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Abstract
Memory forensic analysis collects evidence for digital crimes and
malware attacks from the memory of a live system. It is increas-
ingly valuable, especially in cloud computing. However, memory
analysis on on commodity operating systems (such as Microsoft
Windows) faces the following key challenges: (1) a partial knowl-
edge of kernel data structures; (2) difficulty in handling ambigu-
ous pointers; and (3) lack of robustness by relying on soft con-
straints that can be easily violated by kernel attacks. To address
these challenges, we present MACE, a memory analysis system
that can extract a more complete view of the kernel data structures
for closed-source operating systems and significantly improve the
robustness by only leveraging pointer constraints (which are hard
to manipulate) and evaluating these constraint globally (to even tol-
erate certain amount of pointer attacks). We have evaluated MACE
on 100 memory images for Windows XP SP3 and Windows 7 SP0.
Overall, MACE can construct a kernel object graph from a mem-
ory image in just a few minutes, and achieves over 95% recall and
over 96% precision. Our experiments on real-world rootkit samples
and synthetic attacks further demonstrate that MACE outperforms
other external memory analysis tools with respect to wider cover-
age and better robustness.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Invasive soft-
ware

General Terms
Security
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1. INTRODUCTION
Memory analysis has become increasingly valuable in digital

crime investigation and malware analysis, as it extracts live digi-
tal evidence of attack footprints from the volatile memory state of
a running system, which cannot be obtained from traditional hard
disk based forensic analysis. Memory analysis is particularly ben-
eficial for cloud computing security, because one can quickly scan
a large number of virtual machine states to detect malicious activ-
ities, without installing security agents (which is inconvenient and
can be easily subverted) inside the virtual machines. For example, a
recent work proposed to detect rootkit infestation in homogeneous
virtual machines in the cloud [3].

However, there exist several long-standing challenges in memory
analysis especially for closed-source operating system (OS) such as
Microsoft Windows.
(1) Low coverage. Without access to the source code of the com-
modity operating system, memory analysis tools can only resort to
public symbols and documentations. As a result, these tools (e.g.,
Volatility [30]) can only identify documented objects (whose defi-
nitions are publicly available) and follow the pointers whose target
types are also documented.
(2) Ambiguous pointers. Generic pointers (e.g., void *, LIST_
ENTRY, and struct list_head) are prevalent in data struc-
ture definitions. It is hard to determine the exact target types for
these generic pointers, and it is common for a generic pointer to
have multiple type candidates. As a result, it is difficult to follow
these generic pointers to identify the target objects. Pointers can
also be dangling, and following the dangling pointers would lead
to extraction of bogus objects.
(3) Lack of robustness. Because of such a low coverage, it is
very easy for kernel attacks to evade memory analysis. Hiding an
object can be as simple as manipulating the incoming links that
are followed by the analysis tools. For example, FU rootkit [14]
hides a process by unlinking the corresponding EPROCESS object
from the active process list. To evaluate the validity of a memory
object, the existing tools often rely on constraints that can be easily
violated, such as pool tags, string constants, object lengths, etc. In
Section 5.4, we demonstrate a synthetic attack that can completely
defeat the utilities in Volatility by breaking these soft constraints.

Up to now, prior research efforts have been focused on tackling
only one or two challenges above. No solution can address all
the challenges in a holistic fashion. To improve robustness, sev-
eral robust signature schemes have been proposed [11, 21]. These
signature schemes can reliably detect important kernel objects by
checking invariants (either strong value invariants or points-to re-
lationship) in the kernel data structures. These signatures may not
be distinct enough or may not even exist for many kernel objects
(especially small ones). Therefore, we cannot rely on these robust



signature schemes to achieve high coverage, not to mention that
performance overhead is high for repeatedly searching signatures
one by one throughout the memory.

Some efforts on data structure reverse engineering (such as RE-
WARDS [22] and Howard [29]) may help extract kernel data struc-
tures definitions from commodity OSes. Potentially these system
can help identify previously undocumented objects and links, and
thus improve the coverage. However, these systems have only
demonstrate their capabilities on relatively small user-level pro-
grams. Complete reverse engineering of kernel data structures is
still a daunting task due to the complexity of the commodity OS
kernel code and the kernel data structures.

In this paper, we present MACE1, a holistic solution that meets
all the following requirements:

(1) Binary only approach. MACE uses only the binary code of
an OS, the public symbols, and documented data structure def-
initions to perform memory analysis. As a result, MACE is
well suited for external forensic analysts to analyze closed-
source OS like Windows.

(2) Robustness. To achieve high robustness, MACE relies on only
points-to relations (or pointer constraints), which are gener-
ally hard to violate, to identify kernel objects. Furthermore,
MACE evaluates both deterministic and probabilistic pointer
constraints throughout the entire kernel memory space, to find
a nearly optimal solution. Therefore, even if an attacker man-
ages to manipulate some pointers, these “injected” errors would
likely be corrected by the remaining pointers in the memory
during this global evaluation process. Thus, the attack impact
on the overall identification results is minimized.

(3) High coverage and accuracy. MACE can reconstruct a nearly
complete kernel object graph, which consists of both docu-
mented and undocumented kernel object instances, and the con-
nections among them. For undocumented objects, MACE can
further discover certain type information for the pointer fields
in these objects. For instance, MACE can identify function
pointers and target types for data pointers.

(4) Good efficiency. MACE can scan a memory image and build
a kernel object graph just a few minutes2. In contrast, the ex-
isting robust signature schemes [11, 21] use several minutes to
only identify objects of a single type.

The core idea of MACE is to conduct supervised learning on
pointers. That is, we first collect pointer constraints from a set of
training memory images, in which kernel objects are correctly la-
beled by dynamic binary analysis. With the collected pointer con-
straints, we then perform probabilistic inference on pointers in an
unlabeled memory image in a collective and correlative manner, to
correctly label the pointers in the image. From these labeled point-
ers, we then reconstruct a nearly complete kernel object graph, for
memory forensic purposes.

