
Semantics-Aware Android Malware Classification Using
Weighted Contextual API Dependency Graphs

Mu Zhang Yue Duan Heng Yin Zhiruo Zhao
Department of EECS, Syracuse University, Syracuse, NY, USA

{muzhang,yuduan,heyin,zzhao11}@syr.edu

ABSTRACT
The drastic increase of Android malware has led to a strong interest
in developing methods to automate the malware analysis process.
Existing automated Android malware detection and classification
methods fall into two general categories: 1) signature-based and 2)
machine learning-based. Signature-based approaches can be easily
evaded by bytecode-level transformation attacks. Prior learning-
based works extract features from application syntax, rather than
program semantics, and are also subject to evasion. In this paper,
we propose a novel semantic-based approach that classifies An-
droid malware via dependency graphs. To battle transformation
attacks, we extract a weighted contextual API dependency graph as
program semantics to construct feature sets. To fight against mal-
ware variants and zero-day malware, we introduce graph similarity
metrics to uncover homogeneous application behaviors while toler-
ating minor implementation differences. We implement a prototype
system, DroidSIFT, in 23 thousand lines of Java code. We evaluate
our system using 2200 malware samples and 13500 benign sam-
ples. Experiments show that our signature detection can correctly
label 93% of malware instances; our anomaly detector is capable
of detecting zero-day malware with a low false negative rate (2%)
and an acceptable false positive rate (5.15%) for a vetting purpose.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Validation; D.4.6 [Operating Systems]: Security and Protection—
Invasive software

General Terms
Security

Keywords
Android; Malware classification; Semantics-aware; Graph similar-
ity; Signature detection; Anomaly detection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660359.

1. INTRODUCTION
The number of new Android malware instances has grown ex-

ponentially in recent years. McAfee reports [3] that 2.47 million
new mobile malware samples were collected in 2013, which repre-
sents a 197% increase over 2012. Greater and greater amounts of
manual effort are required to analyze the increasing number of new
malware instances. This has led to a strong interest in developing
methods to automate the malware analysis process.

Existing automated Android malware detection and classifica-
tion methods fall into two general categories: 1) signature-based
and 2) machine learning-based. Signature-based approaches [18,
37] look for specific patterns in the bytecode and API calls, but they
are easily evaded by bytecode-level transformation attacks [28].
Machine learning-based approaches [5, 6, 27] extract features from
an application’s behavior (such as permission requests and criti-
cal API calls) and apply standard machine learning algorithms to
perform binary classification. Because the extracted features are
associated with application syntax, rather than program semantics,
these detectors are also susceptible to evasion.

To directly address malware that evades automated detection,
prior works distill program semantics into graph representations,
such as control-flow graphs [11], data dependency graphs [16, 21]
and permission event graphs [10]. These graphs are checked against
manually-crafted specifications to detect malware. However, these
detectors tend to seek an exact match for a given specification and
therefore can potentially be evaded by polymorphic variants. Fur-
thermore, the specifications used for detection are produced from
known malware families and cannot be used to battle zero-day mal-
ware.

In this paper, we propose a novel semantic-based approach that
classifies Android malware via dependency graphs. To battle trans-
formation attacks [28], we extract a weighted contextual API de-
pendency graph as program semantics to construct feature sets. The
subsequent classification then depends on more robust semantic-
level behavior rather than program syntax. It is much harder for
an adversary to use an elaborate bytecode-level transformation to
evade such a training system. To fight against malware variants
and zero-day malware, we introduce graph similarity metrics to un-
cover homogeneous essential application behaviors while tolerat-
ing minor implementation differences. Consequently, new or poly-
morphic malware that has a unique implementation, but performs
common malicious behaviors, cannot evade detection.

To our knowledge, when compared to traditional semantics-aware
approaches for desktop malware detection, we are the first to ex-
amine program semantics within the context of Android malware
classification. We also take a step further to defeat malware vari-
ants and zero-day malware by comparing the similarity of these
programs to that of known malware at the behavioral level.

We build a database of behavior graphs for a collection of An-
droid apps. Each graph models the API usage scenario and pro-

gram semantics of the app that it represents. Given a new app, a
query is made for the app’s behavior graphs to search for the most
similar counterpart in the database. The query result is a similarity
score which sets the corresponding element in the feature vector of
the app. Every element of this feature vector is associated with an
individual graph in the database.

We build graph databases for two sets of behaviors: benign and
malicious. Feature vectors extracted from these two sets are then
used to train two separate classifiers for anomaly detection and sig-
nature detection. The former is capable of discovering zero-day
malware, and the latter is used to identify malware variants.

We implement a prototype system, DroidSIFT, in 23 thousand
lines of Java code. Our dependency graph generation is built on
top of Soot [2], while our graph similarity query leverages a graph
matching toolkit [29] to compute graph edit distance. We evaluate
our system using 2200 malware samples and 13500 benign sam-
ples. Experiments show that our signature detection can correctly
label 93% malware instances; our anomaly detector is capable of
detecting zero-day malware with a low false negative rate (2%) and
an acceptable false positive rate (5.15%) for vetting purpose.

In summary, this paper makes the following contributions:

• We propose a semantic-based malware classification to ac-
curately detect both zero-day malware and unknown variants
of known malware families. We model program semantics
with weighted contextual API dependency graphs, introduce
graph similarity metrics to capture homogeneous semantics
in malware variants or zero-day malware samples, and en-
code similarity scores into graph-based feature vectors to en-
able classifiers for anomaly and signature detections.

• We implement a prototype system, DroidSIFT, that performs
static program analysis to generate dependency graphs. Droid-
SIFT builds graph databases and produces graph-based fea-
ture vectors by performing graph similarity queries. It then
uses the feature vectors of benign and malware apps to con-
struct two separate classifiers that enable anomaly and signa-
ture detections, respectively.

• We evaluate the effectiveness of DroidSIFT using 2200 mal-
ware samples and 13500 benign samples. Experiments show
that our signature detection can correctly label 93% malware
instances; our anomaly detector is capable of detecting zero-
day malware with a low false negative rate (2%) and an ac-
ceptable false positive rate (5.15%) for vetting purpose.

Paper Organization. The rest of the paper is organized as follows.
Section 2 describes the deployment of our learning-based detection
mechanism and gives an overview of our malware classification
technique. Section 3 defines our graph representation of Android
program semantics and explains our graph generation methodol-
ogy. Section 4 elaborates graph similarity query, the extraction of
graph-based feature vectors and learning-based anomaly & signa-
ture detection. Section 5 shows the experimental results of our ap-
proach. Discussion and related work are presented in Section 6
and 7, respectively. Finally, the paper concludes with Section 8.

2. OVERVIEW
In this section, we present an overview of the problem and the

deployment and architecture of our proposed solution.

2.1 Problem Statement
An effective vetting process for discovering malicious software

is essential for maintaining a healthy ecosystem in the Android app
markets. Unfortunately, existing vetting processes are still fairly

Android
App Market

Online Detection

Offline Graph Database
Construction &
Training Phase

Update
Database &
Classifiers

Developer

Submit Vet

Report

Figure 1: Deployment of DroidSIFT

rudimentary. As an example, consider the Bouncer [22] vetting
system that is used by the official Google Play Android market.
Though the technical details of Bouncer are not publicly avail-
able, experiments by Oberheide and Miller [24] show that Bouncer
performs dynamic analysis to examine apps within an emulated
Android environment for a limited period of time. This method
of analysis can be easily evaded by apps that perform emulator
detection, contain hidden behaviors that are timer-based, or oth-
erwise avoid triggering malicious behavior during the short time
period when the app is being vetted. Signature detection tech-
niques adopted by the current anti-malware products have also been
shown to be trivially evaded by simple bytecode-level transforma-
tions [28].

We propose a new technique, DroidSIFT, illustrated in Figure 1,
that addresses these shortcomings and can be deployed as a re-
placement for existing vetting techniques currently in use by the
Android app markets. This technique is based on static analysis,
which is immune to emulation detection and is capable of analyz-
ing the entirety of an app’s code. Further, to defeat bytecode-level
transformations, our static analysis is semantics-aware and extracts
program behaviors at the semantic level. More specifically, we
achieve the following design goals:

• Semantic-based Detection. Our approach detects malware
instances based on their program semantics. It does not rely
on malicious code patterns, external symptoms, or heuristics.
Our approach is able to perform program analysis for both
the interpretation and demonstration of inherent program de-
pendencies and execution contexts.

