DeepMEM: Learning Graph Neural Network Models for Fast and
Robust Memory Forensic Analysis

Wei Song
University of California, Riverside
wsong008@ucr.edu

Chang Liu
University of California, Berkeley
liuchang@eecs.berkeley.edu

ABSTRACT

Kernel data structure detection is an important task in memory
forensics that aims at identifying semantically important kernel
data structures from raw memory dumps. It is primarily used to
collect evidence of malicious or criminal behaviors. Existing ap-
proaches have several limitations: 1) list-traversal approaches are
vulnerable to DKOM attacks, 2) robust signature-based approaches
are not scalable or efficient, because it needs to search the entire
memory snapshot for one kind of objects using one signature, and
3) both list-traversal and signature-based approaches all heavily
rely on domain knowledge of operating system. Based on the limita-
tions, we propose DEEPMEM, a graph-based deep learning approach
to automatically generate abstract representations for kernel ob-
jects, with which we could recognize the objects from raw memory
dumps in a fast and robust way. Specifically, we implement 1) a
novel memory graph model that reconstructs the content and topol-
ogy information of memory dumps, 2) a graph neural network
architecture to embed the nodes in the memory graph, and 3) an
object detection method that cross-validates the evidence collected
from different parts of objects. Experiments show that DEEPMEM
achieves high precision and recall rate in identify kernel objects
from raw memory dumps. Also, the detection strategy is fast and
scalable by using the intermediate memory graph representation.
Moreover, DEEPMEM is robust against attack scenarios, like pool
tag manipulation and DKOM process hiding.

CCS CONCEPTS

« Applied computing — System forensics; - Computing method-

ologies — Neural networks; « Security and privacy — Operating
systems security;

KEYWORDS

Memory Forensics; Direct Kernel Object Manipulation; Deep Learn-
ing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10...$15.00
https://doi.org/10.1145/3243734.3243813

Heng Yin
University of California, Riverside
heng@cs.ucr.edu

Dawn Song
University of California, Berkeley
dawnsong@cs.berkeley.edu

ACM Reference Format:

Wei Song, Heng Yin, Chang Liu, and Dawn Song. 2018. DEEPMEM: Learning
Graph Neural Network Models for Fast and Robust Memory Forensic Anal-
ysis. In 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’18), October 15-19, 2018, Toronto, ON, Canada. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3243734.3243813

1 INTRODUCTION

Memory forensic analysis [6] extracts live digital evidence of attack
footprints from a memory snapshot (or dump) of a running system.
For instance, by identifying _EPROCESS objects in a Windows mem-
ory dump, analysts can figure out what processes are running on
the target operating system. Memory forensic analysis is advanta-
geous over the traditional disk-based forensics because although
stealth attacks can erase their footprints on disk, they would have
to appear in memory to run.

In previous works, researchers have explored memory forensics
in OS kernels [7, 37], user-level applications [2, 42], as well as mobile
devices [26, 27]. In this work, we focus on detecting objects in the
kernel space. This problem is further complicated by kernel-mode
attacks [16].

Generally speaking, the existing memory forensic tools fall into
two categories: signature scanning and data structure traversal, all
based on certain rules (or constraints), either on values, points-to
relations, or both. Signature scanning tools (e.g., psscan) in Volatil-
ity [37] rely only on value constraints on certain fields to identify
memory objects in the OS kernel, whereas SigGraph [20] relies on
points-to relations as constraints to scan kernel objects. Data struc-
ture traversal tools (e.g., pslist) in Volatility and KOP [5] start
from a root object in a known location, traverse its pointers to dis-
cover more objects, and further traverse pointers in the discovered
objects to reach more objects.

However, there exist several intertwining challenges in the ex-
isting rule-based memory forensic analysis:

(1) Expert knowledge needed. To create signatures or traversing
rules, one needs to have expert knowledge on the related data
structures. For a closed-source operating system (like Windows),
obtaining such knowledge is nontrivial if not impossible.

(2) Lack of robustness. Attackers may directly manipulate data
and pointer values in kernel objects to evade detection, which
is known as DKOM (Direct Kernel Object Manipulation) at-
tacks [9]. In this adversarial setting, it becomes even more chal-
lenging to create signatures and traversing rules that cannot

https://doi.org/10.1145/3243734.3243813
https://doi.org/10.1145/3243734.3243813

be easily violated by malicious manipulations, system updates,
and random noise.

(3) Low efficiency. High efficiency is often contradictory to high
robustness. For example, an efficient signature scan tool (like
psscan) simply skips large memory regions that are unlikely to
have the relevant objects (like _EPROCESS) and relies on simple
but easily tamperable string constants as constraints. In contrast,
a robust signature scan tool would have to scan every single
byte and rely on more sophisticated constraints (such as value
ranges, points-to relations) that are more computation-intensive
to check.

In this work, we are inspired by the successful adoption of deep
learning in many problem domains (such as computer vision, voice,
text, and social networks). We treat this memory object recognition
problem as a deep learning problem. Instead of specifying deter-
ministic rules for a signature scan and data structure traversal, we
aim to learn a deep neural network model to automatically recog-
nize memory objects from raw memory dumps. Since the model is
trained in an end-to-end manner, no expert knowledge is required.
The learned deep neural network model is also more robust than
rule-based search schemes because it comprehensively evaluates all
memory bytes and thus can tolerate perturbations to some extent.
A deep neural network model also excels in efficiency, as vector and
matrix computations can be largely parallelized in modern GPUs.

More specifically, in order to take into account adjacency re-
lations between data fields within an object as well as points-to
relations between two objects, we choose to build a graph neural
network model [30], in which each node represents a segment of
contiguous data values between two pointers, and each directed
edge represents an adjacency relation or a points-to relation be-
tween two nodes. We then conduct supervised learning on this
model: we collect a large number of diverse memory dumps, and
label the objects in them using existing memory forensic tools
like Volatility, and train the classification model using this labeled
dataset.

We implement a prototype called DEEPMEM and conduct the
extensive evaluation with respect to accuracy, efficiency, and ro-
bustness. Experimental results show that it achieves high precision
and recall rate at above 99.5% for important kernel objects, like
_EProcess and _EThread. For efficiency, it scans a memory dump
of 1GB in size only once to build the memory graph in about 80
seconds. Then, for each type of object, the detection time is about
13 seconds per type on a moderate desktop computer (Core i7-6700,
16GB RAM, and no GPU). Moreover, in the attack scenarios, like
pool tag manipulation and DKOM process hiding, signature-based
memory forensics tool (e.g. Volatility), fail to correctly report kernel
objects while DEEPMEM can tolerate those attacks.

In summary, the contributions of this paper are as follows:

e A graph representation of raw memory. We devise a
graph representation for a sequence of bytes, taking into
account both adjacency and points-to relations, to better
model the contextual information in memory dumps.

e A graph neural network architecture. We propose a graph-
based deep learning architecture with two jointly-trained
networks: embedding network and classifier network. This

deep neural network architecture captures both internal pat-
terns of memory bytes as well as points-to structures in the
memory graph and infers node properties in the graph.

o A weighted voting scheme for object detection. We pro-
pose a weighted voting scheme for object detection, which
summarizes and cross-validates the evidence collected from
multiple parts of an object to infer its location and type.

The remaining sections are structured as follows. Section 2 pro-
vides a background of memory object detection. Section 3 gives an
overview of the DEEPMEM, followed by design details of each com-
ponent. Section 4 presents implementation details and evaluation
results. Section 5 discusses the limitations of our current design and
implementation and sheds lights on future work. Section 6 surveys
additional related work. In the end, Section 7 concludes the paper.

2 MEMORY OBJECT DETECTION

In this section, we first give a formal problem statement for memory
object detection, and then describe the existing techniques and
discuss their limitations. In the end, we share our insights.

2.1 Problem Statement

If we treat a memory dump as a sequence of bytes, an object in
this dump are treated as a sub-sequence in this memory dump.
Naturally, we can define the object detection problem as a sub-
sequence labeling problem in a large sequence.

