
Privacy-Preserving Offloading of Mobile App to the Public Cloud

Yue Duan Mu Zhang Heng Yin Yuzhe Tang
Department of EECS, Syracuse University, Syracuse, NY, USA

{yuduan,muzhang,heyin,ytang100}@syr.edu

Abstract
To support intensive computations on resource-
restricting mobile devices, studies have been made to
enable the offloading of a part of a mobile program to
the cloud. However, none of the existing approaches
considers user privacy when transmitting code and data
off the device, resulting in potential privacy breach. In
this paper, we present the design and implementation
of a system that automatically performs fine-grained
privacy-preserving Android app offloading. It utilizes
static analysis and bytecode instrumentation techniques
to ensure transparent and efficient Android app of-
floading while preserving user privacy. We evaluate
the effectiveness and performance of our system using
two Android apps. Preliminary experimental results
show that our offloading technique can effectively
preserve user privacy while reducing hardware resource
consumption at the same time.

1 Introduction
Enabled by various mobile devices (ranging from tablets,
smartphones to emerging wearable devices), modern mo-
bile computing grows increasingly popular. Recently, so-
phisticated mobile applications (e.g. photo-editing An-
droid apps) are developed. The limited hardware re-
sources however present a major performance problem
for supporting those computation-intensive applications.
To address the problem, mobile application offloading
has been proposed [1–8] to alleviate the workload on the
mobile devices by offloading the computation-intensive
portion of program execution to the cloud.

Mobile app offloading, while reducing resource con-
sumption, may leak user privacy. To be specific, mobile
app offloading needs to send data to the public cloud (e.g.
Amazon AWS or MS Azure) to enable the program exe-
cution there. The data sent which may contain sensitive
personal information (e.g. user location) would leak the
user privacy; the problem compounds especially when
the public clouds are deemed untrustworthy, evidenced

by various security incidents (due to attacks, hacks or
“evil” nature of the cloud service companies). This po-
tential privacy-breach problem of mobile app offloading,
if not treated appropriately, could become an obstacle for
the use in practice.

While most existing research work focuses on iden-
tifying computation-intensive portion of the program to
offload, there is little work to address the privacy-leakage
issue. To the best of our knowledge, the only privacy-
aware offloading work is a data-oriented offloading ap-
proach [9] which however has fundamental design issues
in protecting privacy effectively.1 We also argue that our
problem specific to mobile apps is different from the con-
ventional research on privacy-aware partitioning in the
client-server scenario [10–12] which does not focus on
offloading code to reduce hardware resource consump-
tion.

In this work, we address the privacy-preserving of-
floading of mobile apps to the public cloud. Our pro-
posed approach is to enforce privacy preservation in a
fully automatic and end-to-end fashion. Concretely, our
proposed approach performs static data-flow analysis to
discover all the code statements that operate on private
user data. The non-private ones are then offloaded to the
cloud as lightweight RPC methods. Because our offload-
ing analysis occurs at the fine-grained statement level, it
could potentially amplify the communication overhead
to the cloud. To overcome this inefficiency, we propose a
novel technique to group offloadable statements in a way
to minimize communication overhead while preserving
the original program logic. To improve the runtime effi-
ciency, we instrument the original program to determine
in real-time where the offloadable code should run, re-
motely or locally. Decisions are made dynamically based
on device and network conditions.

1Being more specific, the data-partitioning approach only considers
preserving privacy at certain point during program execution, totally
ignoring the continuity of private data flow, which is addressed by our
approach.

1

1 public void OnTouchEvent(MotionEvent e) {
2 if(e is the correct touch event){
3 //First load picture to bitmap
4 //then embed location info after editing
5 Bitmap bm = LoadPicture(path);
6 EditPicture(bm);
7 ...
8 }
9 }

10 Bitmap LoadPicture(String path) {
11 ...
12 Bitmap bm = BitmapFactory . d e c o d e F i l e (f i l e);
13 return bm;
14 }
15 void EditPicture(Bitmap bm) {
16 //heavy computational picture editing
17 bm.getPixels(pix, 0, mPhotoWidth, 0, 0,

mPhotoWidth, mPhotoHeight);
18 for(every pixel) {
19 ...
20 }
21 //embed location information into picture
22 Locat ion l o c = getLastKnownLocation (Provider);
23 double l o n g i t u d e = l o c . ge tLongi tude ();
24 double l a t i t u d e = l o c . g e t L a t i t u d e ();
25 EmbedLocation (bm, l o n g i t u d e , l a t i t u d e) ;
26 }

Figure 1: Privacy-preserving Offloading Example

Our main contributions in this paper can be summa-
rized as follows:

• We propose a novel technique to maximize the of-
floading of mobile app code to the public cloud
while preserving user privacy-related information.

