
Code Injection Attacks on HTML5-based Mobile Apps:
Characterization, Detection and Mitigation

Xing Jin, Xunchao Hu, Kailiang Ying, Wenliang Du, Heng Yin
and Gautam Nagesh Peri

Department of Electrical Engineering & Computer Science, Syracuse University,
Syracuse, New York, USA

{xjin05, xhu31, kying, wedu, heyin, nperi}@syr.edu

ABSTRACT
Due to the portability advantage, HTML5-based mobile apps are
getting more and more popular. Unfortunately, the web technol-
ogy used by HTML5-based mobile apps has a dangerous feature,
which allows data and code to be mixed together, making code in-
jection attacks possible. In this paper, we have conducted a sys-
tematic study on this risk in HTML5-based mobile apps. We found
a new form of code injection attack, which inherits the fundamen-
tal cause of Cross-Site Scripting attack (XSS), but it uses many
more channels to inject code than XSS. These channels, unique to
mobile devices, include Contact, SMS, Barcode, MP3, etc. To as-
sess the prevalence of the code injection vulnerability in HTML5-
based mobile apps, we have developed a vulnerability detection
tool to analyze 15,510 PhoneGap apps collected from Google Play.
478 apps are flagged as vulnerable, with only 2.30% false-positive
rate. We have also implemented a prototype called NoInjection as
a Patch to PhoneGap in Android to defend against the attack.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protection; D.2.5
[SOFTWARE ENGINEERING]: Testing and Debugging—Code
inspections and walk-throughs

General Terms
Security

Keywords
HTML5-based Mobile Application; Code Injection; Static Analy-
sis

1. INTRODUCTION
Smartphones have grown to become very popular over the years.

A report from comScore [19] in February 2013 shows that smart-
phones surpass 50 percent penetration and break into “late major-
ity” of adopters. All these facts have led many developers to switch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660275 .

to develop mobile applications (apps). However, to support differ-
ent platforms, developers may need to develop different versions
of apps based on the language used in the system, such as Java
in Android and Object C in iOS. Using HTML5-based techniques
to develop mobile apps provides a good solution to overcome this
limitation. Unlike native apps, these apps are built on standard web
technologies such as HTML5, CSS and JavaScript, which are uni-
versally supported by all mainstream mobile systems. Porting such
apps from one platform to another is greatly simplified [10, 33].
With the increasing support for HTML5, HTML5-based mobile
apps are becoming more and more popular [7, 9, 17]. A survey
from Evans Data shows that among the 1,200 surveyed developers,
75% are using HTML5 for app development [1].

Unfortunately, the web technology has a dangerous feature: it
allows data and code to be mixed together, i.e., when a string con-
taining both data and code is processed by the web technology, the
code can be identified and sent to the JavaScript engine for execu-
tion. This feature is made by design, so JavaScript code can be em-
bedded freely inside HTML pages. This feature has led to the wide-
spread code injection attack, called Cross-Site Scripting (XSS), on
web applications. Built upon the same technology as web appli-
cations, HTML5-based mobile apps are subject to the similar code
injection attacks.

However, we have found out that code injection attacks against
HTML5-based mobile apps are significantly different from the XSS
attack in terms of code injection channels: Web applications only
have one channel for code injection; that is through the web server
(or web site), which is why it is called “cross-site”. HTML5-based
apps have many channels for code injection, because mobile apps
interact with other entities via many data channels, including bar-
code, SMS, file system, Contact, Wi-Fi, NFC, etc. We have found
that all these channels can be used for attacks. More specifically,
we have found that a vulnerable HTML5-based app can be compro-
mised by simply scanning a 2D barcode, reading data from Contact
list, displaying information from MP3 music, or even scanning for
Wi-Fi access points. These attacks affect all major mobile plat-
forms, including Android, iOS, Windows Phone, etc. We have con-
ducted a systematic study to identify all the potential attack chan-
nels. We have built demonstration videos to show the feasibility of
the attacks [5].

To evaluate the prevalence of this vulnerability in Android apps,
we have developed a detection tool to conduct large-scale static
analysis on Android apps. An app is vulnerable when it reads from
a code injection channel and renders the input using an unsafe API.
We transform the detection problem into an equivalent data-flow
analysis problem that seeks to identify a data flow from a code in-
jection channel to an unsafe rendering API. Our tool first models
the APIs reading data from code injection channels and then con-

1

HTML5
CSS

JavaScript

PhoneGap App

WebView

Bridge

PhoneGap
Framework (Java)

Plugins
(Java)

R
e
s
o
u
r
c
e
s

addJavascript
-Interface

Camera

SMS

Contact

Figure 1: PhoneGap Architecture

structs a JavaScript program slice that is relevant to reading and
processing the data from each of the code injection channels. Fi-
nally it performs static taint analysis on the slice to detect the pres-
ence of a dangerous information flow from the code injection chan-
nel to an unsafe rendering API.

We ran our detection tool on 15,510 PhoneGap apps (PhoneGap
is the popular framework that is used to develop HTML5-based mo-
bile apps) downloaded from Google Play. The average execution
time of our tool on an app is 15.38 seconds, which is fast enough
to process a large volume of apps. Among all tested apps, 478
were found to have code injection flaws. Our manual verification
shows a false-positive rate of 2.30%. We further investigated these
vulnerable apps, and found that many of these apps have access
to users’ private information or can conduct privileged operations,
such as sending SMS. Once malicious code is injected into these
apps, great damage can take place. We have been actively report-
ing our findings to the vulnerable app developers. Some developers
have taken our reports seriously and fixed the apps by following our
suggestions.

Our work makes three folds of contributions. First, we have
found a new class of code injection attacks on mobile systems. We
have conducted a systematic study of this attack. Second, we have
developed a detection tool that can automatically scan HTML5-
based apps to identify potential code injection flaws. Third, we
have also conducted a systematic study on different mitigation tech-
niques and implemented a prototype called NoInjection as a patch
to the PhoneGap framework in Android to address the problem.

The rest of the paper is organized as follows: Section 2 gives
a brief overview of WebView and the PhoneGap framework. Sec-
tion 3 explains how the attack works. Section 4 talks about the de-
tection tool. Section 5 discusses potential mitigation and presents
our prototype to address the attack. Related works are surveyed in
Section 6 and the paper is summarized in Section 7.

2. BACKGROUND
Most popular mobile OSes, such as Android, iOS, and Windows

Phone, do not support JavaScript and HTML natively, so in order to
display HTML5-based user interface and execute JavaScript code,
an application needs to embed a web browser component. This
component is called WebView in Android, UIWebView in iOS, and
WebBrowser in Windows Phone. Without loss of generality, we
refer to WebView in the context of Android throughout the paper.

Overview of WebView. WebView is an essential component in
mobile platforms, enabling smartphone and tablet apps to embed a
simple but powerful browser inside them. Since WebView is de-
signed to display web contents, which usually come from external
sources and are not trusted, a sandbox is implemented inside We-
bView. This sandbox basically isolates the JavaScript inside Web-
View from the system, so JavaScript cannot access the system re-
sources, such as files, device sensors, cameras, etc. Such a sandbox

is appropriate for web contents running inside a browser, but it will
be too restrictive for mobile applications.

WebView provides an API addJavascriptInterface(),
which allows an app to add a bridge between JavaScript code in-
side and native Java code outside. In this way, once the app has
the required permissions, JavaScript inside WebView can access
mobile resources by invoking the outside native code, which is not
restricted by WebView’s sandbox. Developers can write their own
native code, but that would reduce the portability. The most com-
mon practice is to use a third-party middleware for the native-code
part, leaving the portability issue to the developers of the middle-
ware. Several middlewares have been developed, including Phone-
Gap [14], RhoMobile [16], AppMobi [3], Mosync [12], Appceler-
ator [2], etc. Due to the page limitation, we only provide a brief
introduction on PhoneGap, which is the most popular framework
used to develop HTML5-based mobile apps. Our studies also focus
on PhoneGap apps. However, our attack, detection, and mitigation
can also be applied to other frameworks.

