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Abstract. JavaScript exploits impose a severe threat to computer secu-
rity. Once a zero-day exploit is captured, it is critical to quickly pinpoint
the JavaScript statements that uniquely characterize the exploit and the
payload location in the exploit. However, the current diagnosis tech-
niques are inadequate because they approach the problem either from a
JavaScript perspective and fail to account for “implicit” data flow invis-
ible at JavaScript level, or from a binary execution perspective and fail
to present the JavaScript level view of exploit. In this paper, we pro-
pose JScalpel, a framework to automatically bridge the semantic gap
between the JavaScript level and binary level for dynamic JS-binary
analysis. With this new technique, JScalpel can automatically pin-
point exploitation or payload injection component of JavaScript exploits
and generate minimized exploit code and a Proof-of-Vulnerability (PoV).
Using JScalpel, we analyze 15 JavaScript exploits, 9 memory corrup-
tion exploits from Metasploit, 4 exploits from 3 different exploit kits and
2 wild exploits and successfully recover the payload and a minimized
exploit for each of the exploits.

Keywords: Exploit analysis · Malicious JavaScript

1 Introduction

Malicious JavaScript has become an important attack vector for software
exploitation attacks. Attacks in browsers, as well as JavaScript embedded within
malicious PDFs and Flash documents, are common examples of how attackers
launch attacks using JavaScript. Interactive nature of JavaScript allows mali-
cious JavaScript to take advantage of binary vulnerabilities (e.g., use-after-free,
heap/buffer overflow) that are otherwise difficult to exploit. In 2014, 639 browser
vulnerabilities were discovered and the number was increased by 8 % over 2013
reported by Symantec [5]. This provides the attacker a broad attack space.

Previously unknown, or “zero-day”, exploits are of particular interest to the
security community. Once a malicious JavaScript attack is captured, it must
be analyzed and its inner-workings understood quickly so that proper defenses
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 254–276, 2016.
DOI: 10.1007/978-3-319-45719-2 12



Semantics-Preserving Dissection of JavaScript Exploits 255

can be deployed to protect against it or similar attacks in the future. Unfortu-
nately, this analysis process is tedious, painstaking, and time-consuming. From
the analysis perspective, an analyst seeks to answer two key questions: (1) Which
JavaScript statements uniquely characterize the exploit? and (2) Where is the
payload located within the exploit? The answer to the first question results in
the generation of an exploit signature, which can then be deployed via an intru-
sion detection system (IDS) to discover and prevent the exploit. The answer to
the second question allows an analyst to replace the malicious payload with an
amicable payload and use the modified exploit as a proof-of-vulnerability (PoV)
to perform penetration testing.

Program slicing [34] is a key technique in exploit analysis. This technique begins
with a source location of interest, known as slicing source, such as a statement or
instruction that causes a crash, and identifies any statements or instructions that
this source location depends on. Prior exploit analysis solutions have attempted to
analyze exploits at either theJavaScript level [11,12,18,20,26,27] or theunderlying
binary level [23,24,31,36,38].

While binary level solutions execute an exploit and analyze the underlying
binary execution for anomalies, they are unaware of any JavaScript level seman-
tics and fail to present the JavaScript level view of the exploit. JavaScript level
analysis fails to account for implicit data flows between statements because any
DOM/BOM APIs invoked at the binary level are invisible at the JavaScript
level. Unfortunately, implicit flows are quite common in attacks and are often
comprised of seemingly random and irregular operations in the JavaScript that
achieve a precise precondition or a specific trigger which exploits a vulnerability
in the binary. The semantic gap between JavaScript level and binary level during
the analysis makes it challenging to automatically answer the 2 key questions.

In this paper, we present JScalpel with password: “artifacts”, a system that
creatively combines JavaScript and binary level analyses to analyze exploits. It
stems from the observation that seemingly complex and irregular JavaScript
statements in an exploit often exhibit strong data dependencies in the binary.
JScalpel utilizes the JavaScript context information from the JavaScript level
to perform context-aware binary analysis. Further, it leverages binary analysis
to account for implicit JavaScript level dependencies arising due to side effects
at the binary level. In essence, it performs JavaScript and binary, or JS-Binary
analysis. Given a functional JavaScript exploit, JScalpel performs JS-Binary
analysis to: (1) generate a minimized exploit script, which in turn helps to gen-
erate a signature for the exploit, and (2) precisely locate the payload within the
exploit. It replaces the malicious payload with a friendly payload and generates
a PoV for the exploit.

We evaluated JScalpel on a corpus of 15 exploits, 9 from Metasploit1,
4 exploits from 3 different exploit kits and 2 wild exploits. On average, we
were able to reduce the number of unique JavaScript statements by 49.8 %, and
precisely identify the payload, in a semantics-preserving manner, meaning that

1 Metasploit Framework – http://www.metasploit.com/, a popular penetration testing
framework.

http://www.metasploit.com/
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the minimized exploits are still functional. In addition, we were able to replace
the payload with amicable payload to perform penetration testing. JScalpel
showed an average reduction of 75.5 % in trace size and 16x improvement in time
taken to trace. Finally, we presented the wild exploit CVE-2011-1255 as a case
study. We demonstrate how the exploit is minimized and payload is located.

Contributions. We make the following contributions:

– We make a key observation that semantics-preserving JavaScript exploit
analysis must bridge the gap between JavaScript and binary level.

– We propose a technique to bridge the semantic gap and tackle several chal-
lenges (e.g. dependency explosion and script engine code filtering) and incor-
porate our techniques into the JScalpel analysis framework.

– Using JScalpel, we analyze 15 JavaScript exploits, 9 memory corruption
exploits from Metasploit, 4 exploits from 3 different exploit kits and two
exploits from the wild and successfully recover the payload and a minimized
exploit for each of the exploits.

2 Background and Overview

2.1 Components of JavaScript Attack

Modern JavaScript attacks can be divided into four general components.
Figures 1(a) and (b) show these four components within the Aurora exploit.

