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Abstract. The increasing popularity of Android apps makes them the
target of malware authors. To defend against this severe increase of An-
droid malwares and help users make a better evaluation of apps at install
time, several approaches have been proposed. However, most of these so-
lutions suffer from some shortcomings; computationally expensive, not
general or not robust enough. In this paper, we aim to mitigate Android
malware installation through providing robust and lightweight classifiers.
We have conducted a thorough analysis to extract relevant features to
malware behavior captured at API level, and evaluated different classi-
fiers using the generated feature set. Our results show that we are able

to achieve an accuracy as high as 99% and a false positive rate as low as
2.2% using KNN classifier.
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1 Introduction

As Android mobile devices are becoming increasingly popular, they are becoming
a target of malware authors. To protect mobile users from the severe threats
of Android malwares, different solutions have been proposed. Several systems
have been proposed based on Android permission system. In [12], if an app
requests a specific or a combination of critical permissions, a risk signal will be
raised. In [22], several risk signals have been proposed depending on an app’s
requested permissions, its category, as well as the requested permissions from
apps belonging to the same category. In [17], different risk scoring schemes have
been designed using probabilistic generative models. However, the permission-
based warning mechanisms fall short for several reasons:

— The existence of a certain permission in the app manifest file does not neces-
sarily mean that it is actually used within the code. According to [13,14,26],
a large percentage of Android apps are over-privileged.

— A large number of requested permissions, specially the critical ones, are actu-
ally not used within the application’s code itself, but rather are required by
the advertisement packages.

— Malware can perform malicious behavior without any permission [15].

Another direction to detect malicious activities in Android apps relies on
the semantic information within the application bytecode. CHEX [16] statically



vets Android apps for component hijacking vulnerabilities through performing
data flow analysis and conducting reachability tests on the generated system
dependency graphs to detect potential hijack enabling flows. Similarly, Wood-
pecker [15] exposes capability leaks through using data flow analysis and explor-
ing the reachability of a dangerous permission from a non-protected interface.
While these approaches are effective in detecting the particular vulnerabilities
that they target, they cannot be generalized to detect other malicious activi-
ties. DroidRanger [29], on the other hand, combines permission-based behavioral
footprints and a heuristic based filtering scheme to detect malicious apps.

In this paper, we aim to overcome the shortcomings of the permission-based
warning mechanisms and build a robust and lightweight classifier for Android
apps that could be used for malware detection. To select the best features that
distinguish between malware from benign apps, we rely on API level informa-
tion within the bytecode since it conveys substantial semantics about the apps
behavior. More specifically, we focus on critical API calls, their package level
information, as well as their parameters.

Instead of following a heuristic based approach for identifying critical fea-
tures for malware functioning, we have analyzed a large corpus of benign and
malware samples, generated the set of APIs used within each app, and con-
ducted a frequency analysis to list out the ones which are more frequent in the
malware than in the benign set. Furthermore, for certain critical APIs which
were frequent in both sample sets, we have conducted a simple data flow anal-
ysis on the malware APK samples to identify potentially dangerous inputs. We
generated a list of frequently used parameters, thoroughly examined them to
filter out the dangerous ones and flagged all apps that request them. To perform
API level feature extraction and data flow analysis, we have developed a tool
called Droid APIMiner built upon Androguard [2] reverse engineering tool. We
use RapidMiner [7] to build the classification models.

In summary, the contributions of this paper are as follows:

— We introduce a robust and efficient approach for describing Android malware
that relies on the API, package, and parameter level information.

— Based on the identified feature set of Android malware, we provide valuable
insights about malware behavior at API-level.

— We produce and evaluate different classifiers for Android apps. Our testing
shows that some of them achieve a high accuracy and low false positive rate
compared to the permission-based classifiers. In fact, KNN achieves a 99%
accuracy and 2.2% false positive rate.

2 Approach Overview

In our work, we follow a generic data mining approach that aims to build a
classifier for Android apps. The classifier should be able to automatically learn
to identify complex malware patterns and make smart decisions based on that.
The classifier should also be able to generalize from the input set to correctly
predict an accurate class of given new apps. As depicted in Fig. 1, our approach
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Fig. 1. Our Approach

is divided into three phases: feature extraction, feature refinement, and models
learning and generation.

