
SIGMADIFF: Semantics-Aware Deep Graph
Matching for Pseudocode Diffing

Lian Gao∗, Yu Qu∗, Sheng Yu∗†, Yue Duan‡ and Heng Yin∗†
∗University of California, Riverside

†Deepbits Technology Inc.
‡Singapore Management University

∗{lgao027, yuq, syu061}@ucr.edu, ∗heng@cs.ucr.edu, ‡yueduan@smu.edu.sg

Abstract—Pseudocode diffing precisely locates similar parts
and captures differences between the decompiled pseudocode of
two given binaries. It is particularly useful in many security
scenarios such as code plagiarism detection, lineage analysis,
patch, vulnerability analysis, etc. However, existing pseudocode
diffing and binary diffing tools suffer from low accuracy and poor
scalability, since they either rely on manually-designed heuristics
(e.g., Diaphora) or heavy computations like matrix factorization
(e.g., DeepBinDiff). To address the limitations, in this paper, we
propose a semantics-aware, deep neural network-based model
called SIGMADIFF. SIGMADIFF first constructs IR (Intermedi-
ate Representation) level interprocedural program dependency
graphs (IPDGs). Then it uses a lightweight symbolic analysis
to extract initial node features and locate training nodes for
the neural network model. SIGMADIFF then leverages the state-
of-the-art graph matching model called Deep Graph Matching
Consensus (DGMC) to match the nodes in IPDGs. SIGMADIFF
also introduces several important updates to the design of DGMC
such as the pre-training and fine-tuning schema. Experimental
results show that SIGMADIFF significantly outperforms the state-
of-the-art heuristic-based and deep learning-based techniques in
terms of both accuracy and efficiency. It is able to precisely
pinpoint eight vulnerabilities in a widely-used video conferencing
application.

I. INTRODUCTION

Pseudocode diffing, as a special kind of binary code diffing
[9], [22], [38], [84], is a technique that precisely locates similar
pseudocode tokens and captures the differences between the
pseudocode (a.k.a., decompiled code) of two given binaries.
It can play an essential role in many security scenarios such
as code plagiarism detection [60], [68], lineage analysis [62],
vulnerability and patch analysis [77].

In contrast to binary diffing that works at either function
level or basic block level, pseudocode diffing provides a
more fine-grained, semantic-rich, and human-comprehensible
pseudocode token level similarity analysis. Hence, mainstream
disassemblers such as IDA Pro [14] and Ghidra [23] can
present binaries in pseudocode.

Compared to binary diffing, pseudocode diffing has several
advantages. First, pseudocode, which is closer to higher-level

languages like C than assembly, carries more semantic-level
information. Therefore, it is more concise and human-readable.
Second, pseudocode diffing compares two pseudocode pro-
grams at the token level, and thus is more fine-grained than
binary diffing, which is at the basic block or function level.
Third, it can achieve better accuracy than binary diffing in
general since the semantic information recovered during de-
compilation (e.g., def-use relation and type information) can
be very helpful during analysis. Fourth, pseudocode naturally
supports cross-architecture diffing, as binaries on different
architectures are all translated into one C-like language via
decompilation.

However, pseudocode diffing brings unique challenges.
Since much information is unavailable in stripped binaries
(e.g., symbol information), decompilers have to infer the high-
level features (e.g., variable names, expressions, high-level
control constructs) for pseudocode and introduce a consid-
erable amount of noise. That is why Diaphora [9] (the only
pseudocode diffing tool to our knowledge) does not work well
since it relies on a set of heuristics and performs simple string-
based matching at the token level.

While the problem of pseudocode diffing evidently needs
more study, plenty of research has been done on binary diffing.
Traditional approaches like BinDiff [22] rely on heuristics
(e.g., function name) to find similar functions and perform
basic block matching along the control flow graph. These
syntax-based heuristics are not robust and can be easily
thwarted by compiler optimizations. Dynamic analysis-based
approaches [39], [61], [75] are good at capturing the semantics
of binaries and have good resilience against code obfusca-
tion, but they struggle to cover much code, especially for
large binaries. Learning-based approaches [37], [44], [76],
[84] leverage machine learning techniques to encode graph
information into numerical vectors, a.k.a, graph embeddings,
and perform binary diffing. These techniques can distill unique
semantic-level features of a program while avoiding heavy
graph matching. Despite the reasonable accuracy and scalabil-
ity, the majority of them only handle diffing at a coarse-grained
function level. DeepBinDiff [38], the only basic block level
binary diffing technique in this category, leverages the TADW
algorithm [78] to generate context- and semantic-aware basic
block embeddings and performs diffing. However, as shown
in our evaluation, it does not scale well on large binaries
and cannot be easily accelerated by GPUs due to the iterative
algorithm in TADW.

Besides binary diffing, there also exists a line of research

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23208
www.ndss-symposium.org

for source code matching. GumTree [41] parses source code
to abstract syntax tree (AST), and finds a sequence of “edit ac-
tions” in AST levels. ClDiff [52] improves previous approaches
by grouping fine-grained code differences and summarizing
high-level code changes. Nevertheless, the AST of pseudocode
can change drastically due to code transformations introduced
by compilers and/or decompilers. Consequently, AST-based
techniques are not suitable for pseudocode diffing. Source code
clone/similarity detection approaches [65], [80], [83] are either
too coarse-grained or only consider syntax-level features and
do not work well on pseudocode diffing, according to our
evaluation.

In this paper, we present a novel pseudocode diffing
technique, called SIGMADIFF1. To mitigate the challenges
caused by syntax level changes and achieve better accuracy,
we design SIGMADIFF based on two important observations:
1) a large number of syntax level changes in decompilation are
introduced during the transformation from intermediate repre-
sentation (IR) to pseudocode; 2) the dependency information
(e.g., control and data dependencies) among IRs can be of
great help for matching and diffing.

To this end, we first perform diffing at IR level and map
the IR-level diffing results up to the pseudocode level. We
construct interprocedural program dependency graphs (IPDGs)
[45] and extract a symbolic expression for each IR to capture
the semantic meanings of a binary. After that, we model the
program-wide IR diffing problem as a graph matching problem
on two IPDGs from the two given binaries by leveraging the
deep graph matching consensus (DGMC) model [46] to fully
exploit the neighboring contextual information.

We have implemented a prototype of SIGMADIFF, and con-
ducted extensive experiments to evaluate its efficacy. Experi-
mental results show that SIGMADIFF outperforms Diaphora
in cross-version, cross-optimization-level, cross-compiler, and
cross-architecture diffing tasks. For instance, it outperforms
Diaphora by 308%, 85%, 38% in terms of F1-scores in
O0 vs. O3, O1 vs. O3, and O2 vs. O3, respectively. We
also compare with DeepBinDiff by mapping its basic block
level results to pseudocode tokens and show that SIGMADIFF
outperforms DeepBinDiff in cross-version, cross-optimization-
level, and cross-compiler tasks. Besides, we conduct case
studies on a patch detection task using real-world CVEs and
a vulnerability detection task using Zoom, a popular video
conferencing application. Experiments show that SIGMADIFF
is able to pinpoint more patches and vulnerabilities than the
baselines.

Contributions. This paper makes the following contribu-
tions:

• We propose a novel graph neural network-based approach
to directly generate token matching results for the pseu-
docode diffing problem.

• We propose a flow-sensitive, call-site sensitive [69], [70]
analysis called lightweight symbolic analysis to extract
semantic information of a program’s high level IRs.

• We improve the design and training of the graph neural
network model to effectively solve pseudocode diffing as
a graph matching problem.

1SIGMADIFF stands for Semantics-Aware Deep Graph Matching for Pseu-
docode Diffing.

• We implement a prototype called SIGMADIFF. Our eval-
uation demonstrates that SIGMADIFF outperforms the
state-of-the-art diffing tools at the pseudocode token level.
SIGMADIFF can still get accurate results when handling
code changes caused by different optimization techniques.

We have made the source code of SIGMADIFF publicly
available 2.

II. MOTIVATION

In this section, we first discuss some unique challenges
in pseudocode diffing via a motivating example, then go over
the existing diffing techniques and their limitations, and finally
explain how we tackle these challenges in SIGMADIFF.

A. A Motivating Example

We use a real-world out-of-bounds read vulnerability CVE-
2020-13790 [2] from the start_input_ppm function in
libjpeg-turbo [15] as a motivating example. Figure 1 presents
the source code differences between v2.0.4 and v2.1.2, as well
as pseudocode diffing results by various diffing tools. The
v2.0.4 binary is obtained from Zoom [21], a popular video
conferencing COTS (Commercial off-the-shelf) program, and
the new version is compiled with GCC v7.5.0 (-O0).

The goal is to precisely identify the token-level changes in
pseudocode that are semantically equivalent to the source code-
level changes while ignoring the syntactical changes produced
in the processes of compilation and decompilation. Here, we
list several common yet challenging pseudocode-level changes
that are caused by compilers and decompilers:

(1) Variable renaming. A variable may be named differ-
ently from one version to another. For example, variable
maxval is named uVar18 in the old version in Figure 1
(b) but uVar13 in the new version in Figure 1 (c), shown
as the blue boxes.

(2) Expression merging and splitting. A decompiler may
merge multiple expressions into one, or vice versa. For
instance, “lVar16 + lVar17” at Line 4 and “lVar16
= *(long *)(param_2 + 0x48) at Line 7 in Fig-
ure 1 (b) are merged into “*(long *)(param_2 +
0x48) + lVar14)” at Line 6 in Figure 1 (c).

(3) Control structure changes. A decompiler may represent
a loop structure as a for loop, a while loop, or a
do-while loop. An if-then-else structure may also
change, depending on which branch is for “then” or “else”.
goto statements are also highly prevalent in pseudocode.
As shown in the purple boxes in Figure 1 (b) and (c), a
while loop with an if statement inside the loop body
in the old version is changed to a do-while loop in the
new version.

B. Existing Techniques

Unfortunately, existing diffing techniques fall short of
tackling these pseudocode diffing problems.

String Diffing. Diaphora [9] takes this approach by simply
treating two code snippets as two strings and leveraging

2https://github.com/yijiufly/SigmaDiff

2

1. source->rescale = (JSAMPLE *)

(*cinfo->mem->alloc_small)

((j_common_ptr)cinfo, JPOOL_IMAGE,

- (size_t)(((long)maxval + 1L) *

+ (size_t)(((long)MAX(maxval, 255) + 1L) *

 sizeof(JSAMPLE)));

……
……

2. for (val = 0; val <= (long)maxval; val++) {

3. source->rescale[val] = (JSAMPLE)((val *

MAXJSAMPLE + half_maxval) / maxval);

4. }

1. uVar18 = (ulong)uVar12;

2. lVar16 = (**(code

**)param_1[1])(param_1,1,uVar18 + 1);

……
……

3. while(true) {

4. *(char *)(lVar16 + lVar17) =

(char)((long)uVar14 / (long)uVar18);

5. lVar17 = lVar17 + 1;

6. if ((long)uVar18 < lVar17) break;

7. lVar16 = *(long *)(param_2 + 0x48);

8. uVar14 = uVar14 + 0xff;

9. }

1. uVar13 = 0xff;

2. if (0xfe < uVar12) {

3. uVar13 = (ulong)uVar12;}

4. __s = (void *)(**(code

**)param_1[1])(param_1,1,uVar13 + 1);

……
5. do {

6. *(char *)(*(long *)(param_2 + 0x48) +

lVar14) = (char)((long)uVar13 /

(long)(ulong)uVar12);

7. lVar14 = lVar14 + 1;

8. uVar13 = uVar13 + 0xff;

9. } while (lVar14 != (ulong)uVar12 + 1);

1. uVar13 = 0xff;

2. if (0xfe < uVar12) {

3. uVar13 = (ulong)uVar12;}

4. __s = (void *)(**(code

**)param_1[1])(param_1,1,uVar13 + 1);

……
5. do {

6. *(char *)(*(long *)(param_2 + 0x48) +

lVar14) = (char)((long)uVar13 /

(long)(ulong)uVar12);

7. lVar14 = lVar14 + 1;

8. uVar13 = uVar13 + 0xff;

9. } while (lVar14 != (ulong)uVar12 + 1);

1. uVar13 = 0xff;

2. if (0xfe < uVar12) {

3. uVar13 = (ulong)uVar12;}

4. __s = (void *)(**(code

**)param_1[1])(param_1,1,uVar13 + 1);

……
5. do {

6. *(char *)(*(long *)(param_2 + 0x48) +

lVar14) = (char)((long)uVar13 /

(long)(ulong)uVar12);

7. lVar14 = lVar14 + 1;

8. uVar13 = uVar13 + 0xff;

9. } while (lVar14 != (ulong)uVar12 + 1);

inserted

deleted

moved

updated

(b) Old Version
(c) SigmaDiff

(e) GumTree(d) Diaphora 1. uVar13 = 0xff;

2. if (0xfe < uVar12) {

3. uVar13 = (ulong)uVar12;}

4. __s = (void *)(**(code

**)param_1[1])(param_1,1,uVar13 + 1);

……
5. do {

6. *(char *)(*(long *)(param_2 + 0x48) +

lVar14) = (char)((long)uVar13 /

(long)(ulong)uVar12);

7. lVar14 = lVar14 + 1;

8. uVar13 = uVar13 + 0xff;

9. } while (lVar14 != (ulong)uVar12 + 1);

(f) DeepBinDiff
(a) Source Code

Different Variable Names

Different Expressions

Different Control Constructs

Fig. 1: Motivating example

standard string alignment algorithms to diff the two code
snippets. As shown in Figure 1 (d), in addition to identifying
the true insertions (Lines 1 and 2), Diaphora also incorrectly
recognizes many renamed variables as updates, and expression
changes and control structure changes as insertions.