Obfuscation: To avoid detection, obfuscation techniques are widely deployed
in JavaScript attacks. For example, in Fig. 1(a) JavaScript obfuscation is
used to perform a document.write(‘‘Get payload’’) operation. Simple
static analysis-based scanners cannot identify that “i[x][y]” is actually a
document.write() operation.

Fig. 1. (a) describes the components of a modern exploit, (b) presents the relevant
JavaScript code involved in Aurora Exploit and (c) presents the underlying code exe-
cution that results in use-after-free, (d) presents the assembly code for function Get-
DocPtr.
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Fingerprinting: An exploit uses fingerprinting to glean information about vic-
tim’s environment. With such information, exploits specific to vulnerable compo-
nents are launched to compromise the victim process. For example, in Fig. 1(a),
the Aurora exploit is only performed if the type of the browser is identified as
being Microsoft Internet Explorer (“MSIE”).

Payload Injection: The exploit injects a malicious payload into the victim
process. Payloads can be broadly categorized as executable or non-executable
payloads. presents the payloads and the flow of execution in modern exploits.
The goal of exploits is to execute a malicious payload, but since the wide deploy-
ment of data execution prevention (DEP), the page containing the executable
payload cannot be directly executed. First, return-oriented programming (ROP)
is used to make a page executable by invoking VirtualProtect() on Windows
or mprotect() on Linux. Then, control is transferred to the malicious executable
code.

Exploitation: In this step, using one or more carefully crafted JavaScript state-
ments, the vulnerability in the victim process is exploited. The statements may
seem random and may lack data-dependencies, but they often involve a combi-
nation of explicit and implicit data dependency. Consider the exploit statements
for the Aurora exploit presented in Fig. 1(b, c and d). (b) presents the HTML
(statement 1) and JavaScript (2–26) statements that exploit a use-after-free
vulnerability in mshtml.dll of Internet Explorer browser. Figures 1(c and d)
present the underlying C++ and assembly code that is executed as a part of the
exploit. Statement 18 corrupts the memory that was freed in statement 10. The
corrupted memory is utilized in a call instruction arising from statement 26.
All the statements in Fig. 1(c) are pertinent to the exploit.

2.2 Problem Statement

We aim to develop JScalpel– a framework to combine JavaScript and binary
analyses to aid in analysis of JavaScript-launched memory corruption exploits.
It is motivated by two key observations.

First, analysis performed at only the JavaScript level is insufficient. In
Fig. 1(b), JavaScript level analysis of Aurora captures the explicit data depen-
dencies between statements 9 and 26 and statements 6 and 18. However, because
no explicit dependency exists between statements 18 and 26, the two groups of
statements will be incorrectly deemed to be independent of each other. Second,
while complete, analysis performed at only the binary level is also insufficient.
In Fig. 1(d), binary level analysis can expose the manipulation of pointers, how-
ever it can not expose exploit-related JavaScript statements in Fig. 1(c) due to
the lack of JavaScript context. A binary-level analysis will show the memory
written by the binary instructions of statement 18 is utilized through reads per-
formed by binary instructions of statement 26, revealing a straight-forward data
dependency between statements 18 and 26.
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Input: JScalpel accepts a raw functional exploit and a vulnerable program as
input. The vulnerable program can be any program like (PDF reader, web browser,
etc.) as long as it can be exploited through JavaScript. The exploit consists of
HTML and malicious JavaScript components. The exploit can be obfuscated or
encrypted. JScalpel makes no assumptions about the nature of payloads. That
is, the payload could be ROP-only, executable-only or combined.

Output: JScalpel performs JS-Binary tracing and slicing and generates 3 spe-
cific outputs. (1) A simplified exploit HTML that contains the key JavaScript
statements that are required to accomplish the exploit, and (2) the precise
JavaScript statements that inject the payload into the vulnerable process’ mem-
ory along with the exact payload string – both non-executable and executable –
within the JavaScript. Finally, (3) an HTML page, where the malicious payload
is replaced by a benign payload is generated as a Proof-of-Vulnerability (PoV).

Delta debugging [37] is firstly proposed to generate the minimized C pro-
grams that crash the compiler and might be a feasible approach to minimize the
exploit JavaScript to cause a crash. However, the effectiveness of this approach
is unknown, because of the complex and sophisticated nature of JavaScript.
Attackers can insert arbitrary junk code to make delta debugging ineffective.
In contrast, JScalpel can precisely pinpoint the JavaScript statements that
cause a crash and locate the malicious payload and our experiment has proven
its effectiveness.

2.3 JScalpel– Overview

Figure 2 presents the architecture of JScalpel, which leverages Virtual Machine
Monitor (VMM) based analysis. It consists of multiple components. A multi-level
tracer is used to gather JavaScript and binary traces. A CFI module is used to
determine the binary level “slicing sources”, which are the violations that cause
the exploit along with the various payload components. The multi-level slicer aug-
ments JavaScript level slicing with information from binary level slicing to obtain
the relevant exploit and payload statements. Finally, JScalpel packages the rel-
evant exploit statements within an HTML page to generate the minimized script.
It also replaces the malicious payload with a benign payload to generate a PoV.

Fig. 2. Architecture of JScalpel
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Fig. 3. Performance index of 2-relays
system

Fig. 4. Semantics-preserving multi-
level slicing.

3 Multi-level Tracing and Slicing-Source Identification

We implement JScalpel on top of DECAF [19], a whole-system dynamic analy-
sis framework. The tracing consists of two parts, JavaScript and binary tracers.
JavaScript tracing is performed using a helper module that is injected into the
browser address space. It interacts with the JavaScript debug interface within the
browser to gather the JavaScript-level trace. The binary tracer and the exploit
detection module are implemented as 2 plugins of DECAF. Below, we detail
each of the components.

3.1 Context-Aware Multi-level Tracing

JavaScript Tracer. Prior approaches that gather JavaScript trace [11,21] mod-
ify JavaScript engine or the browser to identify the precise statements being exe-
cuted, however such an approach requires access to JavaScript engine (and/or
browser) source code which is not available for close sourced browsers like IE.