• We design and implement a prototype system which
automatically identifies offloadable code via static
data-flow analysis. It utilizes instrumentation tech-
niques to make offloading decisions at runtime.

• We evaluate the effectiveness of the system by us-
ing two Android apps. Experimental results show
that our offloading system is able to improve run-
time performance and reduce battery consumption
while preserving user privacy.

2 Overview

2.1 Motivating Example
Figure 1 shows a simplified photo editor for which we
perform privacy-preserving offloading. This photo edi-
tor app registers a callback function OnTouchEvent()

which will first call LoadPicture() to load a pic-
ture into a bitmap from a local file and then invoke
EditPicture() to edit it. During editing, the app will
retrieve and embed the current location into the photo.
In order to save battery and gain performance, we of-
fload the heavy computation in EditPicture() to the
server. However, existing approaches only allow us to
enable offloading at the method level. Thus, the loca-
tion information will also be sent to the cloud server, re-
sulting in privacy leakage (if user considers location as
private). If we choose to preserve privacy, we have to
keep the whole EditPicture() running locally. This

Android
app

static analysis Instrumentation
& Partition

Instrumented
Android app

Java
Program

Mobile Device

Cloud Server

Dynamic
decision
making

RPC

Figure 2: Overview of the System

app contains both offloadable and non-offloadable code.
Code statements in bold text are non-offloadable. For
line 12, decodeFile() loads a bitmap from a local
file. It is non-offloadable because it relies on the local
file to execute. Lines 22-25 retrieve location informa-
tion using getLastKnownLocation() and embed the
information into the edited photo. Since they manipu-
late user private data (i.e. location), we choose not to
offload them so as to protect user privacy. Other than
those non-offloadable code statements, we automatically
offload heavy computation (e.g. photo editing part) to
the cloud. This requirement motivates us to find a new
design to perform offloading during which user privacy
preservation is guaranteed.

2.2 Problem Statement
In this work, we address the problem of privacy-
preserving mobile app offloading and propose an auto-
matic and fine-grained approach to solve the problem.
More specifically, we aim at achieving the following de-
sign goals:

• Privacy Preservation: Our approach keeps user
private data within mobile devices during offload-
ing, thus preventing privacy leakage. This goal re-
quires us to conduct offloading in a fine-grained
manner (i.e. at the code statement level).

• Automatic Offloading: Our approach performs
app offloading in an automatic way. It does not in-
volve any human effort such as user annotation.

• High Performance: Our approach aims for high
performance. Thus, we have to address the inten-
sive code instrumentation and network communica-
tions due to fine-grained app offloading.

2.3 Architecture Overview
To achieve the above goals, our design leverages static
program analysis to identify the non-offloadable code,
utilizes instrumentation techniques to rewrite the app
and relies on a decision making component to make of-
floading decisions dynamically. To achieve high perfor-
mance, our proposed technique performs pre-filtering for
offloadable code regions and ensures lightweight com-
munication between a device and the cloud by transmit-
ting only necessary data. Figure 2 illustrates the over-

2

all workflow of our privacy-preserving offloading tech-
nique. It mainly takes the following steps:

(1) Static Analysis: The privacy-preserving nature of
our system is guaranteed by static analysis. We first
perform static program analysis to locate and mark
all non-offloadable code. Then we extract code re-
gions that are separated by non-offloadable code and
evaluate the potential offloading performance gain in
the pre-filtering process. We mark them as offload-
able only if the potential performance gain is posi-
tive.

(2) Instrumentation & Partition: Having marked of-
floadable code regions , we then perform code in-
strumentation at the beginning of every offloadable
code region. This is to invoke a dynamic decision
making component to decide whether we should re-
ally offload the code at runtime or not. We also create
a wrapper function for the code region. The param-
eters are the necessary data used within the offload-
able code region. We then partition the Android app
by extracting offloadable code regions, construct a
self-contained offloadable Java program, and push
it to the cloud. Finally, we instrument the app so
that we can execute the offloadable code locally or
remotely, depending on the decision made dynami-
cally (as will be described below).