During the feature extraction phase, we statically examine the collected be-
nign and malware APK samples to determine and extract the necessary features
for malware to function. In selecting the feature set, we focus on some seman-
tic information encapsulated within the bytecode of apps. More specifically, we
extract API calls and their package level information. Besides, we extract the
requested permissions of the apps for the generation of the baseline model.

During the feature refinement phase, we remove the API calls that are ex-
clusively invoked by third-party packages such as advertisement packages. We
reduce our feature set further to include only those APIs whose support in the
malware set is significantly higher than in the benign set. For those APIs which
were frequent in the two sets, we perform data flow analysis to recover their
parameter values and select only the APIs that invoke dangerous values. Sub-
sequently, for each APK file, we generate a set of feature vectors along with
associated class labels, i.e. malware or benign. For the last two steps, we have
implemented Droid APIMiner, a python program that import libraries from An-
droguard static analysis tool for Android apps [2]. Section 3 will be dedicated
to discuss in more details how we conduct feature extraction and refinement.
We discuss in Section 4 some of the insights that we have gained based on the
identified features.

During the model learning and generation phase, we feed the representative
vectors to standard classification algorithms that build the models by learning
from them. We have generated 4 different classifiers: ID5 DT [20], C4.5 DT
[21], KNN [8] and SVM [25]. We test the generated classifiers to estimate the
accuracy using split validation. Two thirds of the data set are randomly selected
for training and the rest one third is dedicated for testing. For this step, we
use RapidMiner [7] to generate the classification models and evaluate them. In
Section 5, we perform the classification and evaluate the models.

3 Feature Extraction and Refinement

In this section, we aim to systematically determine and extract necessary fea-
tures for malware functioning. Android app’s bytecode contains information that



could be used to describe its behavior. From the bytecode, we can retrieve in-
formation ranging from coarse-grained levels as packages to fine-grained levels
as instructions. We do not perform sophisticated program analysis because it
is computationally expensive. Rather, we focus on extracting package and API
level information since they clearly capture the app’s behavior. More specifically,
we consider class name, method name, and some parameters of the callee and
the package name of the caller, which we will describe in the next subsections.

3.1 Extraction of Dangerous APIs

Contrary to previous work, we do not follow a heuristic-based approach to iden-
tify dangerous APIs for malware functioning. Instead, we aim to reliably identify
the major APIs that malwares invoke by statically analyzing our samples.

Effectively, we have statically analyzed a large set of malware and benign
apps and generated a list of distinct API calls within each set. A distinct API
refers to a distinct combination of Class Name, Method Name, and Descriptor.
We then conduct a frequency analysis to select those APIs which are more used
in the malware than in the benign set. We further refine the API list to include
only those with a usage difference higher or equal to a certain threshold.

3.2 Extraction of Package Level Information

Most of Android apps contain one or more third-party packages (according
to our analysis, 71 % of the benign apps contain at least one advertisement
package). These packages often exhibit some suspicious behavior. For instance,
many ads use encryption to hinder their removal. Also, getCellLocation() and
getDeviceId() methods are often called by ad kits for users’ identification and
tracking purposes. We aim to identify at what package level a certain API is
invoked. To achieve this goal, we have performed the following tasks:

— Extract advertisement and similar packages: Using Androguard, we gen-
erate all distinct packages invoked within each APK in our collected sample.
We remove from the generated packages names all common packages such as
Android specific packages, Java packages, etc. We inspect the remaining items
and compile a list of advertisement, web tracking, web analysis and application
ranking packages. In total, we have identified around 412 distinct advertise-
ment and similar packages. Some commonly used advertisement packages are:
Admob, Flurry, Millennialmedia, Inmobi, Adwhirl, Adfonic, Adcenix, etc.

— Identify calling packages: We check at what package a certain API is called.
In other words, we distinguish if an API is invoked only by a third-party
package, only by the application specific packages, or by both. We white-list
any APIs that are exclusively invoked by third-party packages.