• High Scalability. Our approach is scalable to cope with
millions of unique benign and malicious Android app sam-
ples. It addresses the complexity of static program analysis,
which can be considerably expensive in terms of both time
and memory resources, to perform precisely.

• Variant Resiliency. Our approach is resilient to polymor-
phic variants. It is common for attackers to implement ma-
licious functionalities in slightly different manners and still
be able to perform the expected malicious behaviors. This
malware polymorphism can defeat detection methods that
are based on exact behavior matching, which is the method
prevalently adopted by existing signature-based detection and
graph-based model checking. To address this, our technique
is able to measure the similarity of app behaviors and tolerate
such implementation variants by using similarity scores.

Consequently, we are able to conduct two kinds of classifica-
tions: anomaly detection and signature detection. Upon receiving a
new app submission, our vetting process will conduct anomaly de-
tection to determine whether it contains behaviors that significantly
deviate from the benign apps within our database. If such a devia-
tion is discovered, a potential malware instance is identified. Then,
we conduct further signature detection on it to determine if this app
falls into any malware family within our signature database. If so,
the app is flagged as malicious and bounced back to the developer
immediately.

[0,0,0,0.9,…,0.8]
[1,0.6,0,0,…,0.7]
[0,0.9,0.7,0,…,0]

...

[0.6,0.9,0,0,…,0]
[0.8,0,0.8,0,…,1]

Android Apps

Behavior Graph
Generation

Graph-based Feature
Vector Extraction

Anomaly & Signature
Detection

Scalable Graph
Similarity Query

{ }
 buckets

{ }

[0,0,...,0,0,0,0,1]

[0,0,...,0,0,0,1,0]

[0,0,...,0,0,0,1,1]

...

[1,0,...,1,1,1,1,1]

[1,1,...,1,1,1,1,1]

{ }

Figure 2: Overview of DroidSIFT

If the app passes this hurdle, it is still possible that a new malware
species has been found. We bounce the app back to the developer
with a detailed report when suspicious behaviors that deviate from
benign behaviors are discovered, and we request justification for
the deviation. The app is approved only after the developer makes
a convincing justification for the deviation. Otherwise, after fur-
ther investigation, we may confirm it to indeed be a new malware
species. By placing this information into our malware database, we
further improve our signature detection to detect this new malware
species in the future.

It is also possible to deploy our technique via a more ad-hoc
scheme. For example, our detection mechanism can be deployed as
a public service that allows a cautious app user to examine an app
prior to its installation. An enterprise that maintains its own private
app repository could utilize such a security service. The enterprise
service conducts vetting prior to adding an app to the internal app
pool, thereby protecting employees from apps that contain malware
behaviors.

2.2 Architecture Overview
Figure 2 depicts the workflow of our graph-based Android mal-

ware classification. This takes the following steps:

(1) Behavior Graph Generation. Our malware classification con-
siders graph similarity as the feature vector. To this end, we
first perform static program analysis to transform Android byte-
code programs into their corresponding graph representations.
Our program analysis includes entry point discovery and call
graph analysis to better understand the API calling contexts,
and it leverages both forward and backward dataflow analysis
to explore API dependencies and uncover any constant parame-
ters. The result of this analysis is expressed via Weighted Con-
textual API Dependency Graphs that expose security-related
behaviors of Android apps.

(2) Scalable Graph Similarity Query. Having generated graphs
for both benign and malicious apps, we then query the graph
database for the one graph most similar to a given graph. To
address the scalability challenge, we utilize a bucket-based in-
dexing scheme to improve search efficiency. Each bucket con-
tains graphs bearing APIs from the same Android packages,
and it is indexed with a bitvector that indicates the presence of
such packages. Given a graph query, we can quickly seek to the
corresponding bucket index by matching the package’s vector
to the bucket’s bitvector. Once a matching bucket is located,
we further iterate this bucket to find the best-matching graph.
Finding the best-matching graph, instead of an exact match, is
necessary to identify polymorphic malware.

(3) Graph-based Feature Vector Extraction. Given an app, we
attempt to find the best match for each of its graphs from the
database. This produces a similarity feature vector. Each ele-
ment of the vector is associated with an existing graph in the
database. This vector bears a non-zero similarity score in one
element only if the corresponding graph is the best match to
one of the graphs for the given app.

(4) Anomaly & Signature Detection. We have implemented a
signature classifier and an anomaly detector. We have produced
feature vectors for malicious apps, and these vectors are used
to train the classifier for signature detection. The anomaly de-
tection discovers zero-day Android malware, and the signature
detector uncovers the type (family) of the malware.

3. WEIGHTED CONTEXTUAL API DEPEN-
DENCY GRAPH

In this section, we describe how we capture the semantic-level
behaviors of Android malware in the form of graphs. We start
by identifying the key behavioral aspects that must be captured,
present a formal definition, and then present a real example to
demonstrate these aspects.

3.1 Key Behavioral Aspects
We consider the following aspects as essential when describing

the semantic-level behaviors of an Android malware sample:

1) API Dependency. API calls (including reflective calls to the
private framework functions) indicate how an app interacts with
the Android framework. It is essential to capture what API calls
an app makes and the dependencies among those calls. Prior
works on semantic- and behavior-based malware detection and
classification for desktop environments all make use of API de-
pendency information [16, 21]. Android malware shares the
same characteristics.

2) Context. An entry point of an API call is a program entry
point that directly or indirectly triggers the call. From a user-
awareness point of view, there are two kinds of entry points:
user interfaces and background callbacks. Malware authors com-
monly exploit background callbacks to enable malicious func-
tionalities without the user’s knowledge. From a security ana-
lyst’s perspective, it is a suspicious behavior when a typical user
interactive API (e.g., AudioRecord.startRecording()) is
called stealthily [10]. As a result, we must pay special attention
to APIs activated from background callbacks.

3) Constant. Constants convey semantic information by revealing
the values of critical parameters and uncovering fine-grained
API semantics. For instance, Runtime.exec() may execute

<android.telephony.SmsMessage: createFromPdu(byte[])>,
BroadcastReceiver.onReceive, Ø

<android.telephony.SmsMessage: getOriginatingAddress()>,
BroadcastReceiver.onReceive, Ø

<android.telephony.SmsMessage: getMessageBody()>,
BroadcastReceiver.onReceive, Ø

<UrlEncodedFormEntity: <init>(java.util.List)>,
BroadcastReceiver.onReceive, Ø

<HttpEntityEnclosingRequestBase: setEntity(HttpEntity)>,
BroadcastReceiver.onReceive, Ø

<AbstractHttpClient: execute(HttpUriRequest,ResponseHandler)>,
BroadcastReceiver.onReceive, Setc

Setc = {”http://softthrifty.com/security.jsp”}

Figure 3: WC-ADG of Zitmo

varied shell commands, such as ps or chmod, depending upon
the input string constant. Constant analysis also discloses the
data dependencies of certain security-sensitive APIs whose benign-
ness is dependent upon whether an input is constant. For exam-
ple, a sendTextMessage() call taking a constant premium-
rate phone number as a parameter is a more suspicious behavior
than the call to the same API receiving the phone number from
user input via getText(). Consequently, it is crucial to extract
information about the usage of constants for security analysis.

Once we look at app behaviors using these three perspectives, we
perform similarity checking, rather than seeking an exact match,
on the behavioral graphs. Since each individual API node plays a
distinctive role in an app, it contributes differently to the graph sim-
ilarity. With regards to malware detection, we emphasize security-
sensitive APIs combined with critical contexts or constant param-
eters. We assign weights to different API nodes, giving greater
weights to the nodes containing critical calls, to improve the “qual-
ity” of behavior graphs when measuring similarity. Moreover, the
weight generation is automated. Thus, similar graphs have higher
similarity scores by design.

3.2 Formal Definition
To address all of the aforementioned factors, we describe app be-

haviors using Weighted Contextual API Dependency Graphs (WC-ADG).
At a high level, a WC-ADG consists of API operations where some
of the operations have data dependencies. A formal definition is
presented as follows.

Definition 1. A Weighted Contextual API Dependency Graph is
a directed graph G = (V, E, α, β) over a set of API operations Σ
and a weight space W , where:
• The set of vertices V corresponds to the contextual API opera-

tions in Σ;
• The set of edges E⊆ V× V corresponds to the data dependen-

cies between operations;
• The labeling function α : V → Σ associates nodes with the la-

bels of corresponding contextual API operations, where each label
is comprised of 3 elements: API prototype, entry point and constant
parameter;
• The labeling function β : V → W associates nodes with their

corresponding weights, where ∀w ∈ W , w ∈ R, and R represents
the space of real numbers.