(3) Cloud Side Deployment: Due to the fine-grained
nature of our approach, we might introduce more
communications between the mobile device and
cloud than existing offloading approaches. In or-
der to obtain high performance, we need to keep the
communication lightweight. To this end, we do not
maintain an Android VM in the cloud. Instead, we
directly execute the offloaded code as a Java program
on the cloud and only transmit necessary data from
the mobile device. Our static analysis enables us to
know exactly what data are needed.

(4) Dynamic Decision Making: The fact that a code
region is marked as offloadable does not necessarily
mean it should be offloaded at runtime. For example,
if the current network connection is poor, offloading
might actually introduce severe delay. The dynamic
decision making component collects related infor-
mation at runtime and makes decisions on whether
the code should indeed be offloaded.

3 Design & Implementation

In this section, we discuss the design and implementation
of our system prototype.

3.1 Static Analysis

We first convert the Android Dalvik bytecode into Java
bytecode program using dex2jar [13], then perform our
static analysis which is built on top of Soot [14]. The
static analysis process contains three major steps: non-
offloadable code identification, offloadable code group-
ing and pre-filtering.

Non-Offloadable Code Identification In order to de-
tect offloadable code regions we need to identify the non-
offloadable code first. Specifically, we mark the follow-
ing four types of code statements as non-offloadable:
1) private data manipulation statements which retrieve
(e.g. getLastKnownLocation()) and manipulate user
private data; 2) GUI components that directly interact
with users; 3) local resource access statements such as
FileInputStream() and mkdir(), and 4) other An-
droid APIs that rely on either Android OS or physical
device to execute (e.g. SendTextMessage()). For pri-
vate data manipulation statements, we perform context-
sensitive, flow-sensitive and inter-procedural data-flow
analysis proposed in [15] to locate them. Our system
allows users to select which data is considered senisitive
in a configuration file. Currently, we consider location,
system setting and device ID as private by default. For
other three types of statements, we manually define an
API list and statically search for them.

Offloadable Code Grouping After identifying all the
non-offloadable statements, we extract offloadable code
regions. In theory, all statements other than the non-
offloadable ones are offloadable. However, to maintain
the original program logic, we group those offloadable
statements into a number of code regions without break-
ing the original control flow. At the same time, we keep
the code regions as large as possible to minimize in-
strumentation and communication overhead. In order to
achieve these two goals, the entry point of each code re-
gion can be 1) the entry point of an original method, 2)
the immediate successor of a non-offloadable region, or
3) the jump target of another offloadable code region. We
achieve this by using Algorithm 1.

The inputs of the algorithm are 1) SetNO: a set of
all non-offloadable statements in the app identified in
the previous step and 2) Setmethod : a set of all methods
within the app. The output is SetO which is a set of
all the offloadable code regions extracted. The whole
algorithm contains two loops. The first loop is to an-
alyze the program and collect inter-split branch state-
ments (e.g. goto statements), and the second one is
to extract real offloadable code regions. In the first
loop, for every method m within the app, the algorithm
calls GetControlFlowGraph() to retrieve the control-
flow graph (CFG) of m, then it invokes SplitCFG().

3

Algorithm 1 Offloadable Code Grouping
SetNO← all the non-offloadable statements in app
Setmethod ← all the methods in app
SetintersplitBranch,SetintersplitTarget ← null
SetO← null
for m ∈ Setmethod do

c f gm← GetControlFlowGraph(m)
Setc f g′ ← SplitCFG(c f gm, SetNO)
for c f g′ ∈ Setc f g′ do

Setbranch← GetBranches(c f g′)
if any b in Setbranch has a target t out of c f g′ then

SetintersplitBranch← SetintersplitBranch ∪b
SetintersplitTarget ← SetintersplitTarget ∪ t

end if
end for

end for
for m ∈ Setmethod do

c f gm← GetControlFlowGraph(m)
Setc f g′′ ← SplitCFG(c f gm, SetNO ∪SetintersplitTarget)
Setc f g′′ ← DeleteNode(Setc f g′′ ,SetNO)
Setc f g′′ ← SetAsReturn(Setc f g′′ ,SetintersplitBranch)
SetO← SetO ∪Setc f g′′

end for
output SetO as a set of offloadable code regions

SplitCFG() will first locate all the statements in SetNO
within c f gm, treat them as new entry points and their
predecessors as new exit points, and split c f gm to get
a set of CFG splits Setc f g′ . Then for each split c f g′ in
Setc f g′ , the algorithm calls GetBranches() to retrieve
Setbranch which is a set of branch statements in c f g′. If
any branch statement b has a target t that is out of the
current c f g′, t will become a new entry point to a code
region and later may become an entry point of a Java
function in the cloud. The algorithm will put b and t into
SetintersplitBranch and SetintersplitTarget respectively.

