpose of updating the value of
account balance. Intuitively a legitimate branch is more likely
to have data dependency across its paths than an HSO branch.
Based upon this observation, we utilize another feature in
our research, called DD (data distance), to complement AD.
Specifically, DD = 1− 1

2 (
Vl∩Vr

Vl∪Vr
+ Fl∩Fr

Fl∩Fr
), where Vl and Vr

are the sets of variables (excluding those locally defined on
current path), and Fl and Fr are the sets of referenced class
fields on two paths of a branch statement. Table I shows the
F-scores for both AD and DD over our ground-truth dataset.

Condition-path relation. Further, we observe that for a branch
involving hidden behaviors, the link between its condition and
the operations along its paths is often remarkably thin. Indeed
the former sits right on the control flow of the latter. Except for
this relation, however, a trigger typically does not propagate
any data flow to its paths or share other resources with the
operations there. Fundamentally, while an HSO condition is
meant to determine the right situation for running its hidden
code, the code itself is not meant to process any inputs provided
by the condition. For example, when an HSO app reads from a
register to find out whether it is running inside an emulator, the
code for stealing private user data, as invoked by the condition,
is not supposed to take the OS fingerprints as its input. To
leverage this property, we come up with two unique features,
as elaborated below.

Specifically, we attempt to find out whether any operation
or variable on paths has data dependency with any variable
within the condition. This is done through a define-use
analysis performed on every single variable on each path (see
Section III-C for details). Also analyzed in our research are
implicit condition-path relations: we recover system-related
object instances from variables on each path, in order to check
whether these resource objects (e.g., LocationManager)
are also related to the variables, APIs or system keys (e.g.,
‘location_providers_allowed’) within the condition.
For example, an implicit relation can be a check on the
key location_providers_allowed within the condi-
tion (whether location information can be accessed), and an
access to LocationManager in the path (use of the location
data). Some of the relations can be found through program
analysis, in the case of shared object instances (e.g., check
the state of default SIM card by getSimState() with a
TelephonyManager instance and get phone number by
getLine1Number() of the same instance in the path). In
other cases, we need domain knowledge to determine whether
a key relates to an API or whether two APIs are related. In
our research, we collected such relations from legitimate apps,
using the most pervasive API-API or key-API pairs observed
from their branches. The details are presented in Section III-C.

Features describing such trigger-behavior relations include
DF (data dependency), which is the ratio of the variables on

5

a path connected to the condition through data flows, and IR
(implicit relation), which is the number of variables, keys and
APIs implicitly related to the condition. The F-scores for both
features, as measured on our ground-truth set, are illustrated
in Table I.

TABLE I: F-score of features

SI AD DD DF 2 IR2

HSO 0.85 0.579 0.67 0.766 0.774
1 F-score is calculated based on classification with

each single feature.
2 Each of DF and IR is related with two paths.

C. Detection
All the features are chosen based not only upon their

differentiating powers but also upon their relative convenience
of collection from an app’s code. Following we explicate how
to run lightweight, localized program analyses to recover these
features and how to use them to detect HSO activities.

Pre-processing. Given an app, the preprocessor first runs
Apktool [6] to unpack it and extracts bytecode from its apk file.
Then, our analysis tool, built on top of Soot [15], looks for entry
points of different packages, including lifecycle callbacks (e.g.,
onCreate), user interactive callbacks (e.g., onClick) and
broadcast receiver callback (i.e., onReceive), as prior studies
do [41], [52]. From each of the entry points, HSOMINER
explore all reachable code to create a control-flow graph (CFG),
which we call global subgraph with regard to the entry or
simply global subgraph. To improve the performance of this
analysis, we use a technique to automatically identify the
packages analyzed before [49], based upon a set of features
(e.g., call frequency of a set of Android APIs, total number
of API calls, and other statistical features in meta-data) that
fingerprint them. For those packages, which almost always are
shared libraries, our approach skips their entry points, without
building their global subgraphs.

A global subgraph models the Android Activity/Service
life-cycles and handles inter-component communications (ICC)
and asynchronous tasks: ICC is analyzed using Epicc, an
open-source ICC mapping system [44], in our implementation
and asynchronous classes within the Android framework are
described using the calling convention table provided by
DroidSIFT [52]. Our approach also supports a context-sensitive,
flow-sensitive and inter-procedural backward data-flow analysis
on selected variables to construct their data-dependency graphs
(DDG). This technique serves the purpose of discovering the
origins of selected variables within the conditions leading
to sensitive APIs (Section III-B), which is important to the
missions such as establishment of the link between a branch
condition and system inputs.

Over each subgraph, HSOMINER first locates all basic
blocks (a block of statements not involving any branch)
containing sensitive activities, which are represented by a broad
set of APIs as defined by the Android documentation [7].
Note that unlike other prior work with description of an app’s
behaviors, here we intend to adopt a much more general list,
with almost all prominent APIs onboard except for those of
fundamental classes in Java/Android (e.g., java.lang.*),
utility classes (e.g., android.util.Log) and other classes
related to data format (e.g., JSONObject), since they can

hardly be linked to any damaging operations. Once such a
sensitive block is discovered, the preprocessor goes backward
over the CFG to find all the branch statements (e.g., if-then,
switch-case, etc.) predicate the block. Once found, the scope of
such a branch is determined on the subgraph through exploring
different paths of the branch until the program location where
the paths converge. Further, a backward data-flow analysis
is performed for each branch, generating the DDG for the
variables its condition carries. The DDG and the scope of the
branch forms a new graph, called condition-path graph (CPG),
which is used for the follow-up feature extraction. An example
CPG is shown in Figure 5. As we can see from the figure, like
the subgraph, the CPG is inter-procedural, fully preserving the
information for a precise branch analysis.

Feature extraction. Over the CPG, the feature extractor
automatically identifies the branch features for HSO finding,
as elaborated below.

• SI. As mentioned in Section III-B, SI is used to determine
whether a branch condition is related to system inputs, which is
more pervasive among trigger conditions than innocent condi-
tional branches (those not involving any HSO). To extract this
feature from a given branch, HSOMINER inspects all variables
in the branch condition to find out whether they are affected (via
accessibility analysis on backward DDG) by any APIs that re-
ceive inputs either from system resources (such as geo-locations,
IMEI, etc.) or from user interfaces. Examples of such APIs in-
clude <Date getTime()>, <Locale getCountry()>
and <Settings$Secure getInt(· · ·)>. In our research,
the list of such APIs are obtained using SuSi [25], which
automatically classifies Android API into sources and sinks.
Our implementation includes the sources identified by SuSi
as system inputs, with 18,076 APIs for Android 4.2.3 Note
that system inputs not always come from APIs. Actually
an app can directly read from system properties such as
android.os.Build and receive data from Intents or other
system events. Therefore, we also add these properties and
events to the list (so a condition related to these properties and
events is considered to receive system inputs).

