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ABSTRACT
Dynamic binary analysis is a prevalent and indispensable
technique in program analysis. While several dynamic bi-
nary analysis tools and frameworks have been proposed, all
suffer from one or more of: prohibitive performance degra-
dation, semantic gap between the analysis code and the
program being analyzed, architecture/OS specificity, being
user-mode only, lacking APIs, etc. We present DECAF, a
virtual machine based, multi-target, whole-system dynamic
binary analysis framework built on top of QEMU. DECAF
provides Just-In-Time Virtual Machine Introspection com-
bined with a novel TCG instruction-level tainting at bit
granularity, backed by a plugin based, simple-to-use event
driven programming interface. DECAF exercises fine con-
trol over the TCG instructions to accomplish on-the-fly op-
timizations. We present 3 platform-neutral plugins - In-
struction Tracer, Keylogger Detector, and API Tracer, to
demonstrate the ease of use and effectiveness of DECAF in
writing cross-platform and system-wide analysis tools. Im-
plementation of DECAF consists of 9550 lines of C++ code
and 10270 lines of C code and we evaluate DECAF using
CPU2006 SPEC benchmarks and show average overhead of
605% for system wide tainting and 12% for VMI.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation, Security

Keywords
Dynamic binary analysis, dynamic taint analysis, virtual
machine introspection

1. INTRODUCTION
Dynamic binary analysis has demonstrated its strength in

many research problems, such as malware analysis, protocol
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reverse engineering, vulnerability signature generation, soft-
ware testing, profiling and performance optimization, etc.
There are many analysis platforms for process-level binary
instrumentation, such as Pin [15] and Valgrind [16].

Compared to process-level program instrumentation and
analysis, whole-system dynamic binary analysis has its unique
advantages. First, it provides a full system view, including
the OS kernel and all running applications. So, we can ana-
lyze kernel activity and the interactions among multiple pro-
cesses. Second, the code instrumentation and analysis are
performed completely from outside of the virtual machine
(VM). In contrast, user-level instrumentation tools share
the same memory space as the instrumented program execu-
tion. Whole-system dynamic binary analysis provides better
transparency and stronger isolation than that of process-
level instrumentation tools. This is especially important in
the context of analyzing malicious code that attempts to
detect, evade, and tamper with the analysis environment.

Although much research has been done to make use of
whole-system dynamic binary analysis to solve various secu-
rity problems [3, 18, 6, 4, 25, 26], little attention has been
paid to the analysis framework itself. Such tools are of-
ten tailored to solve specific problems in ad-hoc manners.
Many times, analysts still must develop new analysis tools
from scratch to meet their own needs.

Building a generic, whole-system dynamic binary analysis
platform that suits various needs is desirable, but challeng-
ing. For example, previous work in this area, TEMU [21]
in the BitBlaze binary analysis toolkit [20], provides a rich
set of capabilities and has facilitated many binary analysis
research projects. However, many of its design and imple-
mentation choices are fairly ad-hoc and cumbersome. So, it
can only “Make It Work”. From time to time, TEMU falls
short in analysis capability, correctness, and efficiency.

In this paper, we present DECAF1, a new whole-system
dynamic binary analysis platform that aims to “Make It
Work, Make It Right, Make It Fast”. This means that DE-
CAF must not only provide the same set of capabilities as
TEMU, but it must follow the proper principles in its de-
sign. DECAF offers analysis results of better quality, and
with a higher correctness guarantee, than TEMU while still
conducting analyses more efficiently. Particularly, in DE-
CAF, we overcome the following key challenges in building
a whole-system dynamic binary analysis platform:

1DECAF stands for Dynamic Executable Code Analysis
Framework.
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1. How to reconstruct fresh OS-level semantic view
completely from outside? As we run a virtual machine
inside a whole-system binary analysis framework and per-
form various analysis tasks from outside, we have to recon-
struct the OS-level semantic view of the virtual machine
from outside, which is called Virtual Machine Introspec-
tion (VMI). Several efforts (such as VMWatcher [22], Vir-
tuoso [9], and VMST [10]) have been made to bridge the
semantic gap. These systems have answered how to recon-
struct the OS-level semantic view. However, the question of
“when to reconstruct” is not addressed. In a running system,
the OS-level semantic views keep changing (e.g., a process
starts or terminates, a code module is loaded or unloaded).
For dynamic analysis, we need to know these new events
“just-in-time”. TEMU circumvented this problem by insert-
ing a kernel module into the guest OS within the VM. This
kernel module hooks several system events, retrieves the OS-
level information, and passes it to the hypervisor through a
spare port. This circumvention clearly violates the external
monitoring principle for VMI and can be easily subverted
by the malicious code inside the VM. In DECAF, we find
a better solution to reconstructing fresh OS-level semantic
view by only monitoring hardware-level events.

2. How to provide an event-based programming
paradigm that is both correct and efficient? Most
of the existing analysis platforms provide instrumentation
interfaces only, by which a plugin can specify which instruc-
tions to instrument and what instrumentation code should
run. While this instrumentation interface is simple and
flexible, it leaves the burden to the plugin developers to
decide how to instrument the program execution. While
this approach is acceptable for user-level instrumentation,
it is difficult for a whole-system setting, because in order
to know how to properly instrument the whole-system exe-
cution, the analyst must be familiar with low-level system
details, such as exceptions, interrupts, page faults, context
switches, etc. Therefore, DECAF provides an event-based
interface, through which the analyst can register for events
in the selected contexts (e.g., a process, the kernel space, or
a kernel module). Under the hood, DECAF takes care of
what instrumentation code to insert and where, and it en-
sures that the inserted instrumentation code is correct and
efficient. TEMU was also aimed to provide the same high-
level interface, but achieved it in a naive way: it inserts
instrumentation code uniformly in all the translated code
blocks and decides at execution time whether to deliver the
events to the plugin. It guarantees the correctness of event
processing, but incurs unnecessarily high runtime overhead.

3. How to implement precise and lossless tainting?
Dynamic taint analysis (tainting) is a powerful dynamic bi-
nary analysis technique. There have existed many imple-
mentations [20, 5, 17, 19, 2]. Among all these implementa-
tions, two important factors are overlooked. Most of these
implementations are not precise enough, and some of them
are not even sound. This means that these taint analysis
systems would unnecessarily mark many memory locations
as tainted (overtainting) and also fail to taint certain mem-
ory locations and CPU registers that are supposed to be
tainted (undertainting). Moreover, often times, we need to
keep track of tainted data from multiple taint sources (la-
bels). Many taint analysis implementations do not distin-
guish among multiple taint labels. For the ones that do keep
track of multiple taint labels, they do not provide a lossless

guarantee. Each tainted byte or word is associated with up
to a small number of tainted labels, due to the space con-
straint of the shadow memory. When a memory location or
CPU register is tainted from more tainted sources than those
that can be kept in the shadow memory, the rest are lost!
To achieve high precision, DECAF maintains bit-level preci-
sion taint information for every bit of registers and memory
locations and applies precise tainting rules for most instruc-
tions at the intermediate representation level. To achieve
the lossless requirement without sacrificing efficiency, DE-
CAF pushes the taint label propagation off the main code
execution stream, and keeps track of taint labels in an asyn-
chronous manner via detailed logging using its plugins.