We leverage a key insight that the kernel object graph is a small-
world network [13]: most kernel objects can be reached from other
kernel objects within a few hops. A link from one object to another
imposes a type constraint (either deterministic or probabilistic) on
each side. The type constraint indicates the likelihood of a directly
connected object to be of a particular type. The type constraints
will accumulate and propagate to the objects that are not directly

1MACE stands for Memory Analysis through Correlative Evalua-
tion.
2The current implementation of MACE is mostly in Python for
quick prototyping. A C/C++ implementation would further reduce
the analysis time to tens of seconds.

connected. Eventually, these constraints will be broadcast to the
entire network until a convergence is reached.

We evaluated MACE for two closed-source operating systems:
Windows XP SP3 and Windows 7 SP0 and found that MACE can
achieve high recall and precision (95% and 96%, respectively) for
Windows XP and Windows 7. The errors mostly come from un-
documented objects and volatile memory allocations.

We further evaluated the performance of MACE on memory
images infected with real-world malware samples to demonstrate
how MACE facilitates kernel rootkit identification. With a more
complete coverage of kernel objects, MACE recognized malicious
function pointers in both documented and undocumented data struc-
tures, and detected hidden objects more reliably. At last, we de-
vised two synthetic kernel attacks to show how fragile the existing
memory analysis tools (such as Volatility) can be, and how resilient
MACE is against these attacks.

2. PROBLEM STATEMENT & OVERVIEW

2.1 Problem Statement
Given a memory image, we aim to reliably identify nearly all the

kernel objects and connections between them, without access to the
OS source code. We rely on public symbols, public data structure
definitions. This public knowledge is used by the existing memory
analysis tools (e.g., Volatility [30]). We attempt to improve the
coverage and robustness of these third-party memory analysis tools,
by leveraging the same amount of knowledge.

In addition to identifying documented kernel objects, we also
aim to extract partial knowledge of undocumented kernel objects.
In particular, we would like to discover types of the pointer fields,
including both data pointers and function pointers. This knowl-
edge on pointers can help obtain a big picture of the entire kernel
object graph and benefit security analysis on this graph (e.g., ker-
nel rootkit detection). In other words, our goal is not to reverse
engineer the kernel data structure definitions as REWARDS [22]
and Howard [29], although our technique can be combined with
these techniques to improve the quality of data structure reverse
engineering.

We formalize the problem of kernel object labeling as follows:
M = {mi|1 < i < |M |} denotes the kernel memory space, where
mi is the ith machine word and |M | is the total number of machine
words in the kernel address space. Our goal is to assign a label l
to each mi. A label l is defined as a pair of object type and offset
l = (t, o), where t ∈ T and o ∈ [0, sizeof(t)). Here T denotes
the space of all object types.

To ensure high robustness, our solution cannot rely on soft con-
straints that can be easily manipulated by attackers, such as in-
teger and string constants. For example, checking pool tags and
the object size from the OBJECT_HEADER in Windows definitely
helps verify the object types (both Volatility [30] and MAS [8] use
this method to resolve type ambiguity). However, kernel rootkits
can easily violate these soft constraints to evade and mislead these
memory forensic tools. It means that our solution can only rely on
pointer constraints, which are more difficult to tamper with. We
should also anticipate that although complete sabotage of pointer
constraints is not possible, attackers may manage to manipulate a
certain amount of pointers. Therefore, our solution should tolerate
pointer manipulation attacks to a certain degree.



Figure 1: System Overview. The model generation phase A outputs the pointer-constraint model. The identification phase B detects
the kernel object graph on the unknown memory image.

2.2 System Overview
We propose to take a probabilistic inference approach to label

kernel objects based on their pointer constraints. Figure 1 depicts
this workflow. Essentially, we propose a supervised learning tech-
nique. In the model generation phase, we perform dynamic binary
analysis on the OS kernel to label kernel objects and learn a pointer-
constraint model. Then in the identification phase, we will use this
model to identify kernel objects in an unknown memory image.

Model Generation Phase. For a closed-source operating system
(like Windows), we perform dynamic binary analysis to label ker-
nel objects while the OS is running inside a virtual machine. These
labeled kernel objects are then used to generate the pointer con-
straint model, which captures the probabilistic type constraints be-
tween pointer fields. To ensure the training is well-rounded, we
conduct a set of test cases to exercise different components of the
operating system, such as filesystem, network, IO, process/module/
thread management, etc. Consequently, the recorded memory im-
ages (with labeled kernel objects) capture diverse system states un-
der these workloads.

If the source code of an OS is available, we could generate this
pointer-constraint model in two ways. We could perform points-
to analysis on the source code directly to generate extended type
graph (as done in KOP [4] and MAS [8]), and then simply derive
a model from the extended type graph. For a generic pointer, we
would have to assign equal probability to each possible target type.
To generate a model that better reflects the system states at runtime,
we could also perform dynamic analysis described above. It means
that if a target type for a generic pointer appears more often than
the others at runtime, it would have higher probability. The model
generated this way would lead to better classification results.

Identification Phase. Given the pointer-constraint model for one
OS version and an arbitrary memory image of the same OS version,
in the identification phase, MACE tries to identify kernel objects
and their pointer relationships.

The problem of labeling pointers in the memory image based on
the pointer constraints is equivalent to searching the optimal type
assignment for each pointer under the given constraints. A plau-
sible solution to this problem is Maximum Likelihood Estimation
(MLE), wherein every possible assignment solution is enumerated
and evaluated in terms of likelihood, i.e., the number of satisfied
constraints. However, this solution proves to be NP-hard. There-
fore, it is too expensive to iterate through all possible types for
tremendous amount of pointers in the memory.

We approach this problem by using the random surfer model [16],
which has been commonly used for complex networks, such as
page ranking on the web [16]. Intuitively, in random surfer model,

a score associated with each node in the graph is equivalent to the
likelihood of this node being visited by the “random surfer”. The
likelihood of a node being visited is determined by how likely its
neighbors are visited and how likely the “surfer” travels from a
neighbor to this node. The random surfer model allows for effec-
tively evaluating the scores for all nodes in the graph such that it is
scalable even for very large graphs (e.g., the internet ). To the best
of our knowledge, we are the first to apply the random surfer model
to the problem of memory analysis.