PhoneGap. PhoneGap is a middleware framework that can be
used to create mobile applications using the web technologies, in-
cluding HTML5, CSS and JavaScript. Applications developed us-
ing the PhoneGap framework can be easily ported from one mobile
platform to another, as long as the second platform is supported
by PhoneGap. The PhoneGap framework consists of two parts: the
bridge part and the plugin part. The bridge part connects JavaScript
code and Java code (native) through an interface called “cordova”;
JavaScript code inside WebView can invoke the Java code outside
using this interface. The plugin part is used to directly access differ-
ent types of resources, such as Camera, SMS, Contacts, etc. Phone-
Gap provides 16 official plugins, but if an app’s needs cannot be
met by these plugins, developers can either write their own plugins
or use third-party PhoneGap plugins.

The plugins are mainly written in the native language, so they
are not restricted by the WebView’s sandbox. However, to make it
more convenient to use, many plugins provide companion JavaScript
libraries. When the app’s JavaScript code needs to access sys-
tem resources, it calls the API provided in the plugin JavaScript
libraries, which will then use the “cordova” interface to invoke the
Java code inside bridge, and eventually cause the invocation of the
corresponding plugin. When the plugin finishes its job, it will re-
turn the result back to the page, again through the PhoneGap bridge.
That is how JavaScript code inside WebView’s sandbox can access
system resources. Figure 1 shows the PhoneGap architecture in
Android.

3. CODE INJECTION ATTACK
Writing mobile applications using the HTML5-based web tech-

nology makes applications portable across different mobile plat-
forms. However, it is well known that the web technology has a
dangerous feature: it allows data and code to be mixed together, i.e.,
when a string containing both data and code is processed by the web
technology, the code can be identified and sent to the JavaScript en-
gine for execution. This feature is made by design, so JavaScript
code can be embedded freely inside HTML pages. Unfortunately,
the consequence of this feature is that if developers are not careful,
unexpected code inside data can be automatically and mistakenly
triggered. If such a data-and-code mixture comes from an untrust-
worthy place, malicious code can be injected and executed inside
the victim application. This is exactly how the Cross-Site Script-
ing (XSS) attack works.

In a typical XSS attack, attackers insert JavaScript code into the
data field (such as a form). If the server does not stripe off the in-

2

(a) XSS attack on Web Applications (b) Code Injection Attack on HTML5-based Apps

Figure 2: Code Injection Attacks on Web Applications and HTML5-based Mobile Apps

serted code, when this piece of code-mixed data is displayed to the
victim, the injected JavaScript code will be executed on the victim’s
browser, and of course with the victim’s privilege. XSS currently
ranks as the No. 3 most popular web attack on the OWASP 2013
Top-Ten list [13].

Built upon the same technology as web applications, HTML5-
based mobile apps have inherited the XSS vulnerability. However,
as we will show in this paper, this is not a simple extension of XSS
attacks: HTML5-based mobile apps have a much broader attack
surface than that for web applications.

In XSS attacks, to achieve the damage, the malicious JavaScript
code has to reach and run from the victim’s browser. Since web
applications only interact with web servers (i.e., web site), there is
no direct way for attackers to interact with the victim. Therefore, to
inject malicious JavaScript code into the victim’s browser, attackers
have to use the site for their code to reach the victim’s browser. That
is why the attack is called “cross-site”. Here, “site” is the code
injection channel, the only injection channel. Figure 2(a) depicts
the XSS attack.

HTML5-based mobile apps have a much broader attack surface.
Unlike web applications, HTML5-based apps are like other types
of mobile apps: they are supposed to interact with many forms of
entities, such as other apps, 2D barcode, Wi-Fi access points, other
mobile devices, data sent by others or downloaded from external
resources, etc. Each of these interaction points is a potential at-
tack surface. Consequently, attackers are not limited to the “site”
channel anymore. This is a major difference between XSS and the
code injection attack on HTML5-based mobile apps. Figure 2(b)
illustrates the basic idea of the attack.

Moreover, compared to XSS attacks, attacks on HTML5-based
apps can cause much greater damage. In XSS, the web browser
is sandboxed, so the injected JavaScript code cannot freely access
local resources. In mobile apps, the injected code can do more
damage through the interface provided by the middleware.

In the rest of this section, we first use one special channel (the
camera channel) to illustrate how HTML5-based apps can be at-
tacked using the XSS-like code injection technique. After that, we
provide a systematic study to analyze all the possible channels that
can be used for code injection; we will also discuss the conditions
that make an HTML5-based app vulnerable and the damage that
can be achieved by attackers.

3.1 The Attack
To demonstrate how the XSS-like code injection works against

HTML5-based apps, we use a real app as an example. This app
is called pic2shop (http://www.pic2shop.com/), and it
is a quite popular barcode scanner app based on the HTML5 tech-
nology. The app runs in Android, iOS, and Windows Phone; it is

vulnerable in all three platforms. In Android, the number of down-
loads for this app is in the range of 100,000 to 500,000. We do not
have the download data for the other two platforms, but in iOS, the
app has received 45,416 reviews for all its versions.

(a) QR Code (b) Attacked (c) Being tracked

Figure 3: An attack example

We made a QR code (Figure 3(a)), but it is not a typical one; it
contains the following HTML tag and JavaScript code:
1 <img src=x onerror=
2 navigator.geolocation.watchPosition(
3 function(loc){
4 m=’Latitude:’+loc.coords.latitude+
5 ’\n’+’Longitude:’+loc.coords.longitude;
6 alert(m);
7 b=document.createElement(’img’);
8 b.src=’http://128.***.213.66:5556?c=’+m })>

The above code uses Geolocation.watchPosition() to
steal the device’s geolocation. The API registers a handler function
that will be called automatically each time the position of the device
changes. From the code, we can see that when the handler function
is invoked, the location information is stored in the variable loc,
and displayed at Line 6. At Lines 7 and 8, loc’s content is sent to
an outside computer 1.

We scan the QR code using pic2shop. Immediately, a window
pops up, displaying the user’s current GPS location (Figure 3(b)).
This indicates that the JavaScript code in the QR code has been
injected into the device and successfully triggered. We then put the
phone in the pocket, and took a walk in the campus. The phone kept
sending its locations back to the “attacker”, who simply plotted
them on Google Map (Figure 3(c)).

1In this QR code, we intentionally used an invalid IP address
128.***.213.66 to ensure that the location will never be sent
out even if readers scan the QR code using a vulnerable app.

3

http://www.pic2shop.com/
Geolocation.watchPosition()

From this example, it is not difficult to see how the code gets into
the victim’s device, but it is not clear how the code gets triggered.
There is another critical condition for the above attack to work: the
QR code needs to be displayed by the app. If app developers are
not careful and choose a wrong way to display the QR code, they
may end up executing the JavaScript code inside the QR code. This
is exactly the case in pic2shop.

Let us summarize the key characteristics of the vulnerability ex-
ploited by the above attack. For an HTML5-based app to be vul-
nerable to the XSS-like attack, it needs to satisfy the following two
conditions:

• The app needs to use a channel to get data from outside (out-
side of the app or device). In Section 3.2, we present a sys-
tematic study of these potential channels.

• The data from outside need to be displayed inside the HTML5
page. There are many ways to display data; some are safe,
and some are not. Section 3.3 will discuss this in details.

3.2 Code Injection Channels
Any channel that mobile apps use for getting data from outside

of the program can be used for code injection, and some channels
are more obvious than the other. We have conducted a systematic
study on these channels, and have confirmed that they can indeed
be used for the attack. We divide them into two categories: the
external channel and the internal channel, referring to whether the
data come from outside of the device or from inside.

3.2.1 External Code Injection Channels
Just like other apps, HTML5-based mobile apps need to inter-

act with the outside world, including the environment, users, other
devices, etc. These interaction channels, intended for data, can be
used for code injection. We can further divide them into three cate-
gories. The web channel is not included, because that is the channel
used by the traditional XSS attacks.

Data Channels Unique to Mobile Devices. Other than get-
ting data from the Internet, Wi-Fi, and Bluetooth, mobile devices
also get data from many channels that are not very common in tra-
ditional computers. For example, most smartphones can scan 2D
barcodes (using camera), receive SMS messages, and some
smartphones can read RFID tags (NFC). These data channels
make it very convenient for users to get information from outside,
so they are being widely used by mobile applications. In our stud-
ies, we find out that if these mobile applications are developed us-
ing the HTML5-based technology, all these data channels can be
used for injecting code. Malicious JavaScript code can be embed-
ded in the contents of 2D barcodes, RFID tags and SMS messages.
See our attack demo using SMS and 2D barcode in [5].