3.3 A Real Example
Zitmo is a class of banking trojan malware that steals a user’s

SMS messages to discover banking information (e.g., mTANs).
Figure 3 presents an example WC-ADG that depicts the malicious
behavior of a Zitmo malware sample in a concise, yet complete,

e2

OnClickListener.
onClick Runnable.run

Handler.
handleMessage

e3

a3

Runnable.start Handler.
sendMessage

SmsManager.
sendTextMessage

e1

a1 a2

Figure 4: Callgraph for asynchronously sending an SMS message.
“e” and “a” stand for “event handler” and “action” respectively.

manner. This graph contains five API call nodes. Each node con-
tains the call’s prototype, a set of any constant parameters, and the
entry points of the call. Dashed arrows that connect a pair of nodes
indicates that a data dependency exists between the two calls in
those nodes.

By combining the knowledge of API prototypes with the data
dependency information shown in the graph, we know that the app
is forwarding an incoming SMS to the network. Once an SMS is
received by the mobile phone, Zitmo creates an SMS object from
the raw Protocol Data Unit by calling createFromPdu(byte[]).
It extracts the sender’s phone number and message content by call-
ing getOriginatingAddress() and getMessageBody(). Both
strings are encoded into an UrlEncodedFormEntity object and
enclosed into HttpEntityEnclosingRequestBase by using the
setEntity() call. Finally, this HTTP request is sent to the net-
work via AbstractHttpClient.execute().

Zitmo variants may also exploit various other communication-
related API calls for the sending purpose. Another Zitmo instance
uses SmsManager.sendTextMessage() to deliver the stolen in-
formation as a text message to the attacker’s phone. Such variations
motivate us to consider graph similarity metrics, rather than an ex-
act matching of API call behavior, when determining whether a
sample app is benign or malicious.

The context provided by the entry points of these API calls in-
forms us that the user is not aware of this SMS forwarding behav-
ior. These consecutive API invocations start within the entry point
method onReceive() with a call to createFromPdu(byte[]).
onReceive() is a broadcast receiver registered by the app to re-
ceive incoming SMS messages in the background. Therefore, the
createFromPdu(byte[]) and subsequent API calls are activated
from a non-user-interactive entry point and are hidden from the
user.

Constant analysis of the graph further indicates that the forward-
ing destination is suspicious. The parameter of execute() is nei-
ther the sender (i.e., the bank) nor any familiar parties from the
contacts. It is a constant URL belonging to an unknown third-party.

3.4 Graph Generation
We have implemented a graph generation tool on top of Soot [2]

in 20k lines of code. This tool examines an Android app to conduct
entry point discovery and perform context-sensitive, flow-sensitive,
and interprocedural dataflow analyses. These analyses locate API
call parameters and return values of interest, extract constant pa-
rameters, and determine the data dependencies among the API calls.

Entry Point Discovery.
Entry point discovery is essential to revealing whether the user

is aware that a certain API call has been made. However, this
identification is not straightforward. Consider the callgraph seen
in Figure 4. This graph describes a code snippet that registers a

Algorithm 1 Entry Point Reduction for Asynchronous Callbacks

Mentry ← {Possible entry point callback methods}
CMasync ← {Pairs of (BaseClass,RunMethod) for asynchronous
calls in framework}
RSasync ← {Map from RunMethod to StartMethod for asyn-
chronous calls in framework}
for mentry ∈Mentry do

c← the class declaring mentry

base← the base class of c
if (base,mentry) ∈ CMasync then

mstart ← Lookup(mentry) in RSasync

for ∀ call to mstart do
r ← “this” reference of call
PointsToSet← PointsToAnalysis(r)
if c ∈ PointsToSet then

Mentry = Mentry − {mentry}
BuildDependencyStub(mstart, mentry)

end if
end for

end if
end for
output Mentry as reduced entry point set

onClick() event handler for a button. From within the event han-
dler, the code starts a thread instance by calling Thread.start(),
which invokes the run()method implementing Runnable.run().
The run() method passes an android.os.Message object to the
message queue of the hosting thread via Handler.sendMessage().
A Handler object created in the same thread is then bound to this
message queue and its Handler.handleMessage() callback will
process the message and later execute sendTextMessage().

The sole entry point to the graph is the user-interactive callback
onClick(). However, prior work [23] on the identification of pro-
gram entry points does not consider asynchronous calls and recog-
nizes all three callbacks in the program as individual entry points.
This confuses the determination of whether the user is aware that an
API call has been made in response to a user-interactive callback.
To address this limitation, we propose Algorithm 1 to remove any
potential entry points that are actually part of an asynchronous call
chain with only a single entry point.

Algorithm 1 accepts three inputs and provides one output. The
first input is Mentry , which is a set of possible entry points. The
second is CMasync, which is a set of (BaseClass,RunMethod)
pairs. BaseClass represents a top-level asynchronous base class
(e.g., Runnable) in the Android framework and RunMethod is
the asynchronous call target (e.g., Runnable.run()) declared in
this class. The third input is RSasync, which maps RunMethod
to StartMethod. RunMethod and StartMethod are the callee
and caller in an asynchronous call (e.g., Runnable.run() and
Runnable.start()). The output is a reduced Mentry set.

We compute the Mentry input by applying the algorithm pro-
posed by Lu et al. [23], which discovers all reachable callback
methods defined by the app that are intended to be called only by
the Android framework. To further consider the logical order be-
tween Intent senders and receivers, we leverage Epicc [25] to
resolve the inter-component communications and then remove the
Intent receivers from Mentry .

Through examination of the Android framework code, we gener-
ate a list of 3-tuples consisting of BaseClass, RunMethod and
StartMethod. For example, we capture the Android-specific call-
ing convention of AsyncTaskwith AsyncTask.onPreExecute()
being triggered by AsyncTask.execute(). When a new asyn-
chronous call is introduced into the framework code, this list is
updated to include the change. Table 1 presents our current model
for the calling convention of top-level base asynchronous classes in
Android framework.

Table 1: Calling Convention of Asynchronous Calls
Top-level Class Run Method Start Method
Runnable run() start()
AsyncTask onPreExecute() execute()
AsyncTask doInBackground() onPreExecute()
AsyncTask onPostExecute() doInBackground()
Message handleMessage() sendMessage()

public class AsyncTask{
public AsyncTask execute(Params... params){

executeStub(params);
}
public AsyncTask executeStub(Params...params){

onPreExecute();
Result result = doInBackground(params);
onPostExecuteStub(result);

}
public void onPostExecuteStub(Result result){

onPostExecute(result);
}

}

Figure 5: Stub code for dataflow of AsyncTask.execute

Given these inputs, our algorithm iterates over Mentry . For ev-
ery method mentry in this set, it finds the class c that declares this
method and the top-level base class base that c inherits from. Then,
it searches the pair of base and mentry in the CMasync set. If a
match is found, the method mentry is a “callee” by convention.
The algorithm thus looks up mentry in the map SRasync to find
the corresponding “caller” mstart. Each call to mstart is further
examined and a points-to analysis is performed on the “this” refer-
ence making the call. If class c of method mentry belongs to the
points-to set, we can ensure the calling relationship between the
caller mstart and the callee mentry and remove the callee from
the entry point set.

To indicate the data dependency between these two methods,
we introduce a stub which connects the parameters of the asyn-
chronous call to the corresponding parameters of its callee. Fig-
ure 5 depicts the example stub code for AsyncTask, where the
parameter of execute() is first passed to doInBackground()
through the stub executeStub(), and then the return from this
asynchronous execution is further transferred to onPostExecute()
via onPostExecuteStub().

Once the algorithm has reduced the number of entry point meth-
ods in Mentry , we explore all code reachable from those entry
points, including both synchronous and asynchronous calls. We
further determine the user interactivity of an entry point by exam-
ining its top-level base class. If the entry point callback overrides a
counterpart declared in one of the three top-level UI-related inter-
faces (i.e., android.graphics.drawable.Drawable.Callback,
android.view.accessibility.AccessibilityEventSource,
and android.view.KeyEvent.Callback), we then consider the
derived entry point method as a user interface.