In our problem domain, a node represents a labeled pointer, and
an edge from one node to another dictates a confidence level that
the source pointer has on the target pointer. In other words, the con-
fidence level is a conditional probability on how likely the target
pointer is correctly labeled given the source pointer is correctly la-
beled. We call this graph a pointer-constraint graph. We then apply
the random surfer algorithm to calculate a nearly optimal score for
each node (i.e., a pointer with a particular label). Finally, we com-
pute object-level scores based on these pointers’ scores and identify
true kernel objects.

3. MODEL GENERATION
For a closed-source operating system, we generate the pointer-

constraint model in two steps: 1) we conduct dynamic analysis to
label kernel objects in the training data set; and 2) we learn the
model by conducting statistical analysis on the training data.

3.1 Labeling Kernel Objects
We monitor the execution of the OS kernel and observe how ker-

nel objects are allocated and de-allocated, and how these kernel
objects are connected with each other. As we observe the actual
binary execution of the OS kernel, we can obtain the ground truth,
which is typically hard to get otherwise.

We leverage the dynamic analysis framework DECAF [17] to
monitor the execution of an OS and construct the kernel data struc-
ture graph on the fly. In general, we monitor and label three kinds of
kernel objects. We monitor kernel modules (e.g., ntoskrnl.exe
and device drivers) by hooking MmLoadSystemImage. This is
important because global data variables are located in these kernel
modules. We hook ObCreateObject to monitor and label docu-
mented kernel objects (e.g., EPROCESS). Windows uses this func-
tion to create managed kernel objects (which are all documented).
For other objects, we hook ExAllocatePoolWithTag and Ex
FreePoolWithTag to obtain a view of live memory objects in
the dynamic memory pools. While there are other functions to al-
locate and free memory regions in the kernel, these two are the root
functions. All the functions to be hooked are located in the main



kernel component ntoskrnl.exe, and these functions’ offsets
can be obtained from the public symbol information.

In this way, we can precisely label kernel modules and docu-
mented kernel objects. However, for undocumented objects, we
rely on their pool tags obtained from the ExAllocatePool-
WithTag function call. This pool tag labeling mechanism is fairly
common in the modern OSes. For example, SLAB in UNIX-like
systems is a similar mechanism. Of course, several problems may
arise if we simply label undocumented objects by their pool tags:
1) an object allocated with a pool tag may consist of multiple in-
ner objects, which become invisible; and 2) objects of the same
type may be allocated using several different pool tags. As reverse
engineering undocumented objects is not only main goal, we ac-
cept these limitations and leave a better labeling approach as future
work. For example, we could leverage the calling context of the
memory allocation routine to label the object.

Certainly, these function hooks are specific to Windows. For
another closed-source operating system, we will need to rely on
its public documentation and public symbol information to find a
set of functions to hook and label objects properly. The general
principle should remain the same.

To recognize links between these kernel objects, we examine
each double-word within each object and see if the value in the
double-word falls in the memory region of any kernel object. If
this is true, we treat this value as a pointer field and we establish
a link between these two kernel objects. Note that in the kernel
space, it is common for a pointer to point to the middle of a ker-
nel object. This approach may lead to an overestimation in our
study because a non-pointer field may happen to have a pointer-like
value and thus be treated as a pointer. In practice, these pointer-like
data fields will not affect the detection accuracy of MACE, because
these noises are filtered out in the statistical analysis (described in
Section 3.3). Moreover, pointer fields may not be 4-byte aligned in
certain packed data structures, so we have to search double-words
in all byte locations.

3.2 Test Cases
In order to ensure that the generated model has a diverse set of

kernel objects, the test programs used for dynamic analysis need to
activate different OS functionalities that are as diverse as possible.
We include both standard OS benchmark and common software
programs to be run in the guest OS to maximize the variety and
number of kernel objects created. For the standard OS benchmark,
we choose lmbench [1], as it performs several diverse actions in
networking (TCP, UDP, RPC, and pipe), filesystem (file creation
and deletion, cached file read, etc.), signal handling, memory ac-
cess, etc. We also select several common and complex programs
to further increase the training coverage, including web browsers,
media players, word processors, and PDF readers.

3.3 Statistical Analysis
Without source code, we conduct statistical analysis to learn ker-

nel objects and their relationships based on labeled memory im-
ages. Specifically, we utilize the pointer constraint model to rep-
resent the kernel objects and their relationships. The pointer con-
straint model includes offset constraints and target constraints.

Offset Constraints: An offset constraint dictates the pointer offset
in the kernel object. For example, the offset constraint OC(A) rep-
resented in Figure 2(b) shows that Object A with 12 bytes has three
pointers at offset 0, 4, and 8.

To learn offset constraints for each object type t, we go over all
the instances of that object type and examine the pointer fields in
them. An offset o appears in the offset constraints of t if and only if

Figure 2: An example of pointer-constraint model: (a) the la-
beled memory image for an OS version; (b) is the pointer-
constraint model inferred from the labeled memory image. The
first column of (b) means the object type and the size.

all the instances of t have valid pointers at offset o. For example, we
can learn that OC[A]=[0,4,8], since all instances of A in Figure 2(a)
have pointer-like values at offset 0, 4 and 8.

Target Constraints: A target constraint is imposed on the target
of a pointer field. It includes the target type and the probability
indicating how likely the pointer target is of the particular type. The
target constraint is also can be learned through statistical analysis.
By iterating through all labeled pointer fields and their targets in the
training memory dumps, we can compute these target constraints.
For example, the statistical analysis on instances of object A in
Fig. 2(a) learns that the pointer at offset 0 in object A has two target
labels, (B, 0) and (C, 0). By counting the numbers of instances
of A with different target types, we also compute the probabilities
of (B, 0) and (C, 0) to be 0.1 and 0.9 respectively. The target
constraint (TC(A, 0)) is shown in Fig. 2(b).