Metadata Channels. A very popular type of apps on mobile
devices is the media-play apps, such as audio players, video play-
ers, and picture viewers. The main functionality of these apps is to
view media files, which are often downloaded from the Internet or
shared among friends. Since they mostly contain audio, video, and
images, it does not seem that they can be used to carry JavaScript
code. However, most of these files have additional fields called
metadata, and they are good candidates for code injection. MP3,
MP4, and JPEG files are standard formats for multimedia files,
and they all contain metadata fields, such as title, artist, album,
etc. Attacker can inject malicious code into these metadata fields.
When these metadata are displayed—as they often are—in vulner-
able HTML5-based apps, the malicious code will get executed. See
our attack demo using MP3 in [5].

ID Channels. This type of channels is less obvious. When a
mobile device needs to establish a connection (e.g. Wi-Fi or Blue-
tooth) with an external entity, it first conducts a scan to find the IDs
from the nearby devices. These IDs are often displayed to the users,
so they can choose the right one to connect. These IDs, provided by
the untrusted external entity, can be used as a code injection chan-
nel, so code injection can happen before the connection is actually
established. In other words, by simply scanning for Wi-Fi access
points or Bluetooth devices, an HTML5-based app can be attacked.

To launch the attack, attackers can configure an Android phone
so it functions as a WiFi access point; they then embed their ma-
licious JavaScript code in the SSID of the access point. When an
HTML5-based app scans for Wi-Fi access points, the SSID will
often be displayed to the user, so the JavaScript code inside the
SSID can be potentially triggered. Similarly, the attacker can also
turn a mobile device into a Bluetooth device, embed a malicious
JavaScript code in its device name, and broadcast the name to nearby
devices. Any mobile device that is trying to pair with a Bluetooth
device (not necessarily the attacker’s one) can be potentially af-
fected.

This type of channels does pose a challenge because of their size
limitation. For example, SSID is limited to 32 bytes, which is not
enough to include a meaningful piece of JavaScript code. To re-
solve this issue, attackers can break up the malicious JavaScript
code into multiple pieces, each within the 32-byte limit. For ex-
ample, if the entire code consists of "P1 P2 P3", it can be bro-
ken into the following four pieces: "A=P1", "B=P2", "C=P3",
and "eval(A+B+C)". The attacker can periodically change the
value of the SSID to one of these four pieces. If somebody is scan-
ning, he/she will end up getting all the four pieces. The execution
of these four pieces is equivalent to executing "P1 P2 P3". See
our attack demo using Wi-Fi access points in [5].

3.2.2 Internal Channels
In addition to interacting with the outside world, mobile apps

often interact with other apps on the same device. Therefore, if a
malicious app is installed on the victim’s device but its privilege is
limited, this app can inject malicious JavaScript code into vulner-
able HTML5-based apps that have more privileges, hence achiev-
ing privilege escalation. We have conducted a systematic study on
these internal channels, and we divide them into three categories
(our discussion only focuses on Android, but similar consideration
can be made to iOS and Windows Phone).

Content Provider. Content Provider is typically used by An-
droid apps to store data that can be shared among apps. Because
of its data-sharing nature, Content Providers are ideal candidates
for code injection. A typical Android system usually comes with
the following Content Providers: Contact, Calendar, User
Dictionary, Call Log, Browser, Sync Adapter, and P-
rofile. Take Calendar as an example. The attacker can inject
malicious JavaScript code into a Calendar event; when a vulner-
able HTML5-based app tries to display this Calendar event, the
malicious code may be triggered.

File System. Many apps also directly interact with the file sys-
tem, including the SD card that is a public space for apps to store
data, and these data are accessible to other apps. Therefore, file sys-
tem is a fertile ground for code injection. Obviously, code can be
placed into the file content, so if a victim HTML5-based app tries
to display the content, the code may be triggered. Furthermore,
we have confirmed that JavaScript code can also be placed in file
names, so if a vulnerable HTML5-based app just tries to display
the file names, the code can be triggered. If the size of the name is

4

not enough, we can use the same technique as the one used for ac-
cess points, i.e., putting the code into multiple file names. It should
be noted that this attack can also be launched by an external party,
i.e., the file that has JavaScript code in its name can be downloaded
from an external site owned by attackers.

Intent. Another way for an Android app to interact with other
apps is to use Intent. Through intent, an app can pass data to other
apps. This can obviously be used for code injection: the attack-
ing app can place malicious JavaScript code in the intent, which
then triggers the target app. If the target HTML5-based app tries to
display the data included in the intent, the JavaScript code may be
triggered. We have confirmed this attack in our study.

3.3 Triggering Injected Code
For the injected code to be triggered, the data that embed the

code need to be displayed. In the traditional XSS attack against
web applications, the injected code, mistakenly treated as data, is
already placed (by the server) in a web page, so when the page is
displayed, the code will be triggered.

In the attack against HTML5-based apps, the code injected through
data channels has not yet become part of the HTML page; it needs
some “help” from the victim app. This “help” is achieved when the
victim app displays the data coming from those channels. There
are many ways to display data inside an HTML page. A typical
way is to use the DOM (Document Object Model) display APIs
and attributes, such as document.write(), innerHTML (at-
tribute), etc. Many apps also use jQuery APIs, such as html()
and append(). These APIs eventually call or use the DOM dis-
play APIs and attributes.

Selecting which APIs to use is very critical, because some of
these APIs/attributes are safe to use without causing the code to be
executed, but a number of APIs/attributes are not safe: if there is
JavaScript code inside the data, the code will not be displayed, but
will instead be sent to the JavaScript engine to be executed.

To understand how HTML5-based apps use various APIs and
attributes to display information, we downloaded 15,510 HTML5-
based (PhoneGap) apps from the Google Play (we thank Martin
Georgiev and Vitaly Shmatikov [27] for providing us with the list
of the apps). We wrote a tool to study how DOM/jQuery APIs
or attributes are used to display data. They are categorized as
safe and unsafe. Unsafe means injection code will be executed,
safe means the otherwise. In Table 1, the column "Occurrence
Percentage" shows how often a particular API is used among
all the usage cases (an app can use the same API for many times,
and each time counts as one occurrence). The column "App Per-
centage" shows the percentage of the apps that use a particular
API for at least once.

From the table, we can see that the use of unsafe APIs/attributes
is pervasive: 53% of the usages are unsafe. The unsafe innerHTML
attribute alone is used by 91% of apps. If we look at the apps that
use at least one unsafe APIs/attributes at least one time, the per-
centage becomes 93%.

There are other ways to display data in HTML5-based apps.
Similarly, some are safe and some are not. We list some examples
here; a full-scale study is outside the scope of this paper and will
be pursued in our follow-up work. (1) jQuery is the most common
JavaScript library, but there are other JavaScript libraries, such as
MooTools [11], Prototype [15], etc. They come with their own dis-
playing APIs. (2) We have seen apps that directly use WebView’s
Java APIs to inject data into WebView for displaying purposes.
WebView.loadDataWithBaseURL() is an example of such
APIs. This approach is not safe.

DOM APIs Safe or Occurrence App
& Attributes Unsafe Percentage Percentage

document.write() 5 0.79% 12.95%
document.writeln() 5 2.27% 2.94%

innerHTML 5 14.22% 90.90%
outerHTML 5 1.55% 54.41%

innerText 3 2.15% 62.01%
outerText 3 0.003% 0.13%

textContent 3 3.50% 65.97%
value 3 14.43 % 83.11%

jQuery APIs
html() 5 14.02% 66.42%

append() 5 15.67% 71.04%
prepend() 5 1.14% 22.36%
before() 5 1.17% 54.88%
after() 5 0.06% 14.89%

replaceAll() 5 1.68% 56.78%
replaceWith() 5 0.01% 0.48%

text() 3 14.78% 62.05%
val() 3 11.95% 62.82%

Table 1: APIs and Attributes used for displaying data. (3 means
they are safe against code injection; 5 means unsafe.)

3.4 Achieving Damage
Because mobile apps have more privileges than web applica-

tions, the damage caused by the code injection attack on HTML5-
based mobile apps is more severe than those caused by the XSS
attack on web applications. We summarize the potential damage
here.