Given the list of system inputs, our feature extractor
automatically traverses the CPG of a branch to look for the
presence of the inputs on the DDGs of the branch’s conditional
variables. The SI for the branch linked to any of such inputs
is set to one. Otherwise, it becomes zero. It is important to
note that this constraint on the condition (relation with system
inputs) is much looser than that of Triggerscope [34], which
utilizes specific constraints like whether the current time is
after ‘2016-12-22’. In this way, we expect the feature, together
with others, can help find unknown types of HSO.

• AD and DD. AD and DD are used to measure the behavior
difference between two paths of the same branch. As mentioned
earlier, our study shows that paths associated with a true
HSO tend to act differently than those attached to a normal
branch (Section III-B) due to the fact that the hidden activities
(such as accessing location data, sending SMS and modifying
system settings) are clearly dissimilar to, and often completely
independent of those exposed. To extract AD, our approach
simply goes through the paths attached to a branch on its CPG
to identify all the sensitive APIs and the operations involving

3Note that the set of Android APIs is relatively stable.

6

Fig. 5: The condition-path graph (CPG) of a branch.

sensitive system properties (Section III-B) along the paths, maps
them to their corresponding behavior groups before calculating
the Jaccard distance between these two sets of behavior groups
(on two paths respectively).

To discover the data dependency between paths, a generic
approach is to backtrack the data flow for each variable on a
path to find out whether indeed it is related to some variable(s)
on the other path: that is, they are all traced back to the same
assignment or definition statement or all referring to the same
object. This analysis is clearly heavyweight and does not seem
to be necessary: for all the legitimate branches with such
relations found in our study, we observed that related variables
are all associated with a common statement (assignment or
definition) within the CPG of the branch or an object passed to
the method hosting the branch through an inter-procedural call.
Therefore, we can establish the data dependecies between the
variables across paths by simply analyzing their data flows over
the CPG of the branch and the current method. This enables us
to conveniently calculate DD, as described in Section III-B.

• DF and IR. Like other features, both DF and IR, which
describe the explicit data-flow and implicit relations between a
branch condition and its path, are also extracted from a branch’s
CPG. Specifically, DF measures how variables on paths are
affected by the condition through data flows. This feature is
extracted from a branch through a define-use analysis: that is,
whether any variable used on a path has actually been defined
at the condition. Here “define” means that the variable is the
target of the operation performed by either a definition or an
assignment statement (that is, where the variable gets a new
value). Given a set of variables on a path, v1, · · · , vn, our
approach simply inspects each variable on the CPG to find out
whether it has been defined in the condition. DF is calculated
as k

n , with k being the number of those related to the condition.
Also as mentioned in Section III-B, a branch condition

can be linked to a path implicitly, through shared
resources, particularly, common object instances (e.g.,
java.net.Socket, whose isConnected() property is
checked in the condition and getInputStream() method
is used in the path), related APIs (e.g., <Environment
getExternalStorageState()> and <OutputStream
write(· · ·)>), related system key-API pairs (e.g.
“ACCESS_FINE_LOCATION” and <LocationManager
requestLocationUpdates(· · ·)>). In our research, we
systematically collected a set of such related resources through
inspecting 11,463 branches within 1500 popular legitimate

apps and picked up top 50 pervasive API-API and key-API
pairs from the branches (see Table II for the examples). During
its operation, HSOMINER automatically inspect the CPG of
a branch, looking for the variables associated with the same
resource object and related APIs or key-API pairs between the
condition and the paths. A path’s IR is then calculated as the
number of its related APIs, variables and keys.

It is important to note that all these features, SI , AD,
DD, DF and IR, are identified through a localized analysis,
which focuses on a branch’s CPG. In this way, we make feature
extraction lightweight, which is critical for achieving scalability
for an HSO analysis.

Classification. As illustrated in Table I, those lightweight
features do contribute to the detection of HSO activities
individually. However, such a contribution is limited, coming
with significant false positives and negatives: the precisions of
these features range from 56.4% to 84.6% and their coverage
from 51.4% to 84.3%. Clearly none of them is perfect and none
of them can work alone. This is mainly caused by the generality
preserved by these features, which is important for finding
unknown HSO: for example, instead of precisely specifying
how a trigger condition should look like (e.g., a time variable
compared with a constant [34]), we only expect the condition
to involve system inputs. The key idea of HSOMINER is to use
these imperfect yet lightweight features collectively to enhance
their effectiveness in finding hidden activities. For this purpose,
we resort to machine learning techniques, using a classification
model to predict whether a branch is indeed an HSO. Our
study shows that this approach significantly elevates the quality
of HSO detection, raising precision to 98% and coverage to
94.4% (Section III-D).

Specifically, we construct a feature vector v =
(SI,AD,DD,DFl, DFr, IRl, IRr), where l and r represent
the left and right paths of a branch, respectively. For simplicity,
the vector here only describes the branch with two paths. When
it comes to those involving multiple paths, we can use AD
and DD to represent the largest distance across all pairs of
paths, and add DF and IR for each path to v. Table III shows
a few examples of the feature vectors, including a time bomb
that triggers hidden behaviors on a certain day (the trigger
continuously checks the current date using a calendar), a benign
instance that checks INTERNET permission before initiating
network procedure, and two other instances (accessing MAC
and checking account balance) described in Section III-B.

7

TABLE II: Examples of APIs and key/API pairs used in IR

Item in condition Item in path
〈android.location.LocationManager: isProviderEnabled(· · ·)〉 〈android.location.LocationManager: requestLocationUpdates(· · ·)〉
〈android.webkit.WebViewClient: 〈init〉()〉 〈android.webkit.WebView: loadUrl(· · ·)〉
〈android.net.NetworkInfo: getState()〉 〈android.net.ConnectivityManager: getNetworkInfo(· · ·)〉
〈android.os.Environment: getExternalStorageState()〉 〈java.io.File: mkdir()〉
‘location providers allowed’ 〈android.location.LocationManager: getLastKnownLocation(· · ·)〉
‘PACKAGE CHANGED’ 〈android.content.pm.PackageManager: java.util.List getInstalledPackages(· · ·)〉
‘GET ACCOUNTS’ 〈android.accounts.AccountManager: getAccountsByType(· · ·)〉

Using the vector, a classification model is then trained over
a ground-truth dataset. The dataset in our research includes
confirmed HSO apps like Android.HeHe [5] and legitimate ones
(Section III-D). The machine learning algorithm implemented
in HSOMINER is support vector machine (SVM), which was
chosen in our research due to its over-fitting resistant feature.
Like other learning-based approach, we trained and then
evaluated the SVM model using cross-validation, before running
it against 330K real-world apps. Section III-D provides the
details of this study.