We take a JavaScript debugger-based approach. Our approach has two key
advantages. (1) Most browsers – open-sourced or otherwise – support a debug-
ging interface to debug the JavaScript statements being executed, and (2)
Because the debugger runs within the browser context, it readily provides the
JavaScript-level semantics. That is, we can not only gather the exact statements
being executed, but also retrieve the values of variables and arguments at various
statements. From within the VMM, we hook the JavaScript debugger at specific
APIs to retrieve the various JavaScript statements and the corresponding con-
texts. The accumulation of the JavaScript statements yields the JavaScript trace.

JavaScript tracer runs as an injected module within Internet Explorer. It
implements the “active script debugger” [1] interface and performs three specific
actions:

1. Establish Context: Through the script-debugger interface, the tracer is noti-
fied when execution reaches JavaScript code. Specifically, if a SCRIPT tag is
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encountered within an existing script or the script generated through eval
statement, the tracer is activated with the information regarding the state-
ment being executed. Until the next statement executes, the tracer associates
the context to the current JavaScript statement.

2. Record Trace: At the beginning of every JavaScript statement, the tracer
records the exact statement semantics along with the variable values and
arguments to APIs (if any).

3. Drive Binary Tracer: A stub function is defined to coordinate the JavaScript
tracer and the binary tracer. Before the statement executes, the binary tracer
is activated along with the context information passed as the arguments of
stub function such that the binary trace is associated with the particular
JavaScript statement.

Binary Tracer. Binary tracer is triggered by the JavaScript tracer with the
context information pertaining to a particular JavaScript statement. One way
to gather a binary trace would be to monitor and capture the entire execution of
the browser process at an instruction level. However, such a solution is resource
intensive and inefficient. In order to be practical, our solution is selective about
what is traced and when it is traced. Our goals towards an effective binary trace
are to: (1) include all the relevant binary instructions that contribute to the
attack, and (2) minimize the trace footprint as much as possible.

Firstly, since binary tracer is driven by JavaScript tracer, it has the precise
JavaScript context. Tracing is limited and selectively turned on only when the
execution is within a JavaScript statement. It is likely that the multithread-
ing of the browser will introduce unrelated execution trace. But it does not
jeopardize the analysis since all the binary instructions that contribute to the
attack are included. Secondly, the effects of statements at a JavaScript-level
manifest as memory reads and writes at a binary-level. Therefore, we implement
a lightweight tracing mechanism. Instead of logging every binary instruction, we
only log the memory read or write operations. We leverage memory IO specific
callbacks supported by DECAF to record the values of eip, memory address,
memory size, value in the memory and esp for each memory IO instruction.
We also record the addresses of basic blocks that are executed and dump their
raw bytes from virtual memory space of the monitored process at the end of
every JavaScript statement. Furthermore, the binary tracer maintains informa-
tion about active allocations made by the victim process. This information is
used to identify self-modifying (or JIT) code. When such code is encountered,
the code is dumped to the disk. When needed, the raw bytes are decoded to
retrieve the actual instructions. The propagation of the slicing sources between
registers and memory is identified by the memory IO logs and the binary instruc-
tion logic. While preserving the completed information as full instruction trace
does for slicing process, this lightweight trace minimizes the trace size and also
speeds up the slicing process.

Binary tracer is implemented as a plugin to DECAF. In the plugin, the
stub function of JavaScript tracer is hooked to coordinate the binary tracing
and JavaScript tracing. When the stub function is invoked by JavaScript tracer,
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the Binary tracer first reads the parameters of stub function from the stack where
JavaScript Tracer passes the JavaScript statement and debugger information,
then starts the logging of binary trace and generates a combined JS-Binary
trace which contains the JavaScript and binary traces for each of the JavaScript
statements. Meanwhile, a JS-binary map is built to keep track of corresponding
JavaScript statement for every binary instruction.

Obfuscation and Encryption Resistance. The nature of JavaScript tracing
provides inherent resistance to obfuscation and encryption because it captures
each statement that is executed along with the runtime information like variable
values, arguments, etc. Therefore, the intermediate statements (like the ones in
Fig. 1(a)) that are used to calculate a value are each captured with their concrete
values. Similarly, encrypted statements must be decrypted before they are exe-
cuted, and the decrypted statements execute. Therefore, JScalpel encounters
and records the decrypted statements that execute.

In fact, JScalpel performs preliminary preprocessing by performing con-
stant folding with the help of the script execution trace. This simple optimiza-
tion will not cause over simplification and generates a functionally equivalent
de-obfuscated and decrypted version of the script. Then JScalpel executes the
de-obfuscated version to perform the analysis. This preprocessing reduces the
amount of analyzed JavaScript statements.

3.2 Identifying Slicing Sources

JScalpel makes use of a CFI module to identify slicing sources. Several solu-
tions have been proposed to implement CFI [7]. Since JScalpel already relies
on a VMM for trace gathering, it can leverage a VMM based CFI defense. We
opt the techniques presented in Total-CFI [24] because (1) it is a recent and
practical solution, (2) it has been demonstrated to work on recent real-world
exploits and finally (3) it imposes low overhead.

Fig. 5. Non-executable (ROP) and executable payloads used in an exploit.

It monitors the program execution at an instruction level and each point
where the CFI is violated is noted as a slicing source. Albeit the recent advance-
ment of exploitation techniques [28] can bypass the coarse-grained CFI tech-
niques like Total-CFI, JScalpel’s CFI module can be enhanced to include more
policies to adapt the development of exploitation techniques.
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Specifically, the first violation is the slicing source for the exploit-related code,
whereas the subsequent violations (if any) arise from the executable payload or
ROP-payload. In Fig. 5, the first violation is caused by the exploiting code,
then the violations that occur up to the execution of executable payload serve
as sources for ROP-payload. Moreover, the CFI module continues execution to
check for executable payloads. If after the first violation, the execution ever
reaches a region that within the list of allocated regions, the address is noted
and it serves as the binary slicing source for the executable payload.