First, the injected malicious code can directly attack the device
through the “windows” that are opened to the code inside Web-
View. Normally, JavaScript code cannot do much damage to the
device due to WebView’s sandbox, but to enable mobile apps to
access the system and device, many “windows” have been created.
These “windows” include the HTML5 APIs (such as the Geolo-
cation API) and all the PhoneGap plugins that are installed in this
app. PhoneGap provides 16 plugins, including Contact, File
Device plugins, etc.; they allow the malicious code to access sys-
tem resources. Before Version 3.0 all these plugins are built into the
framework, which means even if an app does not use them, they are
always available to the app and can be used by the injected mali-
cious code. 2 Besides these traditional plugins, many PhoneGap
apps also include additional third-party plugins, such as Barcode
Scanner, SMS, and Facebook plugins. These plugins can also
be used by the malicious code.

Second, the injected malicious code can be further injected into
other vulnerable PhoneGap apps on the same device using the in-
ternal data channels. Data sharing among apps is quite common in
mobile devices. For example, the Contact list is shared, so when an
app is compromised by an external attacker via the attack, the ma-
licious code can inject a copy of itself into the Contact list. When
another vulnerable PhoneGap app tries to display the Contact entry
that contains the malicious code, the code will be triggered, and
this time, inside the second app.

Third, the injected malicious code can turn the compromised de-
vice into an attacking device, so it can use the same attacking tech-
nique to inject a copy of itself into another device. For example, if
the compromised app has the permission to send SMS messages,
the malicious code can create an SMS message containing a copy
of itself, and send to all the friends on the Contact list; it can also
add the code in the metadata field of an MP3 file, and share the

2PhoneGap was only recently updated to Version 3.0 on October
17th, 2013, so most of the existing PhoneGap apps are using Ver-
sion 3.0 or earlier versions.

5

file with friends; it can also pretend to be a Bluetooth device with
malicious code set in the name field, waiting for other devices to
display the name inside their vulnerable apps. The more PhoneGap
apps are installed on devices, the more successful the propagation
can be, and the more rapidly the malicious code can spread out.

4. VULNERABILITY DETECTION
We would like to automatically scan HTML5-based mobile apps

that are vulnerable to code injection attacks, so the discovered vul-
nerable apps can be reported to and fixed by the developers. It is
well known that dynamic testing has limited code coverage. There-
fore, we need to perform static analysis to discover viable program
execution paths for launching code injection attacks.

According to the attack characterization described in Section 3,
the problem of detecting this code injection vulnerability is equiv-
alent to a data-flow analysis problem. Data coming from untrusted
channels, through certain data propagation, is then used in unsafe
APIs.

4.1 Vulnerable App Example
To help describe our static analysis technique, we present an ex-

ample in Figure 4. The sample code shows a normal HTML5-
based app that uses the PhoneGap barcode plugin to display the
scanned barcode. When the activity starts, the app listens to the
deviceready event and calls onDeviceReady (Line 2). The
OnDeviceReady function invokes the barcodeScanner plu-
gin and displays the result on a DOM element called "display".
An attacker can embed malicious code in a QR code, so when the
victim uses this app to scan the QR code, the malicious code can
get executed inside the app.

1 document.addEventListener("deviceready",
onDeviceReady, false);

2 function onDeviceReady() {
3 window.plugins.barcodeScanner.scan(0,onSuccess,

onError);
4 }
5 function onSuccess(result) {
6 $("#display").html(result.text);
7 }
8 function onError(contactError) {
9 alert(’onError!’);

10 }

Figure 4: A vulnerable app example
4.2 Challenges

We face several unique challenges in analyzing HTML5-based
mobile apps.

C1: Mixture of application and framework code. An HTML-
based app consists of its own HTML pages and JavaScript code,
and a large body of JavaScript libraries, Java code, and native code
that belong to the framework (e.g., PhoneGap [14]). It is too ex-
pensive and nearly infeasible to analyze all these different code
modules in different programming languages as a whole. A re-
alistic solution is to properly model the interface of the framework
code and concentrate on the JavaScript code and HTML pages that
belong to the app.

C2: Difficulties in static analysis on JavaScript. It is well
recognized that static analysis on JavaScript code is difficult, due
to its dynamic nature, including prototype-chain property lookups,
lexical-scoping rules for variable resolution, reflective property ac-
cesses, function pointers, and the fact that the properties and pro-
totype chain of any object can be modified [44]. Furthermore,

JavaScript code in HTML5-based apps is often written in an asyn-
chronous manner, as shown in the vulnerable app example. It is
surprisingly difficult to even construct a complete call graph and
identify all the entry points.

C3: Dynamically loaded content. Some HTML5-based apps
dynamically load pages and JavaScript code from remote servers.
Therefore, if our static analysis only focuses on the pages and the
JavaScript code that come with the app installation packages, we
will not be able to detect vulnerabilities in these dynamically loaded
content. To address this issue, we would have to run these apps,
such that the dynamically loaded content can be retrieved and in-
cluded into our static analysis.

4.3 Our Solution
Given a PhoneGap-based mobile app, our vulnerability discov-

ery takes the following steps. We first perform rewriting on the
app’s JavaScript code to properly model the APIs provided by the
PhoneGap framework. In this way, we can concentrate our analy-
sis target on the app’s own JavaScript code. We then construct a
JavaScript program slice that is relevant to reading untrusted input
from PhoneGap APIs and further processing the input. In this step,
we aim to overcome the challenges in entry point identification and
asynchronous calls. In addition, we can further narrow down our
analysis target to a much smaller body of code. In the end, we
perform static taint analysis on the slice to detect dangerous infor-
mation flow from the untrusted input to one of the unsafe APIs. We
developed a tool based on WALA [18] in about 2200 lines of Java
code.

1 cordova = {
2 exec:function exec(suc, error,

pluginName, operator, args){
3 var channeldata = "fakedInput";
4 suc(channeldata);
5 }}
6 window = { plugins:{ barcodeScanner:{
7 scan: function scan(mode,win,err){
8 cordova.exec(win, err,

"BarcodeScanner", "scan", [mode]);
9 }}}}

10 document = {
11 addEventListener:function

addEventListener(evt, handler,
capture){

12 handler();
13 }}

Figure 5: Modeling APIs in cordova library

Framework modeling. We model the framework APIs using
small code snippets; Figure 5 presents some of them. The JavaScript
API cordova.exec is implemented in the native code, and when
the native execution is accomplished, it will either call suc call-
back when the operation is successful, or call error when a fail-
ure is encountered. We model this function as it would call these
two callbacks immediately. In addition, we also model the APIs
that introduce inputs from untrusted channels. For example, the
API barcodeScanner.scan is used to read barcode. We add a
small code snippet for it, so it calls cordova.exec and returns a
barcode input. Similarly, we model the APIs for the other channels.
Table 2 presents a list of APIs that we model. In addition, we also
model the API addEventListener, which is used to register an
event callback. The PhoneGap framework overrides the implemen-
tation of this API to support registering the events defined within
the framework. We model this API, such that the event handler (or

6

callback) is invoked immediately, converting an asynchronous call
into a synchronous call to ease static analysis.

Injection Channel API

External

NFC.addNdefListener
NFC.addMimeTypeListener
NFC.addTagDiscoveredListener
Bluetooth.getUuids
WifiInfo.get
barcodeScanner.scan
FileTransfer.download

Internal

contacts.find
DirectoryEntry.getDirectory/getFile
DirectoryReader.readEntries
Entry.getMetadata
FileEntry.file
FileReader.readAsText/readAsDataURL
Media.getFormatData

Table 2: Injection Channels

Program slice construction. The goal of program slice construc-
tion is to construct a fraction of the JavaScript program that reads
from an untrusted channel and further processes the input. It means
that we do not intend to discover all the possible entry points, which
can be a challenging problem by itself, because the asynchronous
nature of JavaScript code. Instead, our starting point is the function
that calls an API reading from an untrusted channel, and repeatedly
include the other functions that can be reachable from this function
in the call graph.

In addition, we should also include the functions that are called
asynchronously by the functions that are already been added to the
slice. Such an asynchronous call can happen in one of the two
cases. In the first case, an event handler is registered by the API
addEventListner to be triggered at certain event. According
to our modeling in Figure 5, the registered event handler will be
called inside the code snippet as an indirect call. In the second case,
application code itself may contain a similar event registration and
callback logic.