Our goal is to search and identify kernel objects in raw mem-
ory images dumped from running operating systems. Let C =
{c1,c2,...} be the set of kernel data structure types in operating
system. Given a raw memory dump as input, the output is defined
as a set of kernel objects O = {01, 02, ...}, where each object in the
set is denoted as a pair 0; = (addr;,c;),c; € C. Here, addr; is the
address of the first byte of the object in kernel space, and ¢; is the
type of the kernel object.

We would like to achieve the following goals:

e No reliance on source code. Unlike MAS [7] and KOP [5],
which rely on the kernel source code to compute a complete
kernel object graph, we do not assume the access to such
information. Instead, we resort to learn from real memory
dumps.

e Automatic feature selection. We do not rely on human
experts to define signatures or traversing rules for various
kernel objects. We aim to automatically learn a detection
model in an end-to-end manner.

¢ High robustness. Our method should tolerate content and
pointer manipulation of attackers in DKOM attacks.

¢ High efficiency. We would like to design a scanning ap-
proach to examine every byte in the memory, and at the
same time, achieve high efficiency and scalability.

2.2 Existing Techniques

There are two approaches to utilize the knowledge of data structures
for memory analysis.

The first one is data structure traversal. We can first identify a
root object based on the data structure definition and then follows
the pointers defined in this object to find more objects. In particular,
Volatility [37], a well-known memory forensic tool, provides a set

" Training I Training Phase

emory Dump

Detection Phase

Testing I
Memory Dump

Graph Constructor [Memory Graph]

Embedding Network

U

7

Graph Constructor

Node Label Generator

[Node Labels]

Node Classifier Network

: <):|[Memory Graph] &

Kernel objects

Object Detector

=

Figure 1: The overview of the DEEPMEM architecture

of tools for listing running processes, modules, threads, network
connections, by traversing the relevant data structures. Since data
structure definitions in C/C++ are often vague and incomplete (due
to the presence of generic pointers), the completeness of this ap-
proach is affected. To address this problem, KOP [5] and MAS [7]
perform points-to analysis on the C/C++ source code to resolve
the concrete types for the generic pointers, and thus produce com-
plete data structure definitions. This approach is efficient (as we
can quickly find more objects by just following pointers), but not
robust because attackers may modify the pointers to hide impor-
tant objects, known as Direct Kernel Object Manipulation (DKOM)
attacks.

The second approach is signature scan. We can scan the entire
memory snapshot for objects that satisfy a unique pattern (called
signature). Volatility [37] provides a set of scan tools as well to
scan for processes, modules, etc. To improve search accuracy, Sig-
Graph [20] automatically constructs graph-like signatures by taking
into account points-to relations in data structure definitions, at the
price of even lower search efficiency. In general, the signature scan
is more resilient against DKOM attacks, because it does not depend
so much on pointers. However, it is very inefficient and not scalable,
because it has to search the entire memory snapshot for one kind
of objects using one signature. To further improve the robustness
of signatures, Dolan-Gavitt et al. [11] proposed to perform fuzz
testing to mutate each data structure field and eliminate from the
signature the constraints that can be easily violated by attackers.
However, this will likely lead to the increase of false positives.

Both data structure traversal and signature scan require precise
knowledge of data structures and also heavily depend on specific
versions of the software or the operating system, because data struc-
tures change from one version to another. Therefore, to use these
tools, a data profile must be extracted from each unique operating
system version, which is clearly not convenient or scalable. To ad-
dress this problem, researchers proposed to reuse the code already
existed in the memory snapshot to interpret the memory snapshot
itself [10, 13, 29]. These techniques avoid creating data profiles and
implementing traversal algorithms, but they still heavily rely on
the knowledge of specific operating systems to understand what
code to reuse and how to reuse the code. Moreover, this approach

is still subject to DKOM attacks. In terms of efficiency, code reuse is
better than signature scan, but worse than data structure traversal.

2.3 Our Insight

We believe that the bottleneck for these memory analysis approaches
is the rule-based search scheme. They search and traverse memory
objects based on pre-defined rules. The rules can be hard to con-
struct in the first place, and moreover, the rules cannot easily adapt
to an unknown operating system and a new version and tolerate
malicious attackers that attempt to deliberately violate these rules.
To address these limitations, a “learning” ability becomes essential.
A new memory analysis approach should automatically learn the
intrinsic features of an object that are stable across operating sys-
tem versions and resilient against malicious modifications, and at
the same time is able to detect these objects in a scalable manner.
In this work, we resort to deep learning to tackle this problem.

3 DESIGN OF DEEPMEM
In this section, we first present an overview of DEEPMEM, and then
delve into three important components respectively.

3.1 Overview

Figure 1 illustrates the overview of DEEPMEM. Generally speak-
ing, we divide DEEPMEM into two separate stages: training and
detection.

3.1.1 Training Stage. In this stage, DEEPMEM automatically learns
the representation of kernel objects from raw bytes. First, memory
dumps are fed into a graph constructor to generate a graph for each
memory dump (which is called “memory graph”), where each node
is a segment between two pointers, and each edge represents either
an adjacency relation or a points-to relation between two nodes.
Second, a node label generator will assign a label for each node
in the memory graph. We can use any existing tools (such as Volatil-
ity [37], or dynamic binary analysis tool DECAF [15]) for this pur-
pose. This seems a little contradictory: we rely on an existing anal-
ysis tool to build a new analysis tool. This is reasonable because the
existing tool only serves as an offline training purpose, so it does
not need to be efficient and robust. It only needs to have reasonable

S s A
S s S
7/ 7 7
A 77 B 77 € 77 D
S s s
S s s
(a) Raw Memory

(b) Memory Graph

Figure 2: Generate a memory graph from raw memory

accuracy in terms of labeling. After training, our detection model
is expected to achieve good efficiency, robustness, and accuracy
simultaneously.

Third, a memory graph is fed into a graph neural network ar-
chitecture. By propagating information from neighboring nodes
after several iterations, this graph neural network carries a latent
numeric vector (called embedding) for each node in the memory
graph.

Finally, all nodes’ embedding vectors will go through a neural
network classifier to get the predicted labels. The predicted labels
will be compared with the expected labels to compute the loss of
the classifier and update the weights of our neural network.

3.1.2 Detection Stage. this stage, DEEPMEM accepts an unlabeled
raw memory dump and detects kernel objects inside it. First, it
follows the same procedure to generate a memory graph for this
memory dump. Second, the memory graph is fed into the Graph
Neural Network (GNN) model obtained from the training stage to
generate embeddings of all the nodes and then predict node labels
using the neural network classifier. At last, DEEPMEM performs
an object detection process. This is because the labels predicted
from the last step are for segments, and an object may consist of
one or several segments. Therefore, the object detection process
takes segment labels as input and uses a voting mechanism to detect
objects, for which most of their segment labels agree upon the same
object label.

In the remainder of this section, we will discuss the definition of
memory graph and its construction in Section 3.2, the graph neural
network model for computing memory segments’ embeddings as
well as the segment classification network in Section 3.3, and object
detection scheme in Section 3.4.

3.2 Memory Graph

A memory graph is a directed graph G = (N, Eln,Em,Elp,Erp),
where:

e N is a node set, and each n € N represents a segment of
contiguous memory bytes between two pointer fields.

e E;, is an edge set, and each e € E represents a directed edge
from n; to nj, and n; is left neighbor of n;.

e E,, is an edge set, and each e € E represents a directed edge
from n; to nj, and n; is right neighbor of n;.

e Ej, is an edge set, and each e € E represents a directed
edge from n; to n;, and n; is pointed by a pointer on the left
boundary of n;.

e E,p is an edge set, and each e € E represents a directed edge
from n; to nj, and n; is pointed by a pointer on the right
boundary of n;.