Constant Analysis.
We conduct constant analysis for any critical parameters of se-

curity sensitive API calls. These calls may expose security-related
behaviors depending upon the values of their constant parameters.
For example, Runtime.exec() can directly execute shell com-
mands, and file or database operations can interact with distinctive
targets by providing the proper URIs as input parameters.

To understand these semantic-level differences, we perform back-
ward dataflow analysis on selected parameters and collect all possi-
ble constant values on the backward trace. We generate a constant
set for each critical API argument and mark the parameter as “Con-
stant” in the corresponding node on the WC-ADG. While a more
complete string constant analysis is also possible, the computation
of regular expressions is fairly expensive for static analysis. The

substring set currently generated effectively reflects the semantics
of a critical API call and is sufficient for further feature extraction.

API Dependency Construction.
We perform global dataflow analysis to discover data dependen-

cies between API nodes and build the edges on WC-ADG. How-
ever, it is very expensive to analyze every single API call made by
an app. To address computational efficiency and our interests on
security analysis, we choose to analyze only the security-related
API calls. Permissions are strong indicators of security sensitivity
in Android systems, so we leverage the API-permission mapping
from PScout [8] to focus on permission-related API calls.

Our static dataflow analysis is similar to the “split”-based ap-
proach used by CHEX [23]. Each program split includes all code
reachable from a single entry point. Dataflow analysis is performed
on each split, and then cross-split dataflows are examined. The dif-
ference between our analysis and that of CHEX lies in the fact that
we compute larger splits due to the consideration of asynchronous
calling conventions.

We make a special consideration for reflective calls within our
analysis. In Android programs, reflection is realized by calling the
method java.lang.reflect.Method.invoke(). The “this” ref-
erence of this API call is a Method object, which is usually ob-
tained by invoking either getMethod() or getDeclaredMethod()
from java.lang.Class. The class is often acquired in a reflective
manner too, through Class.forName(). This API call resolves a
string input and retrieves the associated Class object.

We consider any reflective invoke() call as a sink and conduct
backward dataflow analysis to find any prior data dependencies. If
such an analysis reaches string constants, we are able to statically
resolve the class and method information. Otherwise, the reflective
call is not statically resolvable. However, statically unresolvable
behavior is still represented within the WC-ADG as nodes which
contain no constant parameters. Instead, this reflective call may
have several preceding APIs, from a dataflow perspective, which
are the sources of its metadata.

4. ANDROID MALWARE CLASSIFICATION
We generate WC-ADGs for both benign and malicious apps. Each

unique graph is associated with a feature that we use to classify
Android malware and benign applications.

4.1 Graph Matching Score
To quantify the similarity of two graphs, we first compute a graph

edit distance. To our knowledge, all existing graph edit distance al-
gorithms treat node and edge uniformly. However, in our case, our
graph edit distance calculation must take into account the differ-
ent weights of different API nodes. At present, we do not con-
sider assigning different weights on edges because this would lead
to prohibitively high complexity in graph matching. Moreover, to
emphasize the differences between two nodes in different labels,
we do not seek to relabel them. Instead, we delete the old node and
insert the new one subsequently. This is because node “relabeling”
cost, in our context, is not the string edit distance between the API
labels of two nodes. It is the cost of deleting the old node plus that
of adding the new node.

Definition 2. The Weighted Graph Edit Distance (WGED) of
two Weighted Contextual API Dependency Graphs G and G’, with
a uniform weight function β, is the minimum cost to transform G
to G’:

wged(G,G′, β) = min(
∑

vI∈{V ′−V }

β(vI) +
∑

vD∈{V−V ′}

β(vD) + |EI |+ |ED|)

(1)

, where V and V ′ are respectively the vertices of two graphs, vI and
vD are individual vertices inserted to and deleted from G, whileEI

and ED are the edges added to and removed from G.
WGED presents the absolute difference between two graphs.

This implies that wged(G,G’) is roughly proportional to the sum
of graph sizes and therefore two larger graphs are likely to be more
distant to one another. To eliminate this bias, we normalize the re-
sulting distance and further define Weighted Graph Similarity based
upon it.

Definition 3. The Weighted Graph Similarity of two Weighted
Contextual API Dependency Graphs G and G’, with a weight func-
tion β, is,

wgs(G,G′, β) = 1− wged(G,G′, β)

wged(G, ∅, β) + wged(∅, G′, β)
(2)

, where ∅ is an empty graph. wged(G, ∅, β)+wged(∅, G′, β) then
equates the maximum possible edit cost to transform G to G’.

4.2 Weight Assignment
Instead of manually specifying the weights on different APIs

(in combination of their attributes), we wish to see a near-optimal
weight assignment.

Selection of Critical API Labels.
Given a large number of API labels (unique combinations of

API names and attributes), it is unrealistic to automatically as-
sign weights for every one of them. Our goal is malware clas-
sification, so we concentrate on assigning weights to labels for
the security-sensitive APIs and critical combinations of their at-
tributes. To this end, we perform concept learning to discover
critical API labels. Given a positive example set (PES) contain-
ing malware graphs and a negative example set (NES) containing
benign graphs, we seek a critical API label (CA) based on two re-
quirements: 1) frequency(CA,PES) > frequency(CA,NES) and 2)
frequency(CA,NES) is less than the median frequency of all critical
API labels in NES. The first requirement guarantees that a critical
API label is more sensitive to a malware sample than a benign one,
while the second requirement ensures the infrequent presence of
such an API label in the benign set. Consequently, we have se-
lected 108 critical API labels. Our goal becomes the assignment
of appropriate weights to these 108 labels while assigning a default
weight of 1 to all remaining API labels.

Weight Assignment.
Intuitively, if two graphs come from the same malware family

and share one or more critical API labels, we must maximize the
similarity between the two. We call such a pair of graphs a “homo-
geneous pair”. Conversely, if one graph is malicious and the other
is benign, even if they share one or more critical API labels, we
must minimize the similarity between the two. We call such a pair
of graphs a “heterogeneous pair”. Therefore, we cast the problem
of weight assignment to be an optimization problem.

Definition 4. The Weight Assignment is an optimization problem
to maximize the result of an objective function for a given set of
graph pairs {<G,G’>}:

max f({< G,G′ >}, β) =
∑

<G,G′> is a
homogeneous pair

wgs(G,G′, β)−
∑

<G,G′> is a
heterogeneous pair

wgs(G,G′, β)

s.t.

1 ≤ β(v) ≤ θ, if v is a critical node;
β(v) = 1, otherwise.

(3)

f({<G,G’>},β)
β

Homogeneous
Graph Pairs

Hill Climber

+

-

Heterogeneous
Graph Pairs

Figure 6: A Feedback Loop to Solve the Optimization Problem

, where β is the weight function that requires optimization; θ is the
upper bound of a weight. Empirically, we set θ to be 20.

To achieve the optimization of Equation 3, we use the Hill Climb-
ing algorithm [30] to implement a feedback loop that gradually im-
proves the quality of weight assignment. Figure 6 presents such
a system, which takes two sets of graph pairs and an initial weight
function β as inputs. β is a discrete function which is represented as
a weight vector. At each iteration, Hill Climbing adjusts a single el-
ement in the weight vector and determines whether the change im-
proves the value of objective function f({<G,G’>},β). Any change
that improves f({<G,G’>},β) is accepted, and the process contin-
ues until no change can be found that further improves the value.

4.3 Implementation
To compute the weighted graph similarity, we use a bipartite

graph matching tool [29]. We cannot directly use this graph match-
ing tool because it does not support assigning different weights
on different nodes in a graph. To work around this limitation, we
enhanced the bipartite algorithm to support weights on individual
nodes.

4.4 Graph Database Query
Given an app, we match its WC-ADGs against all existing graphs

in the database. The number of graphs in the database can be fairly
large, so the design of the graph query must be scalable.

Intuitively, we could insert graphs into individual buckets, with
each bucket labeled according to the presence of critical APIs. In-
stead of comparing a new graph against every existing graph in the
database, we limit the comparison to only the graphs within a par-
ticular bucket that possesses graphs containing a corresponding set
of critical APIs. Critical APIs generally have higher weights than
regular APIs, so graphs in other buckets will not be very similar to
the input graph and are safe to ignore. However, API-based bucket
indexing may be overly strict because APIs from the same package
usually share similar functionality. For instance, both getDeviceId()
and getSubscriberId() are located in TelephonyManager pack-
age, and both retrieve identity-related information. Therefore, we
instead index buckets based on the package names of critical APIs.