3.3 Extraction of APIs Parameters

Certain frequent APIs in the malware set did not yield to a high support differ-
ence between the malware and the benign sample as they were also common in
the benign sample. For example, some methods within string manipulation and
IO classes are almost as frequent in the malicious set as in the benign set. To



increase this difference, we have performed data flow analysis on these specific
APIs in order to recover the parameters values that have been passed to them
through inspecting the registers invoked.

Table 1. Categorization of Parameters to Frequently Used Malware APIs

Classes Methods Parameter Category

Intent setFlags, addFlags, |Flag is either:

IntentFilters setDataAndType, CALL, CONNECTIVITY, SEND, SENDTO,

putExtra, init or BLUETOOTH
ContentResolver query, insert, URI is either:
update.. Content://sms-mms, Content://telephony,

Content://calendar, Content://browser/bookmarks,
Content://calllog, Content://mail,
or Content://downlaods

DatalnputStream init, writeBytes... Reads from process

BufferedReader Reads from connection

DataOutputStream Uses SU command

DataOutputStream

InetSocketAddress  |init parameter IP is explicit or port is 80

File init, write, append, |Dangerous Command such as: su, ls, loadjar, grep,

Stream indexOf, Substring |/sh, /bin, pm install, /dev/net, insmod, rm, mount,

StringBuilder root, /system, stdout, reboot, killall, chmod, stderr

String Accesses external storage or cache

StringBuffer Contains either:
An identifier (e.g. Imei), an executable file( e.g. .exe,
.sh), a compressed file (e.g. jar, zip), a unicode string,
an sql query, a reflection string, or a url

Based on our initial investigation, these APIs generated distinct parameters
which resulted in a big number of features. To reduce the parameter feature set,
we have categorized the parameters based on different criteria. Table 1 includes
the APIs on which we have performed the data flow analysis along with the
criteria that we have adopted to categorize their input parameters.

4 Insights in API-Level Malware Behavior

Based on the API level analysis, we have identified the top APIs that Android
malwares invoke. Fig.2 shows the top 20 APIs that produce the highest difference
of usage between malware and benign apps. As illustrated, we get a better dif-
ference after filtering out third-party packages. For example, the method init in
Java.Util.TimerTask initially produced 14% usage difference between the two
sets. This difference increased to 28% after whitelisting this API in third-party
packages since it is mainly invoked by them in the benign sample.

We discuss here some of the top commonly used malware features that our
study generated after refining the initial feature set. To help understand malware
behavior and gain more insight into what resources are accessed and what actions
are performed, we classify the APIs by the type of requested resources and
utilities. At the end of the section, we present the data flow analysis results.
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Fig. 2. Top 20 APIs with the Highest Difference Between Malware and Benign Apps

4.1 Application-specific resources APIs

Content Resolver: This class provides access to content providers. It pro-
cesses requests (CRUD operations) by directing them to the appropriate content
provider. The most frequent methods used in this class by malware are insert (),
delete() and query(). This latter can be invoked to grab sensitive information
from content providers of other apps if they are not protected by permissions.
As stated in [5], some vendor pre-installed apps have implicitly exported content
providers which allowed other apps to successfully obtain sensitive information
from them without acquiring the necessary permissions.

Context: Context class provides global application information such as its
specific assets, classes, and resources. startService() is very frequently used
methods within this class with a support of more than 70% in malware and
less than 34% in benign ones. This API can be invoked to start a given ser-
vice in the background without interacting with the user. getFilesDir() and
openFileOuput () are other frequent APIs in this class that malwares call to
create files and get their absolute paths. getApplicationInfo() is often used
by malwares for obtaining various information about the app such as whether
it’s debuggable, installed on external storage, holds factory test flag, etc.

Intents: Intents allow launching other activities and services and interacting
with the phone’s hardware. The most frequent APIs used by malwares within In-
tents are setDataAndType (), setFlags() and addFlags(). setDataAndType ()
allows setting the URI path for the intent data with an explicit MIME data



type. As stated in the official documentation of Android [4], this method should
“very rarely be used” since it allows to override the ordinary inferred MIME
type of data of a newly specified MIME type. setFlags() and addFlags() are
used to set the old flags or add new ones to the intent to specify how it should
be handled. Depending on the parameter flag to these APIs, malware controls
the associated component such as running it with foreground priority.