Source Code Diffing. Techniques such as GumTree [41]
and ClDiff [52] build abstract syntax trees (ASTs) from
the two source code snippets and then match two ASTs.
Unlike string diffing, AST diffing ensures that the diffing
results always follow the source code grammar. Here, we
present GumTree [41] (with the default GreedySubtree and
GreedyBottomUp matcher [13]), a widely-used source code
diffing tool, in Figure 1 (e). It incorrectly identifies almost all
these statements as insertions, and some sub-expressions as
moves. While this approach works generally well for source
code diffing, it works poorly for pseudocode diffing, because of
the substantial amount of syntax-level changes for pseudocode
between two versions. In our evaluation in Appendix §E, we
also show that the state-of-the-art source code clone detector,
NIL [65], is 54% worse than SIGMADIFF on average and is
not suitable for pseudocode diffing.

Binary Diffing. Instead of diffing at the pseudocode level
directly, we can first perform diffing at the binary level (or
more precisely, at the disassembly level), and then map the
matching results to the pseudocode level for better readability.
We show the diffing results in Figure 1 (f), from a state-of-
the-art technique DeepBinDiff’s [38]. It mismatches the entire
code from Line 1 to 9 with some other code blocks (not
displayed in this figure), due to the drastic block-level changes
brought by different compilers and compiler optimizations.

C. Our Technique

In the following paragraphs, we discuss how SIGMADIFF
handles the aforementioned challenges.

First, we propose to perform diffing at the IR level and
then map the results back to the pseudocode level, since we

observe that small differences in IRs might lead to significant
syntax-level changes in pseudocode. We further perform a
lightweight symbolic analysis to associate each IR variable
with a symbolic expression that reveals how the value of that
IR variable is calculated, so that we can match IR variables by
their symbolic expressions instead of their unreliable names.
For instance, Line 4 in Figure 1 (b) and Line 6 in Figure 1
(c) are different in pseudocode but similar in IRs. With the
help of the generated symbolic expressions (e.g., lVar16 in
the brown box becomes *(ARG2+0x48)), SIGMADIFF can
easily find the matching.

Second, instead of using the unstable control flow, we
rely on the more stable and expressive data and control
dependencies to capture contextual information for each IR.
Essentially, IRs with similar contexts are likely to be matched.
As shown in Figure 1 (b), Line 3-8 are all control dependent on
Line 6, and in (c), Line 6-9 are all control dependent on Line
9. Line 6 in (b) and Line 9 in (c) can be matched successfully
by looking at the dependencies rather than the unstable and
quite different CFGs.

Third, we leverage recent advances in deep graph matching
to efficiently solve pseudocode diffing as a graph matching
problem. IPDGs can be really huge for real-world programs,
and the graph matching problem is NP-Hard [46]. To overcome
this challenge, SIGMADIFF leverages the computing power of
modern GPUs, and uses the state-of-the-art DGMC model [46].
We design a new loss function that incorporates data and
opcode type constraints and propose a “pre-training and fine-
tuning” schema to accelerate graph matching.

III. OVERVIEW AND BACKGROUND

A. Approach Overview

The system overview of SIGMADIFF is shown in Figure 2.
It consists of three stages: 1) pre-processing, which performs
static analyses to represent the binaries as graphs with semantic
features; 2) pseudocode diffing, which leverages the DGMC

3

Binary 1

Binary 2

u Inter-procedural Program

Dependency Graph (IPDG)

v Lightweight

Symbolic

Analysis

y Function Feature Extraction

z Call Graph

x Doc2Vec

IPDG with

Node

Features (w)

{ Training

Node

Selection

void func1(int param_1)

{

 abort();

}

void func1(int param_1)

{

 abort();

}

 if (param_1 == 0)

Input Pre-processing Pseudocode Diffing Post-processing

training

nodes

| Deep Graph Matching

Consensus

Fig. 2: Overview of SIGMADIFF

model [46] to perform the IR level matching; and 3) post-
processing to lift the IR-level matching results to the pseu-
docode level.

In the pre-processing stage, we construct an IPDG (¶
in Figure 2) [45], [51] by analyzing control and data depen-
dencies of the given binary at IR level. We also propose an
inter-procedural lightweight symbolic analysis (·) to extract
a symbolic expression for each IR variable. The result is used
to: 1) generate node features (¸) (initial embeddings) of the
graph model by leveraging the doc2vec (¹) [57] technique; and
2) generate function features (º) for function-level matching,
whose purpose is to help locate training nodes for DGMC (see
below). We also construct a call graph (») of the binary in the
pre-processing stage for function matching. In the pseudocode
diffing stage, we leverage the DGMC model to obtain the IR-
level matching results. In order to locate the training nodes for
DGMC’s semi-supervised learning, we perform the function-
level matching first, so as to narrow down the search space and
find out nodes that are unique and representative (¼) within
the matched function pairs. Then we run the DGMC model
(½) to obtain the IR-level matching results. We modify the
model to make it more suitable for our task. The last stage is
post-processing, in which we transform the IR-level matching
results to pseudocode token diffing results.

B. Background

Symbolic Analysis. The lightweight symbolic analysis we pro-
pose is a static analysis that approximates program semantics.
It is different from value-set analysis [25] (VSA), an abstract
interpretation approach that tracks (an over-approximation of)
the set of numeric values each data object holds at each
program point. VSA defines abstract locations (a-locs) to
represent the data object (whether local, global, or in the heap).
The set of numeric values is recorded in strided intervals. Our
analysis, instead, uses symbolic expressions to record the value
set. Symbolic expressions are more suitable for our task since
it records how a value is calculated and thus capture more
semantic information than numeric values.

Deep Graph Matching Consensus. DGMC [46] is an end-to-
end deep graph matching architecture which consists of two
stages. In the first stage, it leverages a Graph Neural Network
to generate node embeddings and then obtains the initial
matchings according to the embedding similarities. This stage
is called “local feature matching”, which is a common practice
and is similar to other graph matching models (e.g., [24], [81]).
However, the embeddings only considered local features, and

the model could confuse the correct match with the locally
similar ones. Thus, in the second stage, DGMC iteratively
eliminates the incorrect matches by ensuring the neighbors of
the matched nodes are correctly matched to each other as well,
namely achieving neighborhood consensus.

IV. PRE-PROCESSING

In the pre-processing stage, we leverage static program
analysis to extract the semantics of the two given binaries and
construct inputs for the next stage. Specifically, we model the
binaries as graphs and extract features of the nodes in the
graphs as well as the functions in the binaries. The graphs and
features will be fed into the pseudocode diffing stage.

A. Graph Construction

We generate an IR-level IPDG [45], [51] to represent the
whole binary in order to capture the contextual information
for each IR. Specifically, a node in the graph represents an IR
statement, and an edge represents a control or data dependency
relationship. In the following, we will frequently refer to the
IR node as IR for brevity.

Figure 4 shows a pseudocode snippet and its corresponding
IPDG. Each white node in Figure 4 represents a Ghidra
IR, formatted as “line# output opcode input0 [,
input1 ...]”. It is worth noting that while our current
implementation builds atop Ghidra IR, our design is generic
enough to support any high-level IRs. For instance, we have
confirmed that the steps in our workflow can also be performed
on LLVM IRs [16] lifted by RetDec [19].

We follow the standard way [51] to handle the callsites
in IPDG. Specifically, we add entry, argument, and return
nodes for both two functions, and CALLSITE_RET and
CALLSITE_ARG_n (n = 1, 2, . . .) nodes at callsites (node
3 in the example). They are marked as gray nodes in Figure 4.
These nodes do not represent any IR, but summarize the data
and control dependencies between functions.

Note that to reduce the complexity of graph matching
(§V-A), we choose to treat control and data-dependency
equally and treat these dependencies as directed edges.

B. Semantic Features Extraction

We conduct a lightweight inter-procedural symbolic analy-
sis (similar to [1], [4]) to extract node features, which are then
used as the initial node embeddings and to construct function
features.

4

1) Lightweight Symbolic Analysis: The outputs of
lightweight symbolic analysis are the symbolic expressions
that each IR variable holds at each program point. In this
section, we will first explain the IR syntax. Then we formalize
the lightweight symbolic analysis by showing the definitions
of symbolic expression and the interpretation function that
interpret IR variables into symbolic expressions. Next, we
describe how we conduct inter-procedural analysis. Lastly, an
example is presented.

IR Syntax. An abbreviated definition of the Ghidra high-
level IR syntax is shown in Table I. Most statements are
self-explanatory. In particular, STORE stores expr2 to the
destination address pointed by expr1. CBRANCH takes the first
expression as a condition and jumps to the location pointed by
expr2. CALL calls the function at expr1 (with zero or more
parameters and zero or one return value). LOAD is to load from
the memory specified by expr. MULTIEQUAL is the phi-node
in SSA form [31]. It merges expressions expr1, expr2, ..., from
different paths.

TABLE I: An abbreviated Ghidra IR Syntax
program ::= stmt∗
stmt ::= STORE expr1, expr2 | BRANCH expr | RETURN expr

| var := expr | CBRANCH expr1, expr2 |
expr CALL expr1, ...

expr ::= var | 3Uexpr | 3B expr1, expr2
| 3cmp expr1, expr2 | LOAD expr |
MULTIEQUAL expr1, expr2, ...

3U ::= INT_NEGATE |BOOL_NEGATE| ...
3B ::= INT_ADD |INT_SUB|INT_MULT |INT_DIV | ...
3cmp ::= INT_NOTEQUAL| INT_EQUAL| ...

Symbolic Expression. A symbolic expression approximates
the value of a high-level IR variable. We define the syntax of
symbolic expressions se in Figure 3 and the operations on se
in Table II.

se ::= seformula | sesource
seformula ::= const | source | [seformula] |3useformula |

seformula13bseformula2

sesource ::= ∅ | {source} | {source1, source2, ...}
source ::= Str |Symbol |ARGn
3u ::= ¬ | ∼
3b ::= + | − | ∗ | ÷ | and | or
const ::= ...,−1, 0, 1, 2, ...

Fig. 3: Definitions of Symbolic Expression

Essentially, the symbolic expression is either a simple
formula seformula or a set of sources sesource. Note that
seformula is in a nested structure, where existing expressions
can form a new one starting from basic expressions such
as ARGn (n ∈ N+) and const (const ∈ Z). In particu-
lar, [seformula] represents the memory location pointed by
seformula. sesource is defined to represent the merge result
of symbolic expressions. Merging happens when a variable
could be equal to multiple symbolic expressions (depending on
which control-flow is executed). Ideally, we would like to keep
all expressions when merging, but it is impossible since the
size of expressions will grow exponentially. Thus, we pick the
most representative origins of the expressions (i.e., source) to

be semantic-aware while still being computationally feasible.
This merge operation is described in Table II. Compared to
only keeping one expression when merging [1] (an existing
open-source implementation), our approach is able to cover all
the control-flows so that the results are not biased towards one
branch or another. We use this operation when two branches
are merged or a function has multiple returns. It is also helpful
for handling loop variants: we will traverse the loop iteratively
until a fixed point is reached (i.e., no further changes are made
to the expressions). Note that sources(se) and se can be
partially ordered such that se ⊆ sources(se). The binop
and merge operations in Table II and the interpretation rules
in Table III are monotonic. Thus, a fixed point is guaranteed
to be reached [73].

TABLE II: Descriptions of Symbolic Operations
Operations Descriptions
binop(se1, se2,3b) It equals to se13bse2 if se1, se2

∈ seformula. Otherwise, it equals to
merge(se1, se2). Noted that we will calculate
the numeric value of se13bse2 if se1se2
∈ const.

sources(se) The source set of se. sources(se) ::=
{s1, ..., sn}, where si is the smallest sym-
bolic expressions in se that cannot be split
up, and si ∈ {ARGn, Str, Symbol}. E.g., if
se = ARG1 + ARG2 + 8, sources(se) =
{ARG1, ARG2}.

merge(se1, se2, ...) The merged source set of se1, se2, It equals
to sources(se1) ∪ sources(se2) ∪ ...,
which is the set union result.

Interpretation Function. We define a function α that inter-
prets an IR variable/expression as a symbolic expression.