TABLE III: Feature vector for HSOMINER

SI AD DD DFl IRl DFr IRr

time bomb (Calendar) True 1.0 1.0 0.0 0 0.0 0
permission check False 1.0 1.0 0.31 2 0.0 1
access MAC True 0.0 1.0 0.0 0 0.0 0
account balance True 1.0 0.5 0.0 1 0.0 0

D. Evaluation
In this section, we report our evaluation of HSOMINER,

in terms of its capability to identify HSO activities and its
performance.

Settings. Our implementation was evaluated over a labeled
bad set, a labeled good set and an unknown set. To avoid
overfitting caused by unbalanced data, we made the good set
and bad set of same size. The bad set contains confirmed 213
PHAs, each with one HSO branch. The good set involves 213
Google-Play apps that have never been flagged by any Anti-
Virus (AV) service hosted on VirusTotal [16]. To overcome the
potential overfitting caused by small training set and make our
classifier more generic, we did two rounds of retraining by using
manually confirmed classified samples as training samples. The
unknown set has 338,354 apps, with 124,207 of them collected
from Google Play, and the rest 214,147 randomly downloaded
from VirusTotal. The details of our data sources are described
in Table IV. Note here that although a large number of apps
were flagged by at least one VirusTotal scanner, many of them
can actually be innocent, due to the false positives introduced
by these 57 scanners, which are particularly sensitive to the
apps with rich functionalities such as collection of location
information. Also many apps hosted by VirusTotal are also
legitimate.

TABLE IV: Details of the unknown set
(with the number of the apps flagged by
at least one VirusTotal scanner)

Not flagged flagged Total
Google Play 52,319 71,888 124,207
VirusTotal 47,937 166,210 214,147

Total 100,256 238,098 338,354

For the performance evaluation, we randomly selected 3000
popular apps from Google Play, with their sizes ranging from
36KB to 90MB. Further, 35 relatively small apps used by the
prior research [34] were also tested, to give us some idea about
how our system performs compared with the prior one. These
experiments were conducted on a Dell desktop with 3.3GHz
Intel Core i5 processor and 16GB RAM. The timeout of the
analysis was set to 60 minutes, in line with the prior study [51].

Effectiveness. To understand the effectiveness of HSOMINER,
we first trained the classifier over the labeled sets, using a
polynomial-kernel based SVM. Our 4-fold cross validation
shows that HSOMINER achieved a precision of 98% for HSO
detection and a recall of 94.4%. The detailed results are
presented in Table V.

TABLE V: Detailed accuracy of SVM
classifier

Precision Recall F-score
HSO 0.98 0.944 0.962
Non-HSO 0.946 0.981 0.963
Weighted Avg. 0.963 0.962 0.962

We then ran the trained model to predict unknown instances
across all 338,354 apps. Altogether, 63,372 apps with 70,660
branches were flagged as suspicious HSO. Among them, we
randomly sampled 125 apps (with one flagged branch each) for
a manual validation. All except two instances were considered
to be true positives, with a precision of 98.4%, in line with
what we found from the labeled set. In the two likely false
positives, the apps first attempt to retrieve Device ID and if
unsuccessful, try to read the current device’s MAC address. We
did not see concrete evidence that the apps intend to hide such
activities through some narrow trigger conditions. Nor did we
observe that sensitive user data was leaked. As a result, we did
not count them as true positives. In all other cases, clearly we
found HSO behaviors such as triggering hidden activities based
upon time, UI inputs, environment types (emulator or not), etc.
Table VI presents the types of trigger conditions discovered
from these instances. Top on the list are “Time”, “Device Info”
and “System Event”. Our approach also revealed some less
known triggers such as “progress bar”, “account manager”, as
well as unique hidden behaviors, like broadcast relay
and system version inference. Details of our findings
from the unknown set are presented in Section IV.

Performance. To understand the performance of HSOMINER,
we ran our prototype on 3000 randomly-selected apps from
Google Play, with an average size of 8.43 MB. On average,
HSOMINER spent 765.3s on each app (except 8.4% apps
that were partially analyzed before timing out). Further, we
attempted to compare our approach with TriggerScope [34],
a logic-bomb detector. Without access to its code, the only

8

TABLE VI: Trigger condition of detected HSO

Cases Count
System Event screen on, boot completed 19
Time calendar, current time, date 43
Device Info device id, build info 41
Device Settings system settings 6
Location/Environment latitude, country, network operator 8
UI key repeat count, progress bar 2
Miscellaneous uid, account manager 4

Fig. 6: Distribution of apps by number of AV scanners.

thing we could do is to test HSOMINER on the apps also
used to evaluate TriggerScope. Altogether, we got 35 of such
apps, whose sizes range from 14KB to 461KB. All other apps
apparently are too obsolete to be found online. With the analysis
timeout set to 60 minutes, HSOMINER successfully processed
each of these apps within 42 seconds on average, with 255
seconds in the worst case and less than 60 seconds for 79.2%
of the apps. Note that the prior research reports an average
performance of 219.21 seconds per app, around 5.2 times slower
compared with our approach, though this comparison may not
be entirely fair, due to the lack of the code of Triggerscope and
uncertainty about its evaluation environment. At the very least,
the study does show that HSOMINER indeed works efficiently.

IV. MEASUREMENT AND DISCOVERIES

The efficiency of HSOMINER enables us to study HSO
on a scale that has never been achieved before. Through a
systematic analysis of over 330K apps, including popular apps
from Google Play, our research reveals the pervasiveness of the
HSO activities, which were found in 18.7% of the apps, and
the diversity of triggers (based on patterns of UI events, states
of system servers, etc.) and hidden activities (dynamic code
loading, video recording, etc.). Also importantly, HSOMINER
discovered new HSO activities never reported before. Examples
include user data collection happens only after 10 ms of video
playing and sensitive activities invoked only when a specific
area on the screen is clicked upon. Further our study sheds
light on how HSO activities evolve and HSO techniques are
disseminated. Following we elaborate these findings.

A. Landscape
Our measurement study was conducted on a total of 338,354

Android apps, of which 214,147 were randomly selected from
those cached by VirusTotal and 124,207 from Google Play.
Duplicate apps were removed according to their SHA256.
Distribution of the apps’ release time shows that: although
there are apps published years ago, most (about 70.9%) of
them are new and submitted after 2015. Further we illustrate
how those cached by VirusTotal were selected in Figure 6. The
apps downloaded from there were randomly selected across the

Fig. 7: How HSO instances are distributed across apps. Here
“Degree of HSO instance” means the number of apps affected
by one HSO instance. As we can see, a large proportion of HSO
instances are used only once (see solid line); However, many
apps include shared libraries with HSO activities (indicated by
dotted line).

number of Anti-Virus (AV) scanners that flag them (with about
a third of them considered to be legitimate). On average, the
size of these apps is 5.98 MB and among all 2,245,235 packages
extracted from them, 94.2% were successfully processed by
HSOMINER without causing any time-out.