More specifically, to build a graph database, we must first build
an API package bitvector for all existing graphs within the database.
Such a bitvector has n elements, each of which indicates the pres-
ence of a particular Android API package. For example, a graph
that calls sendTextMessage() and getDeviceId() will set the
corresponding bits for the android.telephony.SmsManager and
android.telephony.TelephonyManager packages. Graphs that
share the same bitvector (i.e., the same API package combination)
are then placed into the same bucket. When querying a new graph
against the database, we encode its API package combination into
a bitvector and compare that bitvector against each database index.
Notice that, to ensure the scalability, we implement the bucket-
based indexing with a hash map where the key is the API package
bitvector and the value is a corresponding graph set.

Empirically, we found this one-level indexing efficient enough
for our problem. If the database grows much larger, we can tran-

an
dro

id
.te

le
phony.T

ele
phonyM

an
ag

er

an
dr
oi
d.
te
le
ph
on
y.
Sm
sM
es
sa
ge

an
dro

id
.o

s.P
ro

ce
ss

ja
va

.la
ng.

Runtim
e

an
dro

id
.te

le
phony.S

m
sM

ess
ag

e

ja
va

x.c
ry

pto
.C

ip
her

an
dro

id
.lo

ca
tio

n.Lo
ca

tio
nM

an
ag

er

ja
va

.n
et.S

ock
et

[0, 0, 0, …, 0, 0, 0, 1]
[0, 0, 0, …, 0, 0, 1, 0]
[0, 0, 0, …, 0, 0, 1, 1]
[0, 0, 0, …, 0, 1, 0, 0]
[0, 0, 0, …, 0, 1, 0, 1]...

...
...

...

[0, 0, 1, …, 0, 0, 0, 0]

[0, 0, 1, …, 0, 0, 0, 0]

getOriginatingAddress

getMessageBody

<init>

setEntity

execute

createFromPdu

Figure 7: Bucket-based Indexing of Graph Database

sition to a hierarchical database structure, such as vantage point
tree [20], under each bucket.

Figure 7 demonstrates the bucket query for the WC-ADG of Zitmo
shown in Figure 3. This graph contains six API calls, three of which
belong to a critical package: android.telephony.SmsManager.
The generated bitvector for the Zitmo graph indicates the presence
of this API package, and an exact match for the bitvector is per-
formed against the bucket index. Notice that the presence of a sin-
gle critical package is different from that of a combination of mul-
tiple critical packages. Thus, the result bucket used by this search
contains graphs that include android.telephony.SmsManager
as the only critical package in use. SmsManager, being a criti-
cal package, helps capture the SMS retrieval behavior and narrow
down the search range. Because HTTP-related API packages are
not considered as critical, such an exact match over index will not
exclude Zitmo variants that use other I/O packages, such as SMS.

4.5 Malware Classification
Anomaly Detection.

We have implemented a detector to conduct anomaly detection.
Given an app, the detector provides a binary result that indicates
whether the app is abnormal or not. To achieve this goal, we build
a graph database for benign apps. The detector then attempts to
match the WC-ADGs of the given app against the ones in database.
If a sufficiently similar one for any of the behavior graphs is not
found, an anomaly is reported by the detector. We have set the
similarity threshold to be 70% per our empirical studies.

Signature Detection.
We next use a classifier to perform signature detection. Our sig-

nature detector is a multi-label classifier designed to identify the
malware families of unknown malware instances.

To enable classification, we first build a malware graph database.
To this end, we conduct static analysis on the malware samples
from the Android Malware Genome Project [1,36] to extract WC-ADGs.
In order to consider only the unique graphs, we remove any graphs
that have a high level of similarity to existing ones. With experi-
mental study, we consider a high similarity to be greater than 80%.
Further, to guarantee the distinctiveness of malware behaviors, we
compare these malware graphs against our benign graph set and
remove the common ones.

Next, given an app, we generate its feature vector for classifi-
cation purpose. In such a vector, each element is associated with
a graph in our database. And, in turn, all the existing graphs are
projected to a feature vector. In other words, there exists a one-to-
one correspondence between the elements in a feature vector and

ADRD

DroidDream

DroidKungFu

0 0 00 0 0.8 0.9 0 0 0

0.9 0 00 0.8 0.7 0.7 0 0 0

0 0.7 00 0.6 0 0.6 0 0 0.9

...

...

...

G1 G2 G4G3 G7 G8 G861 G862...G5 G6

Figure 8: An Example of Feature Vectors

the existing graphs in the database. To construct the feature vec-
tor of the given app, we produce its WC-ADGs and then query the
graph database for all the generated graphs. For each query, a best
matching graph is found. The similarity score is then put into the
feature vector at the position corresponding to this best matching
graph. Specifically, the feature vector of a known malware sample
is attached with its family label so that the classifier can understand
the discrepancy between different malware families.

Figure 8 gives an example of feature vectors. In our malware
graph database of 862 graphs, a feature vector of 862 elements is
constructed for each app. The two behavior graphs of ADRD are
most similar to graph G6 and G7, respectively, from the database.
The corresponding elements of the feature vector are set to the sim-
ilarity scores of theose features. The rest of the elements remain set
to zero.

Once we have produced the feature vectors for the training sam-
ples, we can next use them to train a classifier. We select Naïve
Bayes algorithm for the classification. In fact, we can choose dif-
ferent algorithms for the same purpose. However, since our graph-
based features are fairly strong, even Naïve Bayes can produce sat-
isfying results. Naïve Bayes also has several advantages: it re-
quires only a small amount of training data; parameter adjustment
is straightforward and simple; and runtime performance is favor-
able.

5. EVALUATION

5.1 Dataset & Experiment Setup
We collected 2200 malware samples from the Android Malware

Genome Project [1] and McAfee, Inc, a leading antivirus company.
To build a benign dataset, we received a number of benign samples
from McAfee, and we downloaded a variety of popular apps hav-
ing a high ranking from Google Play. To further sanitize this benign
dataset, we sent these apps to the VirusTotal service for inspection.
The final benign dataset consisted of 13500 samples. We performed
the behavior graph generation, graph database creation, graph sim-
ilarity query and feature vector extraction using this dataset. We
conducted the experiment on a test machine equipped with Intel(R)
Xeon(R) E5-2650 CPU (20M Cache, 2GHz) and 128GB of physi-
cal memory. The operating system is Ubuntu 12.04.3 (64bit).

5.2 Summary of Graph Generation
Figure 9 summarizes the characteristics of the behavior graphs

generated from both benign and malicious apps. Among them, Fig-
ure 9a and Figure 9b illustrate the number of graphs generated from
benign and malicious apps. On average, 7.8 graphs are computed
from each benign app, while 9.8 graphs are generated from each
malware instance. Most apps focus on limited functionalities and
do not produce a large number of behavior graphs. In 92% of be-
nign samples and 98% of malicious ones, no more than 20 graphs
are produced from an individual app.

Figure 9c and Figure 9d present the number of nodes of benign
and malicious behavior graphs. A benign graph, on average, has
15 nodes, while a malicious graph carries 16.4. Again, most of
the activities are not intensive, so the majority of these graphs have
a small number of nodes. Statistics show that 94% of the benign
graphs and 91% of the malicious ones carry less than 50 nodes.

0	

20	

40	

60	

80	

1	
 4001	
 8001	
 12001	
 N
um

be
r	
 o

f	
 G
ra
ph

s

App	
 ID

(a) Graphs per Benign App.

0	

10	

20	

30	

40	

1	
 501	
 1001	
 1501	
 N
um

be
r	
 o

f	
 G
ra
ph

s

App	
 ID

(b) Graphs per Malware.

0	

200	

400	

600	

1	
 30001	
 60001	
 90001	
 N
um

be
r	
 o

f	
 N
od

es

Graph	
 ID

(c) Nodes per Benign Graph.

0	

100	

200	

300	

1	
 4001	
 8001	
 12001	
 16001	
 N
um

be
r	
 o

f	
 N
od

es

Graph	
 ID

(d) Nodes per Malware Graph.

Figure 9: Graph Generation Summary.

These facts serve as the basic requirements for the scalability of our
approach, since the runtime performance of graph matching and
query is largely dependent upon the number of nodes and graphs,
respectively.