In other words, a memory graph is a directed graph with four sets
of edges, which capture both the adjacency and points-to relations
of memory segments, on both left-hand-side and right-hand-side
of each segment.

Figure 2 illustrates an example of how to construct a memory
graph from raw memory. Figure 2(a) shows a part of raw memory,
in which three pointer fields split this part of memory into four
segments: A, B, C, and D, each of which may have one or more con-
tiguous memory bytes. As a result, A, B, C, and D become vertices
in the corresponding memory graph. These vertices are connected
by four kinds of edges. For instance, since A is the left neighbor

i
of B, we have A — B. Conversely, since B is the right neighbor

of A, we have B oA Moreover, since the pointer field left to C
points to D, and the pointer field right to C points to A, we then

have D 1—p> Cand A = C. Note that these two edges are reverse
to the actual points-to directions. This is because an edge in the
memory graph represents an information flow. For instance, the
pointer field left to C points to D, which means determining D’s
label can help label C. Therefore, from the information flow point
of view, there is an edge from D to C.

A special case is that there are multiple consecutive pointers. As-
sume there are two consecutive pointers between C and D, pointing

to A and B respectively, we then create four edges A 2, C,B 2, C,

Ip Ip
A— Dand B— D.

A careful reader might suggest adding edges for the points-to
directions as well. For instance, the pointer field left to C points to D,
and it might make sense to have C — D, because identifying C also
helps to identify D. We choose not to do so, because an adversary
can easily create a pointer in an arbitrary address outside of a kernel
object and make it point to the object, then the topology of the
object in memory graph is changed if we add edges for point-to
directions. This will adversely affect the detection. On the other
hand, compared to the above case, it is more difficult to create a
fake pointer or manipulate an existing pointer within a legitimate
object that he/she tries to hide, without causing system crashes or
other issues.

3.3 Graph Neural Network Model

The GNN (Graph Neural Network) model will accept the memory
graph generated in Section 3.2 as input, and then output the labels
of all nodes in the graph. The goal of GNN model is to first extract

Hm, (£)

|
|
|

llmr (t)

input vector

embedding vector at t+1

|
|
m; € Eyp[n] :
|

fEayctrall

|
m; € Epy[n] :
|

mm

ml € Ep[n

|
|
|
|
|
LTLE_El"_["_]__________'

embedding vector at t

FCN with ReLU

Figure 3: Node embedding computation in each iteration t.
Information flows through Ejps Erps Ents Enr edges. Embed-
ding vector (¢t + 1) gets updated by input vector v, and its
neighbors’ embedding vectors at t.

a low-dimensional internal representation of nodes from raw bytes
of a memory dump, and then infer the properties of nodes. As
such, the GNN model should consist of two consecutive subtasks: a
representation learning task and an inference task.

We represent the GNN model as ¥. It consists of two jointly-
trained subnetworks. The first subnetwork is an embedding net-
work which is responsible for node representation abstraction. We
denote it as ¢,,,. The second subnetwork is a classifier network,
which is responsible for node label inference. We denote it as iy, .
The formal definition of 7 is defined as follows.

F = Yy (P, (1)) 1
The input of the embedding network ¢,,, is a vector representa-
tion of a node, denoted as v, and the output is embedding vector,
denoted as p,,. The classifier network ,,, takes the output of the
embedding network as input, and then output the node label, de-
noted as y,,.
More specifically, let v, be a d-dimensional vector of node n
derived from its actual memory content, then the embedding vector
1, is computed as follows:

n = Gwi(Ons Bgy, [0y BE, o) BEp) RE 1) ()
In other words, each node’s embedding is computed from its
actual content and the embeddings of its four kinds of neighboring
nodes. We use a simple method to derive a d-dimensional vector
for each node: we treat each dimension as one memory byte. If this
memory segment is longer than d bytes, we truncate it and only
keep d bytes; if it is shorter than d bytes, we fill the remaining bytes
with 0.
Then the output vector y,, is computed as follows.

n = Vw, (1p) ®3)

In the following paragraphs, we will describe how embedding
network and classifier network are defined and how they work.

3.3.1 Embedding Network. For each node n in the memory graph
G, the embedding network ¢,,, integrates input vector v, and the
topological information from its neighbors, both adjacent neighbors
and point-to neighbors, into a single embedding vector p,,.

Inspired by Scarselli et al. [30], we implement the embedding
vector as a state vector that gradually absorbs information propa-
gated from multiple sources over time. To add a time variable into
embedding vector computation, we transform Equation (2) into
Equation (4). The total iterations needed to calculate the embed-
ding vector is denoted as T. The embedding vector of time ¢ + 1
depends on the neighbor embedding vectors at time ¢, as shown in
Figure 3.

Pn(t +1) = G, (On, pg, 0] (), BE,, [11(D),

HE,[n](D: BE, (] ()

For each node n, the embedding network collects the information
about neighbor nodes in a BFS (Breadth First Search) fashion. In
each iteration, it traverses one layer of neighbor nodes and inte-
grates the neighbors’ states into the state vector u,, of node n. We
name the neighbors expanded in the first layer as 1-hop neighbors,
in the same way, the neighbors expanded in the k-th layer as k-hop
neighbors. In each layer expansion, we collect information from
four types of neighbors, which are left neighbor, right neighbor, left
pointer neighbor and right pointer neighbor. The more iterations
we run, the information of farther neighbors are collected into em-
bedding vector pu,,. At time t = T, pp(t) stores the information of
the node sequence n itself and the information of neighbor nodes
within T hops.

We implement embedding vector p,, as Equation (5).

4)

U, (t +1) = tanh(Wy - vy + f(n, 1)) (5)

Pt =o1(>)+ ool D mu(t)+

mEEPt[n] meE;n[n] (6)
(Y, mp) o Y Hu)
meEj,[n] meE,p[n]

The weight matrix W; is the weight parameters of the node
content, which is a matrix of shape |u| X d. Neighbor state weight
parameters are a set of weight matrices in multiple layered neural
networks. Note that there are four separate sets of weight matrices
for oy, and o2, and o3, and oy, such that the embeddings of different
kinds of neighbors are propagated differently. The architecture of
each o network is a feed-forward neural network, each layer is a
fully connected layer with ReLU activation function. The pseudo
code of embedding network is shown in Algorithm 1.

All of the mentioned weight parameters of embedding network
are learned using supervised learning on a labeled training dataset.
Since the weights are learned jointly with the weights in the clas-
sifier network, we will leave the training details after introducing
the classifier network in the section below. The embedding vector
obtained in this section is just an intermediate representation of
the whole supervised training. To perform an end-to-end training
from raw bytes to labels, we need the classifier network to generate
the final node label for training.

Algorithm 1: Information Propagation Algorithm of Embed-
ding Network ¢,

Input :Memory Graph G = (N, Eyy,, Ern, Ejp, Erp), iteration
time T
Output:Graph Embedding y,, foralln € N
1 Initialize p,,(0) = 0, for eachn e N
2 fort =11t0T do

3 forn e N do

4 B= gl(ZmeE,n[n] Bp(t—1))
5 .B+ = O-Z(ZmGEl,,[n] ﬂm(t - 1))
6 ﬂ+ = O-S(ZmEElp[n] ”m(t - 1))
| B = oS g, g Mt = D)
8 1, (t) = tanh(Wy - v + f)

9 end

10 end

3.3.2 Classifier Network. Let I be a node label, and L be the set of
all node labels. Node classifier network is used to map embedding
vector to a node label: ¥, : p,, — [, wheren € N,l € L.

In order to facilitate object detection that will be discussed in
Section 3.4, we choose to label each node as a 3-tuple of the object
type, offset and length. For example, a node with label T_16_24
means the node is part of a _ETHREAD object and it is located at
offset 16 from the beginning of the _ETHREAD object, the length
of it is 24 bytes. As illustrated in Figure 4, three nodes are labeled
as T_16_24, T_52_12 and T_84_28. These labels all agree upon a
single fact that a _ETHREAD object is located at the same address.
Similar labeling methods are adopted in the linguistics domain to
solve word segmentation tasks [40, 41]. In particular, they label
the characters at the start, in-between and at the end of a word, in
order to split words from streams of free texts.