4. How to provide strong support for cross-platform
analysis? Ideally, we would like to have the same analy-
sis code (with minimum platform-specific code) to work for
different CPU architectures (e.g, x86 and ARM) and dif-
ferent operating systems (e.g., Windows and Linux). It re-
quires that the analysis framework hide the architecture and
operating system specific details from the analysis plugins.
Further, to make the analysis framework itself maintainable
and extensible to new architectures and OSes, the platform-
specific code within the framework should also be minimized.
Note that this cross-platform support includes both the ar-
chitecture of the VM and the OS running within the VM.
Some instrumentation tools, like Pin [15], can run in both
Linux and Windows, but, until now, no analysis tools can
provide support for both multiple architectures and multiple
OSes. DECAF provides support for multiple platforms by
implementing core instrumentation and analysis tasks in the
intermediate representation layer (independent of the CPU
architecture of the VM). DECAF’s plugin API is engineered
to hide many architecture and OS specific details.

DECAF is an open-source project [7]. Since the release of
its first version in January 2013, it has received over 3500
downloads. A handful of analysis plugins have also been
built on top of it to demonstrate the power of this frame-
work. We showcase three plugins to demonstrate how DE-
CAF enables and solves various binary analysis problems.
By hooking the entries and exits of APIs specified in a con-
figuration file, API Tracer is able to trace the API invoca-
tions of a specified process and the processes spawned from
it. Keylogger Detector tracks tainted keystrokes propagating
throughout the OS kernel and across user-level processes to
detect keyloggers. Instruction Tracer logs instructions exe-
cuting within a specified context (such as a user-level pro-
cess, or a kernel module). These plugins are mostly platform
neutral. Since DECAF provides a platform-independent
programming interface, these plugins can analyze binary
executables for multiple hardware architectures (including
x86 and ARM) and multiple OSes (including Windows and
Linux), requiring no, or very minimal, platform-specific code.

2. SYSTEM OVERVIEW
Generally speaking, a virtual machine is running on top of

DECAF (an “enhanced” QEMU [1]). QEMU makes use of
dynamic binary translation techniques to emulate multiple
target architectures.

2.1 Architecture
Figure 1 illustrates the overall architecture of DECAF.

Inside the virtual machine, we can run the programs of in-
terest and conduct various analyses externally via analysis
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Figure 1: The overall architecture of DECAF.

plugins. To provide various analysis capabilities, DECAF
gets involved extensively with the dynamic binary transla-
tion process, which is detailed in Section 3. DECAF has the
following key components:

Just-In-Time VMI. This VMI component is able to re-
construct a fresh OS-level view of the virtual machine, in-
cluding processes, threads, code modules, and symbols, to
support binary analysis. Further, to support multiple archi-
tectures and operating systems, it follows a platform-neutral
design principle. The workflow for extracting OS-level se-
mantic information is common across multiple architectures
and OSes. The only platform-specific handling lies in what
kernel data structures and what fields to extract information
from. We present more details about VMI in Section 4.

Precise, lossless dynamic taint analysis. DECAF
ensures precise tainting by maintaining bit-level taint pre-
cision for CPU registers and memory, and inlining precise
tainting rules in the translated code blocks. Thus, the taint
status for each CPU register and memory location is pro-
cessed and updated synchronously during the code execu-
tion of the virtual machine. The propagation of taint labels
is done in an asynchronous manner for two reasons: 1) it
is impractical and expensive to maintain unlimited amount
of labels for each tainted bit in the shadow memory; and 2)
for most taint analysis problems, we do not need to know
tainted labels for all tainted bits in real time. We are only
interested in a small amount of tainted data (e.g., tainted
EIP or a tainted buffer), and when they become tainted, we
can then trace back through the taint propagation log and
retrieve their labels. By implementing such a tainting logic
mainly in the intermediate representation level (more con-
cretely, TCG instruction level), it becomes easy to extend
tainting support to a new CPU architecture. Section 5 pro-
vides more details about our taint analysis implementation.

Event-driven programming interface. Compared to
many of existing analysis frameworks [15, 16] that provide
just the instrumentation interface, DECAF provides an event-
driven programming interface. It means that the paradigm
of “instrument in the translation phase and then analyze
in the execution phase” is invisible to the analysis plugins.
The analysis plugins only need to register for specific events
and implement the corresponding event handling functions.
The details of code instrumentation are taken care of by the
framework. Such details include how to generate the instru-
mentation code for inserting these event handlers into the
translated code stream and how to maintain instrumentation
code consistency when new event handlers are registered and
old ones are removed.

Dynamic instrumentation management. To reduce
runtime overhead, the instrumentation code is inserted into
the translated code only where necessary. For example,
when a plugin registers a function hook for a function’s en-

try point, the instrumentation code for this hook is only
placed once (at the function entry point). When the plu-
gin unregisters this function hook, the instrumentation code
will also be removed from the translated code accordingly.
To ease the development of plugins, the management of dy-
namic code instrumentation is completely taken care of in
the framework, and thus invisible to the plugins.

1. plugin_interface_t my_interface;
2. DECAF_Handle keystroke_cb_handle = DECAF_NULL_HANDLE;
3. DECAF_Handle handle_read_taint_mem = DECAF_NULL_HANDLE;
4. int taint_key_enabled = 0;

5. void my_read_taint_mem(DECAF_Callback_Params *param) {
6. char name[128];
7. tmodinfo_t tm;
8. if(VMI_locate_module_c(DECAF_getPC(cpu_single_env),

DECAF_getPGD(cpu_single_env),name,&tm) == 0)
9. DECAF_printf("INSN 0x%08x From Module %s Read Keystroke\n",

DECAF_getPC(cpu_single_env),tm.name);
}

10. void my_send_keystroke_cb(DECAF_Callback_Params *params) {
11. *params->ks.taint_mark = taint_key_enabled;
12. taint_key_enabled = 0;
13. DECAF_printf("taint keystroke %d \n", params->ks.keycode);

}
14. void do_taint_sendkey(Monitor *mon,const QDict *qdict) {
15. if (qdict_haskey(qdict, "key")) {
16. taint_key_enabled = 1; //enable keystroke taint
17. do_send_key(qdict_get_str(qdict, "key")); //Send the key

}
}

18. mon_cmd_t my_term_cmds[] = {
{

19. .name = "taint_sendkey",
20. .args_type = "key:s",
21. .mhandler.cmd = do_taint_sendkey,
22. .params = "taint_sendkey key",
23. .help = "send a tainted key to system"

},
{NULL, NULL, },
};

24. void my_cleanup(){......}
/* Register the plugin and the callbacks */

25. plugin_interface_t * init_plugin() {
26. my_interface.mon_cmds = my_term_cmds;
27. my_interface.plugin_cleanup = my_cleanup;
28. handle_read_taint_mem = DECAF_register_callback(

DECAF_READ_TAINTMEM_CB, my_read_taint_mem, NULL);
29. keystroke_cb_handle = DECAF_register_callback(

DECAF_KEYSTROKE_CB, my_send_keystroke, NULL);
30. return &keystroketaint_interface;

}

Figure 2: A sample plugin that keeps track of
tainted keystrokes

2.2 Sample Plugin
Figure 2 presents a sample plugin that detects keyloggers

by tracking the propagation of tainted keystrokes through-
out the entire guest environment. When this plugin is loaded
into the analysis framework, its init_plugin function is
called to initialize the plugin and return a pointer to plu-
gin_interface_t, which specifies a new terminal command
(taint_sendkey) defined by the plugin and a plugin cleanup
function. In addition, the plugin registers two callbacks, one
(my_read_tainted_mem) for a tainted memory read, and the
other (my_send_keystroke) for sending a keystroke.