5.3 Classification Results

Signature Detection.
We use a multi-label classification to identify the malware fam-

ily of the unrecognized malicious samples. Therefore, we expect to
only include those malware behavior graphs, that are well labeled
with family information, into the database. To this end, we rely on
the malware samples from the Android Malware Genome Project
and use them to construct the malware graph database. Conse-
quently, we built such a database of 862 unique behavior graphs,
with each graph labeled with a specific malware family.

We then selected 1050 malware samples from the Android Mal-
ware Genome Project and used them as a training set. Next, we
would like to collect testing samples from the rest of our collec-
tion. However, a majority of malware samples from McAfee are
not strongly labeled. Over 90% of the samples are coarsely labeled
as “Trojan” or “Downloader”, but in fact belong to a specific mal-
ware family (e.g., DroidDream). Moreover, even VirusTotal can-
not provide reliable malware family information for a given sam-
ple because the antivirus products used by VirusTotal seldom reach
a consensus. This fact tells us two things: 1) It is a non-trivial
task to collect evident samples as the ground truth in the context of
multi-label classification; 2) multi-label malware detection or clas-
sification is, in general, a challenging real-world problem.

Despite the difficulty, we obtained 193 samples, each of which
is detected as the same malware by major AVs. We then used those
samples as testing data. The experiment result shows that our clas-
sifier can correctly label 93% of these malware instances.

Among the successfully labeled malware samples are two types
of Zitmo variants. One uses HTTP for communication, and the
other uses SMS. While the former one is present in our malware
database, the latter one was not. Nevertheless, our signature de-
tector is still able to capture this variant. This indicates that our
similarity metrics effectively tolerate variations in behavior graphs.

We further examined the 7% of the samples that were misla-
beled. It turns out that the mislabeled cases can be roughly put into
two categories. First, DroidDream samples are labeled as Droid-
KungFu. DroidDream and DroidKungFu share multiple malicious
behaviors such as gathering privacy-related information and hidden
network I/O. Consequently, there exists a significant overlap be-
tween their WC-ADGs. Second, Zitmo, Zsone and YZHC instances
are labeled as one another. These three families are SMS Tro-

0

2000

4000

6000

8000

10000

12000

3000 4000 5000 6000 7000 8000 9000 10000 11000

N
u

m
b

er
 o

f
U

n
iq

u
e

G
ra

p
h

s

Number of Benign Apps

Figure 10: Convergence of Unique Graphs in Benign Apps

jans. Though their behaviors are slightly different from each other,
they all exploit sendTextMessage() to deliver the user’s informa-
tion to an attacker-specified phone number. Despite the mislabeled
cases, we still manage to successfully label 93% of the malware
samples with a Naïve Bayes classifier. Applying a more advanced
classification algorithm will further improve the accuracy.

Anomaly Detection.
Since we wish to perform anomaly detection using our benign

graph database, the coverage of this database is essential. In the-
ory, the more benign apps that the database collects, the more be-
nign behaviors it covers. However, in practice, it is extremely diffi-
cult to retrieve benign apps exhaustively. Luckily, different benign
apps may share the same behaviors. Therefore, we can focus on
unique behaviors (rather than unique apps). Moreover, with more
and more apps being fed into the benign database, the database size
grows slower and slower. Figure 10 depicts our discovery. When
the number of apps increases from 3000 to 4000, there is a sharp
increase (2087) of unique graphs. However, when the number of
apps grows from 10000 to 11000, only 220 new, unique graphs are
generated, and the curve begins to flatten.

We built a database of 10420 unique graphs from 11400 benign
apps. Then, we tested 2200 malware samples against the benign
classifier. The false negative rate was 2%, which indicates that
42 malware instances were not detected. However, we noted that
most of the missed samples are exploits or Downloaders. In these
cases, their bytecode programs do not bear significant API-level
behaviors, and therefore generated WC-ADGs do not necessarily
look abnormal when compared to benign ones. At this point, we
have only considered the presence of constant parameters in an API
call. We did not further differentiate API behaviors based upon
constant values. Therefore, we cannot distinguish the behaviors
of Runtime.exec() calls or network I/O APIs with varied string
inputs. Nevertheless, if we create a custom filter for these string
constants, we will then be able to identify these malware samples
and the false negative rate will drop to 0.

Next, we used the remaining 2100 benign apps as test samples to
evaluate the false positive rate of our anomaly detector. The result
shows that 5.15% of clean apps are mistakenly recognized as sus-
picious ones during anomaly detection. This means, if our anomaly
detector is applied to Google Play, among the approximately 1200
new apps per day [4], around 60 apps will be mislabeled as contain-
ing anomalies and be bounced back to the developers. We believe
that this is an acceptable ratio for vetting purpose. Moreover, since
we do not reject the suspicious apps immediately, but rather ask
the developers for justifications instead, we can further eliminate
these false positives during this interactive process. In addition, as
we add more benign samples into the dataset, the false positive rate
will further decrease.

0

5

10

15

20

25

N
u

m
b

er
 o

f
D

et
ec

ti
o

n
s

Detector ID

True Positive False Positive

Figure 11: Detection Ratio for Obfuscated Malware

Further, we would like to evaluate our anomaly detector with
malicious samples from new malware families. To this end, we
retrieve a new piece of malware called Android.HeHe, which was
first found and reported in January 2014 [12]. Android.HeHe ex-
ercises a variety of malicious functionalities such as SMS inter-
ception, information stealing and command-and-control. This new
malware family does not appear in the samples from the Android
Malware Genome Project, which were collected from August 2010
to October 2011, and therefore cannot be labeled via signature de-
tection. DroidSIFT generates 49 WC-ADGs for this sample and,
once these graphs are presented to the anomaly detector, a warn-
ing is raised indicating the abnormal behaviors expressed by these
graphs.

Detection of Transformation Attacks.
We collected 23 DroidDream samples, which are all intention-

ally obfuscated using a transformation technique [28], and 2 be-
nign apps that are deliberately disguised as malware instances by
applying the same technique. We ran these samples through our
anomaly detection engine and then sent the detected abnormal ones
through the signature detector. The result shows that while 23 true
malware instances are flagged as abnormal ones in anomaly de-
tection, the 2 clean ones also correctly pass the detection without
raising any warnings. We then compared our signature detection
results with antivirus products. To obtain detection results of an-
tivirus software, we sent these samples to VirusTotal and selected
10 anti-virus (AV) products (i.e., AegisLab, F-Prot, ESET-NOD32,
DrWeb, AntiVir, CAT-QuickHeal, Sophos, F-Secure, Avast, and
Ad-Aware) that bear the highest detection rates. Notice that we
consider the detection to be successful only if the AV can correctly
flag a piece of malware as DroidDream or its variant. In fact, to our
observation, many AV products can provide partial detection re-
sults based upon the native exploit code included in the app pack-
age or common network I/O behaviors. As a result, they usually
recognize these DroidDream samples as “exploits” or “Download-
ers” while missing many other important malicious behaviors. Fig-
ure 11 presents the detection ratios of “DroidDream” across dif-
ferent detectors. While none of the antivirus products can achieve
a detection rate higher than 61%, DroidSIFT can successfully flag
all the obfuscated samples as DroidDream instances. In addition,
we also notice that AV2 produces a relatively high detection ra-
tio (52.17%), but it also mistakenly flags those two clean samples
as malicious apps. Since the disguising technique simply renames
the benign app package to the one commonly used by DroidDream
(and thus confuses this AV detector), such false positives again ex-
plain that external symptoms are not robust and reliable features for
malware detection.

5.4 Runtime Performance
Figure 12 illustrates the runtime performance of DroidSIFT. Specif-

ically, it demonstrates the cumulative time consumption of graph

0	

200	

400	

600	

800	

1000	

1200	

De
te
c%
on

	
 R
un

%m
e	

(s
)

App	
 ID

Graph	
 Genera/on	
 Anomaly	
 Detec/on	
 Signature	
 Detec/on	

Figure 12: Detection Runtime (s) for 3000
Benign and Malicious Apps

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

Si
m

ila
ri

ty
 S

co
re

Graph Pair ID

Standard Bipartite Weighted Graph Similarity

Figure 13: Similarity between Malicious
Graph Pairs.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

Si
m

ila
ri

ty
 S

co
re

Graph Pair ID

Standard Bipartite Weighted Graph Similarity

Figure 14: Similarity between Benign and
Malicious Graphs.

generation, anomaly detection, and signature detection for 3000
apps.