Object 24 12 28

Address — — —
7 077 7 777
% v % 7
7 v % 7
Efé T_16_24 T 521217 7\ T 8428 77
% 7% 7% 7
% % % 7

16
~ /

52

84

Figure 4: Node Labeling of a _ETHREAD Object

An object type may have many node labels. However, some rare
and invariant node labels have low occurrences in type c. To get a
robust model, we should not fit these outliers node labels. Hence,
we just keep the node labels with high frequency in type c, denoted
as key node label set L(c). The node labeling method is described
in detail in experiment evaluation Section 4.2.

With node labels of each object type, we then build a multi-class
classifier to classify the nodes into one of the labels in that object
type. For example, there will be a _ETHREAD classifier, a _EPROCESS
classifier, etc. The node classifier takes an embedding vector pu,, as
input and produces a predicted node label as output. To implement

the classifier, we choose to use FCN (Fully Connected Network)
model that has multi-layered hidden neurons with ReLU activation
functions, following by a softmax layer as the last layer.

After introducing the embedding network ¢,,, and the classifier
network ¥,,, we will show how to train them together. During
training, training samples are fed into the embedding network for
contextual information collection. After propagating several itera-
tions, the final embedding vectors are fed into the classifier network
to generate the predicted output labels. To train the weights in the
GNN model, we compute the cross-entropy loss between the pre-
dicted label and annotated label, and update weights in the process
of minimizing the loss.

We adopt the BP (Back Propagation) [31] strategy to pass the
loss error from output layer back to previous layers to update the
weights along the way. In the next loop of training, the classifi-
cation is performed using newly-updated weights. After several
training loops, the loss will stabilize to a small value and the model
is fully trained. Specifically, we use Adam (Adaptive Moment Esti-
mation) [17] algorithm, a specific implementation of BP strategy,
as the weight parameter optimizer of the GNN deep model.

Formally, let training dataset D = {dy,d, ...} be a set of node
samples, where each sample d; = (0™, y(i)) is a pair of node vector
and associated node label vector. The optimization goal is to com-
pute the solution to Equation (7). L is the cross-entropy loss func-
tion that estimates the differences between classifier outputs and an-
notated labels. The parameters of embedding network wi (including
weights of W1, o1, 02, 03, 04) and parameters of classifier network
wy are updated and optimized in training.

D]
arg min Z .E(y(i), Flo'D) (7)

w1, W2 i=1

3.4 Object Detection

The basic idea behind object detection is that if several nodes indi-
cate that there exists an object of certain type c at the same address
s in the memory dump, we can conclude with a high confidence that
we have detected an object of type c at that address, ¢ € C. Thus, a
node label can be considered as a voter that votes for the presence
of an object. For example, a node with a T_16_24 label means the
node votes for the address, 16 bytes before the node address, to
be the address of a _ETHREAD object. Each node in the memory
indicates the presence of an object. Thus with all the node labels,
we can generate a set of candidate object addresses S = {s1, s2, ...}
and corresponding voters for each address.

Next, we need to determine whether an address s € S is indeed
a start address of an object. Ideally, if all the key nodes of type c
vote for s to be an object of type c, for example T_16_24, T_52_12,
T_84_28... all suggest the presence of an _ETHREAD at the same
address s, we can confidently report a _ETHREAD object is detected
at s. It is also likely that only a fraction of the key node labels votes
for address s, then our confidence to report address s will be lower.
We use L(s, ¢) to denoted the voter set, which is all the key node
labels of type c that vote for address s.

Specifically, we design a weighted voting mechanism. It gives dif-
ferent node labels (or in other words voters) different vote weights.

Since the voter with higher frequency in a certain object type bet-
ter indicates the presence of the objects of that type, and thus is
assigned with a larger weight. The weights are calculated from a
large real-world labeled dataset.

Finally, we introduce the prediction function f(s,c) in Equa-
tion (8). It measures the difference between the prediction con-
fidence and a pre-defined threshold §. When the value of f(s,c)
exceeds the threshold, we draw a conclusion that an object with
type c is detected at address s.

ple.ls) +y(s,¢)) >0

f(s,c)={1’ Liel(se) ple))

0, otherwise

Here, p is a counting function, p(c) counts the number of objects
of type ¢ in the dataset, and p(c, [) counts the number of objects of
type c that has node label [in the dataset, [€ L(c). Then, we divide
p(c, 1) by p(c) to estimate the weights of node label [in predicting
objects of type ¢ , which is a decimal value in (0, 1]. Since the
weight values of voters range in (0, 1], it is possible that weighted
combination of multiple small-weighted voters is less than that of a
large-weighted single voter (e.g. weight sum of two small voters 0.4
+ 0.3 < weight value of a single large voter 0.8). In fact, the evidence
from multiple voters is more persuasive than a single voter with a
large weight, because it is less likely that two different voters both
make errors and vote for the same address of the same type in a
large and arbitrary memory space. So, we add a function y(s, ¢) to
reward the cross-validated addresses voted by multiple voters.

In the implementation, the threshold § is determined using a
searching method in the validation dataset. We run the experiment
by tuning the value of threshold § to get the one that yields the
highest F-score [24], and set it as the default threshold. The reward
function is devised as y (s, c¢) = |L(s, ¢)| — 1.

4 EVALUATION

In this section, we first describe the experiment setup in Section 4.1.
Then, we discuss the dataset collection and labeling approach in Sec-
tion 4.2. Section 4.3 provides details about training. In the end, we
present the evaluation results with respect to accuracy, robustness,
and efficiency in Section 4.4, 4.5, and 4.6 respectively.

4.1 Experiment Setup

Our experiment uses two settings of configurations. 1) The training
experiment is performed on a high-performance computing center
with each worker node equipped with 32 cores Intel Haswell CPUs,
2 x NVIDIA Tesla K80 GPUs and 128 GB memory. 2) The detection
experiment is performed on a moderate desktop computer with
Core i7-6700, 16GB, no GPU. We use powerful GPUs on the comput-
ing center for training, which is a one-time effort. Once the model
is trained, it is loaded on a desktop computer to conduct the kernel
object detection.

The deep neural network models in DEEPMEM, like embedding
network and classifier network, are all implemented using the open-
source deep learning framework TensorFlow [1]. The remaining
codes of data processing, statistics, plotting are programmed in
Python.

4.2 Dataset

4.2.1 Memory Dumps Collection. While DEEPMEM can analyze
any operating system versions in principle, it is limited by the ob-
ject labeling tool used in training. In the evaluation, we choose
to evaluate DEEPMEM on Windows 7 X86 SP1 rather than the lat-
est Windows 10, mainly because the object labeling tool we used,
Volatility [37], was unable to consistently parse Windows 10 images
or memory dumps, but worked very stable for Windows 7 images.

To automatically collect a large number of diverse memory
dumps for training and detection, we developed a tool with two
functionalities: 1) simulating various random user actions, and 2)
forcing the OS to randomly allocate objects in the memory space
between consecutive memory dumps.

To simulate various user actions, the memory collecting tool first
starts the guest Windows 7 SP1 virtual machine which is installed
in the VirtualBox [36]. When the virtual machine is started, guest
OS automatically starts 20 to 40 random actions, including starting
programs from a pool of the most popular programs, opening web-
sites from a pool of the most popular websites, and opening random
PDF files, office documents, and picture files. Next, the memory
collecting tool waits for 2 minutes and then dumps the memory of
the guest system to a dump file. When the dump is saved to the
hard disk of the host system, it restarts the virtual machine and
repeats until we collect 400 memory dumps, each of which is 1GB
in size.