Pervasiveness. From the 338,354 apps, HSOMINER reported
that 63,372 of them (18.7%) contain HSO branches. For most of
these apps, however, their hidden behaviors come from shared
libraries. Altogether, we found 3,491 unique HSO instances
from these apps. The distribution of these instances across all
flagged apps is illustrated in Figure 7. Specifically, 60.9% of
these instances are present in no more than two apps (thus
apparently unrelated to libraries), while remaining 39.1% are
inside the libraries extensively shared by tens to thousands
of apps. Also note that 12.6% of VirusTotal apps contain
such non-library HSO branches while only 8.0% of Google
Play apps contain this kind of branches. As an example, a
time bomb within the library com.baidu.kirin was shared by
9,710 apps; the HSO involves accessing device information
and initiating a network updating procedure only during a time
interval specified by the constant kirin_open_period.

Further we show in Figure 8 the distribution of these HSO
apps across different countries (recovered from the “C(country)”
attribute of developer certificate). As we can see from the
figure, which includes the 15 countries hosting most HSO apps,
Russia, Israel and China are top on the list. Also interestingly,
apparently there is a correlation between the number of HSO
instances in a country and the Cost Per Install (CPI) there.
Using the CPI data provided by AppBrain [8], we found that
the higher the CPI, less likely an app is involved in HSO
activities.

HSO and PHA. Also we found that HSO indeed relates
to potentially harmful apps. Figure 9 shows a comparison
between the ratios of the non-HSO apps (those not reported
by HSOMINER) flagged by VirusTotal and the HSO apps. Our
study shows that 69.71% of the former were detected by at least
one AV scanner while 93.08% of the latter triggered alarm. The
gap between these two sets of apps becomes even wider when
we set the threshold of alarm to at least 9 scanners. In this
case, 59.01% of the non-HSO apps were reported and 88.22%
of the HSO ones found to be PHAs. This finding shows that
HSO can serve as an indicator for detecting PHAs.

9

com.baidu.kirin

Fig. 8: Geographic distribution of HSO apps. Note here CPI is normalized and data for China is not available.

Fig. 9: VirusTotal result of Non-HSO and HSO apps

Triggers. We summarize the HSO trigger conditions observed
from detected apps into 7 categories, as illustrated in Figure 10,
including time, location, device information, device setting,
user interface, system event and system services. Specifically,
sensitive behaviors are invoked at a certain time, within a
certain longitude and latitude range, or when the device is
served by a certain network operator. Also, device specific
information is found to be extensively used to detect emulators:
for example, the presence of the device ID “9774d56d682e549c”
may indicate that the app is being analyzed by Bouncer [43].
Further we observed that the setting of a mobile device is used
to monitor the state of the device and determine the situation
for running sensitive code. Examples include packers that stop
decrypting executables or loading hidden code from resource
files if isDebuggerConnected is True, and PHAs that
install/uninstall apps silently when adb_enabled is set.

In addition to the aforementioned triggers, which have more
or less been mentioned by the prior research [34], [51], [30].
Our approach also identified a set of conditions never reported
before. Particularly, UI widgets were found to guard sensitive
operations in clever ways. System events like reboot or date
change are also leveraged to activate hidden behaviors. Even
Android system services are used to trigger HSO operations:
for example, when the telegram account becomes available
in AccountManager, a PHA steals device owner’s privacy
like phone number, network operator and locale. Of particular
interest is the finding that multiple trigger conditions are
combined together to cover HSO activities. As an example, the

Fig. 10: Categories of HSO trigger conditions.

package com.feicong sends SMS in background only when it
receives a SMS on a certain day.

Among all the trigger conditions discovered, more conven-
tional ones like time, location, device information dominate the
pack (with nearly 3,253 out of 3,491 instances). The remaining
236 instances, however, demonstrate that sensitive activities
could be hidden and invoked in more surprising ways. The
details of these cases are presented in Section IV-B.

Hidden behaviors. Further we looked into the HSO behaviors
hidden by the triggers. Table VII presents the 10 categories
of activities discovered in our study. As we see from the
table, network operations are among the most prevalent ones,
showing up in nearly 70% of all the HSO instances studied
in our research. Other common activities include accessing
device information (e.g., phone number) (15.27%), sending
SMS (12.32%) and reading location data (7.02%), which
are all considered security-sensitive. In addition, HSOMINER
identified a dozen of apps that dynamically load code, modify
system settings, record audio/video, take pictures and access
user accounts once triggered. These behaviors, obviously, are
potentially harmful to the device users.

B. Understanding HSO
In this section, we focus on the most interesting findings

made in our research, including new types of HSO, evolution
of such hidden behaviors and the channels that propagate HSO
techniques across app developers.

10

com.feicong

TABLE VII: Hidden behaviors of HSO.

behavior category number of related HSO percentage
get network state 1708 48.93%
access network 709 20.31%

access device info 533 15.27%
SMS 430 12.32%

read location data 245 7.01%
dynamic loading 10 0.29%

modify system setting 22 0.63%
record audio/video 5 0.14%

access accounts 12 0.34%
take pictures 17 0.49%

New HSO. As mentioned in Section IV-A, not only has
HSOMINER brought to light the pervasiveness of known HSO
triggers, like time and location, but it also revealed several types
of less known triggering conditions, including UIs, system
events and system services. Specifically, we found 51 apps
whose sensitive behaviors can only be invoked by some unique
UI events. Some of these HSO are surprisingly complicated,
leveraging the states of various UI widgets. For instance,
the hidden behaviors of the package com.jackeey cannot be
triggered by simply clicking on its widget. Instead, the HSO
condition needs to be satisfied by the right distance and velocity
of a fling event: network operations are activated only when the
velocity of the wipe on the screen goes above 20.0 in pixels.
As another example, the package com.FREE APPS 237 does
not exhibit any sensitive behaviors before a predefined area
of a specific view is clicked. All such HSO can easily evade
a dynamic analysis, even the one using the state-of-the-art
UI automation tools [13], [42]. Also found in our study are
the combinations of multiple more conventional triggers. For
example, the HSO within jp.co.benesse.maitama can only be
activated by clicking a view before a given date. Other intriguing
cases include hiding behaviours in an app’s progress bars or
video views, which we elaborate in Section IV-C.