Variable-Length Arrays. The variable-length array is handled
in the different manner, since its size is not a constant. We dis-
cover variable-length arrays using two conditions. (1) the size of a
variable-length array is variable; (2) each entry of the array should
have the same target type or a NULL pointer. This means that we
only focus on object types with the variable size. For each object
type with the variable size, we can determine the variable-length ar-
ray by checking whether all entries of its instances share the same
target type or zero. The arrays in our model will be labeled as “ar-
ray” without the specific size. Its target offset constraint will be
normalized to be relative to the start address of their hosting ele-
ments, instead of the base of the array.

4. KERNEL OBJECT IDENTIFICATION
Given an arbitrary memory image, MACE tends to identify its

kernel objects based learned constraint model from the training
phase in the following steps: (1) it constructs a pointer-constraint
graph from the memory image; (2) it applies the Random Surfer
algorithm on the pointer-constraint graph until a convergence is
reached; and (3) it selects true kernel objects based on the final
scores on the pointer-constraint graph.



Figure 3: An example for random pointer surfing. A solid node in the graph represents a pointer with offset 0, indicating the base of
a kernel object.

4.1 Pointer-Constraint Graph Construction

DEFINITION 1. The pointer-constraint graph is a directed gra
ph G = (V,E). A node v ∈ V is a tuple (a, (t, o), r), where a
is the address of a pointer, (t, o) labels the pointer as the object
type t and the offset o with the object, and r ∈ [0, 1] is the score
indicating how likely this pointer is labeled correctly. An edge e ∈
E, e = (u, v, r) represents the constraint from node u to node v,
where r ∈ [0, 1] specifies the conditional probability how likely v
being correctly labeled if u is correct.

As an example, we show a pointer-constraint graph in Figure 3(b),
which is constructed from an unlabeled memory image in Fig-
ure 3(a), using the model presented in Figure 2. Algorithm 1 de-
scribes how to construct a pointer-constraint graph.

We construct a pointer-constraint graph, starting with a number
of “root” nodes, and then perform breadth-first traversal to add new
nodes and edges into the graph. To find root nodes, we select kernel
objects (e.g., EPROCESS and ETHREAD) that have many pointer
fields inside and thus their offset constraints are fairly unique. We
use these offset constraints to scan the kernel memory and find pos-
sible kernel objects. Then a root node is created for each pointer
field of these objects. Some of these root nodes may be in fact
wrong. Their scores may be updated during the evaluation of their
target constraints. At last, we will rely on the random surfer algo-
rithm (described in Section 4.2) to evaluate their authenticity. For
example in Figure 3, we choose object A to find “root” nodes, since
it has the most number of offset constraints. If we scan the mem-
ory image using A’s offset constraint, we find two instances for A.
Therefore, we create root nodes for object A. MACE will create
a node for each offset constraint of object A. We assign 1 to node
(0x8018, (A, 0), 1), (0x801c, (A, 4), 1), (0x8020, (A, 8), 1), (0x
8048, (A, 0), 1), (0x804c, (A, 4), 1) and (0x8050, (A, 8), 1) be-
cause at this stage, their offset constraints are all met.

To further expand the constraint graph, we need a working queue
Q to perform this breadth-first traversal. To begin with, the root
nodes are enqueued into Q. Then, on each iteration, a node v is
dequeued from Q. We retrieve from the model PCM the target
constraints TC for this node v. If v does have target constraints,

Algorithm 1: Pointer-Constraint Graph Construction

Input: Memory image M ,Pointer-Constraint Model PCM
Output: Pointer-Constraint Graph G
Q ← G.V ;
whileQ �= ∅ do

v ← Q.dequeue();
TC ← PCM.GetTC(v.t, v.o));
if TC �= ∅ then

Matched ← False;
for each tc ∈ TC do

if PCM.CheckOC(M,M [v.a]− tc.o, tc.t) = True
then

Matched ← True;
u ← (M [v.a], tc.t, tc.o, 1);
if u /∈ G.V then

G.AddNode(u);
Q.enqueue(u);

end
G.AddEdge(v, u, tc.r);
AddObjtoG(G,M [v.a]− tc.o, tc.t);

end
end
ifMatched = False then

v.r ← 0;
end

end
end
return G;

we go over each target constraint tc in TC. tc tells us a possible
target label (tc.t, tc.o) and its likelihood tc.r. Then, to check if
this target label is compatible with the target memory, we check
the offset constraints of the target type tc.t and the memory region
starting at the corresponding object base address M [v.a] − tc.o.
This is done in PCM.CheckOC() function. In other words, we
check if the memory words at the offsets specified in the offset
constraint are valid addresses. If this is not true, this target type
can be not valid, so we check the next target constraint in TC.
Otherwise, we extend G into the target object.



To extend the graph G, we first check if the target node u (with
the same address and label) has been already created. If not, we
validate that its pointer locations are compatible with its offset con-
straints. For all the nodes that pass the validation check, we create
u and set its initial score to 1. Otherwise we will set the score
to be 0. We also enqueue u to Q for the subsequent breadth-first
traversal. An edge (v, u, tc.r) is added into G, where the edge’s
likelihood is obtained from the target constraint tc. For example,
object A candidate fails the target checking at 0x8020, 0x8048
and 0x8050, MACE has to update the value 1 to 0 for the node
(0x8020, (A, 8), 0), (0x8048, (A, 0), 0) and (0x8050, (A, 8), 0)
in Figure 3(b).

Now we need to add the rest of pointers (if any) in the target
object into G. To facilitate subsequent object-level classification,
we always create a “base” node (whose offset is 0) for each object,
even if the field at offset 0 is not a pointer. We further use this
“base” node to bind all the pointers in that object by adding both
incoming and outgoing edges between the “base” node. In this
way, the scores on the pointers within one objects can flow back
and forth to each other until a convergence is reached. In Figure 3,
these “base” nodes are marked as solid circles.