To ensure kernel objects to be allocated at random locations,
we enabled KASLR when generating our dataset and restarted the
virtual machine after each dump. We found out that the address
allocations of objects are different among different memory dumps.
Only 1.32% _EPROCESS objects in a memory dump are located at
the same virtual address of _EPROCESS objects in another dump.
The ratio is 4.7% for _ETHREAD, 0.68% for _FILE_OBJECT, 15.9%
for _DRIVER_OBJECT. The basic statistics of memory dumps and
memory graphs are shown in Table 1.

Kernel Object Type Mean Count | Std Dev
_EPROCESS 85 7.47
_ETHREAD 1,216 112.25
_FILE_OBJECT 3,639 918.06
_DRIVER_OBJECT 109 0.22
_LDR_DATA_TABLE_ENTRY 141 0.59
_CM_KEY_BODY 1,921 953.76
Memory Graph Statistics Mean Count Std Dev
Nodes 1,334,822 | 134,564.24
Edges 5,325,214 | 513,624.71

Table 1: Statistics of memory dumps and memory graphs.

4.2.2 Memory Graph Construction. To generate a memory graph,
we first read and scan all available memory pages in the kernel
virtual space of memory dumps. Then, we locate all the pointers
in the pages by finding all fields whose values fall into the range
of kernel virtual space. For each segment between two pointers,
we create a node in the memory graph. For each node, we find its
neighbor nodes in the memory dump according to the neighbor
definitions in Section 3.2, and create an edge in the memory graph.

Kernel Object Types Object Length | Avg. #TP | Avg. #FP | Avg. #FN | Precision% | Recall% | F-Score
_EPROCESS 704 82.834 0.017 0.303 99.979% | 99.635% | 0.99807
_ETHREAD 696 1211.476 5.514 0.7 99.547% | 99.942% | 0.99744
_DRIVER_OBJECT 168 108.938 0.255 0.024 99.766% | 99.978% | 0.99872
_FILE_OBJECT 128 | 3621.007 67.545 23.045 98.169% | 99.368% | 0.98765
"LDR_DATA_TABLE_ENTRY 120 | 139.093 0.0 2.4 100.0% | 98.304% | 0.99145
_CM_KEY_BODY 44 | 1979.207 94.621 0.414 95.437% | 99.979% | 0.97655
Table 2: Object Detection Results on Memory Image Dumps.

4.2.3 Node Labeling. The node labeling process takes four steps: Parameters Value

1) utilize Volatility to find out the offset and length information of Layers of o 3

6 kernel object types (i.e. _EPROCESS, _ETHREAD, _DRIVER_OBJECT, Layers of 3

_FILE_OBJECT, _LDR_DATA_TABLE_ENTRY, _CM_KEY_BODY) in mem- Optimizer Adam Optimizer

ory dumps; 2) for each node in the memory graph, determine if Learning Rate 0.0001

it falls into the range of any kernel object, and if so, calculate the Propagation Iteration T 3

offset and length of that node in that kernel object and give the Input Vector Dimension 64

node a label; 3) select the top 20 most frequent node labels across Embedding Vector Dimension 64

all kernel objects of type c as key node label set L(c) for type c; and keep_prob 0.8

4) label the rest nodes in the memory graph as none.

4.2.4 Sample Balancing. Inside a large memory dump, kernel ob-
jects only take up a small portion of the memory space. Thus,
the key nodes of kernel objects in the memory graph are very
sparse. Also, the key nodes of a certain object type are not evenly
distributed. To accelerate the training process and achieve better
detection results, we need to balance samples in the training dataset.

The principle of balancing is to preserve the topologies of the key
nodes in the memory graph after the balancing process. Specifically,
1) to reduce non-key nodes, we remove the nodes that are k-hops
away from key nodes in memory graph (k is a predefined value), 2)
to increase key nodes and balance between different node types, we
duplicate the key nodes to the same amount, and also duplicate the
edges between nodes in edge matrix. Since the embedding vector
is calculated using inward edges only, such duplication does not
create new neighbors for the original key nodes, so it does not affect
the topology propagation of the original key nodes.

4.3 Training Details

We split the collected 400 memory dumps into 3 subsets. We ran-
domly select 100 images as the training dataset, 10 images as the
validation dataset and the remaining 290 images as the testing
dataset. The validation dataset and testing dataset will not be used
in the training phase, and this guarantees that the detection model
never sees the testing set in the training phase.

In each training iteration, we randomly select an image from the
training dataset for training. To determine whether the model is
fully trained, we monitored the loss and accuracy on the validation
dataset during the training process. When the loss reaches a rela-
tively small and stable value, we deem the model as fully trained
or it reaches its learning capacity. Dropout layers [35] are added to
prevent the over-fitting problem. We set the keep probability to 0.8
in the training phase, and to 1 in the evaluation phase and testing
phase.

By default, the experiments are all performed under the same
parameter setting as described in Table 3.

Table 3: Default Parameters of Experiments.

4.4 Detection Accuracy

We measured the accuracy using a number of different metrics,
including precision, recall, and F-score [24]. For each object type,
precision calculates the correctly classified samples against all de-
tected samples. Recall calculates the correctly classified samples
against all labeled samples in this type. F-score is the harmonic
mean of precision and recall.

Table 2 shows the detection results of various kernel object types
on raw memory images by training for 13 hours. We can see from
the result, the overall recall rate is satisfactory, ranging from 98.304%
to 99.979%. Most large kernel objects (> 120 bytes) have over 98%
precision rate. Important kernel object types _EPROCESS, _ETHREAD
both achieve over 99.6% recall rate, and over 99.5% precision rate.
Also, we observed a tendency that larger objects achieve better
recognition results. The reason is that for small objects, there are
fewer nodes and pointers inside them. Then, the chance of obtaining
stable key nodes is lower.

4.5 Robustness

For the evaluation of robustness, we performed three experiments.
The first experiment is pool tag manipulation, with the aim to
evaluate its impact on signature scanning tools and DEEPMEM. The
second experiment is pointer manipulation, with the aim to evaluate
if DEEPMEM is still effective in DKOM process hiding attacks. The
third experiment is a general yet more destructive attack which is
to randomly mutate arbitrary bytes in memory, with the aim to see
whether our approach is resistant to various attack scenarios, and
to what extent it can tolerate random mutations.

4.5.1 Pool Tag Manipulation. To perform pool tag manipulation,
we change the 4 bytes pool tags [33] of each object to random values
in the memory dump file. Using the manipulated dump, we then
test the effectiveness of our approach and several Volatility plugins.

In our experiment, we randomly select 10 memory dumps as the
testing set, and take scanning _FILE_OBJECT object as an example.
As shown in Table 4, the filescan plugin of Volatility cannot cor-
rectly report _FILE_OBJECT objects. Its recall rate drops to a small
value of 0.0082%. The reason is that filescan first needs to search
for the pool tag of _FILE_OBJECT in the entire memory dump. As
a result, most of the _FILE_OBJECT objects are not reported.

As a comparison, DEEPMEM works normally in evaluation re-
sults. It can achieve a recognition precision of 99.1% and recall
of 99.05%. The reason is that DEEPMEM examines every byte of a
memory dump to detect objects, rather than merely rely on pool tag
constraints to locate objects. Hence, without valid pool tags, DEEP-
MEM can still detect objects in the memory dump. This indicates
that approaches based on hard constraint matching are not robust.
In contrast, our approach is based on soft features automatically
learned from raw object bytes, which can capture a more robust
representation of an object.

Method | Avg. #TP | Avg. #FP | Avg. #FN | Precision% | Recall%
filescan 0.3 0.0 3661.8 100% 0.0082%
DeepMEM | 3627.2 32.9 34.9 99.1% 99.05%

Table 4: Results of _FILE_OBJECT Pool Tag Manipulation

4.5.2 DKOM Process Hiding. This DKOM attack is to hide a ma-
licious process by unlinking its connections to precedent and an-
tecedent processes in a double linked list. In this case, list traversal
related tools, like the pslist plugin in Volatility, will fail to discover
the hidden process through this broken link list.