4 Multi-level Slicing

Multi-level slicing employed by JScalpel is based on the following hypothesis.

Hypothesis. Implicit data dependencies at JavaScript level often manifest as
direct data dependencies at binary level.

Memory corruption exploits typically corrupt the memory by causing pre-
cise memory writes to key locations that are read by the program and result in
corruption of program counter. Chen et al., show that a common characteris-
tic of many classes of vulnerabilities is pointer taintedness [9], where a pointer
is said to be tainted if the attacker input can directly or indirectly reach the
program counter. In essence taint propagation reflects runtime data-flow within
the program. Therefore, at a binary level, memory corruption exploits such as
use-after-free, heap overflow, buffer overflow, etc. often exhibit simple data-flow,
which can be captured through data-dependency analysis.

Figure 4 presents the overview of slicing employed by JScalpel. In order
for the simplified exploit to be functional, it is necessary that the simplification
preserves the semantics between the original and simplified scripts. Given the
slicing sources and the JS-binary trace, JScalpel first performs a binary back-
ward slice from the slice source provided by CFI violation and generates sources
for JavaScript-level slicing. Slicing at the binary level ensures that no required
statement is missed. Then, slicing is performed at a JavaScript level to include
all the statements that sources are either data- or control-dependent on.

4.1 Binary-Level Slicing

The goal of binary slicing is to identify all the JavaScript statements that are
instrumental in coercing the control flow (i.e., statements that modify the pro-
gram counter) or injecting the payload into memory.

Algorithm 1 describes the backward slicing method using the lightweight
binary trace. For every JavaScript statement J [i], the corresponding binary
instruction trace Bi is extracted. A map called “JS-Binary map” M – a map-
ping between the JavaScript statements and the binary instructions that exe-
cute within the statement context – is used. Then for every binary instruction
bik ∈ Bi, if all of the elements in the slicing source S belong to memory loca-
tions, then the slicer checks if the current binary instruction bik has memory
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write operations Mw ⊆ S and if it is false, the slicer jumps to the next instruc-
tion bi(k+1). Otherwise, the slicer does as traditional slicer to disassemble the
binary instruction bik and updates the slicing source S and determine if bik
should be added in the binary slice L based on the propagation rules for every
X86 instruction. If L is not empty when the slicing on Bi is finished, J [i] is added
to the JavaScript slice O as the hidden dependency slice which may be ignored
by pure JavaScript-level slicing.

In theory, a binary backward slice from the slicing sources must include all
the JavaScript statements that are pertinent to the attack. However, in practice
we found a key problem with such an approach. It is too permissive and ends
up including all the JavaScript statements in the script. The main reason is the
binary-level amalgamation of JavaScript and browser code along with JavaScript
code. In order to track the exploit-specific information-flow, the flow through
pointers must be considered. However, at a binary level, due to the complex
nature of a JavaScript engine, dependencies are propagated to all the statements
thereby leading to dependency explosion.

We exclude data propagation arising from code corresponding to the script
engine and debug interface. Particularly, we apply the following filters to mini-
mize the dependency explosion problem.

Algorithm 1. Binary level backward slicer

Input: binray trace B,slicing source S
and JS-Binary map M and JavaScript
trace list J

Output: JavaScript slice O
1: S ← {slicing source

(exploit point or payload location)}
2: O ← ∅
3: for i = len(J); i > 0; i − − do
4: Bi ← getBin-

InsTraceForJS(M,J [i], B)
5: for k = len(Bi); k > 0; k − − do
6: bik ← Bi[k]
7: L ← ∅
8: if S is all memory locations

then
9: Mw ←GetMemWriteRec(bik)

10: if S ∩ Mw == ∅ then
11: continue
12: end if
13: end if
14: if getDestOperand(bik) ∈ S

then
15: S ← S ∪ updateSlice-

Source(bik, S)
16: L ← L ∪ {bik}
17: end if
18: end for
19: if L! = ∅ then
20: O ← O ∪ {J [i]}
21: L ← ∅
22: end if
23: end for

Stack Filtering. Once the dependency propagates to stack pointer esp or stack
frame ebp, all data on the stack becomes dependent [30]. To avoid this, depen-
dencies arising due to esp or ebp are removed during slicing. In certain cases,
the stack data could be marked dependent, but when the callee returns, the
dependency is discarded if it exists on a stack variable. So JScalpel records
the current stack pointer for every read/write, and during backward slicing,
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when call instruction is encountered in the trace, the slicer checks the current
stack pointer and clears the dependencies propagating from the callee’s stack.

Module Filtering. During the slicing process, the propagation to or from
the JavaScript engine module or script debugger is stopped. In principle, every
Javascript statement executed by the same Javascript engine instance shares the
data and control dependency introduced by the Javascript engine and debugger
module. This kind of dependency is outside of “exploit specific” dependency and
should be excluded from slicing.

Other Filters. Between two consecutive JavaScript statements, we found that
sometimes there are data flows via CPU registers because of the deep call stack
incurred by JavaScript engine and script debugger. To avoid unintended depen-
dencies, the slicer clears the register sinks at the end of the slicing for every
JavaScript statement. During our experiments (Sect. 5), we found the above fil-
ters good enough to reduce the dependency-explosion problem without missing
any required statements.

4.2 JavaScript Slicing

The output of binary tracer provides the slicing sources for the JavaScript slicer.
Suppose binary slice S contains n instructions. For each instruction Si, let Ji be
the JavaScript statement that represents the context under which Si executes.
Then, the JavaScript slicing sources are O =

⋃n
i=0 Ji. For every JavaScript state-

ment in the slicing sources, we add the object used by this JavaScript statement
to the slicing sources and include this JavaScript statement in the slice. Given
the JavaScript trace, the slicer uses WALA’s [4] slicing algorithm to include all
the related JavaScript statement in the slice.