When the user enters the taint_sendkey command in
the terminal, the registered callback my_send_keystroke is
called and the corresponding keystroke is tainted. There-
after, the tainted keystroke will propagate from the key-
board device, through the OS kernel, and to the destination
user-level program. Since DECAF performs whole-system
dynamic taint analysis, we are able to observe this entire
taint propagation flow. Whenever an instruction reads a
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tainted memory location, the framework will call the regis-
tered my_read_tainted_mem callback, which checks the code
module in which this instruction is located, thanks to our
Just-In-Time VMI support. The relevant information about
this taint event is logged for offline analysis.

It is worth noting that this sample plugin is platform and
OS independent. The same plugin code works for x86 and
ARM, Windows and Linux. Whenever possible, DECAF
provides generic functions to access architecture-dependent
features. For example, DECAF_getPC will return the pro-
gram counter (e.g., EIP in x86 and R15 in ARM), and DE-
CAF_getPGD will return the page table directory (e.g., CR3 in
x86 and CP15 in ARM).

3. SELECTIVE CODE INSTRUMENTATION
To meet the requirements of efficiency and cross-platform

for code instrumentation, DECAF selectively inserts instru-
mentation code at the intermediate representation level.

Dynamic binary translation in QEMU. To support
multiple architectures, QEMU makes use of a compiler back-
end, called Tiny Code Generator (TCG), as its dynamic bi-
nary translation engine. QEMU translates each basic block
of guest instructions into a series of architecture-independent
TCG instructions grouped together as a TCG translation
block (TB). The TCG compiler translates each TB into a
piece of native code to be executed on the host. Figure 3(a)
shows how two x86 instructions are translated into TCG
instructions. TCG instructions include common ALU op-
erations (e.g. add, sub, xor), memory load/store, and con-
trol flow transfer. The parameters for each TCG instruction
can be temporary variables, global variables, and constants.
For more complex, guest-specific instructions (e.g. floating
point operations), a call TCG instruction exists for making
calls to high-level language helper functions that implement
the complex functionality. In this manner, TCG cleanly de-
couples specific details of the guest from that of the host.
Our code instrumentation must work coherently with the
TCG-based dynamic binary translation process.

Placement of code execution events. Events like
“block begin/end” and “instruction begin/end” are used for
tracing program execution. When callbacks for these events
are registered by a plugin, DECAF inserts the proper helper
function calls into the necessary TBs by pausing the guest’s
execution, flushing the necessary TBs, retranslating those
TBs to include calls to the helper functions, and then resum-
ing the guest’s execution. Since callbacks are triggered inline
with the guest’s execution, they are synchronized to the oc-
curance of events of interest. Figure 3(b) shows that the
two helper functions DECAF_invoke_insn_begin_callback
and DECAF_invoke_insn_end_callback are inserted at the
beginning and the end of each guest instruction. For many
analyses, we are only interested in the execution of a small
portion of the system, such as a single kernel module or
user-level process. Plugins can specify ranges of memory ad-
dresses, or even a single address, of interest when registering
for callbacks. Callback helper functions are placed into only
the necessary TBs, and only at the proper locations within
each TB, to capture these events as they occur.

An important design decision here is a dispatch mecha-
nism. For each kind of event (e.g., “block begin”), we only
insert a single helper function (e.g., DECAF_invoke_block
_begin_callback) at each desired program location, and
within the helper function, we will iterate through all the
registered callbacks for that event and decide which call-

// Start of translation block
// Original instruction: orl  %ebx, %eax
mov_i32  tmp11, ebx
mov_i32  tmp12, eax
or_i32   tmp13, tmp12, tmp11
// Original instruction: addl $0x01, %eax
movi_i32 tmp14, $0x01
add_i32  tmp15, tmp14, tmp13
mov_i32  eax, tmp15
// End of translation block
goto_tb  $0x0

(a)

(b)

// Start of translation block
// Insert DECAF_BLOCK_BEGIN callback
movi_i32  tmp21, $<CURRENT_ADDRESS>
movi_i32  tmp22, $DECAF_invoke_block_begin_callback
call      tmp22, $0x0, $0, env, tmp21
// Original instruction: orl  %ebx, %eax
// Insert DECAF_INSN_BEGIN callback
movi_i32  tmp23, $DECAF_invoke_insn_begin_callback
call      tmp23, $0x0, $0, env
mov_i32   tmp11, ebx
mov_i32   tmp12, eax
or_i32    tmp13, tmp12, tmp11
// Insert DECAF_INSN_END callback
movi_i32  tmp24, $DECAF_invoke_insn_end_callback
call      tmp24, $0x0, $0, env
// Original instruction: addl $0x01, %eax
// Insert DECAF_INSN_BEGIN callback
movi_i32  tmp25, $DECAF_invoke_insn_begin_callback
call      tmp25, $0x0, $0, env
movi_i32  tmp14, $0x01
add_i32   tmp15, tmp14, tmp13
mov_i32   eax, tmp15
// Insert DECAF_INSN_END callback
movi_i32  tmp26, $DECAF_invoke_insn_end_callback
call      tmp26, $0x0, $0, env
// End of translation block
// Insert DECAF_BLOCK_END callback
movi_i32  tmp27, $DECAF_invoke_block_end_callback
call      tmp27, $0x0, $0, env
goto_tb   $0x0

Figure 3: DECAF inserts instruction execution call-
backs into the original TCG code stream (a) to cre-
ate an instrumented opcode stream (b) to trigger
helper function calls to plugin callback functions.

backs to trigger. There are two important reasons. The
plugins and the platform itself may altogether register mul-
tiple callbacks on the same event. A dispatch mechanism like
this can avoid inlining repeated helper function calls, which
negatively impacts the performance. More importantly, in
this whole-system emulator, the callback functions inserted
into the code stream are executed within the context of the
entire guest system. For example, instrumentation code in-
serted into a shared library will be executed in all processes
with this library loaded. So, we need the dispatch mech-
anism to decide at execution time if the current execution
context is the correct one for each registered callback.

We also need a mechanism to nicely remove any stale in-
strumentation code. A plugin may frequently register and
remove callbacks at runtime. A common example is func-
tion hooking. A plugin may need to examine the return
value and output parameters when an API call returns. To
do so, the plugin registers a hook on the entrypoint of that
call. When that hook is invoked, the plugin retrieves the
return address of the API call and registers a second hook
on its return address. When the second hook is invoked, the
plugin can inspect the return value and output parameters.
After that, the plugin removes the second hook for efficiency.
Thanks to the dispatch mechanism described above, we no
longer have to immediately remove the second hook , which
involves flushing the corresponding code cache and forcing a
retranslation, which hurts runtime performance. If no call-
backs are associated with an inserted helper function, then
no callbacks will be dispatched, which is expected. This lit-
tle extra function call overhead is several magnitudes smaller
than frequent code cache flushing and retranslation. There-
fore, we postpone the actual code cache flush to a much
later time to improve efficiency. All these are done under
the hood by DECAF.