The average detection runtime of 3000 apps is 175.8 seconds,
while the detection for a majority (86%) of apps is completed within
5 minutes. Further, most of the apps (96%) are processed within 10
minutes. The time cost of graph generation dominates the overall
runtime, taking up at least 50% of total runtime for 83.5% of the
apps. On the other hand, the signature and anomaly detectors are
usually (i.e., in 98% of the cases) able to finish running in 3 minutes
and 1 minute, respectively.

5.5 Effectiveness of Weight Generation and
Weighted Graph Matching

Finally, we evaluated the effectiveness of the generated weights
and weighted graph matching.

Our weight generation automatically assign weights to the criti-
cal API labels, based on a training set of homogeneous graph pairs
and heterogeneous graph pairs. Consequently, killProcess(),
getMemoryInfo() and sendTextMessage()with a constant phone
number, for example, are assigned with fairly high weights.

Then, given a graph pair sharing the same critical API labels,
other than the pairs used for training, we want to compare their
weighted graph similarity with the similarity score calculated by
the standard bipartite algorithm. To this end, we randomly picked
250 homogeneous pairs and 250 heterogeneous pairs.

The results of these comparisons, presented in Figure 13 and Fig-
ure 14, conform to our expectation. Figure 13 shows that for ev-
ery homogeneous pair, the similarity score generated by weighted
graph matching is almost always higher than the corresponding one
computed using standard bipartite algorithm. In addition, the bipar-
tite algorithm sometimes produces an extremely low similarity (i.e.,
near zero) between two malicious graphs of the same family, while
weighted graph matching manages to improve the similarity score
significantly for these cases.

Similarly, Figure 14 reveals that between a heterogeneous pair,
the weighted similarity score is usually lower than the one from
bipartite computation. Again, the bipartite algorithm occasionally
considers a benign graph considerably similar to a malicious one,
provided that they share the same API nodes. Such results can
confuse a training system and the latter one thus fails to tell the
differences between malicious and benign behaviors. On the other
hand, weighted graph matching can effectively distinguish a ma-
licious graph from a benign one, even if they both have the same
critical API nodes.

We further attempted to implement the standard bipartite algo-
rithm and apply it to our detectors. We then compared the conse-
quent detection results with those of the detectors with weighted
graph matching enabled. The results show that weighted graph
matching significantly outperforms the bipartite one. While the sig-
nature detector using the former one correctly labels 93% of mal-
ware samples, the detector with the latter one is able to only label
73% of them. On the other hand, anomaly detection with the bipar-
tite algorithm incurs a false negative rate of 10%, which is 5 times

greater than that introduced by the same detector using weighted
matching.

The result indicates that our algorithm is more sensitive to criti-
cal API-level semantics than the standard bipartite graph matching,
and thus can produce more reasonable similarity scores for the fea-
ture extraction.

6. DISCUSSION
In this section, we discuss the limitation and potential evasions

of our proposed technique.

6.1 Native Code & HTML5-based Apps
We perform static analysis on Dalvik bytecode to generate the

behavior graphs. In general, bytecode-level static program analysis
cannot handle native code or HTML5-based applications. This is
because neither the ARM binary running on the underlying Linux
nor the JavaScript code executed in WebView are visible from a
bytecode perspective. Therefore, an alternative mechanism is nec-
essary to defeat malware hidden from the Dalvik bytecode.

6.2 Evasion
Learning-based detection is subject to poisoning attacks. To con-

fuse a training system, an adversary can poison the benign dataset
by introducing clean apps bearing malicious features. For exam-
ple, she can inject harmless code intensively making sensitive API
calls that are rarely observed in clean apps. Once such samples are
accepted by the benign dataset, these APIs are therefore no longer
the distinctive features to detect related malware instances.

However, our detectors are slightly different from prior works.
First of all, the features are associated with behavior graphs, rather
than individual APIs. Therefore, it is much harder for an attacker
to engineer confusing samples at the behavioral-level. Second, our
anomaly detection serves as a sanitizer for new benign samples.
Any abnormal behavior will be detected, and the developer is re-
quested to provide justifications for the anomalies.

On the other hand, in theory, it is possible for adversaries to
launch mimicry attacks and embed malicious code into seemingly
benign graphs to evade our detection mechanism. This, by itself,
is an interesting research topic and deserves serious consideration.
Nevertheless, we note that it is non-trivial to evade detections based
upon high-level program semantics, and automating such evasion
attacks does not appear to be an easy task. In contrast, existing
low-level transformation attacks can be easily automated to gener-
ate many malware variants to bypass the AV scanners. DroidSIFT
certainly defeats such evasion attempts.

7. RELATED WORK
In this section, we discuss the previous work related to Android

malware classification, Android malware detection, and graph-based
program analysis.

Android Malware Classification.
Many prior efforts have been made to automatically classify An-

droid malware via machine learning. H. Peng et al. [27] proposed
a permission-based classification approach and introduced proba-
bilistic generative models for ranking risks for Android apps. Jux-
tapp [19] performed feature hashing on the opcode sequence to de-
tect malicious code reuse. DroidAPIMiner [5] extracted Android
malware features at the API level and provided light-weight clas-
sifiers to defend against malware installations. DREBIN [6] took
a hybrid approach and considered both Android permissions and
sensitive APIs as malware features. To this end, it performed broad
static analysis to extract feature sets from both manifest files and
bytecode programs. It further embedded all feature sets into a joint
vector space. As a result, the features contributing to malware de-
tection can be analyzed geometrically and used to explain the de-
tection results. Despite the effectiveness and computational effi-
ciency, these machine learning based approaches extract features
from solely external symptoms and do not seek an accurate and
complete interpretation of app behaviors. In contrast, we produce
weighted contextual API dependency graphs as more robust fea-
tures to reflect essential behaviors.

Android Malware Detection & Program Analysis.
Previous studies were focused on large-scale and light-weight

detection of malicious or dangerous Android apps. DroidRanger [37]
proposed permission-based footprinting and heuristics-based schemes
to detect new samples of known malware families and identify cer-
tain behaviors of unknown malicious families, respectively. Risk-
Ranker [18] developed an automated system to uncover dangerous
app behaviors, such as root exploits, and assess potential security
risks. Kirin [15] proposed a security service to certify apps based
upon predefined security specifications. WHYPER [26] leveraged
Natural Language Processing and automated risk assessment of
mobile apps by revealing discrepancies between application de-
scriptions and their true functionalities. Efforts were also made
to pursue in-depth analysis of malware and application behaviors.
TaintDroid [13], DroidScope [32] and VetDroid [35] conducted dy-
namic taint analysis to detect suspicious behaviors during runtime.
Ded [14], CHEX [23], AppSealer [33], Capper [34], PEG [10], and
FlowDroid [7] exercised static dataflow analysis to identify danger-
ous code in Android apps. The effectiveness of these approaches
depends upon the quality of human crafted detection patterns spe-
cific to certain dangerous or vulnerable behaviors.

Graph-based Code Analysis.
Graph-based code analysis has been well-studied for traditional

client-server programs. Hu et al. [20] proposed two-level malware
indexing to address the scalability of querying malware function-
call graphs in databases. Kolbitsch et al. [21] performed dynamic
analysis to extract program slices responsible for malicious infor-
mation flow between system calls, and then conducted model check-
ing by matching the generated slices against unknown programs.
Fredrikson et al. [16] presented an automated technique for extract-
ing optimally discriminative specifications which uniquely iden-
tify a class of program, such as a malware family. Yamaguchi et
al. [31] introduced a novel representation of source code, called
a “code property graph”, that merges concepts of classic program
analysis (abstract syntax trees, control flow graphs, and program
dependence graphs) into a joint data structure. Such a graph rep-
resentation enables elegant modeling of common vulnerabilities.
HI-CFG [9] inferred a hybrid information and control-flow graph
from a binary instruction trace, and based on the graph, enabled
attack polymorphism. Compared to these approaches, the novelty
of our work lies in the fact that our dependency graph generation

needs to cope with Android programming paradigms. Gascon et
al. [17] also extended graph-based malware analysis to the Android
environment. However, their malware detection was based upon
the structural similarity of callgraphs, while DroidSIFT relies upon
more robust, high-level (API) program semantics.