In general, symbolic expressions are calculated recursively.
The symbolic expressions of string, global symbol, constant
values, and arguments can be determined directly. Strings,
global symbols, and arguments are directly interpreted as the
symbols Str, Symbol, and ARGn (n ∈ N+). Constant values
are interpreted as the number const. In other cases, we choose
the corresponding interpretation rule shown in Table III to
calculate the symbolic expressions for different IRs.

The first five rules in Table III are designed for interpreting
expressions. For unary or binary expressions, the interpretation
is straightforward. 3cmp expression is interpreted as 0 on
the false branch or 1 on the true branch of the following
CBRANCH statement. For LOAD expression, we first inter-
pret expr to get the address and load values from the address.
For MULTIEQUAL expression, we leverage the merge opera-
tion to merge the source set of different symbolic expressions.
The last two rules are for interpreting IR statements. The
symbolic expression of var is equal to expr in the assignment
statement. In store statement, we store the symbolic expres-
sion of expr2 to the memory location pointed by α(expr1).
Note that these rules are calculated recursively. In the end, the
expr cannot be further split up and we directly interpret them
as either const, Str, Symbol, or ARGn (n ∈ N+).

Inter-procedural Analysis. We devise an algorithm to conduct
the inter-procedural analysis, as shown in Algorithm 1. For
better efficiency, functions in the call graph are visited in
post-order (Line 2), so that we only go over each function
once. After analyzing each function (Line 6), we will merge

5

Entry_foo

ARG1_foo (RDI)

3 RAX1 CALL A_00404ad0:8 (bar), RDI (foo: 2)

4 ZF1 INT_NOTEQUAL RAX1, 0x0 (foo: 3)

5 CBRANCH A_00403930:1, ZF1 (foo: 3)

6 u_680:8 INT_ADD RDI, 0x8 (foo: 4)

7 STORE u_680:8, RAX1 (foo: 4)

Entry_bar CALLSITE_ARG1

ARG1_bar (RDI)

1 RAX INT_ADD RDI, 0x14 (bar: 2)

2 RETURN RAX (bar: 2)

RET_bar

CALLSITE_RET

1. void foo(undefined8* param_1) {
2. lVar2 = bar(param_1);
3. if (lVar2 != 0) {
4. *(param_1 + 8) = lVar2;
5. }
6. }
1. undefined8* bar(undefined8* param_1){
2. return param_1 + 20;
3. }

Data Dependency

Control Dependency

ID Symbolic Analysis Results Node Features

1 α(RDI) := ARG1

α(RAX) := ARG1 + 20

ARG1 + 20 INT_ADD ARG1 20

2 N/A RETURN ARG1 + 20

3 α(RDI) := ARG1

α(RAX1) := ARG1 + 20

ARG1 + 20 CALL ADDR ARG1

4 α(ZF1) := 0/1 0 INT_NOTEQUAL ARG1 + 20 CONST

5 N/A CBRANCH ARG1 + 20 CONST

6 α(u_680:8) := ARG1 + 8 ARG1 + 8 INT_ADD ARG1 CONST

7 α([ARG1 + 8]) := ARG1 + 20 STORE CONST ARG1 + 8 ARG1 + 20

Fig. 4: An example of program dependency graph, lightweight symbolic analysis, and node feature extraction

TABLE III: Interpretation Rules
IR Expression/Statement Actions
3Uexpr α(3Uexpr) := 3uα(expr)
3B expr1, expr2 α(3B expr1, expr2) :=

binop(α(expr1), α(expr2),3b)
expr1 3cmp expr2 α(expr1 3cmp expr2) := 0/1
LOAD expr α(LOAD expr) := [α(expr)]
MULTIEQUAL expr1, expr2, ... α(MULTIEQUAL expr1, expr2, ...)

:= merge(α(expr1), α(expr2), ...)
var := expr α(var) := α(expr)
STORE expr1, expr2 [α(expr1)] := α(expr2)

its return values if there are multiple returns (Lines 7 and
8). The return values of every analyzed function are recorded
(Line 9) in a dictionary gRetV al. When analyzing a callsite, to
integrate the calling context, we first retrieve the return values
of the callee function from gRetV al, and then update the
return value expressions according to the arguments that are
passed to the callee function. For instance, if callee’s return
value is ARG1+100 (ARG1 represents the first argument of
the callee), and the first argument passed to it is ARG2-10
(ARG2 represents the second arguments of the caller), we
update the return value to be ARG2+90. That being said,
our inter-procedural analysis is call-site sensitive [69], [70],
as return values of the same function from different call sites
vary. Lines 10 to 11 in Algorithm 1 will be introduced later.

Algorithm 1 Inter-procedural Analysis
procedure LightweightSymbolicAnalysis(binary)
1: cg ←GenCallGraph(binary)
2: workQueue←postOrderDFS(cg)
3: gRetV al← ∅
4: while workQueue! = empty do
5: func← workQueue.pop()
6: retV als, symV als← VisitFunc(func, gRetV al)
7: if len(retV als) > 1 then
8: retV als←merge(retV als)
9: gRetV al[func]← retV als

10: ExportNodeAndFuncFeatures(func, symV als)
11: ExportCG(cg)
end procedure

Example. Using the pseudocode snippet in Figure 4, we show
the symbolic analysis results in the second column of the

bottom right table. We start at the callee function bar. First,
we initialize the expression for parameters. RDI is denoted
as ARG1 since it is in an x86-64 binary. The first row in the
table shows the symbolic analysis results after the INT_ADD
IR (ID = 1). It is a binary operation and we calculate the
symbolic expression of RAX to be ARG1+20. The second row
is the RETURN IR (ID = 2) in function bar. Thus we record
the returned value ARG1+20 and clear the context. Then we
start to analyze the first IR (ID = 3) in foo function, in which
the function bar is called with a parameter RDI. We refer to
the stored return value of bar and compute the return value
to be ARG1+20 since the parameter passed to this function
happens to be ARG1. The fourth row (ID = 4) shows that
the output of comparison-related IRs is 0 on the false branch
or 1 on the true branch. The seventh row shows an example
for STORE (ID = 7), in which we record that the value
stored at address ARG1+8 at this line of IR is ARG1+20.
Another example that contains merge operation is provided
in Appendix §B, along with the soundness analysis.

2) Node Feature Extraction: As discussed in §II-C, in
order to solve the variable renaming problem and capture the
semantics of the IRs, we leverage the output of lightweight
symbolic analysis to generate node embeddings that are fed
into the graph matching model as the initial node features.
Therefore, after lightweight symbolic analysis, we go over all
the function IRs once again (Line 10 in Algorithm 1), replace
each variable with its symbolic expression, keep the opcode,
and use the expression as the node feature for this IR.

The third column in the table in Figure 4 shows the
node features we generated. As shown in the fourth row,
we normalize the constant 0x0 to CONST, while keeping
the constant number in ARG1+20 since it is involved in an
expression. Strings and addresses are also normalized. For a
conditional jump IR (CBRANCH, ID = 5), we backtrack its
previous IR and append the input variables of the Status Flag
(the Zero Flag ZF1 in this example, its inputs are RAX1 and
0x0, ID = 4) to it to reflect the jump condition.

After dealing with all the IRs, we build a corpus using
all the IR expressions within the two compared binaries and
then leverage doc2vec [57] to learn the embedding of each

6

expression, which is the initial feature of each IR (i.e., node).
The vocabulary of doc2vec corpus is limited since the vocab-
ulary of symbolic expressions (according to their definitions
in Figure 3) is small. To improve efficiency, we pre-train the
model with the corpus from one binary, then generate initial
embeddings for other binaries by using the model directly.
Please refer to §V-C for more details on this pre-training idea.

3) Function Feature Extraction and Call Graph Genera-
tion: We also leverage the results of lightweight symbolic
analysis to extract the function features, which will be helpful
for function matching and training node selection (Line 10 in
Algorithm 1). We choose the function features for function
matching rather than representation learning-based approaches
(e.g., Asm2Vec [37] and PalmTree [58]) because we are not
conducting a binary function similarity detection [50] in this
step. The main purpose of function matching in SIGMADIFF
is to locate the training nodes with high quality, therefore, our
aim is to find out the features that can represent the unique
characteristics of the function and are more stable than syntax
facing various code transformations. Specifically, we extracted
the following function features: Return values, Side effects,
Loads, Strings and library calls, and Function parameter
types. More details about these features are discussed in
Appendix §C.

During the analysis, the call graph of the whole binary has
also been stored (Line 11 in Algorithm 1) to support the later
training nodes selection (in the function-level matching step,
see §V-B). We simply ignore indirect calls since we can still
select training nodes and perform whole binary matching when
the call graph is incomplete. The influence of indirect calls is
evaluated in §VI-B5 by testing on C++ programs. Apart from
the nodes that represent functions, we also add virtual nodes
that represent strings and external functions to the call graph.

V. PSEUDOCODE DIFFING

Given the IPDGs at IR level with initial embeddings and
the function feature sets generated in the pre-processing stage,
SIGMADIFF then performs pseudocode diffing. Specifically,
it first searches for node pairs with high similarity and
uniqueness so that we are confident that these pairs should be
matched. SIGMADIFF treats these node pairs as training nodes
and performs semi-supervised learning that uses the Deep
Graph Matching Consensus (DGMC) [46] model to generate
IR matching results.

A. Graph Matching Consensus Model

The DGMC model [46] is a two-stage neural architecture
that aims to reach a neighborhood consensus [67] when solving
the graph matching problem. We introduce the details of the
two stages in this section. In the first stage, it generates
the initial matching results. To do so, source graph Gs =
(Vs, As, Xs, Es) and target graph Gt = (Vt, At, Xt, Et) are
fed into a shared graph neural network Ψθ1 , where V , A,
X , and E denote the nodes, adjacency matrix, node features,
and edge features (in this paper, we treat edges equally)
respectively. Then the latent node embeddings Ht and Hs are
generated for both graphs through Ψθ1 . And the initial soft cor-
respondence S(0) are calculated using the latent node embed-
dings as follows: S(0) = sinkhorn(HsH

T
t) ∈ [0, 1]|Vs|×|Vt|,

where sinkhorn [71] is a normalization function. The i-th
row vector S

(0)
i,: ∈ [0, 1]|Vt| indicates the probability dis-

tribution over i being matched with nodes in Gt for each
node i ∈ Vs. During training, DGMC minimizes the loss
L(initial) = −

∑
i∈Vs log(S

(0)
i,πgt(i)

), where πgt denotes the
ground truth and the loss function L(initial) represents the
difference between initial matching results and the ground
truth.

In the second stage, DGMC leverages another shared
graph neural network Ψθ2 to detect violations of neighborhood
consensus in previous matching results. This refinement step
is done iteratively so that the neighborhood consensus can be
improved through L iterations. In general, the source and target
graph with node coloring as node features are fed to Ψθ2 : Os =
Ψθ2(I|Vs|, As, Es) and Ot = Ψθ2(ST(l)I|Vs|, At, Et). S(l) is the
soft correspondence matrix in the l-th iteration, l ∈ 0, ..., L.
The identity matrix I|Vs| and the ST(l)I|Vs| can be viewed as
the node coloring for Gs and Gt, since S(l) is a map from the
node function space in the source graph to the node function
space in the target graph. Then the vector di,j = ~o

(s)
i −~o

(t)
j that

measures the neighborhood consensus between node pairs of
these two graphs can be used to update S together with a multi-
layer perceptron (MLP) Ψθ3 : S(l+1)

i,j = sinkhorn(Ŝ(l+1))i,j

with Ŝ(l+1)
i,j = Ŝ

(l)
i,j + Ψθ3(~dj,i). The loss function in step two

is L(refine) = −
∑
i∈Vs log(S

(l)
i,πgt(i)

).

Evaluations show that the performance of the DGMC
model is good even when there is structural noise in graph
matching [46], which benefits from applying matching con-
sensus in the second stage.

B. Training Node Selection

SIGMADIFF learns the DGMC model in a semi-supervised
fashion. Given a pair of source and target graphs and a small
set of training nodes that have already been matched, the model
will learn mappings for the rest of the nodes between the two
graphs. The intuition is that a small set of nodes (or IRs) in
the source graph can perfectly match with a set of nodes in the
target graph with very high confidence. These initial matching
pairs can help match the nearby nodes in these two graphs
by considering the neighborhood consensus and they are the
training nodes for this semi-supervised learning.

Therefore, obtaining a fair amount of high-quality training
nodes is crucial. We design a two-step strategy for this.
First, we conduct a conservative function-level matching to
narrow down the search scope. We will find more unique IRs
within the scope of a function than within the scope of the
whole binary. Note that the only purpose of the function-level
matching is for training node selection, the matching of the rest
of the nodes is still performed on the whole binary. After the
function-level matching, we search for unique IR pairs within
the matched function pairs. We introduce the details of these
two steps in the remainder of this subsection.