MMU, IO, and higher-level events. Events like“mem-
ory read/write”and“tainted memory read/write”are related
to the Software Memory Management Unit (in short, SOFT-
MMU) in QEMU. QEMU must translate each guest virtual
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address into a guest physical address, and then translate
that into a host virtual address. Therefore, the instrumen-
tation for MMU-related events is straightforward: the helper
functions are directly inserted in the SOFTMMU code. Of
course, a dispatch mechanism is still needed to properly de-
liver the callbacks to the plugin. Some higher-level events
are derived from these low-level memory events. For exam-
ple, VMI events (such as process creation and deletion) are
derived from the TLB execute miss event.

QEMU emulates a set of common IO devices, such as
hard disks, keyboards, and network cards. We can easily in-
strument the IO events related to these devices by inserting
helper functions inside each virtual device’s implementation.

Dynamic tainting control. A unique feature of DE-
CAF is that it can switch tainting on and off dynamically.
This is particularly important for a whole-system analysis
framework. Due to the considerable runtime overhead of
tainting, we would like to start tainting support only when it
is needed. When a user or plugin requests to switch tainting
on or off, DECAF will flush the entire translation code cache
and instrument the new code blocks under the new settings.
Details of the implementation of tainting instrumentation at
the TCG-instruction level are explained in Section 5.

4. JUST-IN-TIME VMI
As a binary analysis platform, DECAF needs to recon-

struct the following OS-level semantic knowledge of the VM
to facilitate custom analysis tasks “out of the box”: (1)
Process. We need to know what processes are running
in the VM. As many analysis tasks only focus on one or
several user-level processes, the process information is es-
sential. (2) Thread. Many programs are multi-threaded.
Knowing what threads are running within a given process
is also important for many analysis tasks. (3) Code mod-
ules. Within a process’s memory space, a main executable
and several shared libraries are loaded. Binary analysis of-
ten needs to know which code module an instruction comes
from. Thus, this code module information is often required.
(4) Exported symbols. Shared libraries export a list of
functions, such that the other code modules can dynami-
cally link with each other and call these exported functions
by name. Retrieving these exported symbols can greatly
help in understanding a program’s behavior at the API level
(because APIs are exported symbols).

4.1 Goals and Challenges
We have the following design goals for VMI. First of all,

we would like to obtain a fresh view of the guest OS. For
many analysis tasks, we need to know immediately when a
new process is created or a new code module is loaded so
that we can observe a program’s complete execution from
beginning to end. No existing VMI techniques provide such
a strong timing guarantee. In addition, we would like our
VMI technique to be as platform-independent as possible,
as the same technique should work for different CPU archi-
tectures and different OSes with minimal platform-specific
handling. Note that to achieve such a strong timing guar-
antee, one could hook specific system calls (e.g., fork and
exec) or kernel functions. However, this approach is very
OS-specific and often changes across different OS versions.
Last but not least, as a basic functionality required by al-
most every analysis plugin, the performance overhead for
our VMI technique should be minimal. A key challenge for
our VMI technique is to meet both this performance re-

quirement and the strong timing guarantee simultaneously
because we have to monitor certain system events more fre-
quently, which may incur high runtime overhead, to obtain
a fresh view of the guest OS.

TLB Execute Cache Miss

Is PC in Kernel 
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Figure 4: The VMI flowchart

4.2 Solution
We rely on the following observations that commonly hold

true across platforms to achieve just-in-time VMI. First of
all, a process must have its own memory space and each
CPU architecture must have a register to indicate the cur-
rent memory space (e.g., CR3 in x86 and CP15 in ARM), so
we can use this register to identify a new process. Second,
a Translation Look-aside Buffer (TLB) will have an “exe-
cute” cache miss whenever a new code page is loaded and
executed. Third, upon context switch, the old mappings in
the TLB will be flushed. Therefore, our VMI is triggered by
TLB Execute cache misses, because whenever a new process
is created or a new module is loaded, we must capture the
right moment on a TLB Execute cache miss.

Figure 4 illustrates this workflow. Whenever we observe
a TLB Execute cache miss, we will first check if the cur-
rent program counter is in the kernel space. If not, we will
check if the current process is newly created by searching
the current PGD in the process list. If we cannot find it,
this process must be new, so we will traverse the kernel data
structures (i.e., active process list) in the VM to retrieve
information about the newly created process. As you can
see, we only traverse kernel data structures (which can be
a costly operation), when there is a new process. Checking
the existing processes in the hash table takes constant time.

After we locate the right process (either it is already exist-
ing or newly created), we would check if a new code module
is loaded. Again, we have a hash table to quickly check if
the current program counter falls into any code modules that
have been loaded into the current process memory space. If
not, we find a new code module, and we traverse the module
list in the VM to retrieve the information (such as module
name, base address, size) about the new module.

After we locate the current code module (either it is al-
ready loaded or new), we then start to retrieve the exported
symbols of the code modules directly from memory. We
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will need to parse the headers (PE for Windows, and ELF
for Linux) of each code module to extract symbols. Note
that we may not be able to completely retrieve symbols for
a newly loaded module the first time we see it, because the
related pages may not be loaded in the memory at that time.
Therefore, on future TLB Execute misses, we will check this
code module to see if the symbols are available to retrieve.

The symbol extraction process sounds fairly heavyweight
because it requires many memory reads from the VM to
parse executable headers and copy the symbols. However,
we only need to do it once for each code module across all
the processes. Since most code modules are shared libraries,
like .so files in Linux and .dll files in Windows, this overhead
is amortized across the creation of multiple processes.

TLB cache misses cannot help us find the exact moment
when a process has terminated or a module has unloaded. To
find such events, we will periodically traverse the kernel data
structures to find the deleted process objects and unloaded
code modules. In general, these events are not so timing
critical for binary analysis purposes, unlike process creation
and module loading events. So, periodically checking (e.g.,
every 1 or 5 seconds) is acceptable. If for certain problems
we do need to know precise time when such events happen,
the plugins would need to implement their own mechanism,
such as hooking specific functions in the guest execution.

As we can see, this VMI workflow avoids inserting OS-
specific hooks into the VM to obtain a fresh view of the guest
OS, and it also avoids frequent memory reads in the VM.
The only platform-specific knowledge for this VMI workflow
is what kernel data structures to examine and how to inter-
pret the related fields in these kernel data structures. The
definition of these data structures are publically available.
Compared to hooking into system calls and kernel functions,
this approach is more stable. Changes on kernel data struc-
tures are less frequent than code. It is also fairly straight-
forward to extract the data structure information from the
public symbols of guest OSes.