If it turns out that none of the labels in target constraints of v
is compatible with the target memory region, we set its score v.r
to 0 because v’s label (v.t, v.o) may be wrong. It is worth noting
that we do not conclude that v is absolutely wrong and remove
it immediately from G. Note that a pointer in a true object may
occasionally point to invalid target (or a new target that does not
exist in our model). We leave it to the Random Surfer algorithm
below to decide if this pointer is indeed labeled wrong.

4.2 Random Surfer Algorithm
We adopt the random surfer algorithm in [12] to find nearly op-

timal solution on the pointer-constraint graph. It is also proved
to converge. Suppose r is a |v|-dimensional column vector called
score vector, where |v| is the number of nodes in G. ri is the score
of the ith node in G (for the convenience we represent vectors and
matrices in bold). Besides, we define a transition matrix M, where
Mij is the transition probability from the ith node to the j th node
in G. If there is no transition from i to j, Mij is assigned 0. Be-
cause the matrix M is a stochastic matrix we normalize M, such
that each row of M sums to 1.

Equation 1 describes how to calculate the scores based on the
neighbors’ scores:

r(k+1) = (1− α− β)MT r(k) + αp+ βr(0) (1)

where p = [
∑|v|

i ri
|v| ]|v|×1 is a constant score vector, where |v| is

the number of node in G, and r(k) indicates the score vector at
iteration k. α is the damping factor used to jump out of isolated
loops or clusters during surfing. In order to ensure that r(k) finally
converge, β is introduced as another damping factor that controls
the frequency jumping to the initial score distribution r(0). Empir-
ically, following [12] we set α = 0.7, β = 0.1 to guarantee a good
rate of convergence.

Algorithm 2 details how we update the score of each node in the
constraint graph. For each iteration, the algorithm updates the score
of each node based on scores of its neighbors and the constraints
among them. After several iterations, the score of each node in r
stabilizes. For each iteration, we calculate the mean square error
between the current score vector and the previous one. If the error
is smaller than the threshold ε, we consider it to have converged.
The final score vector will approximate a globally optimal solution
that satisfies the constraint graph.

Algorithm 2: Random Surfer algorithm

input : the transition matrix M, the initial value vector d, damping
factor α, β and the vector constant p

output: the converged score vector r

r(0) = d ;
while δ ≥ ε do

r(k+1) = (1− α− β)MT r(k) + αp+ βd ;

δ = ||r(k+1) − r(k)||22 ;

end

Figure 3(c) shows the converged pointer-constraint graph after
we applied Algorithm 2 on the graph in Figure 3(b). Although the
object A at 0x8018 fails the target checking at offset 8, its score is
0.99. The overall voting through the constraint graph still considers
object A at 0x8018 is more likely to be true. Although the offset
constraints for object A at 0x8048 show it could be A, the con-
verged constraint graph tells us the score for A at 0x8048 is 0.04.
Therefore, 0x8048 is impossible to be the base address for object
A. This observation verifies that the label decision of an object type
judges on overall situation rather the individual pointer constraint.

4.3 Kernel Object Labeling
The kernel object labeling utilizes k-means [31] method where

k = 2 in our scenario to cluster base nodes in the constraint graph.
k = 2 means that we only split labeled nodes of the same type into
two sets including the true set and false set. The set with higher
scores as true set means that all nodes in the set are correctly iden-
tified. In detail, the kernel object labeling clusters base nodes of
same object type by their scores and generates the identified kernel
object graph from the cluster with the higher score. For example, k-
means splits (0x8018,(A,0),0.99) and (0x8048,(A,0),0.04) into two
sets and we considers (0x8018,(A,0),0.99) as the true set. As for
the example in Figure 3(d), we are able to classify the base nodes
in the converged graph, and construct a kernel object graph. From
the result, we can see that MACE can still find object A at 0x8018,
even if the constraint checking for the offset 8 at object A failed.

5. IMPLEMENTATIONANDEVALUATION
The implementation of MACE comprises 3 components. One

component performs an initial scan to recognize pointers on a mem-
ory image, which include one plugin (with 570 lines of Python
code) to Volatility and one (with 78 lines of c code) to DECAF [17].
Another component is the plugin of DECAF with additional 800
lines of C code to gather the ground truth for kernel objects. The
third component is a stand-alone Python program consisting of
6.2K LOC used for learning the pointer-constraint model and ker-
nel object identification.

We evaluated MACE from the following aspects: Section 5.1
presents the model generation results, including how fast the model
converges, how big the model is, and how long it takes to gen-
erate the model; Section 5.2 measures the accuracy and runtime
performance of kernel object identification; Section 5.3 demon-
strates MACE’s capability of detecting rootkit footprints using re-
alworld rootkit samples; Finally, Section 5.4 presents synthetic at-
tacks demonstrating the attack tolerance of MACE over the other
memory analysis tools.

Experiment Setup. We evaluate MACE on four sets of memory
images: 1) 150 memory images from Windows XP Service Pack
3 including 100 images for training and 50 for detection (All these
images are of 512 MB RAM); 2) 145 memory images from Win-
dows 7 Service Pack 0 including 100 images for training and 45
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Figure 4: Changes in the model quality δ (number of new target
constraints + new offset constraints) across images. The small
number of images can achieve a stable model.

for detection (All these images are of 1.5 GB RAM); 3) 8 memory
images of 512 MB RAM from kernel malware analysis; and 4) 1
memory image of 1.5 GB RAM for synthetic attack. The first 295
memory images are derived by using our dynamic analysis compo-
nent (as discussed in Section 3.1). All experiments were conducted
on a machine with Intel(R) Xeon(R) CPU E5-2650 (2.00GHz×8)
and 128 GB RAM running 64-bit Ubuntu 11.04.

5.1 Model Generation
Model Convergence. We generate a model from 100 memory im-
ages for Windows XP and Windows 7 respectively. In order to
predict how close this model is to a theoretically perfect model, we
randomly select k images to generate another model, and compute
a “diff” between these two models with respect to their offset con-
straints and target constraints. In this way, we can see how quickly
the model converges when number of training images increases.