4.2 Android framework resources APIs

ActivityManager: This class allows interacting with other activities running
in the system. The method getRunningServices() is often invoked by mal-
ware to inquire whether a certain service (like Anti-virus) is currently executing.
getMemoryInfo() is also frequently invoked by malware and might be used to
check how close the system to have no enough memory for other background
process and thus needing to start killing other processes. restartPackage () is
often invoked by malware to kill other apps’ services. According to Android’s
documentation [1], the original behavior of this method is no longer available to
apps as it “allows them to break other applications by removing their alarms,
stopping their services, etc”.

PackageManager: This class contains information about the application
packages installed on the device. Malicious apps call getInstalledPackages ()
to scan the system against a list of known anti-virus and take an appropriate
action based on that (e.g. remain dormant, kill the anti-virus process, etc.) .

Telephony,/ SmsManager and telephony/ gsm/ SmsManager: These
classes allows managing various SMS operations. Malware authors invoke many
methods within theses classes. sendTextMessage() is very frequently used by
malwares authors to send sms messages to premium rate numbers without the
user’s consent and thus incur financial losses. Examples of SMS Trojans include
malware belonging to the following families: SpyEye, OpFake, Gemini, etc.

TelephonyManager: This class retrieves various information about tele-
phony services on the device. The most frequently used APIs by malwares are:
getSubscriberId(), getDeviceIld(), getLinelNumber (), getSimSerialNumber
(), getNetworkOperator (), and getCellLocation(). Malware authors collect
these private data and send it to remote servers to build users profiles and track
them. As illustrated in Fig. 2, getSubsriberId() is the mostly used API by our
malware sample.

4.3 DVM related resources APIs

DexClassLoader: This class allows loading classes from external .jar and .apk
files containing a classes.dex. loadClass () is one of the most frequently invoked
APIs by malware and is used to execute code not installed as part of the app and
consequently evade malware detection techniques that rely on static analysis.
Runtime and System: Runtime class allows apps to interact with the envi-
ronment in which they are running. Malware invokes Runtime.getRuntime.exec
() method to execute dangerous Linux commands along with the supplied argu-
ments in a newly spawned native process and thus avoid the normal execution



lifecycle of the program. System class provides system related facilities such as
standard input, output and error output streams. loadLibrary () dynamically
loads native libraries and can be used maliciously through running native code
exploiting some known system vulnerabilities.

4.4 System resources APIs

ConnectivityManager, NetworkInfo, and WifiManage: These

classes provide network related functionalities such as answering queries about
different connections (Wifi, GPRS, UMTS) and network interfaces. Android mal-
ware calls APIs within ConnectivityManager class (getNetworkInfo()), Net-
workInfo (getExtraInfo(), getTypeName (), isConnected(), getState()), and
within WifiManager(setWifiEnabled() and getWifiState()) to establish a
network connection and interact with malicious remote servers.

HttpURLConnection and Sockets: APIs within these classes are used
to send and receive data over the web and establish communication with re-
mote servers. The most frequent APIs used by malwares in HttpURLConnec-
tion are setRequestMethod(), getInputStream(), and getOutputStream()
which manage transferring data between the malware apps and the malicious
servers. Similarly, malware applications often invoke getInputStream() and
getOutputStream() in Socket class for the same purpose. We have also noted
a heavy use of InetSocket Address which implements an IP socket address given
an IP address and a port number.

OS package: A lot of frequently used APIs in malware belong to OS package
which allows message passing, ipc services, process and threads management.
sendMessage () method in os.Handler class inserts messages into message queues
of different executing threads, while obtainMessage () retrieves messages from
the message queues. Malware authors often invoke myPid () and killProcess()
in Process class to request killing processes based on a given pid. However, the
kernel will impose restrictions on which processes an application can actually
kill [6]; only apps and packages sharing common UIDs can actually kill each
other. Unfortunately, these restrictions will not prevent Android malware from
killing processes beyond their scope once they can root the device.