To discover these functions and add them into the program slice,
we take the following approach. For each callsite in the slice, we
examine all the parameters and see if any of them refers to a func-
tion name defined in the app’s code. If so, we consider it to be a
potential asynchronous call target and add the function body into
the slice. This process is also performed repeatedly until no more
functions can be included. Of course, this simple approach may
introduce noise, because a variable name may happen to be the
same as the function name but in fact refers to something else. This
is acceptable, because in the next step we will perform context-
sensitive points-to analysis on the slice and the noisy functions will
be pruned away.

Algorithm 1 presents this slice construction algorithm. It first
identifies all the functions that call the APIs reading from untrusted
channels, and put them into a set C. Then starting from each func-
tion in C, it builds a call graph and puts the offspring functions into
the slice O. It uses a stack S to build the call graph. To include
asynchronous call targets, it examines every callsite. If a parameter
refers to a function definition, that function will also be included
into the slice O and pushed onto the stack S. This procedure ter-
minates when the stack S is empty.

Static taint analysis on the slice. We rely on WALA [18] to
build the call graph on the slice constructed from the previous step.
In order to link the asynchronous calls with their actual targets,
we perform context-sensitive control flow analysis and construct

Algorithm 1 JS Slice Builder
Input: One HTML file and its included JS files
Output: JS slice O
E ← {APIs that read from untrusted channels}
D ← {HTML file and its included JS files}
C ← GetCallers(E,D)
O ← ∅
for all c ∈ C do

fd ← FindFunctionBodyOfCaller(c,D)
O ← O ∪ {fd}
S ← Push(fd)
while S is not empty do

fd ← S.Pop()
Ce ← ∅
for all s ∈ getStatements(fd) do

if s is callsite then
ce ← getCallee(s)
for all p ∈ getParameterList(s) do

if p is string then
Ce ← Ce ∪ {p}

end if
if p is function definition then

S ← Push(p)
end if

end for
Ce ← Ce ∪ {ce}

end if
end for
for all ce ∈ Ce ∧ function body of ce /∈ O do

fd ← FindFunctionBodyOfCallee(ce, D)
O ← O ∪ {fd}
S ← Push(fd)

end for
end while

end for

an extended call graph. On this call graph, we look for callsites
of unsafe APIs and treat them as the sinks, and compute a back-
ward slice starting from each sink. In the generated slice, if we can
identify the input of unsafe APIs coming from the code injection
channel, we consider this app vulnerable.

Limitations. While our evaluation results in Section 4.4 demon-
strate the effectiveness of our solution, we have to admit several
limitations and plan to address them in future work. To name a few,
our slice construction may still miss certain asynchronous functions
calls that are registered beyond the identified calling contexts; our
modeling of the framework is manual and may be incomplete; and
our static taint analysis may not be sound. We may leverage several
existing efforts in JavaScript analysis to address these limitations.
For instance, a recent work by Madsen et al. provided a practical
solution to analyze JavaScript code in presence of large frameworks
and complex libraries [41], and Guarnieri et al. offered the sound-
ness guarantee for static taint analysis in JavaScript [29].

4.4 Evaluation
We test our detection tool on the 15,510 PhoneGap apps down-

loaded from the Google Play market. The experiments are con-
ducted on a computer with Core i7-2600 3.4GHz and 16GB of
RAM. To optimize the analysis throughput, we limit the processing
time of each app to 20 minutes and each HTML file to 30 seconds.

Performance. We measured the execution time of our detection
tool. The average running time for each app is 15.38 seconds, but
the running time for different apps varies quite significantly. There
are two main factors that affect the performance. First, our tool
needs to conduct pre-processing and construct all relevant program

7

slices; for apps with many HTML files or large JavaScript files, the
pre-processing will consume quite a long time. Second, long call-
chains in program slice will also cost WALA more time to build the
call graph.

Accuracy. From the 15,510 PhoneGap apps, our tool flags 478
apps as potentially vulnerable to the code injection attack. We
manually verified all the flagged apps. The process of verifica-
tion mostly relies on human expertise. In the end, we identified 11
flagged apps as infeasible to exploit; therefore, the false positive
rate is 2.30%. We further looked into the 11 false-positive cases,
and found that the vulnerable parts in these cases are dead code,
which will never be triggered. We have high confidence to specu-
late that our tool has high accuracy to determine vulnerable apps.

4.5 Case Studies
We would like to conduct a further study on the 478 vulnera-

ble apps identified using our tool. Our goal is to understand what
makes them vulnerable and what damage can be achieved if they
are under attack.

Vulnerabilities. As we described earlier, there are two condi-
tions that make an HTML5-based app potentially vulnerable: (1)
the presence of one of the code injection channels, and (2) the use
of unsafe APIs. We would like to see what channels and unsafe
APIs that these vulnerable apps use.

0

100

200

300

400

500

Barcode Contact

(a) Identified Injection Channels

0

100

200

300

400

500

600

innerHTML html append appendTo

(b) Unsafe APIs

Figure 6: The cause of vulnerabilities

We analyze two channels that are identified by our detection tool.
Figure 6(a) shows the distributions of these channels among the
vulnerable apps. It is clear that the vulnerabilities of most of these
apps attribute to the barcode channel. The popularity of barcode
is probably due to the fact that most apps allow users to scan QR
coupon or other promotion information.

We examined the unsafe APIs that have led to the vulnerabili-
ties among these apps. Figure 6(b) depicts their distribution. The
figure clearly shows that innerHTML is the most frequently used
API in these apps. This is consistent with the statistics shown in
Table 1, which reveals that 90.9% of the 15,510 PhoneGap apps
use innerHTML.

Damage. We would like to see how much damage can be achieved
if an app is compromised via the code injection attack. After mali-
cious JavaScript code is injected into the victim app and gets trig-
gered, there are two conditions that decide what damage can be
achieved by the malicious code. We analyze the situations of these
conditions among the vulnerable PhoneGap apps.

First, in Android, apps need to have the corresponding permis-
sions in order to conduct certain operations, such as operating cam-
eras or getting locations. We have selected a set of security-sensitive
permissions, and count how many vulnerable apps have those per-
missions. The results are plotted in Figure 7(a). These permissions
not only enable the malicious JavaScript code to steal private infor-
mation, but also allow the attackers to inject a copy of the malicious
code to other vulnerable apps. For example, after compromising an

0 100 200 300 400 500

GET_ACCOUNTS

INTERNET

SEND_SMS

READ_SMS

ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

WRITE_CONTACTS

READ_CONTACTS

READ_PHONE_STATE

WRITE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE

(a) App Permissions

0 100 200 300 400 500

AccountList
Facebook

SMS
Storage

Accelerometer
Notification

Compass
Geolocation

Contacts
Device

File
FileTransfer

Camera

(b) PhoneGap Plugins

Route
66

How to
 Snowboard

so
uth H

ill
Desig

ns L
eadGen

Jim
my F

allo
n R

eve
aled

Address
 B

ook

Bed &
 B

reakfa
st

28

ce
lebs C

orner K
itc

hen

How To
 S

ka
teboard

obs T
heo Thijs

se
n

jd R
obb U

nve
ile

d

True Love
 Q

uotes F
ree

sm
s.r

u

bioCeutic
als

Mobile

Cordova
-m

ega-demo

agregar N
umero 2

moSIP

Dale C
arnegie B

ooks

RESTAURANT H
OLLY

W
OOD

Best
e-C

igarette
s R

eport

Contact

Compass

Motion

File

Storage

Notification

GPS

File Transfer

Facebook

Device

Camera

Read

Write

W&R

Garden B
eds

(c) Case Study of 20 Selected Apps

Figure 7: The damage of the attacks on the vulnerable apps

app that has the SEND_SMS and READ_CONTACTS permissions,
the malicious JavaScript code can send a copy of itself to all of the
victim’s friends, and can thus potentially affect more people.

Second, JavaScript code runs inside WebView, so it cannot con-
duct arbitrary actions due to the sandbox implemented in WebView.
There are two types of channels that allow JavaScript to conduct
potentially damaging operations. One channel is the APIs provided
by HTML5, such as getting the geolocation; the other channel is the
plugins provided by PhoneGap, such as sending SMS messages or
reading from the Contact. The HTML5 APIs channel is always
present, as it is part of the implementation of WebView. However,
the PhoneGap plugins channel depends on whether the app has in-
cluded the plugins. We wrote a tool to identify what plugins are
included, and the results are plotted in Figure 7(b). We only show
the security-sensitive plugins.