4.3 Minimized Exploit Script and PoV Generation

The statements are first simplified and then embedded into the exploit HTML
page to obtain the minimized exploit. Also, the identified executable payload is
replaced by an amicable payload to obtain a PoV in the form of a test case for
the Metasploit framework.

Simplification. As a final step, JScalpel performs constant folding and dead-
code elimination at JavaScript level to simplify the slice. It is focused on strings
and constants. Specifically, for each variable v, the definitions are propagated
to the uses. This is repeated for all the variables in all the statements until
no more propagations are possible. Finally, if a definition of a variable has no
more uses, the definition is considered dead-code and is removed only if the
statement is not a source for the JavaScript slicing. This distinction is important
because, the need for slice sources is already established from binary slicing. The
resulting processed script is used to exploit the browser and is accepted only if the
exploitation succeeds. Finally, all the statements in the script that are not a part
of the slice are removed. During our experiments, we found that the simplicity of
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simplification incorporated by JScalpel is sufficient to bring about significant
reduction in the sizes of the scripts as highlighted in Sect. 5.

Fig. 6. CVE-2012-1876: ROP- and executable-payloads within the same string.

Collocated ROP and Executable Payloads. In some exploits, the payload
and the ROP-gadgets are contained within the same string or array. For exam-
ple in Fig. 6 the same string contains both ROP-payload and the executable
shellcode. In such cases, JS-Binary analysis identifies the statement as both
exploit and payload statement. This is an expected behavior. However, in order
to replace the payload to generate the PoV, we must precisely identify the loca-
tion of the start of the payload within the string. First, the JavaScript string
that contains the payload is located in the memory. Then, from the payload-
slice source we obtain the address of the entry point of the payload. Binary
slicing from the payload-slice source leads us to the offset within the JavaScript
string that corresponds to the payload. The substring beginning from the offset
is replaced for PoV generation.

ROP-Only Payload. Shacham [29] showed that a set of Turing complete gad-
gets can be created using program text of libc. Though we cannot find any
instances of ROP-only payload during our experiments, it is possible to compose
the entire payload using only ROP-gadgets without any executable payload.
Since JScalpel can locate the ROP-only payload precisely, a straightforward
way is to replace malicious ROP-only payload with benign ROP-only payload.

JScalpel can generate dependent JavaScript statements in the script for any
given binary-level source and the JS-Binary trace. Along with the exploit point
and the payload entry point, CFI component of JScalpel captures multiple
violations caused due to the ROP-gadget chain as separate binary-level slicing
sources. The sources are then subject to multi-level tracing the slicing to extract
the payload in JavaScript.

Disjoint Payload. Detecting the entry point of executable payload is sufficient
to replace the payload and generate the PoV. However, sometimes an analyst
may want to locate the entire executable payload. This is not a problem if the
payload is allocated by the same string in the JavaScript. However, it is not
necessary to be so.

JScalpel can only detect an executable payload when it executes. Therefore,
it is unaware of all the various fragments of payload that may be injected into
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the memory. As a result, JScalpel will only be able to detect the JavaScript
statement (and all its dependencies) that injects the entry point of the payload.
It may miss some JavaScript statements that inject non-entry point payload if
such statements are disjoint with the JavaScript statements that inject the entry
point, and the sources for those statements are missing. Note that this is not
quite a limitation for JScalpel, because the payload entry point is sufficient
to generate a PoV. One way to increase the amount of payload recovered is
for the CFI module to allow the payload to execute longer and capture more
binary-level sources for the payload.

5 Evaluation

We evaluate JScalpel on a corpus of 15 exploits. These samples exploit the
vulnerabilities discovered from 2009 to 2013 and target at Internet Explorer
6/7/8. In contrast to the large number of browser vulnerabilities discovered
every year, this sample set is relatively old and small. The reasons are twofold.
First, DECAF leveraged by JScalpel is based on emulator QEMU and only
supports 32-bit operating system. Not all of the exploits can function correctly
on DECAF. Second, it is difficult to collect working exploits although many
vulnerabilities are discovered every year. We went over Internet Explorer related
exploits in Metasploit, and tried to set up a working environment for each of
them. We were able to set up 15 exploits on the real hardware. The remaining
exploits either require specific browser/plugin versions that we were unable to
find, or do not use JavaScript to launch the attacks. We then tested these 15
exploits on DECAF and 9 of them worked correctly. The 6 exploits failed to
work on DECAF, because they exhibited heavy heap spray behavior, which
could not finish within a reasonable amount of time in DECAF. Based on a
whole-system emulator QEMU, DECAF translates a virtual memory address
into its corresponding physical address completely in software implementation,
and thus is much slower than the MMU (Memory Management Unit) in a real
CPU. In the future, we will replace DECAF with Pin to avoid this expensive
memory address translation overhead. We also crawled the Virustotal with the
keyword “exploit type:html”, and finally found 2 functional exploits on DECAF.
In addition, from 16 exploit kits used in EkHunter [14], we managed to get
4 functional exploits from exploitkit, Siberia and Crimepack. As a result, our
testset includes 9 exploits from Metasploit framework, 4 exploits from 3 different
exploit kits and 2 wild exploits.

To identify the CVE number of exploits from exploit kits and wild, we ran
JScalpel to extract exploitation component first and then manually searched
Metasploit database and National Vulnerability Database [3] for a match. While
CVE-2012-1889 exploits the vulnerability in msxml.dll, all the remaining sam-
ples exploit mshtml.dll.

Though we evaluated JScalpel on Internet Explorer only, potentially it can
work on other browsers or any other programs (e.g., Adobe Reader) that have
JavaScript debug interface. The experiments were performed on a server running
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Ubuntu 12.04 on 32 core Intel Xeon(R) 2 GHz CPU and 128 GB memory. The
code comprises of 890 lines of Python, 2300 lines of Java and 4000 lines of C++.