IO Package: 10 package provides IO processing services such as reading
and writing to streams, files, internal memory buffers, etc. Malwares invoke APIs
within 10.DataOutputStream (such as writeBytes()) to write data and upload
files through a URL connection. Similarly, they call APIs in IO.DatalnputStream
(such as readLines(), available()) to read and download malicious payloads
from a certain URL connection. Methods within I0.FileOutputStream (such as
write()) are used to write the malicious content downloaded from a remote
server to local files. mkdir (), delete(), exists() and ListFiles() are other
used APIs in I10.File by malware for file management.

4.5 Utilities APIs

String, StringBuilder and StringBuffer: These classes provide an inter-
face for creating and manipulating strings. Malware heavily call substring(),



index0f (), getBytes (), valueOf (), replaceAll (), and Append (). These meth-
ods can be used for code obfuscation, construction of payloads to be sent to
servers, and evasion of static malware detection techniques through dynamically
creating URLs, parameters to reflection APIs, and dangerous Linux commands.

Timer: Timers facilitate scheduling one-shot or recurring tasks for future
execution. Malware can invoke APIs within this class (such as schedule () and
cancel()) to avoid dynamic analysis by remaining dormant until a fixed date
is reached, or until a specific event has been fired.

ZipInputStream: This class allows decompressing data from an Input-
Stream ZIP archive. Malwares rely on methods in this class to decompress and
read data from compressed files (.jar, .apk, .zip) downloaded during execution
or originally attached to the app. Commonly used APIs by malware in this class
are read (), close(), getNextEntry() and closeEntry().

Crypto: This package serves as an interface for implementing cryptographic
operations such as encryption, decryption, and key agreement. Methods within
Crypto.Cipher such as getInstance() and doFinal() transform a given input
to an encrypted or decrypted format while Crypto.spec.DESKeySpec() allows
specifying a DES key. These methods can be used for code obfuscation and avoid-
ing static detection through encrypting root exploits, SMS payloads, targeted
premium SMS numbers, and URLs to remote malicious servers.

w3c.dom: This package provides the official w3c Java interfaces for the
Document Object Model (DOM), which is used in apps for XML document
processing. Malwares use several APIs in w3c.dom such as getDocumentElement
(), getElementByTagName (), and getAttribute() to parse XML files. XML
can be used by malwares to establish bot communication, encode data, and
process local configuration files.

4.6 Parameters Features:

Based on the data flow analysis that we have conducted, we obtained the frequent
parameters (categorized as discussed in Table 1) that are used by malwares
applications more often than the benign ones in certain API invocations. Table
2 depicts some of the top invoked parameters types that yield to the highest
support difference between the malware and benign sample.

From the data flow analysis results depicted in Table 2, we can gain more
insight on Android malware behavior. A large percentage of String manipulation
operations are performed on dangerous Linux commands (such as SU, mount, sh,
bin, pm install, killall, chmod). These commands are mainly used by malware
authors to root the phone and exploit some well known vulnerabilities. After
getting superuser privilege, malwares perform various dangerous Linux opera-
tions through invoking runtime.exec(). Most of the ContentResolver operations
are performed on SMS, MMS, telephony or call log content providers.
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Table 2. Some Frequent API Parameters in Malware

Class Method  Parameter type Difference (%)
StringBuilder append  Dangerous command 35.95
ContentResolver query SMS or MMS 23.65
StringBuilder append  Unicode string 23.6
StringBuilder init Dangerous command 23.07
DataOutputSream writebytes Reads from process 21.80
DataOutputSream init Reads from process 21.62
runTime exec Dangerous command 21.27
InetSocketAddress init Port 80 19.91
StringBuilder append  Compressed file 19.58
DatalnputStream init Reads from connection 19.27
String valueOf  Unicode string 18.05
StringBuilder append  File manupilation 17.79
File init Accesses external storage  16.92
InetSocket Address init Explicit TP 14.87
String getBytes URL manupilation 14.05
Intent setFlags SendTo 12.94
Intent setFlags Call 11.67
ContentResolver query Telephony 10.88
Intent setFlags Send 10.47
ContentResolver query Call_log 10.12

5 Classification and Evaluation
5.1 Data Set

To extract malware and benign apps’ features, generate and evaluate the classifi-
cation models, we have collected and analyzed around 20,000 apps. Our malware
sample consists of 3987 malware apps that we collected from different sources
(McAfee and Android Malware Genome Project [3]). The malware sample be-
longs to different Android malware families. Our benign sample consists of the
top 500 free apps in each category in Google Play (around 16000 apps) that we
collected in July 2012.