Next, the second loop iterates through each method
again to calculate a new set of CFG splits Setc f g′′

with statements in SetNO ∪ SetintersplitTarget as new entry
points. For Setc f g′′ , the algorithm first calls DeleteNode
to delete non-offloadable statements from it and then sets
branch statements from SetintersplitBranch to be the new
exit points. So by the end of the algorithm, the exit
points of code regions can be 1) the exit point of an
original method, 2) the immediate predecessor of a non-
offloadable region, or 3) the branch statement which has
a target in another offloadable code region. The output
SetO contains offload-safe code regions which later may
become Java methods on the server side.

Pre-filtering Due to the existence of non-offloadable
statements and the requirement of keeping the original
control flow, our algorithm may produce a large amount
of small code regions that are offloadable. Since each
code region is offloaded as a remote Java method, sim-
ply offloading all of them will introduce excessive instru-
mentation and communication overhead. To deal with
this issue, we perform pre-filtering to figure out which

code regions actually contain heavy computation and can
potentially bring performance gain if offloaded. This
process is necessary to ensure runtime performance and
minimize the increase of app size introduced by instru-
mentation.

So far we statically mark one code region as offload-
able if it contains loops or an excessive number of state-
ments. Ideally, we could leverage a dynamic profiler,
such as CloneCloud [6], to quantitatively measure the
performance gain.

3.2 Instrumentation & Offloading

Based on dataflow analysis, we create an offloaded Java
class for a target program. We also instrument the orig-
inal program, so that it can dynamically choose to exe-
cute the offloaded code or its corresponding local copy,
according to the runtime performance measurement.

Offloaded Java Class We first make a copy of the of-
floadable code regions in the app. Then, each copied
code region is formed into one RPC (i.e. remote proce-
dural call) method. In the end, all the RPC methods are
encapsulated into one dummy class, which is deployed
on the cloud side. To minimize data transmission, we
perform points-to analysis to discover only the necessary
data for execution. For example, if only a subset of an
array is used in an offloadable code region, our system
will not transmit the entire array.

Instrumentation We then instrument the original pro-
gram by inserting decision making code and remote pro-
cedural calls. Figure 3 depicts the local code after in-
strumentation. First, for each offloaded RPC method, we
locate its counterpart in the local code. Then, prior to
the entry point of a counterpart, we introduce a method
call to decide whether to run this local copy or the re-
mote one. Next, we insert a conditional statement which
checks the return value of the decision making method.
Depending on this return value, it may jump to one of the
two target branches. The first branch is the original local
code and the second one is a call to the remote code. To
this end, we insert a call statement to invoke the corre-
sponding RPC method.

3.3 Cloud Side Deployment

We then push the dummy class generated during instru-
mentation to the server side. This Java class contains
all the offloaded code regions, each of which is con-
structed as a method. We choose not to maintain a cloned
Android VM because maintaining such a VM involves
heavy synchronization overhead. We use RPC to com-
municate between a mobile device and the cloud.

4

0

2000

4000

6000

8000

Photo Editor Color Detecor

R
e

sp
o

n
se

 T
im

e
(m

ill
is

e
co

n
d

s)

apps

original

intrumented

Figure 4: Runtime Performance

0

30

60

90

Photo Editor Color Detecor

B
at

te
ry

 u
se

d
 (

J)

apps

original

intrumented

Figure 5: Power Consumption

300000

400000

500000

600000

700000

Photo Editor Color Detecor

A
p

p
 s

iz
e

(b
yt

e
)

apps

original

intrumented

Figure 6: App Size

void EditPicture(Bitmap bm) {
boolean cal lRemote = makeDecision () ;
i f (ca l lRemote){

ca l lRPCEdi tP ic ture1 (bm) ;
} e l s e {
//heavy computational picture editing
bm.getPixels(pix, 0, mPhotoWidth, 0, 0,

mPhotoWidth, mPhotoHeight);
...

}
//embed location information into picture
Location loc = getLastKnownLocation(Provider);
...
EmbedLocation(bm, longitude, latitude);

}

Figure 3: Instrumented Code

3.4 Dynamic Decision Making Component
We create an Android service to make offloading deci-
sions based on runtime information. To communicate
with this component, we instrument an app by inserting
code at the beginning of each offloadable code region, so
that the inserted code can send the request to the service
and receive the decision at runtime.