We also discovered that Android system services are utilized
in HSO activities. Such system services (also known as system
servers) include a large number of interfaces for device users
to access and manage system configurations. For example,
AccountManager serves as a centralized registry for manag-
ing the user’s accounts. In our research, HSOMINER detected
20 apps that leverage these services to cover their sensitive
operations. As a prominent example, an app with a package
com.nrs first checks whether org.telegram.account
exists in AccountManager and if so, it moves on to disable
the Wi-Fi state of the current device and updating user’s
information (like IMEI, mobile country code) to a server
though mobile data connection. Another example involves
DeviceManager: when the service is not activated for the
current user, the app package com.example.comandroid does
not exhibit any suspicious behaviors (just displaying its main
activity); however, once the service is launched, the app
immediately hides itself by disabling its main activity and starts
a service to steal incoming SMS messages in background.

Evolution. Our study also reveals the trend of HSO activities.
Specifically, we collected meta-data from each app’s APK
files, including its ZipModifyDate (when the file has
been changed) and certificate information, and analyzed the
popularity of such techniques over time. Figure 11 shows the
evolution of HSO apps from 2008 to 2016, based upon the
timestamps of their hosting apps. We found that the percentage

Fig. 11: Evolution of HSO.

of the apps including HSO goes up most of the time. The
finding indicates that HSO is gaining popularity in recent years
and becomes increasingly prominent in countering program
analysis.

Further, we identified variants of packages within apps based
upon their common package names. From these packages, we
found that 355 of them actually include HSO versions. For
example, the package net.daum.adam within an app stamped
2014-05-13 has not been found to have any HSO behaviors,
while the variant of the same package within a different app
with a time stamp of 2015-06-26 uses multiple factors (e.g.,
device ID, Build model, build platform) to determine whether
it is running inside an emulator, and when it is not, the package
uploads user information and request an advertisement from
the server.

Propagation. Our study also provides new clues about how
HSO techniques are spread. We found that HSO instances are
apparently disseminated through online forums. As an example,
the package com.feicong, which was designed to hide its
behaviors from 360 Security [1], was posted online (i.e., pudn)
and later showed up within four apps in our samples. Interesting,
these apps were first scanned by VirusTotal in June, 2015 though
it was released as early as October, 2012. Another observation
is that some new HSO techniques proposed in academia
are quickly adopted by app developers. For example, some
anti-emulator/taint/monkey techniques published on HITCON
2013 [10] were discovered in a library com.uc108, which was
further integrated into 6 apps in our samples, all in year 2014.

C. Case Study
Here we elaborate a few real-world HSO cases found in

our study.

Video trigger. Figure 12 shows an app discovered in our
study that utilizes VideoView in its HSO trigger condition.
Specifically, the app monitors the status of video playing
through getCurrentPosition: if the video has been
played for 100 ms, it starts collecting device ID and location
data. While 100 ms is a very short time frame, the trick
turns out to be quite effective against UI exploration tools
like monkeyrunner, since such tools typically do not wait
until the video is fully loaded to generate another user event.
Our study found that similar techniques are used in 27 HSO
instances in our dataset.

Trapdoor on view. The UI of a normal app is designed in
a way that specific functionality is associated with a single
widget/subview. However, we observed that some HSO apps
hide their operations behind a specific region on a view. For

11

com.jackeey
com.FREE_APPS_237
jp.co.benesse.maitama
com.nrs
com.example.comandroid
net.daum.adam
com.feicong
com.uc108

Fig. 12: Video trigger.

Fig. 13: Trapdoor on view.

the app shown in Figure 13, each time when its view is clicked
upon, the app checks whether the coordinates of the touch lie
within a rectangle at the middle of the view with a height of
50 pixels and the width half of the whole view; only when
this “trapdoor” is hit, will the app invoke its hidden activities,
including sending SMS. Although it is not entirely clear whether
these apps are actually malicious, this trick indeed makes it
harder for the UI automation tools to trigger sensitive HSO
operations.

Click interval. Another UI-based trigger technique found in
our study is for detecting the presence of a human user. The
approach leverages the observation that these automatic tools are
designed to aggressively explore user interfaces, while a human
always has a delay between her consecutive interactions with the
app. Therefore, the app (com.unjiaoyou.mm) monitors the time
interval between two clicks, as illustrated in Figure 14, under
the function unFastDoubleClick(): it starts collecting
user information (phone number, serial number of SIM card
and IMSI) when the interval is greater than 0.5 seconds and
simply exits OnClickListener otherwise.

Platform-specific attribute. Most known HSO techniques for
detecting emulators rely on device ID or Build information.
However, HSOMINER found a new approach that differentiates
mobile and desktop systems from an executable’s platform-
specific content. Specifically, an app playing this trick reads
from /system/bin/linker to inspect its e_machine
field (which is 19th and 20th byte) in the ELF format. This
field is 0 for ARM and 3 for X86, which discloses whether the
system is running on a real mobile device or in an emulator.
Also discovered in the app is a class that reads memory map to

Fig. 14: Click interval.

determine the existence of /system/bin/linker64. These
conditions (whether running on emulator or current system is
64bit) serve as a trigger for hidden behaviors, which includes
unpacking and dynamically loading hidden code.

Broadcast relay. In addition to the novel trigger conditions, we
also observed some interesting hidden behaviors that provide
an additional layer of protection for suspicious activities.
Specifically, we found that an app continuously monitors
phone state change by registering a BroadcastReceiver
receiver1. Interestingly, this receiver further defines another
BroadcastReceiver receiver2, loads its code from
the app’s resource file and invokes it through reflection. Also,
receiver1 did not cause any alarm on VirusTotal while
receiver2 was flagged. This approach could make the
hidden activities even more difficult to detect.

Version inference. Our study also shows that the behaviors
under cover could be subtler than they appear to be. As a promi-
nent example, we discovered an app that once its hidden path is
triggered, invokes setMobileDataEnabled, compares the
mobile state (acquired using getMobileDataEnabled) be-
fore and after the invocation, and sends the comparison result to
its server. A close look at the app’s code reveals that this unusual
operation actually serves the purpose of inferring the version
of the current OS: the API setMobileDataEnabled is
available before Android L but no longer supported afterwards;
this can be revealed from whether the attempt to call that API
can go through. Indeed, we found that the app puts the inferred
version ID in the message it sends out. Apparently, it does
not want to directly call Build.Version to get the version
number and instead uses the inference to hide its intention.

V. RELATED WORK

Trigger conditions. Hiding sensitive behaviors with various
trigger conditions has been studied for a decade, starting
from binary executables [29], [27], [40], [39], [28] and more
recently moving onto Android apps. Most prior work is on
detecting virtual machines (or the emulator for Android)
and evading dynamic analysis. As a prominent example,
RCSAndroid [20], a monitoring suite of HackingTeam, detects
emulator by static properties like ‘ro.kernel.qumu’. In
another example [45], the presence of sensors (based upon
the features such as usage of virtual program counter and
cache) are identified to differentiate a real mobile device
from an emulator. Also leveraged as a trigger condition is the
performance difference between platforms [48]. Such heuristics
could even be discovered automatically, as demonstrated by
prior work [35].