5.2 Classification Models

As discussed earlier, our objective is to build a model that classifies unknown
apps as either benign or malware. For that, we have employed four different
algorithms for the classification: ID3 DT [20], C4.5 DT [20], KNN [8], and linear
SVM [25]. These inducers belong to different family of classifiers. C4.5 and ID3
are related to decision trees and KNN belong to Lazy classifiers. SVM is a
supervised learning method that proceeds through dividing the training data by
an optimal separating hyperplane. We have decided to employ algorithms from
different classifiers because we hope that they will produce different classification
models for Android apps. Our analysis shows that KNN and ID3 DT models lead
to a better accuracy compared to the other models.
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To test our generated classification models, we use split validation. That is,
we randomly split our dataset into training (2/3) and testing set (1/3). We build
the classification models based on the training set and feed the testing instances
to evaluate the models. To evaluate each classifier’s performance, we measured
the True Positive Ratio (TPR), i.e., the proportion of malware instances that
were correctly classified:

TP
~ TP+FN

where TP is the number of malware apps correctly identified and FN is the
number of malware apps classified as benign apps. Similarly, we measure the
True Negative Ratio (TNR), i.e., the proportion of benign instances that were
correctly classified:

TPR

B TN

TN+ FP

where TN is the number of benign apps correctly identified and FP is the number
of benign apps identified as malware apps. To capture the overall performance,
we measure the models’ accuracy, i.e., the total number of benign and malware
instances correctly classified divided by the total number of the dataset instances:

TNR

TP+TN

A =
CUraY = TP Y TN + FP + FN

By means of our collected dataset, we conducted different experiments to find
the optimum feature set that will produce the best cut between the malware and
benign sample.

5.3 Permission-Based Feature Set

In the first experiment, we extract the permissions requested by malware and
benign apps and obtain their perspective percentage usage in the two sets. We
then rank the permissions based on the difference usage and took the top k
permissions that are more frequently requested in malware than in benign apps.
To determine the optimum k permissions, we evaluate the performance of the
models for k = 10, 20, 30..., up to 124.

Fig. 3 depicts the results obtained for the permission-based feature set in
terms of accuracy, TPR, and TNR. As illustrated, the models’ accuracy increases
as the feature set includes more permissions. It should be noted that only 64
permissions were more frequent in the malware set than in the benign set, which
means that after the top 64 permissions, the classifiers start to learn also from
the permissions that are frequent in the benign set. This makes the classifiers
not solid enough since they can fail to detect malicious apps in the following
two scenarios. First, malware authors can easily defeat the permission-based
classifiers through merely declaring “benign” permissions in the manifest file.
Second, the classifiers will not be able to correctly classify repackaged android
malware; which is based on legitimate apps but embeds extra payload to achieve
a malicious goal. The manifests of the repackaged apps include both the original
permissions of the benign app and the permissions needed for the malicious
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behavior and thus confuse the classifiers.

To demonstrate that the permission model is not robust enough, we designed
an experiment in which we modify our malware set and feed it to the classifiers.
In each malware manifest, we declare 10 new permissions (the top 10 in the
benign set) and keep everything else unchanged. As shown in Fig. 3(d), when
the feature set contains the permissions used in the benign set, the classifiers
are not able to correctly classify the malware set. In fact, using the top 80
permissions, the classification rate of KNN drops to 67% and of ID3 to 43%.
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Fig. 3. Performance of Permission-based Models

5.4 API-Based Feature Set with Package Level and Parameter
Information

In the second experiment, our feature vector includes the generated APIs within
each set, which make up in total 8375 distinct APIs. We also embed package level
information. That is, we white-list the APIs that are exclusively called by third-
party packages. We specifically filter out these APIs to avoid the case where a
benign app might be classified as malicious if a third-party package invokes a
possibly “malicious” API. Consequently, the support of white-listed APIs drops
in the benign set.