1) Function-level Matching: In this step, we define a mea-
surement that evaluates the similarity between two functions
using the function feature sets extracted in the pre-processing
stage. Specifically, we calculate a similarity score between
two functions according to their feature sets, which include

7

Return values, Side effects, Loads, Strings and library calls,
and Function parameter types.

After obtaining the function similarity scores, we leverage
a 2-hop greedy matching algorithm to conduct a function-level
matching. We use the same k-hop algorithm in DeepBinDiff
[38]. More details are introduced in Appendix §C.

2) Training Node Selection: As mentioned earlier, in this
step we search for IR pairs that have unique features within the
scope of the matched functions. The feature we consider is the
same feature generated in §IV-B, which is the IR associated
with symbolic expressions. We first find out the IRs that
have unique features in each function. For instance, all IRs
in Figure 4 have unique features. In practice, there will be
more duplicate node features, making the occurrence of unique
IRs rarer. These IRs form a “Unique IR Set”. Then, for each
matched function pair, we select the unique IRs they share as
the training nodes. In other words, the training nodes are in
the intersection set of the two Unique IR Sets.

C. Whole Binary Matching

SIGMADIFF then leverages the DGMC model to perform
whole binary matching. We do not perform matching func-
tion by function because function inlining can change the
boundaries of functions. Given the training nodes and two
IPDGs, this step creates a near-optimal node mapping that
considers both IRs’ local features and their neighbors. To
better suit DGMC to our problem, we have made the following
improvements.

First, we leverage the recovered data type and opcode
type constraints to further boost the matching accuracy. The
intuition is as follows: IRs that operate on different data types
cannot be matched together, and neither can the IRs that have
different types of opcode. To encode these constraints into the
model, we add two terms to the original loss function:

L = L(initial) +L(refine) + αL(data type) + βL(op type) (1)

with
L(data type) =

∑
j∈Ws

(e
S

(l)

j,π(j) − 1) (2)

L(op type) =
∑
k∈W ′

s

(e
S

(l)

k,π(k) − 1) (3)

Ws ⊆ Vs in equation (2) denotes the nodes in the source
graph that have an incompatible data type matching, similarly,
W ′s ⊆ Vs in equation (3) denotes the nodes that have an
incorrect matching in terms of the opcode types. In Equation
(2) , π(j) denotes the top-1 candidate node that j is matched
to ∀j ∈ Vs . α and β in Equation (1) are the coefficients
for L(type) and L(value) respectively. We use the exponential
function to increase the penalty of incompatible types in the
loss function.

Type compatibility is determined by a type lattice. We show
an abbreviated type lattice of the x86 64 programs in Ghidra
in Figure 5. Here, > includes undefined, undefined *,
and void *. However, since decompiler often cannot infer
the types correctly, we cannot strictly follow the subtype
constraints exerted by the type lattice. We relax the constraints

 丅

undefined8 undefined4 undefined2 undefined1

long ulong pointersize_t int uint wchar_t short ushort char byte

 丄

Fig. 5: An abbreviated type lattice of x86 64 in Ghidra

in the following two cases. First, decompilers often cannot
correctly infer signed and unsigned types, thus we make signed
and unsigned types compatible with each other (e.g., int
vs. uint). Similarly, char and byte are also compatible.
Additionally, all the pointer types are considered compatible
with each other. For opcode types, comparison-related IR op-
erations are considered compatible in order to tolerate control-
flow changes.

Second, we add more hops when building the first neural
network Ψθ1 (see §V-A), since our graphs are usually very
sparse and we want to cover a larger scope for each IR so that
more neighborhood contexts are considered.

Third, we introduce the “pre-training and fine-tuning”
schema in order to further improve the efficiency of SIG-
MADIFF. Specifically, we pre-train the DGMC model with a
pair of large binaries with a large epoch value (800 epochs
in this paper). The doc2vec model is also pre-trained on this
pair of binaries. Then for the program pair under analysis,
we further fine-tune the pre-trained DGMC model with only a
few more epochs (200 epochs in this paper). We use the early-
stopping technique in both steps in order to ensure efficiency
and avoid over-fitting. The pre-training process can be executed
in advance and offline. In the inference stage of SIGMADIFF,
we only need to execute the fine-tuning process if a pre-trained
model is available. This schema greatly improves the efficiency
of SIGMADIFF.

Fourth, we design an iterative algorithm to avoid the out-
of-memory problem in GPU when matching large binaries. In
each iteration, we feed one pair of matched functions (obtained
from function-level matching results §V-B1) to generate diffing
results for them. We then reduce these two functions into two
nodes in their IPDGs. We repeat this process until the reduced
IPDGs can fit in the GPU.

D. Post-processing

SIGMADIFF then prunes the IR matching results using the
type constraints (see §V-C) and selects the top-1 from the
pruned candidates by referring to the matrix S. Since each IR
is mapped to a group of tokens in pseudocode, SIGMADIFF
is able to generate the pseudocode matching results at the
token level using the IR matching results. In other open-source
decompilers, since high-level IR is an intermediate result in
decompilation, the mapping from high-level IR to pseudocode
can also be obtained through some engineering work.

To further match the two groups of tokens associated with
the matched IRs, we could utilize the IR variables and match

8

TABLE IV: IRs and associated tokens in the motivating example
IRs Associated tokens in Figure 1 (b) Associated tokens in Figure 1 (c)

RAX INT_ADD RSI, 0x48
RSI → param 2 (at Line 7)
0x48 → 0x48 (at Line 7)
RAX → param 2 + 0x48 (at Line 7)

RSI → param 2 (at Line 6)
0x48 → 0x48 (at Line 6)
RAX → param 2 + 0x48 (at Line 6)

u 100 INT_ADD u 120, u 200 u 120 → lVar16 (at Line 4)
u 200 → lVar17 (at Line 4)

u 120 → *(long *)(param 2 + 0x48) (at Line 6)
u 200 → lVar14 (at Line 6)

their corresponding tokens. In our motivating example, the IRs
for Line 4 and 7 in Figure 1 (b) and for Line 6 in Figure 1
(c) are similar, and SIGMADIFF can match them correctly.
We include two IRs in Table IV, in which the IR variables
(and corresponding tokens) we could match are RSI, 0x48,
u_120, and u_200. The mapping from IR variables to tokens
can either be obtained directly from Ghidra (e.g., RSI, 0x48,
and u_200), or be derived based on IR variables’ definition
(e.g., RAX).

Some tokens (e.g., indents, brackets, parentheses, and com-
mas) are not mapped to any IR. They exist in pseudocode only
for formatting purposes and do not carry semantic meanings.
SIGMADIFF does not generate results for them.

VI. EVALUATION

In this section, we begin by describing the experimen-
tal setup and evaluating the effectiveness of SIGMADIFF in
cross-version, cross-optimization-level, cross-compiler, cross-
architecture, and C++ diffing tasks. Next, we evaluate the ef-
ficiency of SIGMADIFF. Furthermore, we perform an ablation
study. We also show the security applications of SIGMADIFF
by conducting two large-scale case studies.

A. Experimental Setup

The training and testing of SIGMADIFF (and the baseline
models’ evaluations) are conducted on a dedicated server
with a Ryzen 3900X CPU@3.80 GHz×12, one RTX 2080Ti
GPU, 64 GB memory, and 500 GB SSD. We implemented
the lightweight symbolic analysis and IPDG generation func-
tionalities based on Ghidra v9.2.2’s APIs. We developed the
lightweight symbolic analysis technique after referencing two
open-source implementations [1], [4].

1) Deep Learning Model Settings: The implementation of
the DGMC model is based on the package3 released by its
authors [46]. We choose the following hyperparameters (de-
tailed evaluations are reported in Appendix §A): the dimension
of the initial node embeddings generated by doc2vec is 128;
dimension of the hidden states of Ψθ1 is 128 (Ψθ2 is 32); the
number of layers of Ψθ1 and Ψθ2 is 3; the number of hops of
Ψθ1 is 3 (Ψθ2 is 1); training epochs for pre-training is 800;
training epochs for fine-tuning is 200; early-stopping patience
is 30 epochs; the optimizer is Adam [54] with a learning rate
of 0.001; α = β = 0.1.

2) Datasets: We compiled different versions of the source
code of five popular binary/binary sets: Coreutils [3], Diffutils
[10], Findutils [11], GMP [12], and Putty [18]. Specifically, we
compiled three versions of Coreutils (v5.93, v6.4, v8.1), three
versions (v2.8, v3.4, v3.6) of Diffutils, three versions (v4.2.33,
v4.4.1, v4.6.0) of Findutils, three versions (v6.0.0, v6.1.1,

3https://github.com/rusty1s/deep-graph-matching-consensus

v6.2.1) of GMP, and three versions (v0.75, v0.76, v0.77) of
Putty using GCC v5.4 (same as DeepBinDiff [38]) with four
optimization levels (O0, O1, O2, O3). In total, there are 1,224
binaries. We utilize the debug symbols to collect the ground
truth, but all our experiments are conducted on the stripped
binaries. Our model is pre-trained using the not binary in
the LLVM (v3.7.0 and v3.8.1) framework’s implementation.
We have verified that this binary has no overlapping functions
with our dataset. Note that we are showing a lower bound by
pre-training on a completely different binary. This strategy can
test SIGMADIFF’s generalizability.

Ground Truth. Even though we conduct diffing at the pseu-
docode token level, we do not have the precise ground truth at
such a granularity level. Instead, we perform workarounds to
estimate the effectiveness. The pseudocode tokens are mapped
to program addresses through Ghidra. The program addresses
are mapped to the source code file names and line numbers by
running addr2line [5] (debug symbols are required). Then,
given two matched pseudocode tokens, the source code file
names and line numbers for them are retrieved and checked to
see if their lines are matched.

It is worth noting that the preceding process is only used
to get the ground truth. In reality, we will not have the source
code files for the binaries under analysis.

For the source code of different versions, we extract the
line-level matching ground truth in the same way as Deep-
BinDiff [38]. Specifically, we use the Myers algorithm [63] to
perform text based matching and only consider the lines that
are identical to ensure the correctness of the ground truth.

3) Baseline Techniques: We consider Diaphora (>2k
stars on GitHub) [9] and DeepBinDiff (state-of-the-art deep
learning-based binary diffing tool) [38] as the baselines for
comparison. Diaphora only supports IDA Pro [14], while our
implementation relies on Ghidra. For a fair comparison, we
first run Diaphora on IDA Pro (v7.5) to obtain the function-
level matching results, then get the pseudocode of these func-
tions from Ghidra. Note that we only consider the intersection
of the functions identified by Ghidra and IDA Pro in order to
achieve a fair comparison since they are not exactly the same.
Then we run the pseudocode diffing algorithm of Diaphora to
diff the pseudocode of the matched function pairs. Diaphora
produces four result types: matched, changed, added, and
deleted. We consider matched and changed token pairs as the
final matched token pairs. And we only consider tokens that
are contained in the ground truth even though Diaphora outputs
the diffing results for all the tokens.

DeepBinDiff [38] is designed for basic-block level diffing.
In order to (directly) compare with it, we convert its diffing
results to pseudocode token level. Specifically, we consider
all the tokens in a basic block are correctly or incorrectly
matched if the basic block is correctly or incorrectly matched.

9

By doing so, the total token set of Diaphora, DeepBinDiff,
and SIGMADIFF will be the same, which is all the pseudocode
tokens that are contained in the ground truth.

4) Evaluation Metrics: We use precision, recall and F1-
score to evaluate the diffing results on the source graph. More-
over, we consider the following principles when performing
evaluation: 1) we only consider the token in the source binary
that has a valid match in the ground truth; and 2) if a token
in the source binary is matched to multiple token targets
according to the ground truth, we consider the token is matched
correctly as long as one of the targets is found correctly since
we do not aim to solve the many-to-many matching in this
paper (we further discuss this in §VIII).

B. Effectiveness

We conduct four sets of experiments to evaluate the ef-
fectiveness of SIGMADIFF. Specifically, we compare SIG-
MADIFF, Diaphora, and DeepBinDiff on cross-optimization-
level, cross-version, and cross-compiler binaries; SIGMADIFF
and Diaphora on cross-architecture binaries since DeepBinDiff
only supports x86 binaries.

1) Cross-version Diffing:

In this experiment, we compare the performance of SIG-
MADIFF, DeepBinDiff, and Diaphora in cross-version diffing
tasks. We test them on different versions of binaries in Core-
utils, Diffutils, Findutils, Gmp, and Putty, by comparing the
lower versions of the binaries with the higher versions. All of
the binaries are compiled with their default optimization level.
The results are shown in Table V.

In general, SIGMADIFF outperforms DeepBinDiff and Di-
aphora in all of the tasks. Since all tokens in a block are treated
as correctly matched as long as the block is correctly matched,
DeepBinDiff will benefit from this evaluation strategy. Nev-
ertheless, SIGMADIFF outperforms DeepBinDiff by 5.6% on
Coreutils, 2.9% on Diffutils, and 10.5% on Findutils in terms
of F1-score. Gmp and Putty are too large for DeepBinDiff to
process (for instance, it needs days to analyze Putty, thus the
“N/As” in the table). We found that when there are strings
or library calls nearby, DeepBinDiff can match the blocks
with high accuracy, but when there are no strings or library
calls, the accuracy is worse. In contrast, SIGMADIFF relies
on unique IRs, which include strings and library calls, and
other useful training nodes (an investigation on the number of
training nodes is shown in Appendix §D). Additionally, since
DeepBinDiff uses k-hop block matching, it could mismatch
surrounding blocks that are similar.