5. PRECISE LOSSLESS DYNAMIC TAINT
ANALYSIS

The primary limitation of all dynamic taint analysis im-
plementations is the runtime performance penalty imposed
upon the guest system under analysis. This penalty becomes
even greater when multiple taint sources are tracked sepa-
rately using unique taint labels. Tracking the propagation
of multiple taint labels requires either a single heavyweight
taint propagation operation that accommodates all tracked
labels or multiple lightweight taint propagation operations
(one for each tracked label). Neither of these approaches
scale when using a large number of taint labels, imposing a
limit on the number of taint labels in use simultaneously.

DECAF ameliorates this limitation by performing precise,
lightweight taint status propagation inline with guest execu-
tion while an asynchronous, heavyweight taint propagation
of multiple taint labels is performed in parallel to the guest
execution. DECAF implements its lightweight taint prop-
agation mostly at the TCG instruction level, so it is easily
extended to support multiple CPU architectures. To achieve
bit-level precision, DECAF propagates tainted bits through
CPU registers, memory and IO devices.

5.1 Taint Propagation in CPU Registers
DECAF creates TCG global variables to shadow the TCG

global variables which represent general-purpose and flag

CPU registers. Each shadow variable is the same size as
the variable that it shadows, and each bit of the shadow
variable represents the taint associated with the analogous
bit in the variable. For example, the global variable eax for
an x86 guest is shadowed by taint_eax, ebx is shadowed by
taint_ebx, etc. When eax contains tainted data, taint_eax
contains a bitmask that marks which bits of eax are tainted.
These shadow variables emulate a set of dedicated taint-
tracking registers in the guest CPU. DECAF also creates a
shadow temporary variable on-the-fly to shadow each tem-
porary variable present inside each TB. For the x86 target,
we create shadow variables for the cc_src, cc_dst global
variables so that taint propagates to CC flags naturally.

Once TCG translates guest instructions into a TB con-
taining TCG instructions, DECAF performs a translation
pass on the TB to insert additional TCG instructions which
implement taint propagation rules that shadow each of the
original TCG instructions. For example, Figure 5 shows
that the instruction mov_i32 tmp11, eax is shadowed by
mov_i32 tmp21, taint_eax. Some tainting rules are far
more complex in order to be precise. For example, the
add operation in Figure 5 requires nine extra TCG instruc-
tions to precisely propagate the taint bits from two source
operands to the destination. DECAF’s tainting rules have
been formally verified to be sound (guarantee of no under-
tainting at instruction level), and most of them have also
been verified to be precise (guarantee of no over-tainting).
The details are documented in our technical report [23].

Figure 5 illustrates this instrumentation pass. TCG trans-
lates a basic block of guest instructions into a TB of TCG
instructions (a). DECAF performs its instrumentation pass
on this TB by first performing a variable liveness analysis
on the TCG code to determine if any TCG instruction is un-
necessary or redundant. A TCG instruction that fails this
analysis will be removed by TCG’s optimization later, so
there is no need to instrument it. Each opcode to be instru-
mented is compared against DECAF’s list of tainting rules
to determine which TCG instructions must be inserted to
instrument it. The instrumentation TCG instructions are
inserted prior to the original TCG instruction because some
tainting rules (e.g. and, or) depend upon the values held in
both the variables and shadow variables when determining
taint propagation. Values held in the variables may change
if the same variable is used as both the source and desti-
nation of the TCG instruction. Once this pass is complete,
the TB now contains both the original and instrumentation
code (b). The TCG engine performs an optimization pass
on the instrumented TB and generates the final, optimized
TB (c), which is then translated into the native instructions
of the host and executed.

5.2 Taint Propagation in Memory and IO De-
vices

The guest’s physical RAM is shadowed bit-for-bit by a
three-level shadow page table. While other instrumentation
platforms perform byte-level precision tainting of RAM[20,
24, 26] by representing each byte of taint as a single bit,
that approach requires bit masking and shifting operations
to represent a 32-bit register in a 4-bit space. DECAF’s
bit-level precision of shadow memory ensures that taint pre-
cision is not lost as taint propagates throughout the guest.

An implementation challenge is to re-factor the existing
TCG instructions that access guest memory (qemu_ld/st)
to also access shadow memory at the same time. This is nec-
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movi_i32  tmp13, $0x0
mov_i32   tmp11, ebx
mov_i32   tmp11, eax
and_i32   tmp12, tmp11, tmp13
qemu_st32 tmp12, ecx, $0x0
movi_i32  tmp13, $0x0

movi_i32  tmp23, $0x0
movi_i32  tmp13, $0x0
mov_i32  tmp11, ebx
mov_i32  tmp21, taint_eax
mov_i32  tmp11, eax
not_i32  tmp30, tmp21
and_i32  tmp31, tmp11, tmp22
and_i32  tmp32, tmp30, tmp31
not_i32  tmp30, tmp22
and_i32  tmp31, tmp21, tmp13
and_i32  tmp33, tmp30, tmp31
and_i32  tmp30, tmp21, tmp22
or_i32  tmp31, tmp32, tmp33
or_i32  tmp23, tmp30, tmp31
and_i32  tmp12, tmp11, tmp13
mov_i32  tempidx, tmp23
taint_qemu_st32 tmp12, ecx, $0x0
movi_i32  tmp13, $0x0

movi_i32  tmp23, $0x0
movi_i32  tmp13, $0x0
nop  // OPTIMIZED OUT
mov_i32  tmp21, taint_eax
mov_i32  tmp11, eax
not_i32  tmp30, tmp21
and_i32  tmp31, tmp11, tmp22
and_i32  tmp32, tmp30, tmp31
not_i32  tmp30, tmp22
and_i32  tmp31, tmp21, tmp13
and_i32  tmp33, tmp30, tmp31
and_i32  tmp30, tmp21, tmp22
or_i32  tmp31, tmp32, tmp33
or_i32  tmp23, tmp30, tmp31
and_i32  tmp12, tmp11, tmp13
mov_i32  tempidx, tmp17
taint_qemu_st32  tmp12, ecx, $0x0
nop  // OPTIMIZED OUT

(a) (b) (c)

Taint TCG
ops added

TCG
optimizations

Liveness
analysis

Figure 5: Register liveness tests determine which TCG instructions in the TB (a) should be instrumented
for taint propagation, and instrumentation is inserted as needed (b). TCG’s optimization logic eliminates
unnecessary opcodes, resulting in an optimized, instrumented TB (c).

essary to ensure that taint propagation occurs at the same
time that memory accesses occur. The inlined SoftMMU
code already uses most of the host’s x86 registers for TLB
lookup and parameter passing, meaning that the stack must
be used for passing taint information. This causes perfor-
mance degradation and potential side effects if unexpected
register spillage occurs when taint information is fetched
from the stack. To counter this problem, additional shadow
global variables are used specifically for copying taint infor-
mation to and from the shadow page table.

Taint propagation in DECAF’s virtualized devices (NE2000
NIC, IDE hard disk, PS/2 keyboard) is similar to taint prop-
agation in memory. Each instrumented virtual device has a
device-specific shadow memory, and a specific global vari-
able passes taint data back and forth between device and
RAM when programmable I/O or DMA operations occur.