Figure 4 shows the model quality evaluation results for both
Windows XP and Windows 7. It illustrates that as the number of
images in the training set increases, the missing constraints of the
model generated from k images (compared to the model generated
from 100 images) decreases exponentially and becomes stable very
quickly. Even a model generated from one image is 99.4% similar
to the model generated from 100 images.

Model Generation Runtime. Obtaining a labeled memory image
took nearly 2 minutes for Windows XP and 3 minutes for Win-
dow 7. To speed up the image retrieving process, we run 10 virtual
machines in parallel and each one conducts 10 different test cases.
Finally, it takes 20 minutes on average to obtain 100 Windows XP
images and 30 minutes on 100 Windows 7 images. For each im-
age, the model generator extracts the pointer information from the
memory image. It takes approximately 7 minutes per memory im-
age for Windows XP and 15 minutes for Windows 7. This task
can be finished within 40 and 80 minutes respectively for XP and
Windows 7 by using 20 processors in parallel. In the end, it takes
20 minutes and 30 minutes to merge the results on 100 images and
construct the pointer-constraint model for Windows XP and Win-
dows 7 respectively. Overall, the model generation takes less than
2 and 3 hours for Windows XP and Windows 7 respectively.

5.2 Kernel Object Identification
We evaluate MACE’s identification capabilities with respect to

the accuracy and the runtime performance.

Accuracy. We use the two metrics, Recall and Precision, to mea-
sure the accuracy of the detection results. We calculate the recall
and the precision using the following formulas:

Recall =
Correctly labeled bytes

Total bytes labelled in ground truth
(2)

Precision =
Correctly labeled bytes

Total bytes labelled by MACE
(3)

Steps Time (Sec)
Windows XP Windows 7

Initial Scan 3.0 ± 2.1 7.0 ± 4.9

Graph Generation 180 ± 2.0 315 ± 5.6

Kernel Object Inference 22 ± 0.7 55 ± 1.6

TOTAL 205 ± 4.5 377 ± 12.6

Table 1: MACE’s Identification Runtime Performance

We measured the above two metrics over 45 memory images
for Windows XP and 7 respectively. Figure 5 shows MACE can
achieve good identification results for both Windows XP SP3 and
Windows 7 SP0. More specifically, MACE achieves the 95% recall
on average and 98% precision on average for Windows XP SP3,
and the 96% recall and 95% precision on average for Windows 7
SP0. The detection result of MACE is close to KOP [4] which re-
lies on the source code. Furthermore, we observed zero false nega-
tives and false positives in the kernel objects of high forensic values
(the ones extracted by Volatility). 5% false negatives are from the
undocumented objects, such as the objects with pool tags ‘IoNm’
and ‘GH0<’. 2% false positives are caused by the undocumented
kernel objects of small sizes, such as ‘Mmpv’.

Runtime Performance. We evaluated MACE’s identification run-
time performance in two scenarios. In the cloud computing sce-
nario, the virtual machine state has been loaded in memory, so
scanning through the virtual machine memory is very fast. We used
virtual machine snapshots (50 Windows XP SP3 memory images
with 512 MB RAM and 45 Windows 7 SP0 images with 1.5 GB
RAM) from KVM/QEMU to evaluate this scenario. On the con-
trary, in the memory forensics scenario, the memory content is first
dumped into a file, then the forensic analysis is performed on the
file. The analysis for this scenario will be slower, due to the time
for loading the file into memory and other factors. The result for
the first scenario is shown in Table 5.2.

As we see, MACE finished the kernel object identification in 205
seconds for Windows XP and 377 seconds for Windows 7 on aver-
age. The identification for Windows 7 takes longer, as the memory
images for Windows 7 are larger and contain more kernel objects.
Note that our current implementation is in Python mainly for fast
prototyping. The identification performance can be significantly
reduced to tens of seconds for a C/C++ implementation.

5.3 Detecting Kernel Rootkit Footprints
As a case study, we show how to use the kernel object graph con-

structed by MACE to detect kernel rootkit footprints. To this end,
we developed a tool to analyze memory images infected with ker-
nel rootkits. Using the kernel object graph constructed by MACE,
the tool can detect malicious function pointers and hidden objects
in the infected images. For the sake of fair comparison, this tool
follows the similar logic as SFPD and GHOST that were built on
top of KOP [4]. Note that KOP requires the source code of Mi-
crosoft Windows to construct the extended type graph and traverse
the kernel objects, whereas MACE does not. From the viewpoint
of external memory analysts, we would like to see whether the tool
built on top of MACE can reach the same detection performance
as the ones built on KOP.

More specifically, to detect malicious function pointers, our tool
iterates through all the kernel objects and examine the function
pointers in them. MACE can differentiate function pointers from
data pointers, because the target of a function pointer must be lo-
cated in the text section of a kernel module, which can be deter-
mined from parsing the headers of that module. As the pointer-
constraint model contains all the valid targets for each function
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Figure 5: Precision and Recall.

pointer during the training phase, to determine a malicious func-
tion pointer, we can check whether the actual target of this function
pointer does not belong to any of the valid targets. To be consistent
to SFPD, our tool also excludes manipulations in System Service
Dispatch Tables (SSDTs) and Interrupt Descriptor Table (IDT).

To detect hidden objects, we use Volatility as the reference sys-
tem. In particular, we use common commands in Volatility, such as
pslist. Then we compare these objects obtained from Volatil-
ity and the kernel object graph from MACE. If a kernel object of
one of the above types appears only in the result from MACE, it is
deemed a hidden object.

We collected 8 memory images infected with various real world
kernel rootkits. Two images (Stuxnet.vmem and ds_fuzz_hidden
_proc.img) were downloaded from the Volatility Google Code web-
site. The rest of memory images (including TDSS, Fakeuinit, Ze-
roAccess, Papras, Haxdoor, and FuTo) were recorded by running
these samples separately in a virtual machine. It demonstrated that
MACE can tolerate small changes in the kernel code and the lo-
cations of global pointers, making it practical to analyze realworld
memory images. We list rootkit detection results in Table 5.2.