12

com.unjiaoyou.mm

In addition to VM or emulator detection, other trigger
conditions leverage time, location and SMS to identify the right
situation on a mobile device for running sensitive code [3], [34].
A more recent study [31] expands the scope of HSO triggers
by proposing to distinguish a human user from an automated
UI exploration tool, so that security-sensitive operations only
happen in the presence of humans.

A problem for these prior studies is that they work on a
relatively small set of apps, a few thousand typically. As a
result, little is known about what are happening in the wild. In
our research, we performed a measurement study over more
than 330K real-world apps and discovered a large number of
HSO instances, including those never reported before, widening
the eyes for the research on the subject. As an example, the UI-
based approach, as proposed recently [31], turns out to already
be in the wild, together with other complicated, surprising
tricks (Section IV) like utilizing the status of video playing.

Detection. Also many new techniques have been proposed to
automatically detect HSO activities, in binary executables or
mobile code [29], [27], [40], [39], [38], [28], [34], [9], [53].

Several studies propose to capture the behavior deviation
from the potentially harmful apps in different environments [29],
[27], [40], [39], [38]. The idea is based upon the observation
that anti-emulator HSOs are very likely to act differently when
running in an analysis environment and when operating on
uninstrumented devices. Since such a behavior comparison
needs to be done using the same execution trace, these
approaches usually record an app’s interactions with the system
in one environment and replay them to the same app in
another. As we can see here, these approaches target on anti-
emulator, while HSOMINER is designed for a more general
purpose, aiming at different kinds of HSO activities. Also these
dynamic analysis based techniques tend to be heavyweight and
less comprehensive. By comparison, our approach uses static
analysis and can therefore be scaled to the level of hundreds
of thousands of apps.

Another line of research focuses on trigger analysis [28],
[34], based on the observation that trigger conditions usually
rely on some unique inputs of interest to the adversary (e.g.,
time, network), and sensitive operations are triggered only
when a narrow requirement is met (e.g., current date equals a
predefined trigger date; mobile device is located in a certain
area). To automatically identify such trigger-based behaviors,
these approaches often leverage techniques like symbolic
execution, dynamic instrumentation and formal verification.
Among them, most relevant to our work is TriggerScope [34],
which aims to detect some types of logic bombs (time-, location-
and SMS-triggered HSOs). Compared to HSOMINER, one
main difference is that TriggerScope is designed to capture
known HSO cases and its expected trigger conditions are
very specific. In contrast, HSOMINER only assumes that a
trigger condition is supposed to receive certain system inputs,
which makes it possible to identify unknown HSO. Another
important difference is that TriggerScope is built on heavy-
weight techniques like symbolic execution, while HSOMINER
utilizes efficient feature extraction, which makes it more suitable
for a large scale analysis.

Also related to our research is AppContext [51], a PHA
detection system based on supervised machine learning. It
leverages the observation that benign and malicious behaviors

could be differentiated from their context, e.g., UI events,
system events and environment property methods. Although
similar to HSOMINER in terms of using learning techniques,
AppContext focuses more on PHA detection than on HSO
behavior discovery.

Defense. In addition to the attempts to detect HSO, effort has
been made to make an HSO technique less effective. As an
example, Ether [32] leverages hardware virtualization exten-
sions to stay transparent to malware. Another technique [36]
dynamically modifies the execution of a whole-system emulator
to mimic a real device in the face of anti-emulation malware.
Similarly in Android, implementations have been proposed
to make emulator transparent through runtime hooking and
Android source modification [21], [24].

VI. DISCUSSION

With its significant step towards understanding and ulti-
mately defeating hidden sensitive operations, the current design
and implementation of HSOMINER are still preliminary, leaving
more to be desired. Here we discuss a few limitations of our
approach and potential future directions.

Accuracy and completeness. HSOMINER is built on top of
existing static analysis techniques, which are known to be less
accurate, particularly when it comes to handling the Android’s
Inter-Component Communications (ICC). It is possible, for
example, that the define-use analysis we employed gives
inaccurate results. Also more likely, some apps are simply too
complicated to be analyzed, as observed in our study. Although
improving the precision and completeness of the underlying
static analysis techniques are out of the scope of this study, it
is important to point out that HSOMINER is designed to be
less dependent on accuracy of individual features. Instead, we
attempt to leverage a collection of attributes extracted from a
program to identify HSO behaviors, even when the individual
attributes are contaminated with a certain level of noise. We
strongly believe that leveraging the collective power of less
accurate yet differentiating program features opens a promising
new direction for a more cost-effective security analysis.

Also, even though the design of HSOMINER is more generic
than existing approaches, which enables it to catch new HSO
instances, it is still based on a set of assumptions that fail to
cover some HSO cases. For example, theoretically, a trigger
condition does not need to involve any system inputs: hidden
behaviors could be activated once an activity has been visited
for a certain number of times. In practice, however, the trick
of this type has never been observed before. Most importantly,
HSOMINER classifies a branch structure based upon a set of
features, which limits the impact of a single feature, and could
still capture the case mentioned above. This needs to be further
investigated in the future research.

Evasion. Just like all existing approaches [51], [34],
HSOMINER could be evaded by carefully designed HSO
techniques. An HSO branch can always be built in a way that
mimics legitimate branches to make our technique less effective.
On the other hand, we argue that the design philosophy of
HSOMINER will make such attacks more difficult to succeed:
the adversary may not be able to bypass our defense by
simply avoiding one or two features; she needs to consider the
identification power from the combination of multiple features

13

to carefully come up with a strategy to cheat our classifier. Even
when the features selected for our implementation become less
differentiating in the presence of a new attack, the framework
of HSOMINER can easily accommodate other features, further
raising the bar to the evasion attempts. Therefore, we have
reason to believe that techniques like HSOMINER can be more
robust than the approach based upon a single feature, like
TriggerScope [34]. In the meantime, future research is certainly
needed to better understand the cost of evasion under our
approach and find new ways to enhance our technique against
such a threat.

Also our current implementation cannot handle the HSO
embedded in the native code. However, our design could be
extended to help identify the hidden behaviors there. Further,
HSO triggers can be deployed on the server side, which cannot
be directly observed by our static analyzer. On the other
hand, such a technique requires the server to send commands
to the app, which will also need to be checked within the
app. This just provides an opportunity for identifying hidden
operations using our technique. Further, the adversary could
obfuscate the code using reflection and other techniques to
undermine the effectiveness of HSOMINER. Such attempts,
however, could be detected by existing techniques [50], [47],
making a PHA less stealthy. UI based HSO activities can also
be hard to capture, due to the challenge in differentiating them
from legitimate UI related operations. The problem could be
addressed through leveraging the semantic relations between UI
text and app behaviors, using AutoCog [46] and existing Natural
Language Processing tools to extract this feature. However, for
the UI related behaviors solely based on callbacks rather than
the traditional branch structure, new techniques need to be
developed to detect them.