Moreover, SIGMADIFF outperforms Diaphora by a large
margin when the differences between versions are consider-
able. For instance, SIGMADIFF outperforms Diaphora by 43%
on Diffutils, 43% on Findutils, and 25% on Coreutils on av-
erage in terms of F1-score. In general, the string-based diffing
algorithm in Diaphora will match conservatively and label a
difference that includes multiple tokens or statements as added
or removed. Therefore, Diaphora’s precision is much higher
than its recall in all of the ten tasks. Additionally, Diaphora can
produce precise diffing results when the differences between
versions are small (such as Gmp and Putty).

2) Cross-optimization-level Diffing:

We then conduct experiments to test the performance
of SIGMADIFF, DeepBinDiff, and Diaphora in cross-
optimization-level diffing tasks. The O0 and O3, O1 and
O2, O2 and O3, O2 and O3 binaries in Coreutils, Diffutils,
Findutils, Gmp, and Putty are compared. Figure 6 presents
the Cumulative Distribution Function (CDF) figures of the
F1-scores. Note that we merge the F1-scores for diffing the
Coreutils, Diffutils, and Findutils binaries’ different versions
and draw the three figures. Gmp and Putty are not included in
these figures since these binaries took too long for DeepBin-
Diff to process. But we show all the detailed results of each
task (including Gmp and Putty) in the artifact repository.

As shown in Figure 6, for cross-optimization-level diffing,
SIGMADIFF significantly outperforms Diaphora and Deep-
BinDiff, especially when the optimization level gap becomes
larger. We observed that Diaphora fails to match a large num-
ber of tokens when the control constructs are different (e.g.,
if and else branches are switched). On average, SIGMADIFF
outperforms Diaphora by 308%, 85%, 38% in terms of F1-
score for O0 vs. O3, O1 vs. O3, and O2 vs. O3 respectively.
DeepBinDiff can match against optimizations such as function
inlining, but it will miss the tokens when the optimizations
merge two basic blocks or significantly change the control flow
graph structure. As shown in Figure 6a, DeepBinDiff gets simi-
lar results as Diaphora in O0 vs. O3 diffing tasks. These results
show that SIGMADIFF is more resilient to optimization level
changes compared to Diaphora and DeepBinDiff, meaning its
matching strategy is indeed beneficial.

3) Cross-compiler Diffing:

We also conduct experiments between GCC and Clang
binaries on SIGMADIFF, Diaphora, and DeepBinDiff to show
SIGMADIFF’s ability in cross-compiler diffing. More specifi-
cally, we compile all the binaries in Coreutils 8.1, Diffutils 3.6,
Findutils 4.6, Gmp 6.2.1, and Putty 0.76 with GCC (v5.4.0)
and Clang (v3.8.0) using the default optimization settings.

As shown in Table VI, SIGMADIFF outperforms Diaphora
and DeepBinDiff in all the cases by large margins. On Gmp
and Putty, the advantages of SIGMADIFF are relatively smaller
because some large functions in Putty and Gmp exhibit signif-
icant differences, which are hard to match for SIGMADIFF
and result in lower average token-level accuracy. Besides,
the accuracy is further compromised due to the difficulty in
matching functions. But overall, these experiments show that
SIGMADIFF performs better pseudocode diffing on binaries
built by different compilers, and it is able to generalize to
unseen compilers, considering the model is pre-trained only
on binaries compiled with GCC.

4) Cross-architecture Diffing:

We compare x86-64 binaries with ARM binaries. The
dataset consists of all the binaries from Coreutils 8.1, Diffutils
3.6, Findutils 4.6, Gmp 6.2.1, and Putty 0.76 built with the
default optimization settings. The evaluation results are shown
in Table VII. Since SIGMADIFF and Diaphora rely on different
disassemblers, the quality of the final pseudocode diffing also
depends on the capability of Ghidra and IDA Pro in disas-
sembling different architectures’ binaries. For similar reasons
in cross-compiler diffing, the diffing results in Gmp and Putty

10

TABLE V: Cross-version Pseudocode Diffing Results. Si: SIGMADIFF, De: DeepBinDiff, Di: Diaphora
Recall Precision F1

Si De Di Si De Di Si De Di

Coreutils
v5.93 - v8.1 0.624 0.589 0.438 0.770 0.743 0.759 0.687 0.654 0.549
v6.4 - v8.1 0.689 0.631 0.551 0.793 0.767 0.643 0.735 0.691 0.592

Average 0.656 0.610 0.494 0.781 0.755 0.701 0.711 0.673 0.571

Diffutils
v2.8 - v3.6 0.694 0.660 0.348 0.848 0.806 0.406 0.763 0.725 0.375
v3.4 - v3.6 0.928 0.909 0.788 0.957 0.960 0.844 0.942 0.934 0.815

Average 0.811 0.784 0.568 0.903 0.883 0.625 0.853 0.829 0.595

Findutils
v4.233 - v4.6 0.685 0.579 0.366 0.825 0.758 0.773 0.748 0.655 0.487
v4.41 - v4.6 0.769 0.690 0.499 0.868 0.847 0.786 0.814 0.759 0.609

Average 0.727 0.635 0.433 0.847 0.803 0.779 0.781 0.707 0.548

Gmp
v6.0.0 - v6.2.1 0.815 N/A 0.691 0.871 N/A 0.892 0.842 N/A 0.779
v6.1.1 - v6.2.1 0.858 N/A 0.771 0.894 N/A 0.920 0.876 N/A 0.839

Average 0.836 N/A 0.731 0.882 N/A 0.906 0.859 N/A 0.809

Putty
v0.75 - v0.77 0.781 N/A 0.741 0.899 N/A 0.897 0.836 N/A 0.812
v0.76 - v0.77 0.798 N/A 0.732 0.908 N/A 0.881 0.849 N/A 0.800

Average 0.789 N/A 0.737 0.904 N/A 0.889 0.842 N/A 0.806

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

SigmaDiff, avg=0.53
Diaphora, avg=0.13
DeepBinDiff, avg=0.13

(a) O0 vs. O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge SigmaDiff, avg=0.74
Diaphora, avg=0.40
DeepBinDiff, avg=0.55

(b) O1 vs. O3

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

SigmaDiff, avg=0.91
Diaphora, avg=0.66
DeepBinDiff, avg=0.87

(c) O2 vs. O3

Fig. 6: Cross-optimization-level Pseudocode Diffing F1-score CDF (merging results of Coreutils, Diffutils, and Findutils)

TABLE VI: Cross-compiler Pseudocode Diffing Results (Clang vs. GCC). Si: SIGMADIFF, De: DeepBinDiff, Di: Diaphora
Recall Precision F1

Si De Di Si De Di Si De Di
Coreutils 8.1 0.595 0.203 0.262 0.807 0.482 0.720 0.681 0.285 0.382
Diffutils 3.6 0.295 0.187 0.029 0.574 0.445 0.535 0.390 0.263 0.055
Findutils 4.6 0.363 0.202 0.051 0.619 0.458 0.597 0.457 0.279 0.094
Gmp 6.2.1 0.393 N/A 0.227 0.597 N/A 0.821 0.474 N/A 0.356
Putty 0.76 0.273 N/A 0.095 0.507 N/A 0.610 0.354 N/A 0.164

TABLE VII: Cross-architecture Pseudocode Diffing Results
(ARM vs. x86-64). Si: SIGMADIFF, Di: Diaphora

Recall Precision F1
Si Di Si Di Si Di

Coreutils 8.1 0.720 0.429 0.725 0.954 0.723 0.586
Diffutils 3.6 0.751 0.003 0.754 0.674 0.752 0.006
Findutils 4.6 0.620 0.003 0.642 0.521 0.631 0.006
Gmp 6.2.1 0.362 0.165 0.386 0.827 0.373 0.275
Putty 0.76 0.143 0.038 0.436 0.591 0.216 0.072

are not as good as in the other programs. However, in general,
we still observe that SIGMADIFF significantly outperforms
Diaphora in the cross-architecture pseudocode diffing task.

5) C++ Programs Testing:

To evaluate the influence of indirect calls, we further
evaluate SIGMADIFF on five C++ programs of different sizes.
Specifically, we select Stockfish [20] from the Phoronix
benchmark [17], three programs from Thrift [7], and one
binary from Xerces-c [8]. The latter two are Apache Soft-
ware Foundation [6] projects.

The evaluation results are listed in Table VIII. We list the
size of the stripped program, number of indirect calls, recall,
precision, and F1-score for each task. We approximate the
number of indirect calls by counting the number of CALLIND
opcode in Ghidra IR (CALLIND stands for indirect calls).
SIGMADIFF outperforms DeepBinDiff and Diaphora on four
out of five programs, while Diaphora performs better than SIG-
MADIFF in terms of F1-scores on libthriftqt5.so. This
shows that SIGMADIFF is better at matching programs with
larger differences, while Diaphora’s heuristic-based function
matching and string-based diffing achieve good results when
two versions are close. DeepBinDiff relies on control flow
graph and is significantly influenced by the indirect calls.

C. Efficiency

We evaluate the efficiency of the following four steps:
pre-processing, training node selection, pre-training, and fine-
tuning.

Pre-processing Time. On average, it takes 12.8s to pre-process

11

TABLE VIII: Diffing Results of C++ Programs. Si: SIGMADIFF, De: DeepBinDiff, Di: Diaphora
Recall Precision F1Name Size #Indirect Calls Si De Di Si De Di Si De Di

Stockfish 14 vs. 15 stockfish 21.5M 88 0.827 N/A 0.760 0.939 N/A 0.980 0.879 N/A 0.856
Xerces-c 3.0.0 vs. 3.2.4 libxerces-c.so 3.6M 3,733 0.530 N/A 0.533 0.840 N/A 0.812 0.650 N/A 0.643

libthrift.so 797K 1,435 0.871 N/A 0.867 0.894 N/A 0.784 0.882 N/A 0.824
libthriftz.so 166K 152 0.845 0.641 0.831 0.860 0.898 0.786 0.852 0.748 0.808Thrift 0.13.0 vs. 0.17.0
libthriftqt5.so 64K 124 0.927 0.565 0.997 0.927 0.942 0.991 0.927 0.707 0.994

100000 200000 300000 400000 500000 600000
Size (bytes)

250

500

750

1000

1250

1500

1750

Ti
m

e
(s

)

Diaphora
SigmaDiff
DeepBinDiff

Fig. 7: Binary Size vs. Runtime of different models

one binary in our dataset. The pre-processing time is linear to
the size of the binary.

Training Nodes Selection Time. SIGMADIFF takes 1.5s on
average to perform the function matching and select the
training nodes.

Pre-training Time. Pre-training is conducted only once during
the whole evaluation. We pre-train the model on the not
binary in the LLVM framework’s implementation (v3.7.0 and
v3.8.1). This program has no overlapping functions with our
dataset. It takes 63 minutes to finish the pre-training on GPU.

Fine-tuning Time. SIGMADIFF takes 203s on average to
perform the fine-tuning on GPU, which is the matching time
since pre-training is not needed when conducting inference.

Figure 7 shows the runtime efficiency of SIGMADIFF,
DeepBinDiff, and Diaphora versus different binary sizes. We
admit that SIGMADIFF runs on GPU while other tools run on
CPU. However, exploiting parallel computing power to solve
the pseudocode diffing problem is one of our contributions.
Thus such a comparison is still valid and meaningful. In
general, with the help of GPU and our pre-training and fine-
tuning schema, SIGMADIFF is quite efficient. It is much more
efficient than DeepBinDiff, and it achieves similar efficiency
to Diaphora when the binary size is small. Such efficiency
indicates the practical application value of SIGMADIFF.

D. Ablation Study

Here we conduct ablation experiments to quantify the con-
tribution of each key component in SIGMADIFF. Specifically,
we set up five configurations:

• SIGMADIFF-D: SIGMADIFF that uses the doc2vec em-
beddings of the original IR text as the initial embeddings.
And it leverages the 2-stage DGMC model.

• SIGMADIFF-SD: SIGMADIFF with lightweight symbolic
analysis and the 2-stage DGMC model.

• SIGMADIFF-STD: SIGMADIFF with lightweight sym-
bolic analysis, type constraints and the 2-stage DGMC
model.

• SIGMADIFF-STP: SIGMADIFF with lightweight sym-
bolic analysis, type constraints and pre-training, but only
leverages the first stage of the DGMC model.

• SIGMADIFF: SIGMADIFF with lightweight symbolic
analysis, type constraints, pre-training, and the 2-stage
DGMC model.