5.1 Minimizing Exploits

Table 1 presents the results for exploit analysis. Given one exploit, we first ran
JScalpel to get the multi-level trace and CFI violation point. Then multi-level
slicing was conducted to yield exploitation component and payload injection
component. Based on this knowledge, our experiments demonstrate that for
each exploit, JScalpel was able to generate a simplified exploit and PoV which
were able to successfully exploit the vulnerability and launch the payload.

Exploitation Analysis. The binary-level slicing was conducted on the multi-
level trace starting from the CFI violation point. It mapped binary level slicing
results to JavaScript statements with the help of JS-binary map. The number of
JavaScript statements identified by binary-level analysis is listed in Column I.

Table 1. Exploit analysis results

Source CVE Exploitation component Payload injection Simplified exploit

I II III IV V VI VII VIII IX X

Metasploit 2009-0075 9 6 � 17 � 14 30 30 0.00

2010-0249 3 6 ✗ 19 � 10 45 22 0.51 b c

2010-0806 2 10 � 10 � 14 803 13 0.98 a c b

2010-3962 1 1 � 1 � 15 105 17 0.83 a c b

2012-1876 32 1 ✗ 30 � 14 67 47 0.30 a c b

2012-1889 1 2 � 2 � 67 77 77 0.00

2012-4969 16 1 ✗ 8 � 53 117 70 0.40 b c

2013-3163 9 1 ✗ 13 � 32 43 42 0.02 a b d

2013-3897 26 1 ✗ 41 � 23 187 63 0.66 d

Wild 2011-1255 40 1 ✗ 16 � 26 97 44 0.55 a b e

2012-1889 1 2 � 2 � 27 53 12 0.77 a b e

exploitkit 2010-0806 2 6 � 6 � 13 109 29 0.73 b c

Siberia 2010-0806 2 6 � 6 � 12 103 22 0.79 a b c

Crimepack 2010-0806 2 1 ✗ 6 � 11 198 30 0.85 a b c

2009-0075 4 6 ✗ 12 � 12 36 33 0.08 a b c

I. # of JS slicing sources.
II. # of stmts from JS analysis only.
III. Can stmts from JS-only analysis cause crash?
IV. # of stmts from JS-Bin analysis
V. Can stmts from JS-Bin analysis cause crash?
VI. # of stmts from JS-Bin analysis
VII. # of unique JS stmts of original exploit.
VIII. # of unique JS stmts of simplified exploit
IX. potency of minimization.
X. Obfuscation & fingerprinting Techniques. (a: Randomization Obf. b: Data Obf. c: Encod-

ing Obf. d: Logic Structure Obf. e: Fingerprinting tech)
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They were used as the slicing sources for JavaScript level slicing. This multi-level
slicing extracted the exploitation related statements the number of which were
listed in Column IV. Column V shows if the extracted statements can crash
the browser. For the exploits with the same CVE number like CVE-2009-0075
and CVE-2010-0806, the results of Column IV can be different due to the differ-
ent implementation of exploitation. But we can see that for all of the exploits,
the extracted statements can crash the browser, meaning that the semantics of
exploitation component are preserved.

In comparison, the JavaScript-level only analysis cannot achieve this as pre-
sented in Column II and III. Column II lists the number of JavaScript statements
obtained from backward slicing only at the JavaScript level starting from the
statement that causes the first CFI violation. Column III indicates if the state-
ments extracted from JavaScript-level slicing can cause the browser to crash. We
can see that for 8 out of 15 exploits, the extracted statements do not cause a
crash, which means these exploits are overly simplified in these cases. For the
exploits with the same CVE number like CVE-2010-0806 and CVE-2009-0075,
the JavaScript-level only analysis results were different, because the different
obfuscation techniques used in these exploits introduced or eliminated unex-
pected dependency at JavaScript level.

Payload Injection. The CFI violation information provides the exact location
of the payload in memory. The multi-level slicing yields the payload injection
statements of which the number is listed in Column VI of Table 1. Column 3
in Table 2 lists the payload definition statements. For each of the exploit, our
JS-Binary analysis was able to precisely pinpoint the payload injection
statements for PoV generation. By contrast, solutions like JSGuard [16] or
NOZZLE [26] cannot do the same, because they lack the JavaScript context
and can only pinpoint the payload in the memory. Solutions by scanning the
exploit code directly cannot always identify the correct payload injection state-
ments since the payload is often obfuscated.

Minimized Exploit. For each of the exploits, we combined the payload injec-
tion statements (Column VI) with the exploitation component (Column IV) to
generate a minimized working exploit. In the experiment, we observed that each
minimized exploit was indeed functional, meaning that it can exploit the vulner-
ability and launch the payload successfully. The Column VII lists the number of
unique JavaScript statements observed at the execution of the original exploit.
Column VIII lists the number of unique JavaScript statements observed in the
execution of the minimized exploit.

The minimized exploit excludes the JavaScript statements that belong to
obfuscation code or fingerprinting code. We characterize those codes in Col-
umn X of Table 1. They cover different obfuscation or fingerprinting techniques.
These techniques are designed to bypass the detection tool and make the analysis
challenging. So the minimized exploit can ease the manual analysis process by
removing these JavaScript statements. To quantify the degree of code complexity
reduction in these minimized exploits, we adopt a metric called “potency of min-
imization” from an existing work [10]. A minimization is potent if it makes the
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Table 2. Payload analysis results. All exploits provide a single JavaScript statement
from the binary perspective, which is the context in which the exploiting instruction
executes.