Further optimization. As mentioned earlier, HSOMINER is
meant to be efficient, performing only lightweight code analysis
for feature extraction. Our current implementation, however,
still involves some heavyweight techniques. Particularly, build-
ing global subgraph, which requires analyzing ICC, is expensive.
In practice, however, we found that in the most cases, features
identified locally (without ICC mapping) are sufficient for
catching HSO branches. Future research may look into the
potential to extract features from Intent construction and ICC
components for behavior classification, to avoid the expensive
mapping of ICC, and other alternatives to further improve the
scalability of our approach.

VII. CONCLUSION

Hidden sensitive operations (HSO) have long been used
by malware to evade detection. Today, the techniques of
this kind gain new traction in the mobile PHA community.
With the reports about various anti-emulation apps against
the vetting process of app markets [17], [43] and other
HSO strategies, little is known about the pervasiveness of
the threat, their technical trends and impacts, due largely to
the challenges in systematically discovering and analyzing
real-world HSO instances. Although effort has been made to
detect such activities statically, existing techniques are tuned
toward specific trigger conditions or hidden behaviors, and also
pretty heavyweight, rendering them less effective in detecting
previously unknown HSO apps on a large scale.

In this paper, we report an innovative technique that
makes it possible to analyze and discover unknown HSO
instances across a large number of real-world Android apps.
Our approach, HSOMINER, is built upon a set of unique
observations about an HSO condition, its paths and the relations
between them. Particularly, we found that such a condition
tends to involve system inputs, but is less likely to link to its
branch paths through data flows or shared resources. Further
the behaviors between a hidden path and the counterpart
that covers it are often very different. Features summarized
over these observations were found to be easy to extract and
highly effective when used collectively. In our research, we
implemented a prototype system that runs a classifier to detect
HSO instances with these features. It was designed to be general,
well-equipped to catch previously unknown HSO instances.
Our study shows that the new technique achieved over 98%
precision and over 94% coverage. It is also efficient, enabling
us to perform a large measurement study over 330K recent
apps. This study sheds new light on Android HSO activities
in the wild, and reveals the pervasiveness of HSO behaviors
and new techniques deployed by the HSO authors, including
the extensive use of UIs, system events and services as trigger
conditions and surprising hidden behaviors. Our new technique,
together with the new understanding, contributes to the better
protection against this emerging threat to the mobile ecosystem.

ACKNOWLEDGMENT

We thank anonymous reviewers for their insightful com-
ments. This work was supported in part by the National
Science Foundation under grant 1223477, 1223495, 1527141,
1618493, 1664315, U.S. Army Research Office under grant
W911NF1610127, Air Force Research Lab under grant FA8750
-15-2-0106, and DARPA under grant FA8750-16-C-0044. We
would also like to thank VirusTotal for granting us the privilege
for the large scale query and app downloading.

REFERENCES

[1] 360 security. http://www.360securityapps.com/en-us.
[2] Android malware evasion techniques-emulator detection.

http://www.oguzhantopgul.com/2014/12/android-malware-evasion-
techniques.html.

[3] Android malware set for july 4 carries political message.
https://blogs.mcafee.com/consumer/android-malware-set-for-july-
4-carries-political-message/.

[4] Android security: Adding tampering detection to your app.
https://www.airpair.com/android/posts/adding-tampering-detection-to-
your-android-app#4-1-emulator.

[5] Android.hehe: Malware now disconnects phone calls.
https://www.fireeye.com/blog/threat-research/2014/01/android-hehe-
malware-now-disconnects-phone-calls.html.

[6] Apktool-a tool for reverse engineering android apk files. https:
//ibotpeaches.github.io/Apktool/.

[7] Application security. https://source.android.com/security/overview/app-
security.html.

[8] Average cpi per country. http://www.appbrain.com/stats/android-cpi-per-
country.

[9] Detecting malware and sandbox evasion techniques.
https://www.sans.org/reading-room/whitepapers/forensics/detecting-
malware-sandbox-evasion-techniques-36667.

[10] Dex education 201: Anti-emulators. http://hitcon.org/2013/download/
Tim%20Strazzere%20-%20DexEducation.pdf.

[11] Fireeye multi-vector virtual execution (mvx) engine. http://www.
threatprotectworks.com/MVX-engine.asp.

14

http://www.360securityapps.com/en-us
http://www.oguzhantopgul.com/2014/12/android-malware-evasion-techniques.html
http://www.oguzhantopgul.com/2014/12/android-malware-evasion-techniques.html
https://blogs.mcafee.com/consumer/android-malware-set-for-july-4-carries-political-message/
https://blogs.mcafee.com/consumer/android-malware-set-for-july-4-carries-political-message/
https://www.airpair.com/android/posts/adding-tampering-detection-to-your-android-app#4-1-emulator
https://www.airpair.com/android/posts/adding-tampering-detection-to-your-android-app#4-1-emulator
https://www.fireeye.com/blog/threat-research/2014/01/android-hehe-malware-now-disconnects-phone-calls.html
https://www.fireeye.com/blog/threat-research/2014/01/android-hehe-malware-now-disconnects-phone-calls.html
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://source.android.com/security/overview/app-security.html
https://source.android.com/security/overview/app-security.html
http://www.appbrain.com/stats/android-cpi-per-country
http://www.appbrain.com/stats/android-cpi-per-country
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667
http://hitcon.org/2013/download/Tim%20Strazzere%20-%20DexEducation.pdf
http://hitcon.org/2013/download/Tim%20Strazzere%20-%20DexEducation.pdf
http://www.threatprotectworks.com/MVX-engine.asp
http://www.threatprotectworks.com/MVX-engine.asp

[12] Mobile threat report-mcafee. http://www.mcafee.com/us/resources/
reports/rp-mobile-threat-report-2016.pdf.

[13] monkeyrunner. https://developer.android.com/studio/test/monkeyrunner/
index.html.

[14] Programmers united develop net. http://en.pudn.com.
[15] Soot, a framework for analyzing and transforming java and android

applications. https://sable.github.io/soot/.
[16] Virustotal-free online virus, malware and url scanner. https://www.

virustotal.com.
[17] Blackhat usa 2012 - adventures in bouncer land. http://www.securitytube.

net/video/8880, November 2013.
[18] Virtual machines and how malware authors know when they are being

watched. https://securityintelligence.com/virtual-machines-malware-
authors-being-watched/, October 2013.

[19] Does malware still detect virtual machines? http://www.symantec.com/
connect/blogs/does-malware-still-detect-virtual-machines, August 2014.

[20] Hacking team rcs android source code. https://github.com/hackedteam/
core-android/blob/master/RCSAndroid/src/com/android/dvci/Core.java,
December 2014.