TABLE IX: Recall, precision, and F1 of different configura-
tions

Configurations Recall Precision F1
SIGMADIFF-D 0.755 0.759 0.757
SIGMADIFF-SD 0.841 0.845 0.843
SIGMADIFF-STD 0.851 0.907 0.878
SIGMADIFF-STP 0.796 0.854 0.824
SIGMADIFF 0.868 0.916 0.891

We compare Diffutils v3.6 O2 and O3 binaries to evaluate
the effectiveness of different configurations and the results are
presented in Table IX. Comparing rows 1, 2, 3, and 5, we
see that all key components positively impact the final results.
Specifically, leveraging the lightweight symbolic analysis, type
constraints, and pre-training technique improves the F1-score
by 11.4%, 4.2%, and 1.5% respectively. Comparing rows 4 and
5, we find that the second stage of the DGMC model is signif-
icantly helpful. It improves the F1-score by 8.1%. Moreover,
we evaluate the efficiency gain from pre-training. The average
running time of the DGMC network for SIGMADIFF-STD and
SIGMADIFF is 1,093s and 175s on this dataset, respectively.

E. Case Study

We further evaluate SIGMADIFF in security scenarios by
conducting two case studies and comparing with BinDiff and
Diaphora. In the first case study, we conduct patch detection on
three open-source libraries where the ground truth is available,
while in the second case study, we use a closed-source video
conferencing application.

1) Patch Detection on Open-source Libraries: We first
conduct a case study on eleven CVEs of FFmpeg,
libjpeg-turbo, and OpenSSL. These CVEs are extracted
from the CVE database (https://cve.mitre.org/), as shown in
Table X. For each library, we select an older version with
related CVEs and a more recent version in which the CVEs are
patched. While the old version was only generated by GCC, we
created two variants for the new version using two compilers
(GCC and Clang). Both versions are compared using the
default optimization settings. We compare each pair of the old
and new versions using BinDiff, Diaphora, and SIGMADIFF,
and calculate the recall score for detecting the patches in the
new version. The ground truth of the patches (location of the
patches) is obtained from the debug symbols.

12

https://cve.mitre.org/

The list of patches detected on each library is presented
in Table X. We collect the statistics on all modification places
and present the portion of detected diffs for each CVE. As
demonstrated, when both of the two versions are compiled by
GCC, all three tools can accurately locate most of the patches,
while SIGMADIFF’s performance is substantially better than
the two baselines when the new versions are compiled by
Clang and the old versions are compiled by GCC. This case
study demonstrates that SIGMADIFF can pinpoint the patches
even when there are compiler-introduced changes in the binary,
which is useful given the difficulty of replicating identical
building environments in practice.

TABLE X: List of CVE patches detected on open-source
libraries. Si: SIGMADIFF, Di: Diaphora, Bi: BinDiff

GCC vs. GCC GCC vs. ClangLibrary CVEs Si Di Bi Si Di Bi
CVE-2020-22017 1/1 1/1 1/1 0/1 0/1 0/1
CVE-2020-22024 1/1 1/1 1/1 1/1 0/1 0/1
CVE-2020-22030 0/1 0/1 0/1 0/1 0/1 0/1
CVE-2020-22034 2/2 1/2 1/2 0/2 0/2 0/2
CVE-2020-22035 2/2 1/2 2/2 2/2 0/2 0/2

FFmpeg

CVE-2020-22040 2/3 1/3 2/3 1/3 0/3 0/3
CVE-2020-13790 1/1 1/1 1/1 1/1 0/1 0/1libjpeg-turbo CVE-2021-46822 1/2 1/2 1/2 0/2 0/2 0/2
CVE-2021-3712 1/1 0/1 1/1 1/1 0/1 1/1
CVE-2021-3711 1/2 0/2 1/2 1/2 0/2 0/2OpenSSL
CVE-2021-3449 1/1 0/1 0/1 1/1 0/1 1/1

2) Vulnerability Analysis on a Closed-source Application:
We further conduct a case study on Zoom4 [21], a widely-used
video conferencing application to demonstrate how SIGMAD-
IFF can help with vulnerability/patch analysis for real-world
software. We investigate both the Windows (v5.9.7.3931) and
Linux (v5.9.6.2225) versions and identify the shared and static
libraries they use. Specifically, we have identified five open-
source libraries and their versions based on the names of these
binaries and strings embedded in these binaries. OpenSSL,
SQLite, and resiprocate are statically linked into the
main executable of the Linux version. libjpeg-turbo and
FFmpeg are shared libraries included in the Windows version.
The majority of libraries and binaries are over 1 MB, with
the main executable being over 80 MB. And we utilize the
iterative algorithm from §V-C to run the experiments, which
takes around 12 hours in total.

To find known vulnerabilities (CVEs) in each of these
identified dynamic and static libraries, we first build a binary
(with debug symbols) for its latest version, locate the patches
(functions and exact patch lines) for the CVEs that may exist
in the identified library version according to the CVE database,
and then perform diffing between the binary from Zoom and
the corresponding binary of the latest version. For each of the
static libraries, we directly match the main executable with the
latest library. We evaluate SIGMADIFF, Diaphora, and BinDiff.
DeepBinDiff was too slow to process these binaries.

Table XI lists the evaluation results. In total, with the help
of SIGMADIFF, we are able to identify thirteen vulnerabil-
ities in these five libraries in both the Linux and Windows
versions of Zoom. SIGMADIFF can precisely pinpoint eight
of these vulnerabilities at the token level. It means that in

4We contacted the company, had a formal disclosure procedure, and got
their consent to disclose all the vulnerability information mentioned in this
paper. The developers have confirmed all the listed vulnerabilities.

TABLE XI: Diffing results for Zoom. Si: SIGMADIFF, Di:
Diaphora, Bi: BinDiff

Library Ver. Confirmed
CVEs

Function-lvl Token-lvl
Si Di Bi Si Di Bi

OpenSSL 1.1.1k

CVE-2023-0464
CVE-2023-0215
CVE-2022-4450
CVE-2022-0778
CVE-2021-3712
CVE-2021-3711

X
X
X
X
X
X

X
X
X

X

X

X

X
X
X
X

X

SQLite 3.33.0 CVE-2022-35737
CVE-2021-20227

X
X

resiprocate 1.11 CVE-2021-3672
CVE-2017-9454

X
X

X
X

libjpeg-turbo 2.0.4 CVE-2020-13790 X X X X X X

FFmpeg 4.2.3 CVE-2021-38291
CVE-2020-22037

X
X

X
X

X
X

X
X

X X

the pseudocode-level diffing results, the tokens related to the
patch are precisely identified as insertion, deletion, or update,
whereas the surrounding tokens are identified as matches. For
the remaining five vulnerabilities, SIGMADIFF is able to locate
the vulnerable functions. With some manual investigation,
we are able to confirm the located functions were indeed
vulnerable.

In comparison, BinDiff can precisely spot three vulnerabil-
ities at the basic block level and locate another two vulnerable
functions. However, it is far more difficult for human analysts
to examine the disassembly code than pseudocode.

Diaphora is able to pinpoint two vulnerabilities at the
token level and locate eight vulnerable functions. But its
diffing results are not as precise as the ones provided by
SIGMADIFF. For example, in CVE-2021-3712, the vulnera-
ble function, EC_GROUP_new_from_ecparameters, has
over 300 lines of code. Due to information loss during com-
pilation, decompilers have to infer high-level features, making
variable names, memory access patterns, and control constructs
susceptible to small changes in the assembly code. With a
function of this size, the small changes soon cascade to a point
that a simple string diffing algorithm cannot deal with. If we
diff the whole function using Diaphora, no meaningful result
is produced: almost the entire function is removed and then
reinserted. Even if we focus on the code snippet surrounding
the patch, as Figure 8 shows, the diffing result’s quality is still
considered low. String-based diffing is not suitable for this
task. As a comparison, SIGMADIFF can find the exact change
regardless of variable name or code structure changes.

From this case study, we can see that SIGMADIFF is
able to discover significantly more vulnerabilities and produce
more precise diffing results to ease manual investigation.
We also verified using SIGMADIFF that the latest version
(v5.14.2.2046) of Zoom has fixed all the CVEs listed in
Table XI except CVE-2023-0464.

The results of this case study show that even famous
commercial software may carry several vulnerable libraries,
and some vulnerabilities have existed for almost five years.
However, this is hard to avoid since it could be difficult
to thoroughly audit all the third-party libraries and their
dependencies, especially for large and complex projects, which
signifies the necessity and practical value of SIGMADIFF.

13

1. memcpy(seed, data, length);

2. ret->seed_len = params->curve->seed->length;

3. }

4. if (!params->order || !params->base || !params->base->data) {

5. if (params->order == NULL

6. || params->base == NULL

7. || params->base->data == NULL

8. || params->base->length == 0) {

9. ECerr(...);

10. goto err;

11. }

12. if ((point = EC_POINT_new(ret)) == NULL)

13. goto err;

Source Code

1. memcpy(group,*(void **)(piVar3 + 2),(long)*piVar3);

2. local_50[2].data = (uchar *)(long)**(int **)(*(long *)(param_1 + 0x10) +

0x10);

3. }

4. if ((((*(long *)(param_1 + 0x20) == 0) ||

5. (piVar3 = *(int **)(param_1 + 0x18), piVar3 == (int *)0x0)) ||

6. (*(long *)(piVar3 + 2) == 0)) || (*piVar3 == 0)) {

7. iVar4 = 0x300;

8. goto LAB_002178fb;

9. }

10. p = EC_POINT_new((EC_GROUP *)local_50);

11. if (p == (EC_POINT *)0x0) {

12. c = (BN_CTX *)0x0;

13. group = (EC_GROUP *)0x0;

14. goto LAB_002175ad;

15. }
SigmaDiff

1. memcpy(group,*(void **)(piVar3 + 2),(long)*piVar3);

2. local_50[2].data = (uchar *)(long)**(int **)(*(long *)(param_1 + 0x10) +

0x10);

3. }

4. if ((((*(long *)(param_1 + 0x20) == 0) ||

5. (piVar3 = *(int **)(param_1 + 0x18), piVar3 == (int *)0x0)) ||

6. (*(long *)(piVar3 + 2) == 0)) || (*piVar3 == 0)) {

7. iVar4 = 0x300;

8. goto LAB_002178fb;

9. }

10. p = EC_POINT_new((EC_GROUP *)local_50);

11. if (p == (EC_POINT *)0x0) {

12. c = (BN_CTX *)0x0;

13. group = (EC_GROUP *)0x0;

14. goto LAB_002175ad;

15. }

inserted
deleted
moved
updated

Diaphora

Fig. 8: Diffing result of CVE-2021-3712

VII. RELATED WORK

A. Binary Diffing

Static Approaches. Some static techniques such as Bin-
Clone [42] and k-gram [64] leverage opcode and operand
information to quantitatively measure the similarity of two
binaries. Diaphora [9] uses multiple static diffing heuristics.
Bindiff [22] and Binslayer [27] apply graph matching al-
gorithms on CFGs. disovRE [40] optimizes runtime perfor-
mance by choosing lightweight syntax features. Tracelet [36]
converts CFG into tracelets that are essentially paths with
fixed length and perform matching. Esh [33], GitZ [34] and
FirmUp [35] decompose functions to strands by performing
data-flow analysis. BinGo [29] inlines libraries into functions,
extracts partial traces from CFG for matching. XMATCH [43]
extracts conditional formulas for specific actions to conduct
the code search. However, SIGMADIFF generates formulas for
all tokens, which is more complex.

Some other static approaches convert graphs into embed-
dings and transform graph matching problem into embedding
similarity calculations. Genius [44] encodes attributed CFG
into embeddings and leverages Locality Sensitive Hashing
(LSH) for scalable online search. Gemini [76] further improves
the embedding generation by using deep neural networks. In-
nerEye [84], Asm2Vec [37] and DeepBinDiff [38] utilize NLP
techniques to learn instruction semantics to boost similarity
calculation. αDiff [59] leverages CNN to generate function
embeddings to avoid manually-crafted features.

Some existing approaches (e.g., XLIR [48]) leverage IR,
but their purpose is for similarity detection or binary-source
code matching. However, SIGMADIFF is the first to conduct
fine-grained binary diffing at the IR level.

Dynamic Approaches. In contrast to static approaches, which
may be thwarted by techniques such as code obfuscations,
research has been done to perform binary diffing via dynamic
approaches. Blanket execution [39] executes function with
the same input, monitors the behaviors, and performs com-
parison. BinSim [61] generates system call sliced segments,
and checks their equivalence with symbolic execution and
constraint solving. By nature, dynamic approaches are resistant
to code obfuscation, but suffer from poor code coverage.