5.3 Asynchronous Tainting
DECAF’s lightweight taint propagation occurs inline with

guest execution so that DECAF can halt execution at the
exact moment that taint reaches a specific taint sink (i.e., in-
struction pointer, system call, virtual device). Asynchronous
heavyweight taint propagation relies upon DECAF’s Instruc-
tion Tracer plugin to efficiently log the taint propagation
history. While the plugin is designed to log TCG instruc-
tions to record instruction traces, DECAF’s flexible plugin
interface enables Instruction Tracer to also record memory
accesses, CPU states, and taint events. The plugin quickly
logs enough information about the taint propagation for the
log to be processed asynchronously by any custom analy-
sis tool that executes as a separate process. Such tools can
consume the taint log information as it is generated (run-
ning simultaneously with DECAF) or after DECAF’s taint
log has completed, performing a much more heavyweight
taint analysis on the trace (i.e. reconstructing taint labels
and propagation via backward slicing). The combination of
lightweight and heavyweight taint tracking guarantees that
taint detection is both timely and more scalable than the
inline tracking of multiple taint labels.

Figure 6 shows the steps of the logging process. As each
TB begins execution, the plugin writes an identifier for the
TB and the current taint state of the CPU registers (a) to a
staging buffer (b). If the TB has not been logged previously,
or the TB has been flushed and retranslated since it was last
logged, all TCG instructions and their arguments held in the
TB are written to the staging buffer. Only the original, non-
instrumented TCG instructions are written. Any memory
and shadow memory accesses (both access size and both the
virtual and TLB-resolved physical addresses) are written, as
are the introduction of any new taint labels. As each group
of TCG instructions implementing a single guest instruction

TB of TCG 
Instructions

Memory, Taint,
Insn End Events

Logging
Logic

State of 
Guest CPU

Taint Log
on Disk

Staging
Buffer

Circular Disk
I/O Buffer

(a) (b) (c) (d) (e)

Figure 6: All events(a) are logged into a staging
buffer(b). Logging logic(c) decides which events
should be recorded and places them into a circular
buffer(d) that is asynchronously written to disk(e).

complete execution, an “instruction end” event is recorded
in buffer. This is necessary because TB execution can cease
early due to jumps, branches, and exceptions. There must
be a record of what instructions in the TB were executed so
that execution can be reconstructed. When the execution of
the next TB begins, the staging buffer is examined (c). If
any global shadow variable contains taint, shadow memory
is accessed, or a shadow memory location is marked with a
taint label, the buffer is written to a circular buffer (d) that
asynchronously writes log data to disk (e). Otherwise, the
staging buffer is discarded.

6. EVALUATION
We evaluated DECAF with respect to the performance

overhead under different configurations (such as VMI and
tainting), and the analysis capabilities using three plugins
(API Tracer, Keylogger Detector, and Instruction Tracer).
An artifact has been accepted as part of this paper that can
be used to partially reproduce our evaluation experiments.
The artifact and source code for the plugins are available for
download from DECAF’s project page[7].

The hardware used for all evaluations is a 32-core 2.0GHz
Intel Xeon ES-2650 CPU server with 128 GB of RAM. The
server uses Ubuntu 12.04 Linux (3.2.0 kernel) as its OS.
DECAF was executed on this server using an ARM Debian
6.0 Linux (2.6.32 kernel) VM image and three x86 guest
VM images: Windows 7, Windows XP SP3 and Ubuntu
12.04 Linux (3.2.0 kernel). 4 GB of RAM was allocated to
each of the x86 VMs, and 128 MB of RAM was allocated to
the ARM VM. The priority of DECAF was nice’d to -20 to
ensure it would be minimally influenced by other processes
executing on the benchmark hardware.

6.1 SPEC CPU2006 Benchmarks
We evaluated its performance impact using the CINT2006

integer component of the SPEC CPU2006 benchmark suite.2

2462.libquantum was omitted from the test suite due to Vi-
sual Studio’s Visual C++ not supporting some C++ fea-
tures used by the test.
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Table 1: Execution Overhead for DECAF and DE-
CAF with VMI on different architecture/OSs with-
out tainting.

Setup XUbuntu
WinXP

SP 3
Debian Squeeze

(ARM)

DECAF with VMI 3m 25.9s 1m 4.36s 2m 50.16s
QEMU 1.0.1 2m 45.85s 0m 52.79s 2m 36.52s

DECAF + VMI
Overhead %

24.14 21.91 8.72

Table 2: Code breakup of DECAF, VMI and dif-
ferent plugins. The code introduced by DECAF is
beyond QEMU, which by itself has over 500K LOC.

OS/Arch independent
(LOC)

OS Specific
(LOC)

Total
(LOC)

DECAF 18470 1350 19820
Insn Tracer 3770 90 3860
API Tracer 840 880 1720
Key Logger 120 0 120

We chose the CINT2006 tests because the tainting instru-
mentation is applied to the TCG instructions, which all im-
plement RISC-like integer operations. Floating point opera-
tions are implemented as a set of guest architecture-specific
helper functions. Performance of ARM VMs under DECAF
cannot be measured using the benchmark suite due to the
memory requirements of the tests. The majority of the tests
exceed RAM allocated to the VM.3 and will measure the
performance of the memory paging to disk, rather than the
instrumented operations of interest. While a direct compar-
ison of TEMU and DECAF performance using these bench-
marks would be informative, it is infeasible because TEMU
is too slow to correctly execute the tests. We attempted
to execute the benchmark suite under TEMU, but the first
benchmark test of the suite (400.perlbench) was allowed to
run for over a day before its execution was terminated.

Baseline DECAF without any instrumentation experiences
an average of 15.20% overhead over the execution perfor-
mance of a similarly-configured QEMU. DECAF updates
EIP (x86) and R15 (ARM) after every guest instruction to
ensure accurate analysis, while QEMU updates these regis-
ters at the end of each TB. DECAF must also maintain its
plugin infrastructure by continually watching for the regis-
tration of new plugin callbacks.

The VMI overhead measurements in Figure 7 show the dif-
ference in performance between running DECAF in a base-
line configuration with all features disabled and a configura-
tion with only VMI enabled. Average overhead is 12.07% for
Windows 7 and 14.48% for Linux. The negative overhead
result for the Linux 400.perlbench test can be attributed to
the short execution time of the test and the general variabil-
ity in execution times within an emulated VM environment.
The result of 429.mcf has considerably higher VMI over-
head than the other tests with 54.36% for Windows 7 and
55.23% for Linux. This test incurs almost twice as many
TLB misses as the next closest test (471.omnetpp). VMI
callbacks are triggered when TLB misses occur, explaining
the larger amount of observed overhead.

Furthermore, Table 1 and Table 2 present the boot time
overhead and source code distribution between architecture
dependent and independent components. DECAF and VMI
impose a combined overhead under 25% on x86 and 8.72%

3The ”versatilepb” platform QEMU uses to emulate ARM
VMs has a 256MB RAM limitation.
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Figure 7: CINT2006 benchmarks that measure over-
head for VMI (a) and inline taint propagation (b).

on ARM. Also, from Table 2 we can see that most of the
code in the plugins DECAF are architecture independent.
API Tracer includes OS specific code to interpret some OS
specific data structures however, the core part of API Tracer
contains no OS specific code.