Malicious Function Pointers. It is not surprising that our tool built
on MACE can detect malicious function pointers in the common
data structures like _DRIVER_OBJECT, etc. The other rootkit de-
tection tools would have the same coverage, assuming that they can
identify these data structures correctly. More interesting results are
found for TDSS and Fakeuinit, and they are highlighted in the ta-
ble. For TDSS, we found two malicious function pointers located
in the data section of “ntoskrnl.exe”. With help of IDA Pro [18], we
confirmed that tampering with these two function pointers can ef-
fectively hook IofCompleteRequest and IofCallDriver
and thus manipulate the communication between the main kernel
and the device drivers. As for Fakeuinit, we found 5 malicious
function pointers in undocumented kernel objects, whose pool tags
are ‘NDpp’, ‘NDpb and ‘NDmo’ respectively. Through manual in-
vestigation, we determined that these kernel objects are operated by
NDIS.sys (the central networking module in Windows) to man-
age the network stack. Manipulating these function pointers can
effectively intercept the network communication. Here, note that
these pool tags identified from our model are not from the infected
memory images. So even if the actual pool tags are modified by the
rootkits, our detection results would stay unaffected.

Hidden Objects. Our tool also detected hidden processes and
modules for several kernel rootkits. It shows that instead of just
examining several known linked lists and tables, MACE discov-
ers kernel objects in a global scope. We notice that a recently de-
veloped tool (psxview) in Volatility can detect hidden processes,
by checking other data structures in addition to the active process
linked list. In comparison, our tool checks _EPROCESS objects
in the entire kernel data structure graph, not only the ones publicly

known to the memory analysts, not to mention that our tool can
also detect other kinds of hidden objects.

5.4 Attack Tolerance
To evaluate the attack tolerance of MACE, We devised two syn-

thetic attacks: 1) pool tag manipulation; and 2) deterministic pointer
removal.

Pool TagManipulation. This synthetic attack is as simple as mod-
ifying pool tags for the objects like _KDBG, _EPROCESS, etc. Af-
ter these modifications, the Windows system continued to run prop-
erly, indicating that there is no integrity check on pool tags in Win-
dows. Then we tested the commands in volatility, and none of them
output any results. The commands like psscan and thrdscan
rely on pool tag as a constraint to scan particular kinds of kernel
objects, so simple modifications on pool tags can easily sabotage
these commands. Other commands like pslist and threads
also failed, even though they did not use pool tag as a constraint ex-
tensively to scan kernel objects. The failure of these commands is
due to the missing _KDBG. These commands must scan _KDBG to
determine the right Windows version and thus locate the right start
address of the relevant data structures. For the same reason, the
new psxview command also failed. In contrast, MACE was not
affected by this synthetic attack at all, because by design MACE
does not use pool tags and other kinds of soft constraints to identify
kernel objects.

Deterministic Pointer Removal. We suppose that an attacker can
manage to remove a fraction of pointers to hide certain kernel ob-
jects, without causing a system crash. In particular, we would
like to see how MACE’s identification performance degrades while
a fraction of deterministic pointers are removed, because all the
existing tools only examine deterministic pointers. Furthermore,
we simulate a “strawman” system as the theoretical upper-bound
for any memory analysis system that only examines deterministic
pointers. This “strawman” system starts with global variables in
the data sections of kernel modules, and only follows determinis-
tic pointers and always makes a right decision whether an object is
valid even when some of its pointers or pointer targets are invalid.

R
ec

al
lR

at
e

% of deterministic pointers to be removed

Strawman

MACE

Figure 6: Recall Degradation on Link Sabotage Attacks



Name Malicious Location # Cat.

Backdoor:
W32TDSS

ntoskrnl.exe:0x7c484 1 M
ntoskrnl.exe:0x7c480 1 M
_GENERIC_CALLBACK.Callback 2 M
_DRIVER_OBJECT.DriverStart 1 M
_DRIVER_OBJECT.DriverInit 1 M
_LDR_DATA_TABLE_ENTRY.EntryPoint 1 M
_LDR_DATA_TABLE_ENTRY 1 H

stuxnet.vmem

_GENERIC_CALLBACK.Callback 1 M
_NOTIFICATION_PACKET. 1 M

NotificationRoutine
_DRIVER_OBJECT.DriverStart 1 M
_DRIVER_OBJECT.DriverInit 1 M
_DRIVER_OBJECT.MajorFunction[] 3 M
_LDR_DATA_TABLE_ENTRY.EntryPoint 1 M

Trojan-
Spy.Win32.
Fakeuinit.a

NDpp:0x18 1 M
NDmo:0x38 1 M
NDmo:0x50 1 M
NDmo:0x40 1 M
NDpb:0x4c 1 M
_DRIVER_OBJECT.DriverInit 1 M
_DRIVER_OBJECT.DriverUnload 1 M
_DRIVER_OBJECT.DriverStart 1 M
_ETHREAD.StartAddress 1 M
_LDR_DATA_TABLE_ENTRY.EntryPoint 1 M

Backdoor.
Win32.
ZAccess.dl

_DRIVER_OBJECT.DriverInit 1 M
_GENERIC_CALLBACK.Callback 1 M
_ETHREAD.StartAddress 1 M

TrojanPSW.
Win32.Papras

_DRIVER_OBJECT.DriverInit 1 M
_DRIVER_OBJECT.DriverUnload 1 M
_DRIVER_OBJECT.DriverStart 1 M
_LDR_DATA_TABLE_ENTRY.EntryPoint 1 M

ds_fuzz_ hid
den_proc.img

_EPROCESS 7 H
_DRIVER_OBJECT.DriverUnload 1 M
_DRIVER_OBJECT.DriverStart 1 M
_DRIVER_OBJECT.MajorFunction[] 4 M
_LDR_DATA_TABLE_ENTRY.EntryPoint 1 M

Win32.
Haxdoor

_DRIVER_OBJECT.DriverStart 1 M
_DRIVER_OBJECT.DriverInit 1 M
_DRIVER_OBJECT.MajorFunction[] 2 M
_LDR_DATA_TABLE_ENTRY.EntryPoint 1 M

RootKit: Futo

_DRIVER_OBJECT.DriverStart 1 M
_DRIVER_OBJECT.DriverInit 1 M
_DRIVER_OBJECT.DriverUnload 1 M
_DRIVER_OBJECT.MajorFunction[] 4 M
_LDR_DATA_TABLE_ENTRY.EntryPoint 1 M
_EPROCESS 1 H

Table 2: Rootkit Footprints Detected By MACE. In the column
of “Category”, M means “malicious function pointer”, and H
stands for “hidden object”.