This service component runs in the background to
gather real-time system information (CPU usage, Mem-
ory usage and Network status) by parsing /proc/stat

files periodically. Currently we simply use network con-
nectivity to make offloading decisions.

This Android service will not bring security issues
such as permission re-delegation problem [16] since it
merely returns offloading decisions and does not disclose
any system information. Prior research [17] has shown
that the consumption of hardware resources is negligible
for such a service.

4 Evaluation

In this section, we present some preliminary evaluation
results of our system. We evaluate our system with two
Android applications. The first app is the Photo Editor
which loads a photo from a local file, performs photo
editing and embeds location information into the photo.
The second app is a Color Detector that utilizes the cam-
era on the device to capture a picture, detects colors in
an area selected by users and shows text in different lan-
guages based on current locale setting. In these two apps,
location information and locale setting are user private

data that we preserve from offloading. We conduct ex-
periments on a Nexus S model device running Android
4.0.4. We assume the network status is good and no other
app is running so the dynamic decision making service
will always return true.

Runtime Performance & Battery Saving Figure 4 il-
lustrates the runtime performance of the system. We
compare the runtime performance of instrumented apps
with the original ones. The X-axis represents the apps
(original and instrumented versions for each Android
app) while the Y-axis is the average response time. As
shown from the figure, response times for Photo Editor
and Color Detector are reduced by 25.5% and 53.8% re-
spectively. The major reason why the performance gain
for Photo Editor is much smaller than that for Color De-
tector is that the communication between the device and
the server is much heavier for the former one. For Photo
Editor, we have to transmit the whole picture to the server
in order to perform editing while for Color Detector we
could transmit only the pixels in the user selected area.
We then leverage PowerTutor [18] to evaluate the battery
consumption. As depicted in Figure 5, power consump-
tion for the two apps decreases from 81.7J and 70.7J to
68.7J and 43.4J, resulting in the reduction rates of 15.9%
and 38.7% respectively.

App Size We also evaluate the sizes of our instrumen-
tation code. As shown in Figure 6, the sizes of apps be-
fore and after instrumentation are almost the same with
negligible increases around 0.4% and 0.8%. This means
the storage on mobile devices will not be affected by our
offloading technique.

5 Conclusion

We propose a novel technique to automatically perform
fine-grained privacy-preserving Android app offloading.
We implement a prototype and evaluate our system by
utilizing two Android apps. Experimental results show
that our system can effectively boost performance and
save battery while preventing privacy data from leaking
to the cloud.

5

6 Discussion
Loop Quantification At present, we do not quan-
tify the computation of loop operations. Instead, we
qualitatively consider all loop operations to be equally
computation-intensive. However, in practice, differ-
ent loop operations consume distinctive amounts of re-
sources, depending on how many times the iterations are
performed. Sometimes, a loop counter is statically re-
solvable. Thus, we can perform static dataflow analysis
to trace its origin. In other cases, the number of iterations
cannot be determined in static analysis because it is orig-
inated from a runtime value, for example, a use input. To
address this problem, we need to leverage dynamic anal-
ysis as well as machine learning technique. This presents
a possible direction for our future work.

Privacy Policy Configuration So far, we have a static
and general set of privacy policies for all users. Our sys-
tem considers location, system setting and device ID as
sensitive data, and prevents them from being offloaded to
the cloud. Nevertheless, an individual user may be more
concerned about specific private information under par-
ticular circumstances. For example, an end user is more
careful about her geolocation data when she is at home
but could be less cautious when she is at work. This fact
requires our privacy policies to be configurable at run-
time. In addition, the relaxation of privacy restrictions
may lead to performance benefits because more execu-
tions can be potentially offloaded to the cloud. Thus,
how to design such a flexible and efficient dynamic pol-
icy system is worth investigating.

Communication Versus Computation There is fun-
damentally a trade-off between communication delay
and computation overhead, with respect to code offload-
ing. On the one hand, we delegate computation-intensive
workloads to the cloud. On the other hand, we also
hope to reduce the network communication between the
mobile device and the cloud. To minimize the commu-
nication overhead, we look for the maximal connected
graphs from control-flow graphs. We further perform
a pre-filtering to select a subset from these candidates,
so that we only offload the most resource-consuming in-
structions. However, other factors may also have impacts
on the network overhead. For instance, if the offloaded
code requires a huge data input from the local device, it
can considerably affect the overall performance. Funda-
mentally, we would like to consider the ratio of computa-
tion and communication instead of just the computation.
This is an optimization problem with various parameters.
It requires future discussion to construct such a target
function, including the selection of significant parame-
ters and their weights.