The inline taint propagation measurements in Figure 7
show the difference between running DECAF in a baseline
configuration with all features disabled and with inline taint-
ing enabled for the Windows 7 VM.

The average overhead is 605.07%, ranging from 285.32%
(429.mcf) to 815.77% (458.sjeng). Taint propagation over-
head is directly related to the number of TCG instructions
being executed, so it is highest for CPU-bound tests. Be-
cause DECAF’s inline tainting executes multiple taint prop-
agation TCG instructions for each TCG instruction that
executes within the whole system, an average slowdown of
six-times is justified.

6.2 API Tracer
The API Tracer leverages the VMI and function hooking

features of DECAF to capture API-level traces pertaining
to user- and kernel-mode execution of a program.

At its core, API Tracer is a minimal and stand-alone
cross-platform component comprising 340 lines of C code
that retrieves function-level execution traces of programs
on any platform/OS supported by DECAF. Furthermore,
we implement a custom configuration parser comprising 500
lines of C code and a Windows-specific extension component
comprising 880 lines of C code to decipher the higher-level
OS-specific semantics. For example, in Windows the ker-
nel32.dll::CreateProcess() API call contains newly cre-
ated process information and the creation flag parameters
required to extend analysis into child processes. The OS-
specific component interprets such information and acts ac-
cordingly. Unlike static-analysis based tools that can not an-
alyze dynamically generated code, and user-space dynamic
analysis tools (such as Pin [15]) that can not analyze activ-
ity in the kernel, API Tracer keep tracks any kernel modules
loaded by a user program and traces such modules automat-
ically. It also monitors the memory allocation and dealloca-
tion of a program to identify and trace unpacked/dynami-
cally generated code, thereby providing rich cross-platform
and system-wide analysis capabilities.

Figure 8 shows the overhead introduced by API Tracer
on Windows XP SP3 as it scales with the number of func-
tions in the plugin’s configuration file 4. DECAF selectively

4Configuration file consists of all the methods that need to
be captured along with the parameter list/types, return type
and calling convention.
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Figure 8: Evaluation of API Tracer plugin.

instruments only the TBs that correspond to the hooked
functions, thereby significantly improving performance. An
un-optimized implementation would be to instrument all ba-
sic blocks and filter the ones that correspond to hooks - sim-
ilar to what TEMU [20] does. As a comparison, Internet
Explorer loads the webpage (www.gnu.org) in 22.6 seconds
and 217.79 seconds with selective optimization on and off
respectively. For the sake of evaluation, we considered two
popular web browser clients for Windows - IE and Chrome,
and a notorious bot TDSS [11] that inserts a kernel mod-
ule to hide itself in the kernel. API Tracer is not only able
to trace the inserted kernel module, but is also able to ex-
tract the unpacked code in memory for further analysis. The
Chrome browser uses a multiple-processes architecture and
keeps tabs, extensions, web apps, and plug-in processes in-
dependent from each other and spawns new processes as and
when required. API Tracer is able to automatically trace the
parent Chrome process and the child processes.

6.3 Keylogger Detector
Keylogger Detector is an extended version of the sample

plugin in Figure 2. Leveraging the VMI, tainting, and event-
driven programing features of DECAF, this plugin is capable
of identifying keyloggers and analyzing their stealthy behav-
iors. The core of Keylogger Detector is cross-platform and
OS-independent, comprising only 120 lines of C code.

By sending tainted keystrokes into the guest system and
observing if any untrusted code modules access the tainted
data, we can detect keylogging behavior.The sample plugin
can introduce tainted keystrokes into the guest system and
identify which modules read the tainted keystroke by regis-
tering DECAF_READ_TAINTMEM_CB and DECAF_KEYSTROKE_CB
callback events. To capture the detailed stealthy behav-
iors, Keylogger Detector implements a shadow call stack by
registering the DECAF_BLOCK_END callback. Whenever the
callback is triggered, we check the current instruction. If it
is a call instruction, we retrieve the function information
using VMI and push the current program counter onto the
shadow call stack. If it is a ret instruction and pairs with
the entry on the top of the shadow call stack, we pop it from
the stack. When the DECAF_READ_TAINTMEM_CB callback is
invoked, we retrieve information about which process, mod-
ule, and function read the tainted keystroke data from the
shadow call stack.

To evaluate our Keylogger Detector, we collected a set of
malware samples that are known to have key-logging func-
tionality. This sample set has 117 malware samples in total,
spanning 29 malware families. We tested them on Win-
dows XP SP3 by sending keystrokes to the notepad applica-
tion and observing whether any tainted keystrokes were ac-
cessed by the tested sample. Keylogger Detector successfully
detected the keylogging behaviors in all of these samples.
Table 3 is the trace of Trojan.Win32KeyLogger. It shows
which module of the process read the tainted keystroke us-

ing which function. From the trace, we can tell that the
tainted keystroke enters the system and is fetched by the
untrusted code of MPK.exe, which clearly depicts a keylog-
ging activity. Furthermore, the trace shows which functions
were used to steal keystrokes. This information is very valu-
able for performing malware analysis.

Table 3: Trojan.Win32.KeyLogger Trace.
PROCESS MODULE FUNCTION

<KERNEL> i8042prt.sys hall.dll:READ PORT UCHAR
<KERNEL> win32k.sys ntoskrnl.exe:PsGetProcessWin32Process
<KERNEL> win32k.sys hal.dll:HalEndSystemInterrupt
... . . . . . .
notepad.exe Mpk.dll ntoskrnl.exe:ProbeForWrite
notepad.exe Mpk.dll user32.dll:SendMessageA
... . . . . . .
MPK.exe user32.dll ntoskrnl.exe:ProbeForWrite
... . . . . . .
MPK.exe MPK.exe kernel32.dll:InterlockedIncrement
... . . . . . .
MPK.exe MPK.exe hal.dll:HalEndSystemInterrupt
MPK.exe MPK.exe ntdll.dll:wcscpy
MPK.exe user32.dll ntoskrnl.exe:ProbeForWrite
... . . . . . .

6.4 Instruction Tracer
Leveraging VMI, tainting, and instruction execution call-

backs provided by DECAF, Instruction Tracer records a
TCG instruction-level trace with concrete and taint values
for a specific user-level process or kernel code region. Sim-
ilar to the other two plugins, Instruction Tracer is largely
platform-neutral, capable of collecting execution traces for
programs in x86 and ARM, Linux and Windows. Moreover,
it is also easier to perform formal verification on the TCG
trace, due to its RISC-like instruction semantics. For ex-
ample, it has been demonstrated to be feasible to convert
the TCG trace into LLVM IR and perform symbolic execu-
tion on the trace [3]. Instruction Tracer is implemented in
3860 lines of C code, though this includes the code for both
the plugin and the parser for the log file that the plugin
generates.

To demonstrate the practical effectiveness of this plugin,
we used Instruction Tracer to detect a buffer overflow at
runtime. The sample code in Figure 9 was compiled and
executed inside of x86 and ARM Linux VMs running under
DECAF with Instruction Tracer loaded.

1. int func1(char *input) { 5. void main(void) {
2. char buffer[4]; 6. char buffer[16];
3. strcpy(buffer, input); 7. scanf("%s", buffer);
4. } 8. func1(buffer);

9. }

Figure 9: A simple buffer overflow example.