To evaluate this attack, we randomly remove a fraction of deter-
ministic links (e.g, 10%, 20%, 30%, etc.) from a labeled memory
image, and compute the recall for both MACE and the strawman
system. For the strawman system, we consider it would miss a ker-
nel object if there is no deterministic path from a kernel module
to it. Figure 6 presents this result for a Windows XP image. It
shows how the recall degrades more or less with the increase of the
percentage of sabotaged deterministic pointers.

We can see that even when the attack is absent (0% pointers are
removed), the recall for the strawman system is only 65%, demon-
strating the necessity of incorporating non-deterministic pointers
into the analysis. The performance of the strawman system de-
grades to about 40% when 80% deterministic pointers are removed.
This result appears to be reasonable. However, this is just a theo-
retical upper-bound. The real memory analysis systems that only
follow deterministic pointers will certainly perform worse than it.
Further, the strawman system failed to identify many important ker-
nel objects. For example, out of 22 process objects, it missed 20.

In contrast, the recall degradation for MACE is barely notice-
able even when 80% deterministic pointers are removed, thanks
to the small-world effect of the kernel object graph and the global
evaluation nature of random surfer model.

6. DISCUSSION
In this section, we discuss several potential and practical issues

and concerns related to MACE. Also, we make clarifications and
suggest countermeasures if necessary.

Kernel Patches. By design, we need to train one model for each
OS version. Kernel patches introduce changes in the main kernel
module and possibly certain data structure definitions. So we would
need to train a new model for every single kernel patch. In reality,
it is not necessary, because the changes introduced in these patches
are usually small. The major kernel data structure definitions re-
main unchanged. As demonstrated in our experiment, we can still
use the model generated for Windows XP Service Pack 3 to ana-
lyze two memory images downloaded from the Volatility website
and obtain good results. In these two memory images, patches have
been applied to Windows XP Service Pack 3.

Third-party Device Drivers. A memory image under the analysis
may have third-party device drivers loaded, which have not been
observed during model generation phase. In this case, MACE will
not be able to identify kernel objects defined in these device drivers.
However, MACE will still detect these device drivers, because a
number of documented objects (e.g., DEVICE_OBJECT) will be
created for them and they will be detected by MACE. It is still an
open research problem to discover data structures in these third-
party device drivers. We leave it as future work.

7. RELATEDWORK
Memory Analysis Frameworks. Memory analysis came into lime-
light after 2004 work by Carrier et al. [5]. There exist plenty of
open-source and commodity memory analysis tools [2, 6, 9, 10,
19, 23–25, 27, 28, 30, 32].The memory analysis is also extended to
the analysis of hypervisors and virtual machine [15].

Robust Signature Schemes. To improve robustness for memory
analysis [26], two signature schemes [11, 21] have been proposed.
These two signature schemes detect kernel objects by relying on
invariants that are hard to be manipulated and evaded. Although
the work by Dolan-Gavitt et al. [11] is based on data invariants,
most of the identified invariants are indeed on pointer fields. In
comparison, MACE leverages the insights in pointer invariants and
takes a fresh look into the problem of memory analysis.

Source Code based Memory Analysis. The knowledge of data
structure definitions can be directly obtained from the kernel source
code. SigGraph [21] extracts points-to relationships directly from
the Linux source code and creates pointer-based signatures. Sig-
Graph only extracts deterministic points-to relationships, and omits
generic pointers. In order to obtain a nearly complete data struc-
ture graph, KOP [4] and MAS [8] perform points-to analysis on the
Windows kernel source code. They identify points-to relationships
for generic pointers and generate extended type graph. In contrast,
MACE is designed for external forensic analysts who often do not
have access to the kernel source code of an investigated system.

Probabilistic Memory Analysis. Several systems also take proba-
bilistic approaches in memory analysis. Laika [7] applies Bayesian
unsupervised machine learning algorithm to infer a type graph from
a memory snapshot of a user-level program execution. In compari-
son, the inference algorithm used in MACE is supervised learning.
In the training set, the kernel objects are classified and labeled using
dynamic analysis. Some assumptions made in Laika do not hold in
kernel data structures. For example, Laika assumes a pointer should
point to the beginning of an object. This is not true for kernel data
structures in common OSes like Windows and Linux.



To identify data structure instances that have been freed, DIM-
SUM [20] takes a probabilistic inference approach. Given a data
structure definition, DIMSUM constructs a factor graph and com-
putes marginal probabilities of all the candidate memory locations
that satisfy the data structure constraints. In comparison, MACE
tackles a similar problem but in a larger scale. The computational
overhead would be too high to compute marginal probabilities for
all pointers.

8. CONCLUSION
In this paper, we presented MACE, a memory kernel object min-

ing tool that can accurately identify kernel objects in a robust man-
ner. We evaluated MACE on 100 memory images for Windows
XP SP3 and Windows 7 SP0. The experimental results showed that
MACE can achieve the recall of 95% and the precision of 98%
on average. Furthermore, the experiment also demonstrates the the
robustness and the good efficiency. To illustrate the strength of
MACE, we also conducted synthetic attacks on a memory image
from Window XP SP3. The detection result showed that MACE
outperformed other external memory analysis tools with respect to
wider coverage and better robustness.
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