B. Patch-presence Test

Patch-presence tools search for a patch in an unknown
target. Fiber [79] chooses the most appropriate parts of a
patch to create binary signatures that accurately represent the
source-level patch. It is evaluated on Android kernel images.
PDiff [53] further provides improvements for downstream
kernels by generating semantic patch summaries. BScout [32]
associates raw Java bytecode instructions with Java source
code lines, and compares changes with pre-patch/post-patch
source code. These tools assume that function names are
already available or easy to recover while SIGMADIFF does
not. Besides, SIGMADIFF could also be applied in other tasks
such as plagiarism detection and lineage analysis.

C. Graph Learning Models

Traditional graph matching algorithms such as Hungarian
algorithm [56] try to find maximum-weight matchings in
bipartite graphs. Cho et al. [30] learned a graph model based
on representations with histogram-based attributes for nodes
and edges. Bayati et al. [26] developed a message passing
algorithm for network alignment problem. In general, these
techniques treat graph matching as an assignment problem on
graphs, which is NP-hard, and do not scale very well.

Graph Representation Learning. Multiple recent methods
leverage deep learning to learn graph embeddings, which can
facilitate graph matching. Works such as DeepWalk [66] and
node2vec [47] encode graph information based on random
walks. LINE [72] combines two encoder-decoder objectives
that optimize graph proximity. DNGR [28] and SDNE [74]
leverage autoencoders to compress node’s local structural
information. Some other techniques such as GCN [55] and
GraphSAGE [49] employ convolutional networks or LSTM
as aggregators to encode graph information. TADW [78]
considers feature vectors for each node and perform matrix
factorization to generate graph embeddings.

Deep Graph Matching. GSimCNN [24] uses GCNs to ap-
proximate the graph edit distance between two graphs. Gra-
phUIL [81] proposes a deep graph model based on global and
local network topology preservation. CMPNN [82] uses GNNs
to transform coordinates of feature points into local features
and discover the optimal alignment. DGMC [46] applied in
SIGMADIFF uses localized node embeddings computed by a
GNN to obtain an initial ranking, and employs synchronous
message passing networks to reach a matching consensus. It
strikes a nice balance between scalability and global node
correspondences consistency.

14

VIII. DISCUSSION

In this section, we discuss the limitations and unsolved
challenges of SIGMADIFF.

PDG changes. Since our approach conducts the matching
on two PDGs, the effectiveness of our approach could be
limited by the code transformations that influence the stability
of PDG, such as loop unrolling, function inlining, and code
obfuscation. Note that our inter-procedural PDG can only
partially solve the function inlining problem (mainly with
simple cases), because the structure of the graphs are still
different considering we have added extra nodes to the graph.
Moreover, there are cases when callees are only partially
inlined for some paths. These PDG changes will adversely
influence our matching accuracy.

Lightweight symbolic analysis. Our lightweight symbolic
analysis is robust in general and can address some of the
code transformations caused by function inlining since it is
inter-procedural. However, since our primary goal is to extract
semantic information efficiently, we sacrifice soundness to
some extent. Besides, the generated expressions are not helpful
for matching SSE instructions with other instructions, since
they are completely different at IR level.

One-to-many matching. SIGMADIFF can only perform one-
to-one matching of the pseudocode tokens. However, in reality,
a token may need to be matched with multiple tokens. We plan
to systematically address this in our future work.

Indirect calls/jumps. We ignore indirect calls/jumps when
generating the callgraph and IPDG, which will influence the
accuracy of diffing (evaluated in §VI-B5). Nevertheless, this
limitation exists for all diffing tools. In our future work, we
aim to systematically tackle this issue.

Scalability. Our current iterative algorithm can deal with
large binaries that cannot fit in the GPU memory at once.
However, it is inefficient as it matches one function pair at a
time. A better iterative algorithm should better utilize the GPU
memory and process larger subgraphs per iteration. We leave
the improvement of the iterative algorithm as future work.

IX. CONCLUSION

In this paper, we have proposed a model called SIGMADIFF
for pseudocode diffing. SIGMADIFF leverages binary program
analysis techniques and deep learning to achieve accurate
and scalable pseudocode diffing. It consists of three stages:
pre-processing, diffing, and post-processing. Extensive exper-
iments have been conducted to compare SIGMADIFF with
the state-of-the-art deep learning-based model (DeepBinDiff)
and the open-source solution (Diaphora). Experimental results
show that SIGMADIFF significantly outperforms these models
in terms of accuracy and efficiency. Large-scale case studies
also signify the necessity and practical value of SIGMADIFF.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful and constructive comments. This work was
supported by NSF under grant No. 1719175 and 2022 Amazon
Research Award.

REFERENCES

[1] Automated struct identification with ghidra. https://blog.grimm-co.com/
2020/11/automated-struct-identification-with.html, 2020.

[2] Cve-2020-13790 details. https://nvd.nist.gov/vuln/detail/
CVE-2020-13790, 2020.

[3] Gnu coreutils. https://www.gnu.org/software/coreutils/, 2020.
[4] Symbolic value set analysis. https://github.com/penhoi/

ghidra-decompiler/wiki/Symbolic-Value-Set-Analysis, 2020.
[5] addr2line. https://sourceware.org/binutils/docs/binutils/addr2line.html,

2022.
[6] Apache software foundation. https://www.apache.org/, 2022.
[7] Apache thrift. https://thrift.apache.org/, 2022.
[8] The apache xerces project. https://xerces.apache.org/, 2022.
[9] Diaphora. http://diaphora.re/, 2022.

[10] Gnu diffutils. https://www.gnu.org/software/diffutils/, 2022.
[11] Gnu findutils. https://www.gnu.org/software/findutils/, 2022.
[12] The gnu mp bignum library. https://gmplib.org/, 2022.
[13] Gumtree heuristics. https://tinyurl.com/53kpf735, 2022.
[14] Ida disassembler and debugger. https://www.hex-rays.com/products/

ida/, 2022.
[15] libjpeg-turbo. https://libjpeg-turbo.org/, 2022.
[16] Llvm language reference manual. https://llvm.org/docs/LangRef.html,

2022.
[17] Phoronix. https://openbenchmarking.org/tests, 2022.
[18] Putty: a free ssh and telnet client. https://www.chiark.greenend.org.uk/

∼sgtatham/putty/, 2022.
[19] Retdec, a retargetable machine-code decompiler based on llvm. https:

//github.com/avast/retdec, 2022.
[20] Stockfish. https://stockfishchess.org/, 2022.
[21] Zoom. https://zoom.us/, 2022.
[22] Zynamics bindiff. https://www.zynamics.com/bindiff.html, 2022.
[23] National Security Agency. Ghidra reverse engineering tool. https://

ghidra-sre.org/, 2022.
[24] Yunsheng Bai, Hao Ding, Yizhou Sun, and Wei Wang. Convolutional

set matching for graph similarity. arXiv preprint arXiv:1810.10866,
2018.

[25] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is
not what you execute. ACM Transactions on Programming Languages
and Systems (TOPLAS), 32(6):1–84, 2010.

[26] Mohsen Bayati, David F Gleich, Amin Saberi, and Ying Wang.
Message-passing algorithms for sparse network alignment. ACM
Transactions on Knowledge Discovery from Data (TKDD), 7(1):1–31,
2013.

[27] Martial Bourquin, Andy King, and Edward Robbins. Binslayer: accurate
comparison of binary executables. In Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop,
pages 1–10, 2013.

[28] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for
learning graph representations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016.

[29] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu,
Chia Yuan Cho, and Hee Beng Kuan Tan. Bingo: Cross-architecture
cross-os binary search. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 678–689, 2016.

[30] Minsu Cho, Karteek Alahari, and Jean Ponce. Learning graphs to match.
In Proceedings of the IEEE International Conference on Computer
Vision, pages 25–32, 2013.

[31] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and
F Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(4):451–490, 1991.

[32] Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Junyan Chen,
Xinyu Xing, Xiaohan Zhang, Xin Tan, Min Yang, and Zhemin Yang.
BScout: Direct whole patch presence test for java executables. In 29th

15

https://blog.grimm-co.com/2020/11/automated-struct-identification-with.html
https://blog.grimm-co.com/2020/11/automated-struct-identification-with.html
https://nvd.nist.gov/vuln/detail/CVE-2020-13790
https://nvd.nist.gov/vuln/detail/CVE-2020-13790
https://www.gnu.org/software/coreutils/
https://github.com/penhoi/ghidra-decompiler/wiki/Symbolic-Value-Set-Analysis
https://github.com/penhoi/ghidra-decompiler/wiki/Symbolic-Value-Set-Analysis
https://sourceware.org/binutils/docs/binutils/addr2line.html
https://www.apache.org/
https://thrift.apache.org/
https://xerces.apache.org/
http://diaphora.re/
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/findutils/
https://gmplib.org/
https://tinyurl.com/53kpf735
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://libjpeg-turbo.org/
https://llvm.org/docs/LangRef.html
https://openbenchmarking.org/tests
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://github.com/avast/retdec
https://github.com/avast/retdec
https://stockfishchess.org/
https://zoom.us/
https://www.zynamics.com/bindiff.html
https://ghidra-sre.org/
https://ghidra-sre.org/

USENIX Security Symposium (USENIX Security 20), pages 1147–1164,
August 2020.

[33] Yaniv David, Nimrod Partush, and Eran Yahav. Statistical similarity of
binaries. ACM SIGPLAN Notices, 51(6):266–280, 2016.

[34] Yaniv David, Nimrod Partush, and Eran Yahav. Similarity of binaries
through re-optimization. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 79–94, 2017.

[35] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup: Precise static
detection of common vulnerabilities in firmware. ACM SIGPLAN
Notices, 53(2):392–404, 2018.

[36] Yaniv David and Eran Yahav. Tracelet-based code search in executables.
Acm Sigplan Notices, 49(6):349–360, 2014.

[37] Steven HH Ding, Benjamin CM Fung, and Philippe Charland.
Asm2vec: Boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization. In 2019
IEEE Symposium on Security and Privacy (SP), pages 472–489. IEEE,
2019.

[38] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. Deepbindiff:
Learning program-wide code representations for binary diffing. In
Network and Distributed System Security Symposium, 2020.

[39] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley.
Blanket execution: Dynamic similarity testing for program binaries and
components. In 23rd USENIX Security Symposium (USENIX Security
14), pages 303–317, 2014.

[40] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla.
discovre: Efficient cross-architecture identification of bugs in binary
code. In NDSS, 2016.

[41] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. Fine-grained and accurate source code differ-
encing. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering, pages 313–324, 2014.

[42] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe Charland, and
Mourad Debbabi. Binclone: Detecting code clones in malware. In 2014
Eighth International Conference on Software Security and Reliability
(SERE), pages 78–87. IEEE, 2014.

[43] Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou, Andrew Hen-
derson, and Heng Yin. Extracting conditional formulas for cross-
platform bug search. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pages 346–
359, 2017.

[44] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa,
and Heng Yin. Scalable graph-based bug search for firmware images.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 480–491, 2016.

[45] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program
dependence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems (TOPLAS), 9(3):319–349, 1987.

[46] Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, and
Nils M. Kriege. Deep graph matching consensus. In International
Conference on Learning Representations, 2020.

[47] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864,
2016.

[48] Yi Gui, Yao Wan, Hongyu Zhang, Huifang Huang, Yulei Sui, Guandong
Xu, Zhiyuan Shao, and Hai Jin. Cross-language binary-source code
matching with intermediate representations. In 2022 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 601–612. IEEE, 2022.

[49] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 1025–
1035, 2017.

[50] Irfan Ul Haq and Juan Caballero. A survey of binary code similarity.
ACM Computing Surveys (CSUR), 54(3):1–38, 2021.

[51] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural
slicing using dependence graphs. In Proceedings of the ACM SIGPLAN
1988 conference on Programming Language design and Implementa-
tion, pages 35–46, 1988.

[52] Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang,
Yang Liu, and Wenyun Zhao. Cldiff: generating concise linked code
differences. In 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 679–690. IEEE, 2018.

[53] Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan
Zhang, Xinyu Xing, Min Yang, and Zhemin Yang. Pdiff: Semantic-
based patch presence testing for downstream kernels. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 1149–1163, 2020.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. iclr. 2015. arXiv preprint arXiv:1412.6980, 9, 2015.

[55] Thomas N. Kipf and Max Welling. Semi-supervised classification
with graph convolutional networks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

[56] Harold W Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[57] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In International conference on machine learning, pages
1188–1196. PMLR, 2014.

[58] Xuezixiang Li, Yu Qu, and Heng Yin. Palmtree: Learning an assembly
language model for instruction embedding. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
page 3236–3251, 2021.

[59] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua
Piao, and Wei Zou. αdiff: cross-version binary code similarity detec-
tion with dnn. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pages 667–678, 2018.

[60] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
Semantics-based obfuscation-resilient binary code similarity compari-
son with applications to software plagiarism detection. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 389–400, 2014.

[61] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. Binsim:
Trace-based semantic binary diffing via system call sliced segment
equivalence checking. In 26th USENIX Security Symposium (USENIX
Security 17), pages 253–270, 2017.