Source CVE Payload definition stmt I II

Metasploit 2009-0075 var shellcode = unescape(“%u1c35%u90a8%u3abf...”) 3024 ✗

2010-0249 var LLVc = unescape(“%u1c35%u90a8%u3abf%u..”) 3024 ✗

2010-0806 var wd$ = unescape((function(){return “%u4772%u9314%u9815...”})) 3072 ✗

2010-3962 var shellcode = unescape(“%u0c74%ud513%uf...”) 3072 ✗

2012-1876 for (var a3d = unescape(“%uec01 %u77c4 %u...”),...) 3072 �
2012-1889 var code = unescape(“%uba92%u91b5%ub0b1...”) 3072 ✗

2012-4969 var GBvB = unescape(“%uc481%uf254%uffff...”) 618 ✗

2013-3163 p += unescape(“%ub860 %u77c3 %ud038...”) 36696 �
2013-3897 sprayHeap({shellcode:unescape(“%u868a%u77c3...”}) 696 �

Wild 2011-1255 var sc = unescape(“%u9090%u9090%u9090%u1c3...”) 3024 ✗

2012-1889 var mmmbc=(“Data5756Data3352Data64c9...) 2880 ✗

Exploitkit 2010-0806 var qq = unescape(“%ucddb%u74d9%uf424%u...”) 649 ✗

Siberia 2010-0806 var qq = unescape(“!5350!5251!..”.replace(...”) 1750 ✗

Crimepack 2010-0806 var rktchpv= unescape(“%u06b8%u5c67%udae4...”) 648 ✗

2009-0075 var ysazuzbwzdqlr=unescape(“%u06b8%u5c67%u...”) 648 ✗

I. Payload Length II. Collocated payload?

minimized program P ′ less obscure ( or complex or unreadable) than the origi-
nal program P . we choose the number of unique JavaScript statements observed
in the execution as the metric because it represents the number of inspected
statements by an analyst. This is formalized in the following definition:

Definition 1 (Potency of Minimization). Let U(P ) be the number of unique
JavaScript statements observed at the execution of P . τpot, the minimization
potency with respect to program P , is a measure of the extent to which the
minimization reduces the obscurity of P . It is defined as

τpot
def= 1 − U(P ′)

U(P ) .

On average, the minimization potency was 0.498, which means we were able
to eliminate 49.8 % of statements in the trace, whereas the maximum is 0.98. The
potency of minimization of CVE-2009-0075 and CVE-2012-1889 from Metas-
ploit are both 0, because no obfuscation techniques are applied to them. We did
observe that for the exploits from the wild and exploit kits, the average potency
of minimization (0.63) was higher than that (0.41) for the exploits from Metas-
ploit. This means that it is generally more difficult to analyze the real world
exploits.

5.2 PoV Generation

PoV generation is an end result of payload analysis. By replacing the payload
in the minimized exploit with a benign one, a PoV is generated for penetration
test. Column 3 in Table 2 lists the payload definition statements, where the pay-
load content is first introduced or defined in the JavaScript code. The definition
statement is usually accompanied with other statements required to inject the
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Table 3. Effects of filtering on exploit analysis.

Source CVE Unique # # JS after No Stack Module All

JS stmts pre-processing filter filter filter filters

Metasploit 2009-0075 30 30 30 14 28 9

2010-0249 45 32 32 4 32 3

2010-0806 803 27 27 13 27 2

2010-3962 105 17 16 16 16 1

2012-1876 67 51 50 41 50 32

2012-1889 77 78 78 2 77 1

2012-4969 117 77 77 16 75 16

2013-3163 43 43 41 4 41 9

2013-3897 187 64 64 26 64 26

Wild 2011-1255 97 66 66 45 66 40

2012-1889 53 53 51 1 1 1

Exploitkit 2010-0806 109 32 31 31 31 2

Siberia 2010-0806 103 27 26 26 26 2

Crimepack 2010-0806 198 195 194 22 194 2

2009-0075 36 35 25 5 5 4

payload. Payload length (Column 4 in Table 2) is the size of the payload that
was identified. In one of the samples (CVE-2013–3163), the encoder was embed-
ded within the payload and therefore, the size of the payload was much larger
than other exploits. In 3 out of 15 exploits, we found the ROP and executable
payloads to be collocated within the same string. In each exploit, the payload
was replaced with a benign payload and a PoV was generated.

5.3 Effects of Filtering

The filters help to exclude the unexpected dependencies. In Table 3, we evaluated
the effects of filtering on minimizing exploits. We found that preprocessing is
effective in cases where the scripts are obfuscated because, during obfuscation,
multiple statements are used to accomplish the tasks of a single statement like
eval. Column 3–4 lists the number of the unique JavaScript statements in the
slicing results under different filter configurations. With no filters, we did not
find any significant reduction in the slicing results. This emphasizes the need for
filtering. Stack Filter and Module Filter individually produced varying amount of
size reduction depending on the exploit, but in general, the combination proved
to be most effective. For example, for CVE-2010-3962, the combination of all
the filters reduced the number of statements to a single statement, while none
of the filters were individually effective.
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5.4 Case Study – CVE-2011-1255

In order to highlight the advantages of JScalpel, we perform a study of the wild
exploit, CVE-2011-1255 [2], which exploits a “Time Element Memory Corruption
Vulnerability” of the Timed Interactive Multimedia Extension implementation
in Microsoft Internet Explorer 6 through 8. The exploit (MD5:016c280b8f1f155
80f89d058dc5102bb) targets Internet Explorer 6 on Windows XP SP3. Given the
exploit sample, JScalpel successfully generated the minimized exploit code,
payload injection code and penetration test template for Metasploit. We would
like to highlight that a sample for CVE-2011-1255 was previously unavailable on
Metasploit DB and JScalpel was able to generate one.

Simplified Exploit Statements JScalpel loads the simplified page and
logs the JS-Binary trace until the CFI violation-point (detailed in Fig. 7) is
reached. The violation point 1© represents the hijacked control flow transfer
from 0x7ddd44a1 to the payload location 0x0c0c0c0c through an indirect call
instruction – call DWORD[ecx+0X8]. Note that the exploit does not contain
any ROP-gadgets and that the entire payload is executable. From the violation,
either ecx or [ecx + 0x8] may be manipulated by the attacker and therefore
both will have to be considered as possible slicing sources. From the memory
IO log (point 2©), the location of [ecx+0x8] is extracted as 0x0c0c0c14. Both
ecx and the memory location 0x0c0c0c14 are provided as the slicing sources for
the binary-level slicer to uncover the implicit data dependency pertaining to the
exploit.