The figure shows that many dangerous plugins are present in all
vulnerable apps. This is because prior to Version 3.0, these plugins
are all included in the PhoneGap library (it has 16 built-in plugins),
and are thus included in apps. Other than these plugins, some apps
do use third-party plugins, including SMS plugin, Facebook plugin,
and AccountList plugin.

Here we like to estimate the capability of an average attacker,
who can only make use of HTML5 APIs and installed plugins to
cause damage, as long as the app has the corresponding permis-
sions. This is definitely a lower bound, because a sophisticated at-
tacker may be able to exploit known or unknown vulnerabilities in
WebView (e.g., a documented WebView vulnerability in Android,
CVE-2013-4710 [6]) to execute arbitrary commands in the Android
system [22].

Under this assumption, we select 20 most powerful apps among
the 478 vulnerable apps, and depict what damage can be achieved
if their code-injection vulnerabilities get exploited. Fig 7(c) shows
the results. From the figure, we can see that all of these apps have
device, notification, storage, motion, compass plugins; the use of
these entities do not need any permission. Moreover, all these apps
have plugins to access file system and camera gallery, which re-
quire the READ/WRITE_EXTERNAL_STORAGE permission, but
all these apps are granted with either permission. Through these

8

plugins, attackers can steal personal information or infer the user’s
behavior information (e.g. using the motion sensor). From the fig-
ure, we can also see that all these apps, except two, can access the
victim’s location; this is because all these 20 apps have access to the
HTML5’s geolocation APIs, but 2 of them are not granted the re-
quired ACCESS_COARSE_LOCATION or ACCESS_FINE_LOC-
ATION permission.

The figure also shows that six vulnerable apps can read from and
write to the Contact, because they have both plugins and permis-
sions. Therefore, malicious code injected into these six apps can
not only steal the user’s information, but also inject a copy of itself
into the Contact, so when another vulnerable app reads from the
Contact, the malicious code can spread to the next target.

5. ATTACK MITIGATION
In this section, we discuss how to mitigate the code injection

attacks on HTML5-based mobile apps. Mitigation can be designed
at three different levels: the app level, the framework level, and the
operating system level. For the framework level, we only focus on
the PhoneGap framework, but the same idea can be applied to other
frameworks. For the OS level, we only focus on Android.

5.1 App-Level Mitigation
To defend the code injection attack, app developers can provide

protection for their own apps. We provide the following guidelines
to app developers.

Sanitization. Before displaying data coming from untrusted re-
source, it is important to filter out any code inside the data. Devel-
opers can use the existing HTML sanitizer, such as google-caja [4],
to conduct the filtering.

Use safe APIs. As we have shown in Table 1, there are APIs/at-
tributes that are immune to the code injection attack. For exam-
ple, textContent, innerText, and text() are safe to use.
These APIs simply display the data as they are, without trying to
extract the code from the data. These APIs do have limitations,
as they also display HTML tags as pure text, leaving the intended
HTML tags not interpreted. Another viable solution is to use the
auto-escape technique to apply escaping modifiers on the untrusted
data, essentially disabling the JavaScript code inside the data. C-
template [8] is a good candidate for this purpose.

Use different ways to display data. In addition to safe APIs,
there are many other ways to display data without triggering the
code inside. We describe some approaches here. (1) An app can
predefine a text field using <input type="text" ...>. When
the app needs to display potentially dangerous data, it can display
the data in this field; JavaScript code will not be triggered. (2) An
app can use alert() to display data to users in a separate win-
dow, instead of inside the same HTML page. This call does not
trigger JavaScript code. (3) An app can invoke the default browser
to display untrusted data, instead of displaying data inside the app.
This way, even if the JavaScript code is invoked, the damage is
limited to the default system browser, which does not have much
privilege.

5.2 Framework-Level Mitigation
As we describe in Section 2, The PhoneGap framework con-

sists of two parts: bridge and plugin. The bridge part connects
JavaScript and native code, while the plugin part is used to directly
access different types of resources, such as Camera, SMS, Con-
tacts, etc. Plugins can be developed by third parties.

To mitigate code injection, we can implement filters inside the
framework, because all the data have to pass through the bridge
and plugins. We have two choices. One choice is to place the filter
inside plugins, and the other is to place the filter inside the bridge.

5.3 System-Level Mitigation
A well-known system-level solution designed to defeat XSS at-

tacks is called Content Security Policy (CSP) [49, 52]. CSP en-
forces a fairly strong restriction on JavaScript by disallowing in-
line JavaScript and eval(). CSP can be used to defeat the code
injection attack identified in this paper, but CSP is not yet fully
supported by WebView. The code that implements CSP can be
found in WebKit, which is the basis for WebView, but it is not clear
whether, if at all, WebView will enable CSP, because CSP is quite
restrictive, and enforcing it may break many existing apps, espe-
cially those that have inline JavaScript code. A great amount of ef-
forts are needed to rewrite the existing apps once CSP is enforced.

5.4 Our Implementation
After comparing the above approaches from the practicality as-

pect, we chose to implement the framework-level mitigation, be-
cause this is the most practical solution: it does not involve operat-
ing system modification, while still being transparent to apps. We
just need to convince the PhoneGap group to adopt this approach,
or convince app developers to use our modified PhoneGap library.

We have implemented a prototype called NoInjection as a patch
to the PhoneGap framework in Android. Its main design princi-
ple is to add a filter inside the bridge, right after the data enter the
bridge from plugins (see Figure 1 for the architecture of Phone-
Gap). This implementation is transparent to plugins, as well as to
apps. App developers do need to download our revised PhoneGap
library (called cordova.jar) when compiling their code. This
library can be downloaded from our web site [5].

For the filtering part, we simply use an open-source library called
jsoup. jsoup is an HTML parser implemented in Java; it pro-
vides an API called clean() to filter out JavaScript code from
a string. This library has been tested quite extensively, and it can
filter out JavaScript code that is embedded in a variety of ways.
Therefore, the effectiveness of our solution depends on the jsoup
library. Moreover, jsoup also provides a whitelist mechanism to
allow some valid HTML tags. This mechanism allows us to filter
out all the JavaScript code, while keeping the valid HTML tags,
e.g., we can keep the img tag if it does not have an event attribute.

Overall, our implementation of NoInjection adds only 148 lines
of Java code to PhoneGap, plus the jsoup library. To measure the
performance overhead of NoInjection, we benchmarked the modi-
fied PhoneGap against the original PhoneGap. We called each plu-
gin’s API 1000 times to get the average time spent on each invo-
cation. The results show that the modified PhoneGap takes 2.675
ms for each call, and the original PhoneGap takes 2.435 ms. The
overhead for our implementation is 9.85% for each call. Since these
invocations only contribute to a small portion of the overall running
time, the overhead caused by our work is quite insignificant.

Theoretically, our solution should be able to apply to the exist-
ing PhoneGap apps, by replacing their PhoneGap library with our
revised one. However, in practice, this is hard, because most of
the PhoneGap apps use older versions of PhoneGap library, while
our revision is conducted on the most recent version. To apply our
solutions to the existing PhoneGap without recompiling the app,
we need to patch the corresponding PhoneGap versions. While our
solution can benefit new PhoneGap apps, it does show a limitation
when dealing with the existing PhoneGap apps.

9

6. RELATED WORK

6.1 XSS Attack Detection and Mitigation
Due to the high practical prevalence, XSS attacks have been

studied by a lot of researchers. Here we will focus on the client-side
XSS attack detection and mitigation, because some work may help
detect and mitigate the code injection attacks on HTML5-based
mobile applications if they are properly used.

Detection on XSS Attack A series of works use static and dy-
namic analysis to detect XSS vulnerabilities. Vogt et al. [50] use
taint-analysis to track the flow of sensitive information inside web
browsers. Saxena et al. [46] propose a system called Flax that uses
“taint enhanced blackbox fuzzing" to find command and code in-
jection vulnerabilities in JavaScript. Sebastian et al. [38] directly
integrate tainting techniques into the browser’s JavaScript engine
to track unsafe data flows. DOMinator [23] uses Firefox’s Spider-
Monkey Javascript engine to understand the code. It keeps a call
stack on user controllable strings and raises alert when these strings
are passed into the sinks. IceShield [30] performs dynamic analy-
sis of JavaScript code in browsers to detect code injection attacks.
Rozzle [37], a JavaScript multiexecution VM, explores multiple
execution paths within a single execution to expose environment-
specific malware. These works may help detect the code injection
attacks on HTML5-based mobile applications. However, defining
source entries for HTML5-based mobile applications still remains
as a challenge.