7 Acknowledgment

We would like to thank anonymous reviewers for their
comments. This research was supported in part by NSF
Grant #1054605. Any opinions, findings, and conclu-
sions made in this material are those of the authors and
do not necessarily reflect the views of the funding agen-
cies.

References

[1] A. Gember, C. Dragga, and A. Akella, “Ecos: prac-
tical mobile application offloading for enterprises,”
in Proc. Int. Conf. Mobile Systems, Applications
And Services, 2012.

[2] E. Cuervo, A. Balasubramanian, D.-k. Cho,
A. Wolman, S. Saroiu, R. Chandra, and P. Bahl,
“Maui: making smartphones last longer with code
offload,” in Proceedings of the 8th international
conference on Mobile systems, applications, and
services. ACM, 2010, pp. 49–62.

[3] Y.-W. Kwon and E. Tilevich, “Energy-efficient and
fault-tolerant distributed mobile execution,” in Dis-
tributed Computing Systems (ICDCS), 2012 IEEE
32nd International Conference on. IEEE, 2012,
pp. 586–595.

[4] M. A. Hassan, K. Bhattarai, Q. Wei, and S. Chen,
“Pomac: Properly offloading mobile applications to
clouds,” in Proceedings of the 6th USENIX confer-
ence on Hot Topics in Cloud Computing. USENIX
Association, 2014.

[5] C.-K. Lin and H. Kung, “Mobile app acceleration
via fine-grain offloading to the cloud,” in Proceed-
ings of the 6th USENIX conference on Hot Topics
in Cloud Computing. USENIX Association, 2014,
pp. 8–8.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and
A. Patti, “Clonecloud: elastic execution between
mobile device and cloud,” in Proceedings of the
sixth conference on Computer systems. ACM,
2011, pp. 301–314.

[7] E. Chen, S. Ogata, and K. Horikawa, “Offloading
android applications to the cloud without customiz-
ing android,” in Pervasive Computing and Commu-
nications Workshops (PERCOM Workshops), 2012
IEEE International Conference on. IEEE, 2012.

[8] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M.
Mao, and X. Chen, “Comet: Code offload by mi-
grating execution transparently.” in OSDI, 2012,
pp. 93–106.

6

[9] M. Al-Mutawa and S. Mishra, “Data partitioning:
An approach to preserving data privacy in compu-
tation offload in pervasive computing systems,” in
Proceedings of the 10th ACM Symposium on QoS
and Security for Wireless and Mobile Networks,
2014.

[10] L. Zheng, S. Chong, A. Myers, and S. Zdancewic,
“Using replication and partitioning to build secure
distributed systems,” in Security and Privacy, 2003.
Proceedings. 2003 Symposium on, 2003.

[11] D. Brumley and D. Song, “Privtrans: Automat-
ically partitioning programs for privilege separa-
tion,” in Proceedings of the 13th Conference on
USENIX Security Symposium, 2004.

[12] O. Arden, M. George, J. Liu, K. Vikram,
A. Askarov, and A. Myers, “Sharing mobile code
securely with information flow control,” in Security
and Privacy (SP), 2012 IEEE Symposium on, 2012.

[13] “dex2jar,” http://code.google.com/p/dex2jar/.

[14] “Soot: a Java Optimization Framework,” http://
www.sable.mcgill.ca/soot/.

[15] T. Reps, S. Horwitz, and M. Sagiv, “Precise inter-
procedural dataflow analysis via graph reachabil-
ity,” in Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages. ACM, 1995, pp. 49–61.

[16] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin, “Permission re-delegation: attacks and de-
fenses,” in Proceedings of the 20th USENIX Secu-
rity Symposium, 2011.

[17] C.-C. Lin, H. Li, X. Zhou, and X. Wang, “Screen-
milker: How to milk your android screen for se-
crets,” in Proceedings of 21th USENIX Network
Distributed System Security Symposium, 2014.

[18] “PowerTutor,” http://ziyang.eecs.umich.edu/
projects/powertutor/#overview.

7

http://code.google.com/p/dex2jar/
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/
http://ziyang.eecs.umich.edu/projects/powertutor/#overview
http://ziyang.eecs.umich.edu/projects/powertutor/#overview

	Introduction
	Overview
	Motivating Example
	Problem Statement
	Architecture Overview

	Design & Implementation
	Static Analysis
	Instrumentation & Offloading
	Cloud Side Deployment
	Dynamic Decision Making Component

	Evaluation
	Conclusion
	Discussion
	Acknowledgment