In our experiment, we randomly choose 20 memory dumps as a
testing set, and then manipulated the value of the forward link field
in each _EPROCESS object to random value. In Table 5, we can see
that the Volatility plugin pslist fails to discover most _EPROCESS
objects except the first one in each dump. Since the _EPROCESS
list is broken by the manipulation, it cannot traverse through the
double linked list to find other processes. In contrast, DEEPMEM
can still find 99.77% _EPROCESS objects with 100% precision.

Method | Avg. #TP | Avg. #FP | Avg. #FN | Precision% | Recall%
pslist 1.05 0.0 85.7 100% 1.21%
DEEPMEM 86.55 0.0 0.2 100% 99.77%

Table 5: Results of DKOM Process Hiding Attacks

4.5.3 Random Mutation Attack. It is hard to simulate all kinds
of DKOM attacks. Therefore, we take a simple approach to find
out how much DEEPMEM can tolerate DKOM attacks: we gradually
increase the number of bytes to be manipulated in random positions
of kernel objects, including the pointer and non-pointer fields, and
evaluate the precision and recall rate at different mutation levels. In
Section 4.5.1 and Section 4.5.2, we have already demonstrated how
DeePMEM works on memory dumps with small changes. In this
section, we will show how DEEPMEM perform when large bytes are
changed.

Even if an attacker largely changes the contents and topologies
in kernel objects of the operating system, DEEPMEM can be used

in this scenario without retraining the detection model with the
samples from that attack. We just need to lower the prediction
threshold §. However, in extreme case, if the threshold is set to a
very small value, then most addresses in candidate address set S
will be reported, causing many false positives and low precision. To
guarantee a high precision while getting a recall as high as possible,
it is better to report the objects cross-validated by at least two
voters. This can be achieved by setting the threshold § of prediction
function f(s, c) to 1 (If there are more than two voters, the reward
function y(s,c) = |L(s,c)| — 1 > 1, the prediction confidence > 1.
See Equation (8)).

We evaluate the detection results by mutating different amount of
bytes in objects for _LEPROCESS and _ETHREAD objects, with thresh-
old § is set to 1. We can see from Figure 5, as the number of mutated
bytes increases, the precision rate remains stable at around 97% -
98% with tiny perturbations. Recall rate curve stays at a high rate
at first, then drops down as the number of mutated bytes further in-
creases. Specifically, for _EPROCESS, it achieves over 97% precision
rate at all mutation levels, and 100% recall rate before 20 bytes are
changed. Our model can tolerate up to 50 bytes random mutation,
without causing the precision and recall rate drop significantly.
For _ETHREAD, our model can tolerate up to 30 bytes random muta-
tion. We can see when we set the threshold § to a low value 1, the
precision rate does not drop significantly.

The causes of the high precision and recall rate are twofold. First,
the neural network itself can inherently tolerate small mutations
due to the robust features it learns from the training data. Second,
even when deep model incorrectly predicts the labels of some nodes
of an object, the remaining nodes can make cross-validation and
collectively conclude the presence of an object. The recall rate
indeed drops significantly with larger mutations. However, these
larger mutations will likely cause system crashes or instability, and
therefore might be rarely seen in real-world attacks.

4.6 Efficiency

To investigate the efficiency of DEEPMEM, we measure the time
allocations in different phases. We consider three types of time
consumption: GNN model training time T;, memory graph con-
struction time Ty and object detection time Ty. 1) The training time
T; measures the time from inputting raw labeled training dataset
dumps to obtaining a fully trained model with a small and stable
prediction loss. 2) The memory graph construction time T, mea-
sures the time from inputting a raw memory dump to obtaining
matrix representation of the memory graph. 3) The object detection
time T; measures the time from inputting a memory graph ma-
trix to obtaining detected kernel object set of a certain object type.
The experiment settings of training and detection are described in
Section 4.1.

In the training phase, we utilize the GPU in the computing center
to train the model because the major computation of training is
matrix-based and GPU can accelerate the matrix computation. We
train the model for 13 hours for one object type. After training, the
model can be saved to disk and deployed in a desktop computer(with
or without GPU). In our detection experiment, we copy the model
to a moderate desktop computer without GPU. On average, it takes
79.7 seconds to construct the whole memory graph for one memory

0.8 A
0.6

0.4

Percentage %

0.2 —e-Precision Rate
-#-Recall Rate

0

0 5 10 15 20 25 30 35 40 45 50 55 60

Mutated Bytes Amount
(a) Random Mutation Attack of _EPROCESS Object

0.8 A,
0.6

0.4

Percentage %

0.2 —=—Precision Rate
-#-Recall Rate

0 5 10 15 20 25 30 35 40
Mutated Bytes Amount

(b) Random Mutation Attack of _ETHREAD Object

Figure 5: Random Mutation Attack

dump of 1GB size, and 12.73 seconds to recognize the objects of a
certain type in it, as shown in Figure 6. This detection time can be
accelerated by using GPU. In our computing center, the detection
time can be reduced to about 7.7 seconds.

DEEPMEM is efficient for two reasons. First, it turns a memory
dump into a graph structure denoted as large node matrices and
edge matrices, which is especially suitable for fast GPU parallel
computation. Second, since it converts the memory dump into an
intermediate representation (memory graph), and performs the
detection of various object types on this graph, there is no need to
scan the raw memory multiple times to match the various set of
signatures for different object types.

Time Measurements Mean | Std Dev
Training Training T; (per object type) 13 Hours N/A
Detection Grap}-1 Construc‘tlon Ty (per dump) | 79.7 Sec 6.64
Object Detection Ty (per type) 12.73 Sec 1.24

Table 6: Time Consumption at Different Phases. Training is
performed on the computing center. Detection is performed
on a desktop computer. The setting is in Section 4.1

4.7 Understanding Node Embedding

We plot the embedding vectors of nodes using t-SNE visualization
technique [22] in Figure 6. Each node embedding vector in multi-
dimensional space is mapped as a point in two-dimensional space.
We collect embedding vectors of different object types at the output
layer of the embedding network before they are fed into the classi-
fier network. Figure 6 shows the distribution of embedding vectors
in 2D space, where different colors are used to denote different
types of node labels. To clearly show plenty of embeddings of differ-
ent types, we only plot the first 10 key nodes for each object type.
We expect to observe that points of the same colors locate near
each other, and different colors locate far from each other. From the
figure, we can see that the visualized results meet that expectation.
These embeddings can capture the intrinsic characteristics of nodes,
and different types of nodes are well separated.

4.8 Impact of Hyperparameters

We plot ROC curves [14] of detection results to show the impact
of the different hyperparameters of our model. We adjust three
parameters: the propagation iteration times T, the embedding vector
size, and the embedding depth of embedding network o. ROC curve
shows the trade-off between sensitivity (true positive rate) and
specificity (false positive rate) of the object detector.

Figure 7(a) shows the performance of the _FILE_OJBECT detec-
tor by tuning the iteration parameter T of node embedding network
¢. We can see that the ROC curve of T = 3 is nearest to the upper
left corner, followed by the curves of T = 2 and T = 1. The trend
demonstrates the importance of topological information propaga-
tion in object detection. With more information collected through
propagation, the prediction ability of the object detector is further
improved.

Figure 7(b) shows the performance of _FILE_OBJECT detector
by tuning embedding vector size of node embedding network ¢.
In the figure, the ROC curve with larger embedding size is closer
to the upper left corner. It shows that larger embedding vector
size is more expressive and better approximate the data intrinsic
characteristics. However, this is also a trade-off between learning
ability and training time. In practical usages, for the same level of
learning ability, a smaller embedding size is preferred for faster
training and testing. The determination of such embedding size
should be a combined consideration of the task complexity and
training effort.