Mitigation on XSS Attack One way to mitigate XSS attack is to
use sanitization mechanisms. The key challenge is how to identify
the code mixed in data. Several approaches have been proposed
to address this challenge, including XSS Auditor [20], Bek [32],
CSAS [45], ScriptGard [47], etc. We can adopt some of the saniti-
zation methods to remove script from string to prevent the attack;
however, the challenge is where to place the sanitization logic. Our
prototype chooses to implement the logic at the framework level,
because it is the most practical solution.

Another way to mitigate XSS attacks is to limit the damage caused
by the code injection attack, rather than preventing it. Content Se-
curity Policy [49, 52] is the representative of this category, and it
was discussed in Section 5. ConScript [42] and Escudo [34] also
defines policy to limit privilege of the script in some specific DOM
elements. They have the same problem as CSP, which requires sig-
nificant code rewriting for the existing apps.

6.2 Static Analysis of Android Vulnerabilities
Recently, some works use static analysis tools to detect vari-

ous vulnerabilities in Android systems. Stowaway [26] finds over-
privileged apps that require additional permissions beyond normal
functionalities. Woodpecker [28] analyzes preloaded apps in the
phone firmware to expose capability leaks on stock Android phones.
ContentScope [55] focuses on passive content leak and content pol-
lution vulnerabilities. SMV-HUNTER [48] and MalloDroid [25]
can be used to detect the apps that are vulnerable to SSL/TLS Man-
in-the-Middle attacks. Sebastian et al. analyze unsafe and mali-
cious code loading in Android applications [43]. CHEX [39] de-
tects applications that expose components to other applications in
an insecure way. AppIntent [53] addresses the unintended sensitive
data transmission. AppSealer [54] combines static and dynamic
code analysis to mitigate component hijacking attacks. Karim et
al. [24] present an efficient approach to identify malicious Android
applications through specialized static program analysis. Com-
pared to these studies, our work is the first one to address the code
injection problem in HTML5-based mobile apps.

6.3 Other Related Attacks.
Some other attacks are also related to our work. mXSS [31]

attack can bypass XSS filters by taking advantage of innerHTML’s
mutation. XCS [21] finds some interesting channels to ship the
code, such as printer, router and digital photo frame etc. Once the
code is loaded in the web browser, it will get executed. In our work,
most of the channels are quite unique to mobile platforms.

A work-in-progress version of our work has appeared in a work-
shop paper [35]; however, that paper only focuses on describing
how the attack works, while this submission includes the following
significant contributions that are not covered by the workshop ver-
sion: (1) We have developed a detecting tool, using which we have
conducted a large-scale analysis of over 15,510 HTML5-based (Ph-
oneGap) apps; we have discovered 478 vulnerable apps. The work
in the workshop paper used manual effort, and only found less than
10 vulnerable apps. (2) We have developed a mitigation solution
that can be immediately adopted by PhoneGap app developers or
the PhoneGap framework. (3) We have extended the attacks to in-
clude internal channels, which are different from the external chan-
nels identified by the workshop paper.

Several studies have also analyzed the security of WebView and
PhoneGap [27, 36, 40, 51]. Georgiev et al. [27] and Jin et al. [36]
address the problem caused by the code coming from untrusted ori-
gins. The solutions limit the privilege of the untrusted code by not
allowing it to access local mobile resources. However, these solu-
tions are not suitable to defend our code injection attack, because
in our cases, app developers do not even know that there may be
code inside the data.

7. SUMMARY
In this paper, we study the potential risk imposed by HTML5-

based mobile applications. We have identified a number of unique
channels that can be used to inject code, including Contacts,
SMS, Barcode, etc. To assess the extent of such a vulnerabil-
ity in Android apps, we have implemented a tool to analyze 15,510
PhoneGap apps collected from the Android Market. The tool flagged
478 apps as vulnerable, with only 2.30% false positive. We have
also implemented a prototype called NoInjection as a patch to the
PhoneGap framework in Android. It can successfully filter out the
malicious code from the attack channels identified in this paper.
The tools developed from this work, the demonstration of the at-
tacks, and guidelines to users and developers can be found from
our web site [5]. In our future work, we plan to extend our detec-
tion and mitigation to non-PhoneGap HTML5-based apps.

8. ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their valu-

able and encouraging comments. This work was supported in part
by NSF grants 1017771, 1318814, 1018217, 1054605, a Google re-
search award and McAfee Inc. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of funding agencies.

9. REFERENCES
[1] 75% of developers using html5:survey. http:

//eweek.com/c/a/Application-Development/
75-of-Developers-Using-HTML5-Survey-508096.

[2] Appcelerator. http://appcelerator.com.
[3] appmobi. http://www.appmobi.com/.
[4] Caja.

http://code.google.com/p/google-caja/.

10

http://eweek.com/c/a/Application-Development/75-of-Developers-Using-HTML5-Survey-508096
http://eweek.com/c/a/Application-Development/75-of-Developers-Using-HTML5-Survey-508096
http://eweek.com/c/a/Application-Development/75-of-Developers-Using-HTML5-Survey-508096
http://appcelerator.com
http://www.appmobi.com/
http://code.google.com/p/google-caja/

[5] Code Injection Attacks on HTML5-based Mobile Apps.
http://www.cis.syr.edu/~wedu/android/
JSCodeInjection/index.html.

[6] CVE-2013-4710. http:
//www.exploit-db.com/exploits/31519/.

[7] The future of mobile development: Html5 vs. native apps.
http://www.businessinsider.com/
html5-vs-native-apps-for-mobile-2013-4?
op=1/.

[8] How To Use the Ctemplate (formerly Google Template)
System. http://google-ctemplate.googlecode.
com/svn/trunk/doc/guide.html#auto_escape.

[9] Html5 vs. apps: Where the debate stands now, and why it
matters. http://www.businessinsider.com/
html5-vs-apps-where-the-debate-stands\
-now-and-why-it-matters-2013-4/.

[10] Html5 vs native: The mobile app debate. http://www.
html5rocks.com/en/mobile/nativedebate/.

[11] MooTools-a compact JavaScript framework.
http://mootools.net/.

[12] MoSync:Cross-platform SDK and HTML5 tools for mobile
app development. http://mosync.com.

[13] Owasp. the ten most critical web application security risks.
http://owasptop10.googlecode.com/files/
OWASP%20Top%2010%20-%202013.pdf.

[14] Phonegap. http://phonegap.com.
[15] Prototype javascript framework.

http://prototypejs.org/.
[16] Rhomobile. http://rhomobile.com.
[17] The shared future of html5 and native apps.

http://itbusinessedge.com/blogs/
data-and-telecom/
the-shared-future-of-html5-and-native-apps.
html/.

[18] The T.J. Watson Libraries for Analysis (WALA).
http://wala.sourceforge.net/.

[19] Mobile future in focus 2013. comScore, 2013.
[20] D. Bates, A. Barth, and C. Jackson. Regular expressions

considered harmful in client-side xss filters. In Proceedings
of the 19th international conference on World wide web,
pages 91–100. ACM, 2010.

[21] H. Bojinov, E. Bursztein, and D. Boneh. XCS: cross channel
scripting and its impact on web applications. In Proceedings
of the 16th ACM conference on Computer and
Communications Security, pages 420–431. ACM, 2009.

[22] E. Chin and D. Wagner. Bifocals: Analyzing WebView
Vulnerabilities in Android Applications. In Proceedings of
the 14th International Workshop on Information Security
Applications, Ocean Suites Jeju Hotel, Jeju Island, Korea,
August 19 2013.

[23] S. Di Paola. DominatorPro: Securing Next Generation of
Web Applications. [software],.
https://dominator.mindedsecurity.com/,
2012.

[24] K. Elish, D. Yao, B. Ryder, and X. Jiang. A static assurance
analysis of android applications. Virginia Polytechnic
Institute and State University, Tech. Rep, 2013.

[25] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith. Why eve and mallory love
android: An analysis of android ssl (in) security. In

Proceedings of the 2012 ACM conference on Computer and
Communications Security, pages 50–61. ACM, 2012.