The binary level slicer identified 40 JavaScript level sources. JavaScript slicer
included an additional 64 statements to generate the simplified exploit. Using
the simplified exploit), we were able to trigger the vulnerability in IE 6.

Fig. 7. CFI violation point

Simplified Payload-Injection Statements and Payload Location Sim-
ilar to simplifying the exploit statements, JScalpel uses payload location
0x0c0c0c0c as the slicing source for identifying the payload-injection statements,
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and gathers the simplified statements. The binary-level slicer confirmed the state-
ment 36: a[i] = lh.substr(0, lh.length) as the JavaScript statement that
injects payload into memory. Then, this statement was used as the slicing source
for JavaScript-level slicer. Finally, JScalpel identified all the payload injection
JavaScript statements. )

The payload is located at 0x0c0c0c0c. Therefore, JScalpel extracts the
page at 0x0c0c0c0c to analyze the payload. JScalpel first trims the padding
instruction like nop from the payload. Next, JScalpel compares it with the con-
stant strings in the payload injection JavaScript statements to identify the exact
payload string. JScalpel identified (var sc = unescape(‘‘%u9090 %u9090 %u90
90 %u9090 %u1c35 %u90a8 %u3abf%ub2d5....’’)) as the JavaScript statement
containing the payload. Since the entire payload is executable, JScalpel replaced
the entire payload to generate the Metasploit test case. We generate a Ruby tem-
plate script ) for Metasploit framework, and we were able to successfully test it on
Internet Explorer 6 on Windows XP SP3.

6 Discussion

Vulnerabilities Within Filtered Modules. If the vulnerability exploited
exists within the filtered modules, the slicer produces the incomplete slice. Cur-
rent implementation of JScalpel can not detect exploits that target the filtered
modules. In the future, fine-grained analysis can be applied on these modules
to determine which part of the code introduces the dependency and then limit
the filter from whole module to some specific code range. This will reduce the
number of vulnerabilities that JScalpel cannot handle.

Debug-Resistant JavaScript. In order for JScalpel to be able to analyze a
script, it is important that JScalpel executes the program and monitors from
the debugger. Though we did not find any samples that can detect debuggers, it
is possible that exploits could use techniques (e.g., timing-based) to determine if
a debugger is running and hide the malicious behavior. Currently, JScalpel is
vulnerable to such attacks. It would be an interesting future work to reconstruct
JavaScript-level semantics directly from the Virtual Machine Monitor, similar
to how DroidScope [35]) recovers Java/Dalvik level semantic view.

Impact of JIT-Enabled JavaScript Engine on JScalpel. When JIT is
enabled on JavaScript engine, the data flow within JavaScript engine becomes
more complex because of the mixture of code and data. JScalpel may not work
in this case. Since JScalpel is designed as an analysis tool and is not perfor-
mance sensitive, the analyst can simply disable the JIT engine. However, this
workaround would sacrifice the capability of analyzing attacks that perform JIT
spray, as these attacks rely on the side-effects of the JIT compiler. We leave it
as future work to address this issue.
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7 Related Work

Drive-by-download Attacks. The drive-by-download attacks drive the emer-
gence of “Exploit-as-a-Service” paradigm on the malware ecosystem [15].
Machine learning based approaches [6,11,13,25,32] and honeypot based app-
roach [33] for large scale analysis have been explored to detect the mali-
cious web pages. JShield [8] proposed a vulnerability-based approach, which
uses opcode vulnerability signature to match drive-by-download attacks. NOZ-
ZLE [26] detects the existence of shellcode to identify heap spray attacks
launched by malicious web pages. ZOZZLE [12] uses Bayesian classification of
hierarchical features of the JavaScript abstract syntax tree to identify syntax ele-
ments that are highly predictive of malware. BLADE [22] focuses on the client
side approach by preventing unconsented content execution, which is the ulti-
mate goal of drive-by-download attacks.

Exploit Diagnosis. PointerScope [38] uses type inference on binary execu-
tion to detect the pointer misuses induced by an exploit. ShellOS [31] built a
hardware virtualization based platform for fast detection and forensic analysis
of code injection attacks. Dynamic taint analysis [23] keeps track of the data
dependency originated from untrusted user input at the instruction level, and
detects an exploit on a dangerous use of a tainted input. explored whole system
taint tracking for malware analysis. Chen et al., [9] showed that pointer taint-
edness analysis can expose different classes of security vulnerabilities, such as
format string, heap corruption, and buffer overflow vulnerabilities. pinpoints the
guilty bytes in polymorphic buffer overflows on heap or stack by tagging data
from network with an age stamp. However, it is not feasible for complex attacks
launched using JavaScript code.

Malicious JavaScript Analysis. To deobfuscate malicious JavaScript, Kol-
bitsch et al., [20] uncover environment-specific malware by exploring multiple
execution paths within a single execution. Previous work [11,17,21] execute
JavaScript using an emulated JavaScript running environment and acquire de-
obfuscated JavaScript. Our solution adopts the real browser environment and can
defend most of the obfuscation techniques. JSGuard [16] proposed a methodology
to detect JS shellcode that fully uses JS code execution environment information
with low false negative and false positive. [21] simplify the obfuscated JavaScript
code by preserving the semantics of the observational equivalence. However, the
simplified JavaScript code may not exploit the vulnerability of web browser due
to oversimplification. Our combined analysis can identify the JavaScript code
contributing to exploit and avoid over simplification.

8 Conclusion

We presented JScalpel, a framework that combines JavaScript and binary
analyses to analyze JavaScript exploits. Our multi-level tracing bridges the
semantic gap between the JavaScript level and binary level to perform dynamic
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JS-Binary analysis. We analyzed 15 JavaScript exploits, 9 memory corruption
exploits from Metasploit , 4 exploits from 3 exploit kits and 2 exploits from the
wild and successfully recover the payload and a minimized exploit for each of
the exploits.
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