[21] Mindmac/hideandroidemulator. https://github.com/MindMac/
HideAndroidEmulator, October 2014.

[22] Hacking team rcsandroid spying tool listens to calls; roots devices to get
in. http://blog.trendmicro.com/trendlabs-security-intelligence/hacking-
team-rcsandroid-spying-tool-listens-to-calls-roots-devices-to-get-in/,
July 2015.

[23] The google android security team’s classifications for potentially
harmful applications. https://static.googleusercontent.com/media/source.
android.com/en//security/reports/Google Android Security PHA
classifications.pdf, April 2016.

[24] Xposed module repository. http://repo.xposed.info/, August 2016.
[25] S. Arzt, S. Rasthofer, and E. Bodden. Susi: A tool for the fully automated

classification and categorization of android sources and sinks. University
of Darmstadt, Tech. Rep. TUDCS-2013-0114, 2013.

[26] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing
the android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 217–228.
ACM, 2012.

[27] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and G. Vigna.
Efficient detection of split personalities in malware. In NDSS. Citeseer,
2010.

[28] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin.
Automatically identifying trigger-based behavior in malware. In Botnet
Detection, pages 65–88. Springer, 2008.

[29] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware. In 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN), pages 177–186.
IEEE, 2008.

[30] J. R. Crandall, G. Wassermann, D. A. de Oliveira, Z. Su, S. F. Wu, and
F. T. Chong. Temporal search: Detecting hidden malware timebombs
with virtual machines. In ACM Sigplan Notices, volume 41, pages 25–36.
ACM, 2006.

[31] W. Diao, X. Liu, Z. Li, and K. Zhang. Evading android runtime analysis
through detecting programmed interactions. In Proceedings of the 9th
ACM Conference on Security & Privacy in Wireless and Mobile Networks
(WiSec), 2016.

[32] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware analysis
via hardware virtualization extensions. In Proceedings of the 15th ACM
conference on Computer and communications security, pages 51–62.
ACM, 2008.

[33] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based
detection of android malware through static analysis. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 576–587. ACM, 2014.

[34] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna. Triggerscope: Towards detecting logic bombs in android
applications. 2016.

[35] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu. Morpheus: automatically
generating heuristics to detect android emulators. In Proceedings of the

30th Annual Computer Security Applications Conference, pages 216–225.
ACM, 2014.

[36] M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D. Song. Emulating
emulation-resistant malware. In Proceedings of the 1st ACM workshop
on Virtual machine security, pages 11–22. ACM, 2009.

[37] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna.
Revolver: An automated approach to the detection of evasive web-based
malware. In Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13), pages 637–652, 2013.

[38] D. Kirat and G. Vigna. Malgene: Automatic extraction of malware
analysis evasion signature. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 769–780.
ACM, 2015.

[39] D. Kirat, G. Vigna, and C. Kruegel. Barecloud: bare-metal analysis-
based evasive malware detection. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 287–301, 2014.

[40] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti. Detecting environment-
sensitive malware. In International Workshop on Recent Advances in
Intrusion Detection, pages 338–357. Springer, 2011.

[41] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting
android apps for component hijacking vulnerabilities. In Proceedings of
the 2012 ACM conference on Computer and communications security,
pages 229–240. ACM, 2012.

[42] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 224–234. ACM, 2013.

[43] J. Oberheide and C. Miller. Dissecting the android bouncer. Summer-
Con2012, New York, 2012.

[44] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon. Effective inter-component communication mapping in
android: An essential step towards holistic security analysis. In Presented
as part of the 22nd USENIX Security Symposium (USENIX Security 13),
pages 543–558, 2013.

[45] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis. Rage against the virtual machine: hindering dynamic
analysis of android malware. In Proceedings of the Seventh European
Workshop on System Security, page 5. ACM, 2014.

[46] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen. Autocog:
Measuring the description-to-permission fidelity in android applications.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1354–1365. ACM, 2014.

[47] A. Reina, A. Fattori, and L. Cavallaro. A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors. EuroSec, April, 2013.

[48] T. Vidas and N. Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM symposium on Information,
computer and communications security, pages 447–458. ACM, 2014.

[49] H. Wang, Y. Guo, Z. Ma, and X. Chen. Wukong: A scalable and accurate
two-phase approach to android app clone detection. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis,
pages 71–82. ACM, 2015.

[50] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,
V. van der Veen, and C. Platzer. Andrubis: Android malware under
the magnifying glass. Vienna University of Technology, Tech. Rep.
TRISECLAB-0414, 1:5, 2014.

[51] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. Appcontext:
Differentiating malicious and benign mobile app behaviors using context.
In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 303–313. IEEE, 2015.

[52] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware android
malware classification using weighted contextual api dependency graphs.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1105–1116. ACM, 2014.

[53] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou.
Smartdroid: an automatic system for revealing ui-based trigger conditions
in android applications. In Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices, pages 93–104.
ACM, 2012.

15

http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
http://en.pudn.com
https://sable.github.io/soot/
https://www.virustotal.com
https://www.virustotal.com
http://www.securitytube.net/video/8880
http://www.securitytube.net/video/8880
https://securityintelligence.com/virtual-machines-malware-authors-being-watched/
https://securityintelligence.com/virtual-machines-malware-authors-being-watched/
http://www.symantec.com/connect/blogs/does-malware-still-detect-virtual-machines
http://www.symantec.com/connect/blogs/does-malware-still-detect-virtual-machines
https://github.com/hackedteam/core-android/blob/master/RCSAndroid/src/com/android/dvci/Core.java
https://github.com/hackedteam/core-android/blob/master/RCSAndroid/src/com/android/dvci/Core.java
https://github.com/MindMac/HideAndroidEmulator
https://github.com/MindMac/HideAndroidEmulator
http://blog.trendmicro.com/trendlabs-security-intelligence/hacking-team-rcsandroid-spying-tool-listens-to-calls-roots-devices-to-get-in/
http://blog.trendmicro.com/trendlabs-security-intelligence/hacking-team-rcsandroid-spying-tool-listens-to-calls-roots-devices-to-get-in/
https://static.googleusercontent.com/media/source.android.com/en//security/reports/Google_Android_Security_PHA_classifications.pdf
https://static.googleusercontent.com/media/source.android.com/en//security/reports/Google_Android_Security_PHA_classifications.pdf
https://static.googleusercontent.com/media/source.android.com/en//security/reports/Google_Android_Security_PHA_classifications.pdf
http://repo.xposed.info/

	Introduction
	Background
	Finding HSO
	Overview
	Features
	Detection
	Evaluation

	Measurement and Discoveries
	Landscape
	Understanding HSO
	Case Study

	Related Work
	Discussion
	Conclusion
	References