We conduct a frequency analysis and took only the APIs whose usage in the
malware set is higher than in the benign set. Based on this, we have reduced our
features to 491 APIs. As shown in Fig. 4(a), a large portion of these APIs have
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Fig. 4. Performance of API-based Models

a usage difference of less than 6% which will result in creating more noise in the
classifiers and slow down the learning process. To solve this issue, we further
refine our feature set to include only the top 169 APIs (with a usage difference
greater or equal to 6%).

We generate the classification models for the top k (10, 40, 80, 120 and 169)
API features and evaluate their performance. As depicted in Fig. 4, using the
top 169 API based features, we achieve the highest accuracy, TPR and TNR
using KNN. C4.5 is the worst performing model as it barely achieves 83% TPR.

In the same experiment, we also include the parameter-based features ob-
tained using data flow analysis on the original set. We re-generate the models
and evaluate them after adding 20, 40, and 60 parameters to the 169 filtered
APIs. As shown in Fig. 4, by adding the top 20 used parameters, we are able
to achieve the highest accuracy (99%) and TPR (97.8%) using KNN algorithm.
The other algorithms also perform better with the newly added parameter-based
feature set.

Unlike permission-based classifiers, it is not possible to trick API-based clas-
sifiers through declaring benign APIs, because the models do not rely on benign
features to classify a given app. Rather, they only rely on the APIs (along with
parameters) that are more frequently used in malware than in benign apps.
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5.5 Models Comparison

To show the improvement achieved over the experiments performed, we plot the
accuracy, TPR, and TNR of the classification models together as depicted in
Fig. 5. We consider two permission models. The first one is trained on the top
60 frequent permissions in malware and the second one on all the permissions.
For the API filtered model, the feature vector includes all the top 169 features.
The last model that we consider is trained on the top 169 filtered APIs along
with the top 20 frequent parameters in certain APIs within malware.

As shown in Fig. 5, our API based features performs better than the permission-
based one. We were able to improve the accuracy, TPR and TNR of the models
by embedding package and some parameter features to our original features.
KNN is the best performing model, followed by ID3, SVM then C4.5.

5.6 Processing Time

It is evident that the processing time is a crucial metric for a scalable detection
system. In this section, we report the execution time of Droid APIMiner which
consists of the time required to de-assemble an apk file and to extract the API
and parameter feature set. We also report the time that RapidMiner requires for
applying different classification models to classify a new instance. We perform
the analysis an Intel Core i5-2430M machine with 6GB of memory.

Fig. 6 shows the distribution of Droid APIMiner processing time among the
collected apps sample. As depicted in the graph, more than 80% of the apps
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require less than 15 sec to be analyzed by Droid APIMiner. Besides, as shown in
Table. 3 applying KNN algorithm to classify new inputs is quite fast and takes
less than 10 sec. In total, our detection system requires on average about 25
sec to classify an apk file as either benign or malicious, which makes it efficient
enough to be deployed on either mobile devices and back-end servers.

Table 3. Processing Overhead of the Classification Algorithms

Algorithm Model Application
and Classification time (sec)

ID3 185.0 +- 32.0
KNN 9.0 +- 1.0
C4.5 21.0 +- 4.0
SVM 160.2 +- 40.0

6 Discussion

In this section, we discuss some potential evasion techniques that malware au-
thors may adopt in order to thwart our classifiers. Furthermore, we discuss how
our tool handles these cases.

— Reflection: Malware authors may use reflection to easily obfuscate any danger-
ous API call and thus evade the static detection of the occurrence of that API
by our analysis tool. However, it should be noted that our study has shown
that reflection APIs are more frequently used by our malware set than in the
benign set, which makes them part of the feature vector for the classification.

— Native Code: To avoid static detectors at the bytecode level, malwares some-
times embed malicious payload within native content. Since our detection tool
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only works at bytecode level, it will not be able to detect any dangerous meth-
ods invoked. However, the use of JNI calls such as System.loadLibrary() is
also used as a classification feature by our tool.