The code contains a simple buffer overflow vulnerability.
If more than three characters are entered by the user, buffer
in func1() will overflow and begin corrupting data stored on
the stack. To capture the corruption, characters are entered
into the program via tainted keypresses until the return ad-
dress is modified by the overflow. Under the ARM environ-
ment, Instruction Tracer identified the buffer overflow when
R15 (PC) became tainted after entering five characters. R14
(Link Register) was also monitored for taint, but it never be-
came tainted during the test. Figure 10 shows the log output
at the point where R15 first becomes tainted. Tainted char-
acter data is fetched from stack memory, masked to ensure
that the value is properly aligned, and then stored in R15.

Under the x86 environment, the global variable for the
EIP register can’t be directly passed to an opcode as an
argument. EIP is modified by writing to host memory via the
st_i32 opcode. Watching for tainted writes to EIP’s offset
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qemu_ld32 tmp61[00000000],tmp50[00000000],$0x0
--> TAINT HAS BEEN READ FROM MEMORY:

Address: 0x07837e5c (4 bytes)
Taint: [ffffffff]

movi_i32 tmp62[00000000],$0xfffffffe
and_i32 pc[00000000],tmp61[00000000],tmp62[ffffffff]
--> TAINT NOW PRESENT IN PROGRAM COUNTER (R15)

Figure 10: Buffer overflow detection on ARM.

(0x4C) in the CPUState data structure identifies that the
buffer overflow. Figure 11 shows the log output at the point
where EIP first becomes tainted. Tainted character data is
fetched from memory located at the address in ESP, the stack
size is reduced by four bytes, and the tainted data is then
placed into EIP’s offset in the CPUState data structure.

mov_i32 tmp2[00000000],esp[00000000]
qemu_ld32 tmp0[00000000],tmp2[00000000],$0x0
--> TAINT HAS BEEN READ FROM MEMORY:

Address: 0x0bfffff30 (4 bytes)
Taint: [ffffffff]

movi_i32 tmp15[00000000],$0x4
add_i32 tmp4[00000000],esp[00000000],tmp15[00000000]
mov_i32 esp[00000000],tmp4[00000000]
st_i32 tmp0[ffffffff],env,$0x4c
--> TAINT NOW PRESENT IN EIP

Figure 11: Buffer overflow detection on x86.

We also performed a comparison of Instruction Tracer’s
performance against that of the TEMU’s Tracecap plugin.
Tracecap generates a trace of the guest’s instructions as they
execute to facilitate analyses similar to that of the buffer
overflow analysis performed with Instruction Tracer. We
used DECAF and TEMU to emulate the same Windows
XP VM and trace the execution of an instance of the DOS
sort application. For both plugins, tainting was disabled.
A text file 5.4 MB in size was selected to be sorted, and
both plugins were configured to log their execution traces of
the application directly to /dev/null. The sort completed
in 39m 57.33s with Tracecap running, but in only 2m 5.23s
with Instruction Tracer running (almost 20 times faster).
The same sort with a stock QEMU completed in 5.89s.

7. RELATED WORK
Several instrumentation solutions perform data flow anal-

yses within the scope of a single process or binary. Such so-
lutions are generally much faster than whole-system analysis
platforms like DECAF and operate directly upon the native
instructions of the binary under analysis. The Pin[15] API
is a flexible C/C++ interface that is used to create instru-
mentation tools (known as ”Pintools”). Examples of such
Pintools are libdft[14] and DYTAN[5]. Pintools do not have
the benefit of having a plugin development API that works
at a semantic level higher than individual instructions, like
DECAF does. DYTAN is designed as a platform for proto-
typing different tainting policies, while DECAF relies upon
a proven sound and precise policy. libdft offers a less flexi-
ble, but faster, solution for tracking explicit data flows, but
it is has the same limitations of other Pintools and, unlike
DECAF, only supports instrumenting x86 binaries.

Many efforts have been made to reduce the runtime over-
head of dynamic taint analysis. LIFT[19] assumes that taint
propagation is not needed for most code execution, so it
optimizes performance by taking the “fast paths” (without
taint instrumentation) most of time. It also exploits ex-
tra registers in 64-bit architectures to shadow taints in 32-
bit applications. Minemu[2] leverages the x86 SSE registers
to provide lightweight taint tracking for 32-bit x86 appli-
cations. Jee et al[12] build upon libdft to create a system

that performs a static analysis on a process to selectively
instrument the process for dynamic analysis per the rules
of a Taint Flow Algebra. All these tainting implementa-
tions only track taint status, and apply imprecise and some-
times unsound tainting rules, to achieve high efficiency. In
comparison, DECAF is designed to perform accurate binary
analysis in offline settings. So we cannot sacrifice precision
and correctness for efficiency. DECAF is also designed to be
generic, so we avoid relying on architecture-specific features
(e.g., SSE) to boost up performance. Using static analysis
to guide selective taint instrumentation is appealing, but is
not generic and scalable in the whole-system setting.

Whole system instrumentation platforms leverage binary
emulation and VMI. Early systems, such as TaintBochs[4],
favor accuracy over performance. Ether[8] attempts to elude
and analyze VM-aware malware by leveraging Intel VT hard-
ware virtualization extensions. By triggering a debug excep-
tion after every instruction, Ether is able to fully analyze the
state of the system, at the cost of heavy execution overhead.

DECAF seeks to perform practical, accurate analyses of
interactive systems, making the reduction of such high over-
head a focus of its design. Like DECAF, TEMU[21] is built
upon QEMU. It serves as the base for a variety of security
analysis tools that perform whole-system analysis, such as
HookFinder[25], Panorama[26], and Renovo[13]. TEMU is
based upon version 0.9.1 of QEMU, which uses the older, de-
funct “dyngen” system (rather than TCG) for binary trans-
lation. TEMU is also not capable of emulating newer OSes
such as Windows 7 and 8, and it is only capable of instru-
menting x86 platforms. DECAF is capable of emulating
these OSes and the ARM platform. S2E[3] uses QEMU to
perform inline symbolic execution. When execution of the
guest environment reaches a branch within code of inter-
est, S2E forks the current QEMU process to explore both
branches using symbolic execution. While powerful, this
process is quite slow and memory intensive. DECAF is de-
signed to assist in performing such heavyweight analyses by
using lightweight plugins to capture detailed system infor-
mation and instruction traces that provide enough detail to
allow other tools to perform heavyweight analyses offline.

DroidScope[24] is a dynamic analysis platform for secu-
rity analysis on Android. The core idea of DroidScope is
to seamlessly reconstruct both Dalvik-level and OS-level se-
mantic views and to provide a unified interface for Android
malware analysis. DroidScope is an extension to DECAF
for Android-specific analyses.

8. CONCLUSIONS
We present DECAF, a QEMU-based, multi-target, whole-

system dynamic binary analysis framework. It implements a
novel method of VMI and explicit data flow tracking that in-
cur much smaller runtime performance penalties than those
seen in other whole-system analysis platforms. It provides
a simple, event-driven plugin API for the development of
largely platform-neutral analysis software.
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