Figure 7(c) shows the performance of _FILE_OBJECT detector
by tuning embedding layers depth of o. In the figure, the ROC
curve with more layers is closer to the upper left corner. It indicates
that the learning ability of deeper neural network is stronger than
shallower networks. Enlarging the number of layers and embedding
size is a preferred solution for training complex object types.

5 DISCUSSION

In this section, we discuss several limitations and potential issues
related to DEEPMEM.

Small Objects. DEEPMEM may not perform well for small ob-
jects with few or no pointers, like many other pointer-based ap-
proaches [19]. Our approach model objects based on both content
of objects and topological relations between objects. Small objects

60
07 o P 2420 e T.8428 e D84 " ° F84 %
e P5216 " ol o T25212 '* w] o D164 ?‘ wl o F2032 -
w0l o P_76.64 o T.340.20 L4 e D284 o F2428
. P19220 0] o T47238 * « D40 64 ol o F282e Pory
20{ o P2364 ‘e o T_496.24 21 o D_40_16 -:J o F_56.28 o w
e @ L]
~ P_300_36 R T_528.20 D 44 64 - F_56_44 -
of “e 4P 400 64 Hen e T 556_16 u o] “ Dass L] °l o Fo238
P_496_8 wb , T.580_8 D_56_64 F_108_8 e -
20 P_516_64 LS - T 596_20 D_96 64 \Be :-"), -20 F_124 12
P_584_20 T 624 64 20 D_132'36 F_124 16
_a0 —a0
w0 .
o » &
—40 =20 0 20 40 60 -40 -20 0 20 40 60 —40 =20 0 20 —40 -20 o 20 40
(a) _EPROCESS (b) _ETHREAD (c) _DRIVER_OBJECT (d) _FILE_OBJECT
Figure 6: Node Embedding Visualization using t-SNE
1o _FILE_OBJECT o _FILE_OBJECT Lo _FILE_OBJECT
,/, ,// ,/,
0.8 e 0.8 e 0.8 P
Q e 9] e o e
2 ” 2 . 2 .
© 4 © e © d
-4 - < L -4 L
g 0.6 ,’ g) 0.6 ,/ g 0.6 ”
s P el =] el 5 7
@ e i " I e
o ' o - o .
a o4 7 a 04 i a o4 e
o e o e o e
S i > 7 . R =1 e
= e —— T=1 = . —— Embedding Size=16 = —— Layer Depth=1
. . .
02 ’,/ — T=2 02 // —— Embedding Size=32 02 // —— Layer Depth=2
// —— T=3 // —— Embedding Size=64 e —— Layer Depth=3
OYDD,O 0.‘2 0.‘6 0.‘3 1.0 0.00.0 0.2 0.6 0.8 1.0 0 DDYO 0.2 0.8 1.0

0.‘4
False Positive Rate
(a) ROC versus Iterations T

0.4
False Positive Rate

(b) ROC versus Embedding Vector Size

0.4 0.6
False Positive Rate

(c) ROC versus Layer Depth of o

Figure 7: ROC Curves by Tuning Parameters

lacking pointers are not informative enough and also have weak or
no relations with other nodes in the memory. Thus very little infor-
mation could be gathered from others nodes to make inference on
the objects. Fortunately, important kernel objects like _EPROCESS,
_ETHREAD and _DRIVER_OBJECT are long enough for our approach
to achieve over 99.6% recall and over 99.5% precision rate, which is
sufficient for general memory forensic purposes.

Data Diversity and Validity. To generate diverse dumps, we
try to simulate random user actions and allocate kernel objects in
random positions in the memory, as described in the evaluation
section. Even with these efforts, our dataset may not be diverse
enough. To make it more diverse, researchers can use different
physical machines, load different drivers, etc. Nevertheless, our
evaluation on the dataset at least demonstrates the feasibility of
DEEPMEM in a homogeneous environment (e.g., an enterprise net-
work in which all computers have the same configuration and in a
cloud environment where VMs are instantiated from the same base
image). We use Volatility to label memory dumps as ground truth.
According to the paper [25], Volatility achieves zero FPs and FNs
for most of their plugins for non-malicious dumps. So our training
set labeling should not be affected. Plus, we can use other solutions
to label memory dumps as suggested in this paper, such as using
DECAF [15].

Cross Operating System Versions. In the evaluation phase,
we have already demonstrated the robustness of our approach in
scenarios like pool tag attack, DKOM process hiding and random
bytes mutation. It shows that our approach tolerates well for small

changes and manipulations of the memory. This feature is useful
in real-world applications. For example, our approach will adapt
to systems changes across versions and patches. We leave this for
future work.

6 RELATED WORK

Memory forensic analysis aims at exploring the semantic content of
interests from volatile memory of different platforms and operating
systems, such as Windows [5, 12], Linux [19, 20], Android [19, 26—
28], etc. Among them, kernel object recognition is a fundamental
task. Basically, the approaches can be classified into two categories
according to memory search methods: one is list-traversal [5, 21]
approach, the other is signature-based scanning [3, 4, 11, 20, 23, 32].

List traversal approaches usually start searching objects from
the global root in the memory, then gradually expand the search
scope and find more objects by traversing along the point-to di-
rections of pointers. KOP [5] applies inter-procedural points-to
analysis to compute all possible types for generic pointers, uses a
pattern matching algorithm to resolve type ambiguities, and uti-
lizes knowledge of kernel memory pool boundaries to recognize
dynamic arrays.

Signature scanning approaches usually scan the memory image
from the start to the end sequentially. During the scanning, it tests
whether the observed memory subsequences match the designed
object signatures, then decides the object type of the sequence. Sig-
Graph [20] utilize point-to relations between different objects to
generate non-isomorphic signatures for data structures in an OS

kernel. Dimsum [19] constructs boolean constraints from data struc-
ture definition and memory page contents to build graphical models
so that it can recognize data structure instances in un-mappable
memory. Then it performs probabilistic inference to generate re-
sults ranked with probabilities. An object is detected once it satisfies
all the constraints. Dimsum has slightly higher false negative rate
than Value-Invariant and SigGraph, but it has significantly less
false positive rate than those two systems. Dimsum conducts prob-
abilistic inference and constraint solving to infer the address of
kernel object. To do so, it needs to create many boolean variables
for each memory location, making the factor graph very large and
very expensive to resolve. So Dimsum introduces a pre-processing
phase to reduce the number of locations to test. It may not be robust
if the attackers find a way to evade the pre-processing phase.

In comparison, DEEPMEM is fundamentally different. The key to
the list-traversal approach is to find the special global root from
which extra objects are traversed and expanded through pointers.
DeEPMEM does not need to start scanning from the root. It is able
to examine every segment in the memory then comprehensively
evaluate these segments and connections between them to make
a holistic inference decision. We use pointers only in topological
information propagation computation, in this case, an unlinked
pointer would not have a huge impact on the propagation while
list-traverse will completely stop working if a link is broken. The
key to the signature-based approach is to find accurate and robust
signatures for each type of kernel object. It needs to face problems
like generic pointer problem, constraints explosion etc. DEEPMEM
learns the pointer and non-pointer constraints automatically in-
stead of using hard signatures or expert-made constraints, and
captures non-linear relations between nodes in the graph. It is
more expressive than signature-based approaches, and thus more
accurate and robust. Moreover, both list-traversal and signature
scanning depend partially or fully on operating source code or
data structure definitions. DEEPMEM does not need this domain
knowledge and specifications.

We also leverage several deep learning techniques [18] in graph
modelings, such as node embedding and node classification. We use
amodified Graph Neural Network [30] to model nodes that preserve
local content information and contextual topological information
through information propagation. Other researchers also make use
of contextual information in the graph to solve the graph embedding
problem [8, 38, 39]. We use Fully-Connected Neural Networks to
make inference in node properties [34]. What is common in these
models is that they are able to achieve an end-to-end learning,
where patterns of data are automatically explored without domain
knowledge or human intervention.