[26] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM
conference on Computer and Communications Security,
pages 627–638. ACM, 2011.

[27] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and fixing
origin-based access control in hybrid web/mobile application
frameworks. In Proceeding of the Network and Distributed
System Security Symposium (NDSS), 2014.

[28] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
detection of capability leaks in stock android smartphones. In
Proceedings of the 19th Annual Symposium on Network and
Distributed System Security, 2012.

[29] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and
R. Berg. Saving the world wide web from vulnerable
JavaScript. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, pages
177–187. ACM, 2011.

[30] M. Heiderich, T. Frosch, and T. Holz. Iceshield: detection
and mitigation of malicious websites with a frozen dom. In
Proceedings of International Symposium on Research in
Attacks, Intrusions and Defenses, pages 281–300. Springer,
2011.

[31] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and
E. Yang. mxss attacks: attacking well-secured
web-applications by using innerhtml mutations. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications Security, CCS ’13. ACM,
2013.

[32] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes. Fast and precise sanitizer analysis with bek. In
Proceedings of the 20th USENIX conference on Security,
2011.

[33] N. Huy and D. vanThanh. Evaluation of mobile app
paradigms. In Proceedings of the 10th International
Conference on Advances in Mobile Computing and
Multimedia, MoMM ’12, 2012.

[34] K. Jayaraman, W. Du, B. Rajagopalan, and S. J. Chapin.
Escudo: A fine-grained protection model for web browsers.
In Proceeding of the 30th IEEE International Conference on
Distributed Computing Systems (ICDCS), pages 231–240,
2010.

[35] X. Jin, T. Luo, D. G. Tsui, and W. Du. Code Injection
Attacks on HTML5-based Mobile Apps. In Mobile Security
Technologies (MoST) 2014, 2014.

[36] X. Jin, L. Wang, T. Luo, and W. Du. Fine-Grained Access
Control for HTML5-Based Mobile Applications in Android.
In Proceedings of the 16th Information Security Conference
(ISC), 2013.

[37] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle:
De-cloaking internet malware. In Proceedings of 2012 IEEE
Symposium on Security and Privacy, pages 443–457. IEEE,
2012.

[38] S. Lekies, B. Stock, and M. Johns. 25 million flows later:
large-scale detection of dom-based xss. In Proceedings of the
2013 ACM conference on Computer and Communications
Security, pages 1193–1204. ACM, 2013.

[39] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically
vetting android apps for component hijacking vulnerabilities.
In Proceedings of the 2012 ACM conference on Computer
and Communications Security, pages 229–240. ACM, 2012.

11

http://www.cis.syr.edu/~wedu/android/JSCodeInjection/index.html
http://www.cis.syr.edu/~wedu/android/JSCodeInjection/index.html
http://www.exploit-db.com/exploits/31519/
http://www.exploit-db.com/exploits/31519/
http://www.businessinsider.com/html5-vs-native-apps-for-mobile-2013-4?op=1/
http://www.businessinsider.com/html5-vs-native-apps-for-mobile-2013-4?op=1/
http://www.businessinsider.com/html5-vs-native-apps-for-mobile-2013-4?op=1/
http://google-ctemplate.googlecode.com/svn/trunk/doc/guide.html#auto_escape
http://google-ctemplate.googlecode.com/svn/trunk/doc/guide.html#auto_escape
http://www.businessinsider.com/html5-vs-apps-where-the-debate-stands\ -now-and-why-it-matters-2013-4/
http://www.businessinsider.com/html5-vs-apps-where-the-debate-stands\ -now-and-why-it-matters-2013-4/
http://www.businessinsider.com/html5-vs-apps-where-the-debate-stands\ -now-and-why-it-matters-2013-4/
http://www.html5rocks.com/en/mobile/nativedebate/
http://www.html5rocks.com/en/mobile/nativedebate/
http://mootools.net/
http://mosync.com
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://phonegap.com
http://prototypejs.org/
http://rhomobile.com
http://itbusinessedge.com/blogs/data-and-telecom/the-shared-future-of-html5-and-native-apps.html/
http://itbusinessedge.com/blogs/data-and-telecom/the-shared-future-of-html5-and-native-apps.html/
http://itbusinessedge.com/blogs/data-and-telecom/the-shared-future-of-html5-and-native-apps.html/
http://itbusinessedge.com/blogs/data-and-telecom/the-shared-future-of-html5-and-native-apps.html/
http://wala.sourceforge.net/
https://dominator.mindedsecurity.com/

[40] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on
webview in the android system. In Proceedings of the 27th
Annual Computer Security Applications Conference
(ACSAC), 2011.

[41] M. Madsen, B. Livshits, and M. Fanning. Practical static
analysis of javascript applications in the presence of
frameworks and libraries. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering,
pages 499–509. ACM, 2013.

[42] L. A. Meyerovich and B. Livshits. Conscript: Specifying and
enforcing fine-grained security policies for javascript in the
browser. In Proceedings of 2010 IEEE Symposium on
Security and Privacy, pages 481–496. IEEE, 2010.

[43] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and
G. Vigna. Execute this! analyzing unsafe and malicious
dynamic code loading in android applications. In Proceeding
of the Network and Distributed System Security Symposium
(NDSS 2014), 2014.

[44] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An Analysis
of the Dynamic Behavior of JavaScript Programs. In
Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’10, 2010.

[45] M. Samuel, P. Saxena, and D. Song. Context-sensitive
auto-sanitization in web templating languages using type
qualifiers. In Proceedings of the 18th ACM Conference on
Computer and Communications Security (ACM CCS), 2011.

[46] P. Saxena, S. Hanna, P. Poosankam, and D. Song. Flax:
Systematic discovery of client-side validation vulnerabilities
in rich web applications. In Proceeding of the Network and
Distributed System Security Symposium (NDSS 2010), 2010.

[47] P. Saxena, D. Molnar, and B. Livshits. Scriptgard: automatic
context-sensitive sanitization for large-scale legacy web
applications. In 18th ACM Conference on Computer and
Communications Security (ACM CCS), 2011.

[48] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and
K. Latifur. Smv-hunter: Large scale, automated detection of
ssl/tls man-in-the-middle vulnerabilities in android apps. In
Proceeding of the Network and Distributed System Security
Symposium (NDSS 2014), 2014.

[49] S. Stamm, B. Sterne, and G. Markham. Reining in the web
with content security policy. In Proceedings of the 19th
international conference on World wide web (WWW), pages
921–930. ACM, 2010.

[50] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Cross-site scripting prevention with dynamic data
tainting and static analysis. In Proceeding of the Network and
Distributed System Security Symposium (NDSS 2007), 2007.

[51] R. Wang, L. Xing, X. Wang, and S. Chen. Unauthorized
Origin Crossing on Mobile Platforms: Threats and
Mitigation. In ACM Conference on Computer and
Communications Security (ACM CCS), Berlin, Germany,
2013.

[52] J. Weinberger, A. Barth, and D. Song. Towards client-side
html security policies. In Workshop on Hot Topics on
Security (HotSec), 2011.

[53] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. Wang.
Appintent: Analyzing sensitive data transmission in android
for privacy leakage detection. In Proceedings of the 2013
ACM conference on Computer and Communications
Security, pages 1043–1054. ACM, 2013.

[54] M. Zhang and H. Yin. Appsealer: Automatic generation of
vulnerability-specific patches for preventing component
hijacking attacks in android applications. In Proceedings of
the 21th Annual Network and Distributed System Security
Symposium (NDSS 2014), 2014.

[55] Y. Zhou and X. Jiang. Detecting passive content leaks and
pollution in android applications. In Proceedings of the 20th
Annual Symposium on Network and Distributed System
Security, 2013.

12

	Introduction
	Background
	Code Injection Attack
	The Attack
	Code Injection Channels
	External Code Injection Channels
	Internal Channels

	Triggering Injected Code
	Achieving Damage

	Vulnerability Detection
	Vulnerable App Example
	Challenges
	Our Solution
	Evaluation
	Case Studies

	Attack Mitigation
	App-Level Mitigation
	Framework-Level Mitigation
	System-Level Mitigation
	Our Implementation

	Related Work
	XSS Attack Detection and Mitigation
	Static Analysis of Android Vulnerabilities
	Other Related Attacks.

	Summary
	Acknowledgement
	References