8. CONCLUSION
In this paper, we propose a novel, semantic-based approach that

classifies Android malware via dependency graphs. To battle trans-
formation attacks, we extract a weighted contextual API depen-
dency graph as program semantics to construct feature sets. To
fight against malware variants and zero-day malware, we introduce
graph similarity metrics to uncover homogeneous application be-
haviors while tolerating minor implementation differences. We im-
plement a prototype system, DroidSIFT, in 23 thousand lines of
Java code. We evaluate our system using 2200 malware samples
and 13500 benign samples. Experiments show that our signature
detection can correctly label 93% malware instances; our anomaly
detector is capable of detecting zero-day malware with relatively
low false negative rate (2%) and false positive rate (5.15%).

9. ACKNOWLEDGMENT
We would like to thank anonymous reviewers for their com-

ments. This research was supported in part by NSF Grant #1018217,
NSF Grant #1054605 and McAfee Inc. Any opinions, findings, and
conclusions made in this material are those of the authors and do
not necessarily reflect the views of the funding agencies.

10. REFERENCES
[1] Android Malware Genome Project.

http://www.malgenomeproject.org/.
[2] Soot: a Java Optimization Framework.

http://www.sable.mcgill.ca/soot/.
[3] McAfee Labs Threats report Fourth Quarter 2013.

http://www.mcafee.com/us/resources/
reports/rp-quarterly-threat-q4-2013.pdf,
2013.

[4] Number of Android Applications.
http://www.appbrain.com/stats/number-of-
android-apps, 2014.

[5] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining
API-Level Features for Robust Malware Detection in
Android. In Proceedings of the 9th International Conference
on Security and Privacy in Communication Networks
(SecureComm’13), September 2013.

[6] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and
K. Rieck. Drebin: Efficient and Explainable Detection of
Android Malware in Your Pocket. In Proceedings of the 21th
Annual Network and Distributed System Security Symposium
(NDSS’14), February 2014.

[7] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’14), June 2014.

[8] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout:
Analyzing the Android Permission Specification. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS’12), October 2012.

[9] D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and
D. Song. HI-CFG: Construction by Binary Analysis, and
Application to Attack Polymorphism. In Proceedings of 18th

http://www.malgenomeproject.org/
http://www.sable.mcgill.ca/soot/
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2013.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2013.pdf
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps

European Symposium on Research in Computer Security
(ESORICS’13), September 2013.

[10] K. Z. Chen, N. Johnson, V. D’Silva, S. Dai, K. MacNamara,
T. Magrino, E. X. Wu, M. Rinard, and D. Song. Contextual
Policy Enforcement in Android Applications with
Permission Event Graphs. In Proceedings of the 20th Annual
Network and Distributed System Security Symposium
(NDSS’13), February 2013.

[11] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. Semantics-Aware Malware Detection. In
Proceedings of the 2005 IEEE Symposium on Security and
Privacy (Oakland’05), May 2005.

[12] H. Dharmdasani. Android.HeHe: Malware Now Disconnects
Phone Calls. http://www.fireeye.com/blog/
technical/2014/01/android-hehe-malware-
now-disconnects-phone-calls.html, 2014.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’10), October 2010.

[14] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A
Study of Android Application Security. In Proceedings of
the 20th Usenix Security Symposium, August 2011.

[15] W. Enck, M. Ongtang, and P. McDaniel. On Lightweight
Mobile Phone Application Certification. In Proceedings of
the 16th ACM Conference on Computer and
Communications Security (CCS’09), November 2009.

[16] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and
X. Yan. Synthesizing Near-Optimal Malware Specifications
from Suspicious Behaviors. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy (Oakland’10), May
2010.

[17] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural
Detection of Android Malware Using Embedded Call
Graphs. In Proceedings of the 2013 ACM Workshop on
Artificial Intelligence and Security (AISec’13), November
2013.

[18] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
RiskRanker: Scalable and Accurate Zero-day Android
Malware Detection. In Proceedings of the 10th International
Conference on Mobile Systems, Applications and Services
(MobiSys’12), June 2012.

[19] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song.
Juxtapp: A Scalable System for Detecting Code Reuse
Among Android Applications. In Proceedings of the 9th
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA’12), July
2012.

[20] X. Hu, T.-c. Chiueh, and K. G. Shin. Large-scale Malware
Indexing Using Function-call Graphs. In Proceedings of the
16th ACM Conference on Computer and Communications
Security (CCS’09), November 2009.

[21] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang. Effective and Efficient Malware
Detection at the End Host. In Proceedings of the 18th
Conference on USENIX Security Symposium, August 2009.

[22] H. Lockheimer. Android and Security.
http://googlemobile.blogspot.com/2012/
02/android-and-security.html, 2012.

[23] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: Statically
Vetting Android Apps for Component Hijacking

Vulnerabilities. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS’12),
October 2012.

[24] J. Oberheide and C. Miller. Dissecting the Android Bouncer.
SummerCon, 2012.

[25] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. L. Traon. Effective Inter-Component
Communication Mapping in Android with Epicc: An
Essential Step Towards Holistic Security Analysis. In
Proceedings of the 22nd USENIX Security Symposium,
August 2013.

[26] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie.
WHYPER: Towards Automating Risk Assessment of Mobile
Applications. In Proceedings of the 22nd USENIX
Conference on Security, August 2013.

[27] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju,
C. Nita-Rotaru, and I. Molloy. Using Probabilistic
Generative Models for Ranking Risks of Android Apps. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS’12), October 2012.

[28] V. Rastogi, Y. Chen, and X. Jiang. DroidChameleon:
Evaluating Android Anti-malware against Transformation
Attacks. In Proceedings of the 8th ACM Symposium on
InformAtion, Computer and Communications Security
(ASIACCS’13), May 2013.

[29] K. Riesen, S. Emmenegger, and H. Bunke. A Novel Software
Toolkit for Graph Edit Distance Computation. In
Proceedings of the 9th International Workshop on Graph
Based Representations in Pattern Recognition, May 2013.

[30] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. 2003.

[31] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling
and Discovering Vulnerabilities with Code Property Graphs.
In Proceedings of the 35th IEEE Symposium on Security and
Privacy (Oakland’14), May 2014.

[32] L.-K. Yan and H. Yin. DroidScope: Seamlessly
Reconstructing OS and Dalvik Semantic Views for Dynamic
Android Malware Analysis. In Proceedings of the 21st
USENIX Security Symposium, August 2012.

[33] M. Zhang and H. Yin. AppSealer: Automatic Generation of
Vulnerability-Specific Patches for Preventing Component
Hijacking Attacks in Android Applications. In Proceedings
of the 21th Annual Network and Distributed System Security
Symposium (NDSS’14), San Diego, CA, February 2014.

[34] M. Zhang and H. Yin. Efficient, Context-aware Privacy
Leakage Confinement for Android Applications Without
Firmware Modding. In Proceedings of the 9th ACM
Symposium on Information, Computer and Communications
Security (ASIACCS’14), 2014.

[35] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S.
Wang, and B. Zang. Vetting Undesirable Behaviors in
Android Apps with Permission Use Analysis. In Proceedings
of the 20th ACM Conference on Computer and
Communications Security (CCS’13), November 2013.

[36] Y. Zhou and X. Jiang. Dissecting Android Malware:
Characterization and Evolution. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy (Oakland’12),
May 2012.

[37] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get Off
of My Market: Detecting Malicious Apps in Official and
Alternative Android Markets. In Proceedings of 19th Annual
Network and Distributed System Security Symposium
(NDSS’12), February 2012.

http://www.fireeye.com/blog/technical/2014/01/android-hehe-malware-now-disconnects -phone-calls.html
http://www.fireeye.com/blog/technical/2014/01/android-hehe-malware-now-disconnects -phone-calls.html
http://www.fireeye.com/blog/technical/2014/01/android-hehe-malware-now-disconnects -phone-calls.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html

	Introduction
	Overview
	Problem Statement
	Architecture Overview

	Weighted Contextual API Dependency Graph
	Key Behavioral Aspects
	Formal Definition
	A Real Example
	Graph Generation

	Android Malware Classification
	Graph Matching Score
	Weight Assignment
	Implementation
	Graph Database Query
	Malware Classification

	Evaluation
	Dataset & Experiment Setup
	Summary of Graph Generation
	Classification Results
	Runtime Performance
	Effectiveness of Weight Generation and Weighted Graph Matching

	Discussion
	Native Code & HTML5-based Apps
	Evasion

	Related Work
	Conclusion
	Acknowledgment
	References