— Bytecode Encryption: To prevent reverse engineering of Java code, malware
authors may encrypt their code and allow the decryption at runtime. Our tool
considers decryption APIs as a classification feature.

— Dynamic Loading: As discussed earlier, DexClassLoader allows loading classes
from .jar and .apk files at runtime and executing code not installed as part of
an app. loadClass() in DexClassLoader also belongs to our feature set.

— More Benign Calls: Since our classifiers rely on the frequency of API calls,
malware authors might think of introducing more benign API calls into their
code. However, our tool is not susceptible to this problem, because we do not
rely on the occurrence of benign API calls as a feature for the classification.
Rather, we only consider the occurrence of malicious call as a feature.

7 Related Work

Several studies have been conducted in the field of Android malware detection.
One much-studied direction focuses on the permission system. Kirin [12] blocks
apps that declare risky permission combinations or contain any suspicious action
strings used by activities, services or broadcast receivers. Zhou et al. [29] detect
Android malware based on the similarities of the requested permissions and the
behavioral footprints to different known malware families. Sarma et al. [22] pro-
pose different risk signals based on the requested permissions, category as well as
requested permissions of apps belonging to the same category. In another work,
Sarma et al. [17] employ probabilistic generative models to compute a real risk
score of Android apps based on the permissions that they request.

Another direction of related work relies on system level events to detect pos-
sible malicious behavior. Schmidt et al. [23] extract library and system function
calls from Android executables and compare them to malware executables to
classify apps. Crowdroid [10] collects system call traces of running apps on dif-
ferent Android devices and applies clustering algorithms to detect malwares.

More similar research to our study rely on semantics within the bytecode to
detect specific vulnerabiltities in Android applications. Potharaju et al. [19] aim
to detect plagiarized apps through different detection schemes relying on sym-
bol tables and method-level Abstract Syntactic Tree fingerprints. In [28], Zhou
et al. aim to systematically detect and analyze repackaged apps on third party
Android markets based on fuzzy hashing techniques.

Other related work for detecting malware through bytecode level information
have been proposed by Blasing et al. [9] and Zhou et al. [29]. However, the first
one (AASandbox) relies on a trial and error approach to identify suspicious pat-
terns in the source code, while DroidRanger performs the detection with regards
to a heuristic based filtering. In our work, we conduct a thorough frequency anal-
ysis of API calls within benign and malware apps to extract malware features
and employ machine learning to get the most relevant ones.

A different direction for detecting Android malware relies on dynamic anal-
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ysis. Andromaly [24] continuously monitors various system metrics to detect
suspicious activities through applying supervised anomaly detection techniques.
In [11], Enck et al. perform dynamic taint analysis to track the flow of private
and sensitive data through third party apps, and detect any leakage to remote
servers. Portokalidis et al. [18] propose a security model for protecting mobile
devices which performs multiple attack detection techniques simultaneously on
remote servers hosting an exact replica of the devices. Lok and Yin [27] present
DroidScope, a virtualization based platform for Android malware analysis. It
rebuilds both the operating system and Java level semantics, and enables in-
strumentation of the Dalvik and native instructions. Consequently, Droidscope
can be used to understand the behavior of malware both at the native code level
as well as at the interaction with the system.

8 Conclusion and Future Work

We have presented a robust and lightweight approach for detecting Android
malware based on different classifiers. To predict whether an app is benign or
malicious, the classifiers rely on the semantic information within the bytecode of
the applications ranging from critical API calls, package level information and
some dangerous parameters invoked. Rather than following a heuristic based
approach for determining the feature vector of the classifiers, we have statically
analyzed a large corpus of Android malwares belonging to different families and a
large benign set belonging to different categories. We have conducted a frequency
analysis to capture the most relevant API calls that malware invoke, and refined
the feature set to exclude API calls made by third-party packages. We performed
a simple data flow analysis to get dangerous input to some API calls.

Our classification results indicate that we are able to achieve a better accu-
racy, TPR and TNR using a combination of API, package, and parameter level
information in comparison to the permissions-based feature set. As future work,
we plan to further reduce the false positives and negatives through analyzing
the samples that were not correctly classified and finding out the reasons behind
the misclassification.
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