7 CONCLUSION

In this paper, we proposed a graph-based kernel object detection
approach DEEPMEM. By constructing a whole memory graph and
collecting information through topological information propaga-
tion, we can scan the memory dumps and infer objects of various
types in a fast and robust manner. DEEPMEM is advanced in that 1)
it does not rely on the knowledge of operating system source code
or kernel data structures, 2) it can automatically generate features
of kernel objects from raw bytes in memory dump without manual

expert analysis, 3) it utilizes deep neural network architectures for
efficient parallel computation, and 4) it extracts robust features that
are resistant to attacks like pool tag manipulation, DKOM process
hiding.

The experimental result shows that it performs well in terms of
accuracy, robustness, and efficiency. For accuracy, it reaches above
99.5% recall and precision rate for important kernel objects like
_EPROCESS and _ETHREAD. For robustness, the recognition result
stays stable in different attack scenarios, like manipulating pool tags,
pointers, and even random byte mutations. For efficiency, we turn a
memory dump into an intermediate memory graph representation,
and then detect objects of different types using the graph. The
detection time of each object type is about 13 seconds.

ACKNOWLEDGEMENT

We appreciate the anonymous reviewers for the valuable comments.
We thank Zhenxiao Qi for collecting dataset, Abhishek Srivastava
for providing technical suggestions on TensorFlow and Sri Shaila
for proofreading. The research work is supported by National Sci-
ence Foundation under Grant No. 1664315, 1719175, TWC-1409915.
This work was supported in part by FORCES (Foundations Of Re-
silient CybEr-Physical Systems), which receives support from the
National Science Foundation (NSF award numbers CNS-1238959,
CNS-1238962, CNS-1239054, CNS-1239166). This work is also sup-
ported by Center for Long-Term Cybersecurity from UC Berkeley.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

[10

[11

[12

[13

[14

[15

[16

[17

[20

]

]

]

]

2%

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDIL
Cosimo Anglano. 2014. Forensic analysis of WhatsApp Messenger on Android
smartphones. (2014).

Arati Baliga, Vinod Ganapathy, and Liviu Iftode. 2008. Automatic inference and
enforcement of kernel data structure invariants. In Computer Security Applications
Conference (ACSAC).

Chris Betz. 2018. MemParser. https://sourceforge.net/p/memparser/wiki/Home/.
Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and Xuxian
Jiang. 2009. Mapping kernel objects to enable systematic integrity checking. In
Proceedings of the 16th ACM conference on Computer and communications security.
ACM, 555-565.

Andrew Case and Golden G Richard III. 2016. Memory forensics: The path
forward. (2016).

Weidong Cui, Marcus Peinado, Zhilei Xu, and Ellick Chan. 2012. Tracking Rootkit
Footprints with a Practical Memory Analysis System. In Proceedings of USENIX
Security Symposium.

Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative embeddings of latent vari-
able models for structured data. In International Conference on Machine Learning.
2702-2711.

DKOM 2018. FU rootkit. https://www.blackhat.com/presentations/win-usa-04/
bh-win-04-butler.pdf.

Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke
Lee. 2011. Virtuoso: Narrowing the Semantic Gap in Virtual Machine Introspec-
tion. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland).
Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin.
2009. Robust signatures for kernel data structures. In Proceedings of the 16th ACM
Conference on Computer and Communications Security. 566-577.

Qian Feng, Aravind Prakash, Heng Yin, and Zhigiang Lin. 2014. MACE: high-
coverage and robust memory analysis for commodity operating systems. In
Proceedings of the 30th Annual Computer Security Applications Conference (AC-
SAC’14). ACM, 196-205.

Yangchun Fu and Zhiqiang Lin. 2012. Space Traveling across VM: Automatically
Bridging the Semantic-Gap in Virtual Machine Introspection via Online Kernel
Data Redirection. In Proceedings of the 2012 IEEE Symposium on Security and
Privacy(Oakland’12). IEEE, 586—-600.

James A Hanley and Barbara J McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. (1982).

Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu, Xujiewen
Wang, Rundong Zhou, and Heng Yin. 2014. Make it work, make it right, make
it fast: building a platform-neutral whole-system dynamic binary analysis plat-
form. In Proceedings of the 2014 International Symposium on Software Testing and
Analysis.

Greg Hoglund and James Butler. 2006. Rootkits: subverting the Windows kernel.
(2006).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. (2014).

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. (2015).
Zhigiang Lin, Junghwan Rhee, Chao Wu, Xiangyu Zhang, and Dongyan Xu. 2012.
Dimsum: Discovering semantic data of interest from un-mappable memory with
confidence. In Proc. NDSS.

Zhigiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.
2011. SigGraph: Brute Force Scanning of Kernel Data Structure Instances Using
Graph-based Signatures. In Proceedings of the Network and Distributed System
Security Symposium.

[21

[22]

(23]

[24]

[26

[27

[28

[40]

[41

[42]

Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic reverse en-
gineering of data structures from binary execution. In Proceedings of the 11th
Annual Information Security Symposium.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
(2008).

Nick L Petroni, Aaron Walters, Timothy Fraser, and William A Arbaugh. 2006.
FATKit: A framework for the extraction and analysis of digital forensic data from
volatile system memory. (2006).

David Martin Powers. 2011. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. (2011).

Aravind Prakash, Eknath Venkataramani, Heng Yin, and Zhigiang Lin. 2015. On
the Trustworthiness of Memory Analysis-An Empirical Study from the Perspec-
tive of Binary Execution. (2015).

Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. 2015. GUITAR: Piecing together android app GUIs from memory
images. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 120-132.

Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. 2015. Ver: App-agnostic recovery of photographic evidence from an-

droid device memory images. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security.

Brendan Saltaformaggio, Rohit Bhatia, Xiangyu Zhang, Dongyan Xu, and
Golden G Richard III. 2016. Screen after Previous Screens: Spatial-Temporal
Recreation of Android App Displays from Memory Images.. In USENIX Security
Symposium.

Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, and Dongyan Xu. 2014.
DSCRETE: Automatic Rendering of Forensic Information from Memory Images
via Application Logic Reuse.. In USENIX Security Symposium.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2009. The graph neural network model. (2009), 61-80.

Jirgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
(2015).

Andreas Schuster. 2006. Searching for processes and threads in Microsoft Win-
dows memory dumps. (2006).

Andreas Schuster. 2008. The impact of Microsoft Windows pool allocation
strategies on memory forensics. In Digital Investigation, Volume 5.

Alexander G Schwing and Raquel Urtasun. 2015. Fully connected deep structured
networks. (2015).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. (2014).

VirtualBox 2018. VirtualBox. https://www.virtualbox.org/.
Volatility 2018. Volatility: Memory Forencis System.
volatilityfoundation.org/.

Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security.

Yue Zhang and Stephen Clark. 2008. Joint word segmentation and POS tagging
using a single perceptron. (2008).

Hai Zhao, Chang-Ning Huang, and Mu Li. 2006. An improved Chinese word
segmentation system with conditional random field. In Proceedings of the Fifth
SIGHAN Workshop on Chinese Language Processing.

Fan Zhou, Yitao Yang, Zhaokun Ding, and Guozi Sun. 2015. Dump and analysis
of android volatile memory on wechat. In Communications (ICC), 2015 IEEE
International Conference on.

https://www.

https://sourceforge.net/p/memparser/wiki/Home/
https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
https://www.virtualbox.org/
https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/

	Abstract
	1 Introduction
	2 Memory Object Detection
	2.1 Problem Statement
	2.2 Existing Techniques
	2.3 Our Insight

	3 Design of DeepMem
	3.1 Overview
	3.2 Memory Graph
	3.3 Graph Neural Network Model
	3.4 Object Detection

	4 Evaluation
	4.1 Experiment Setup
	4.2 Dataset
	4.3 Training Details
	4.4 Detection Accuracy
	4.5 Robustness
	4.6 Efficiency
	4.7 Understanding Node Embedding
	4.8 Impact of Hyperparameters

	5 Discussion
	6 Related Work
	7 Conclusion
	References