[62] Jiang Ming, Dongpeng Xu, and Dinghao Wu. Memoized semantics-
based binary diffing with application to malware lineage inference. In
IFIP International Information Security and Privacy Conference, pages
416–430. Springer, 2015.

[63] Eugene W Myers. Ano (nd) difference algorithm and its variations.
Algorithmica, 1(1-4):251–266, 1986.

[64] Ginger Myles and Christian Collberg. K-gram based software birth-
marks. In Proceedings of the 2005 ACM symposium on Applied
computing, pages 314–318, 2005.

[65] Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto. Nil: large-scale
detection of large-variance clones. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 830–841, 2021.

[66] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 701–710, 2014.

[67] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelović, Akihiko Torii,
Tomas Pajdla, and Josef Sivic. Neighbourhood consensus networks.
In Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems, pages 1658–1669, 2018.

[68] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quin-
lan, and Zhendong Su. Detecting code clones in binary executables.
In Proceedings of the eighteenth international symposium on Software
testing and analysis, pages 117–128, 2009.

[69] Micha Sharir, Amir Pnueli, et al. Two approaches to interprocedural
data flow analysis. New York University. Courant Institute of Mathe-
matical Sciences . . . , 1978.

[70] Olin Shivers. Control flow analysis in scheme. In Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language design
and Implementation, pages 164–174, 1988.

[71] Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices

16

and doubly stochastic matrices. Pacific Journal of Mathematics,
21(2):343–348, 1967.

[72] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei. Line: Large-scale information network embedding. In
Proceedings of the 24th international conference on world wide web,
pages 1067–1077, 2015.

[73] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5(2):285–309, 1955.

[74] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network
embedding. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1225–1234,
2016.

[75] Shuai Wang and Dinghao Wu. In-memory fuzzing for binary code
similarity analysis. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 319–330. IEEE, 2017.

[76] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform binary
code similarity detection. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 363–
376, 2017.

[77] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and
Fu Song. Spain: security patch analysis for binaries towards under-
standing the pain and pills. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 462–472. IEEE,
2017.

[78] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y
Chang. Network representation learning with rich text information.
In Proceedings of the 24th International Conference on Artificial
Intelligence, pages 2111–2117, 2015.

[79] Hang Zhang and Zhiyun Qian. Precise and accurate patch presence test
for binaries. In 27th USENIX Security Symposium (USENIX Security
18), pages 887–902, August 2018.

[80] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang,
and Xudong Liu. A novel neural source code representation based on
abstract syntax tree. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pages 783–794. IEEE, 2019.

[81] Wen Zhang, Kai Shu, Huan Liu, and Yalin Wang. Graph neural
networks for user identity linkage. arXiv preprint arXiv:1903.02174,
2019.

[82] Zhen Zhang and Wee Sun Lee. Deep graphical feature learning
for the feature matching problem. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5087–5096, 2019.

[83] Gang Zhao and Jeff Huang. Deepsim: deep learning code functional
similarity. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 141–151, 2018.

[84] Fei Zuo, Xiaopeng Li, Zhexin Zhang, Patrick Young, Lannan Luo, and
Qiang Zeng. Neural machine translation inspired binary code similarity
comparison beyond function pairs. In NDSS (2019), 2019.

APPENDIX A
HYPERPARAMETERS SELECTION

Embedding Sizes. We test five sets of embedding sizes, where
the first embedding size is the dimension of the hidden states
of Ψθ1 , and the second embedding size is the dimension of the
hidden states of Ψθ2 . The initial node embeddings generated
by doc2vec have the same dimension as the first embedding
size. This experiment is conducted on the cmp binary in
Diffutils 3.6 O2 and O3. Table XII shows the recall, precision
and F1-score when SIGMADIFF is configured with different
embedding sizes. We can observe that the performance of
SIGMADIFF increases as the embedding sizes grow. In our
experiments, we choose the embedding sizes 128 and 32 based
on our hardware capacity.

Number of Hops. Figure 9 shows the F1-score during training
when the number of hops (see §V-C) in Ψθ1 is set to different

TABLE XII: Embedding sizes’ influences
Embedding Sizes Recall Precision F1GNN1 GNN2

32 16 0.518 0.705 0.597
64 16 0.827 0.893 0.859
128 32 0.872 0.922 0.896
256 32 0.881 0.931 0.905
512 64 0.915 0.952 0.933

0 100 200 300 400 500 600
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

hop=1
hop=2
hop=3
hop=4
hop=5

Fig. 9: F1-scores with different Number of hops values

values. The model is trained on the cmp binary in Diffutils
3.6 O2 and O3 for 800 epochs. As shown in the figure,
adding more hops is helpful for speeding up the training and
improving the final accuracy. In this paper, we set hops to be
3 considering both accuracy and efficiency.

APPENDIX B
EXAMPLE OF MERGE AND SOUNDNESS ANALYSIS

Example. As mentioned in §IV-B, the merge operation is
helpful for handling branches/loops. For example, the value
of variable i in Figure 10 is merged from two paths: (1) the
initialization at the beginning, (2) the i += 4 at the end of each
iteration. During analysis, the symbolic expression of i is 0 at
the beginning. Then i is incremented by 4, and the algorithm
merges the old symbolic expression of i with the new one 4.
The merged result is ∅, since 0, 4 /∈ {ARGn, Str, Symbol}
and sources(0) = sources(4) = ∅. When i is equal to
8, the symbolic expression of i is still ∅ due to the same
reason. Therefore a fixed point is reached and we exit the for-
loop. Compared to value-set analysis that estimates a range of
numeric values, our approach is more focused on how a value
is calculated. Therefore, we choose to only keep the sources of
the expression to simplify the merge operation but still record
a certain amount of semantic information.

1. for(int i = 0; i < 16; i += 4) {

2. *(param_1 + i) = param_2;

3. }

4. uVar1 = *(param_1 + 4)

Fig. 10: A simple pseudocode snippet

Soundness Analysis. In most cases, the symbolic expressions
over approximate concrete values. But there are unsound cases
due to the fact that we cannot compare the equivalence of two
symbolic expressions. For example, in Figure 10, param 1+i
and param 1 + 4 could point to the same memory location.
The first one is dereferenced in the loop to store the value
param 2 while the second one is dereferenced later to load
the value. We will consider the loaded value different from
the stored value since the symbolic expressions of the two

17

addresses are not equal (i.e., {ARG1} and ARG1 + 4). As a
result, we will lose track of the stored value param 2.

APPENDIX C
FUNCTION FEATURES AND FUNCTION MATCHING RESULTS

We explain the extracted function features as follows. Note
that our purpose of function matching is to help locate the
training nodes of the DGMC model with high quality.

• Return values. We collect the symbolic values of the return
values from each of the return IR within the function.

• Side effects. The side effects happen when the function
writes to memory outside the current stack frame. The side
effect feature set includes all the memory address and the
values that are written to the memory. For instance, in the
example shown in Figure 4, the side effect feature set would
be {"ARG1+8:ARG1+20"} (ID = 7).

• Loads. We also consider the memory loads whose addresses
are related to the function parameters. We collect the ad-
dresses of these loads as the load feature set.

• Strings and library calls. We only consider the function
names of the library calls and ignore the parameters.

• Function parameter types. Function parameter types in-
clude primitive types such as boolean, int, recovered
by the decompiler, and also pointers of data structures.

To calculate the similarity score between two functions, we
first calculate a Jaccard similarity for the Return values, Side
effects, Loads, Strings and library calls feature sets respec-
tively. Then we calculate the similarity score of Function pa-
rameter types. In this step, primitive types are directly counted.
For pointer types, we calculate the Jaccard similarity of the
data structure fields they point to. Then we calculate the final
similarity score between the two functions by using a multi-
layer perceptron (MLP), considering different features should
have different impacts on the final similarity. Specifically, we
train the MLP weights using the binary functions from LLVM
(v3.7.0 and v3.8.1) framework. Function pairs with the same
name are labeled as 1 and function pairs with different names
are sampled randomly and labeled as 0.

After obtaining the function similarity scores through MLP,
we leverage a 2-hop greedy matching algorithm to conduct a
function-level matching. The algorithm is the same as the k-
hop algorithm in DeepBinDiff [38]. k is set to be two to handle
function inlining, while in DeepBinDiff it is four due to block
reordering. The main idea is to match along the call graph
starting from the most similar functions. Specifically, we locate
new matching functions by comparing the 2-hop neighbors to
functions that have already been matched so that the context
provided by the call graph can be leveraged.

TABLE XIII: Function Matching Results
Precision Recall

Avg. Stdev. Avg. Stdev.
O0 vs. O3 0.775 0.043 0.707 0.038
O1 vs. O3 0.884 0.037 0.841 0.034
O2 vs. O3 0.934 0.036 0.879 0.030

Function matching is only an intermediate step of SIG-
MADIFF whose purpose is to locate the training nodes for the
DGMC model. However, in order to show the robustness of
the extracted features, and the performance of our function-
level matching module (see §V-B), we report precision and

recall scores of this step (in the cross-optimization-level diffing
task) in Table XIII. The dataset includes all the versions of
the binaries in Coreutils, Diffutils, and Findutils. As shown in
the table, SIGMADIFF has reasonably good function matching
results which are further leveraged in the following training
nodes selection and pseudocode diffing stages.

APPENDIX D
NUMBER OF TRAINING NODES

To demonstrate the impact of the training nodes, we
investigate the percentage of the training nodes relative to the
total number of nodes in the Diffutils experiments. As shown
in Table XIV, the percentage of training node pairs is related
to the difficulty of diffing. For instance, there are more training
nodes generated when comparing O2 and O3 than comparing
O0 and O3. The percentage of training nodes in Clang vs.
GCC and ARM vs. x86-64 is also notably low. This aligns
with the final diffing accuracy.

TABLE XIV: The training node percentage in Diffutils exper-
iments.

Configurations Percentage Configurations Percentage
O0 vs. O3 12.8% v3.4 vs. v3.6 36.2%
O1 vs. O3 22.7% Clang vs. GCC 14.6%
O2 vs. O3 31.4% ARM vs. x86-64 18.2%

v2.8 vs. v3.6 22.8% - -

APPENDIX E
COMPARISON WITH SOURCE CODE CLONE DETECTION

In this section, we compare SIGMADIFF with a state-
of-the-art token-based source code clone detector, NIL [65].
Specifically, we run NIL on two sets of pseudocode functions
and extract the token-level code clone detection results as the
matching results to compare with SIGMADIFF. NIL is based on
an N-gram representation of token sequences and an inverted
index. By determining the longest shared subsequence between
the token sequences, the similarity is measured. Table XV
shows NIL’s precision, recall, and F1-score on cross-version
and cross-optimization-level diffing tasks on Diffutils.

TABLE XV: Comparison with NIL on Diffutils. Si: SIGMAD-
IFF, Ni: NIL

Recall Precision F1
Si Ni Si Ni Si Ni

v2.8 vs. v3.6 0.694 0.072 0.848 0.718 0.763 0.126
v3.4 vs. v3.6 0.928 0.473 0.957 0.858 0.942 0.604
v2.8 O2 vs. O3 0.868 0.325 0.916 0.860 0.891 0.471

In general, NIL does not work well on pseudocode diffing
tasks especially when the code changes are large. SIGMADIFF
outperforms NIL by large margins in terms of F1-scores on
all three tasks. NIL’s performance drops significantly when
the difference between two code sets increases. Since it relies
on the longest shared subsequence, the matching accuracy is
largely influenced when the token sequences change. It cannot
perform the cross-opt-level diffing well due to the same reason.
By looking at Table XV and Table V, we can observe that NIL
performs even worse than Diaphora. These results show that
source code clone detection (at token level) techniques cannot
be leveraged in pseudocode diffing.

18

APPENDIX F
ARTIFACT APPENDIX

This artifact includes a release of our proposed pseudocode
diffing prototype, SIGMADIFF. It also includes a sample script
to show how we can use it to perform cross-optimization-level,
cross-version, cross-architecture, and cross-compiler diffing
among sets of binaries, which outputs the diffing results and
evaluation results.

A. Description & Requirements

1) How to access: The full artifact is available on GitHub
at the following URL: https://github.com/yijiufly/SigmaDiff/
tree/v0.1. The DOI link is https://doi.org/10.5281/zenodo.
8287857.

2) Hardware dependencies: A machine with NVIDIA GPU
with at least 11GB of memory and compute capability of 5.2
or above is required. Here is a list of NVIDIA GPUs and their
compute capabilities: https://developer.nvidia.com/cuda-gpus.

3) Software dependencies:

• Ubuntu 20.04 system
• CUDA 11.1
• Python 3.9.7
• Pytorch 1.9.1
• Gensim 4.0.1
• Scipy 1.10.1
• Torch-geometric 2.0.4
• Torch-scatter 2.0.9
• Torch-sparse 0.6.12
• Numpy 1.23.2
• Ghidra 9.2.2
◦ need to import json-simple-1.1.1.jar to

ghidra, see README for detailed instructions.
• Java 11

4) Benchmarks: Since the complete experiment in our
evaluation section is lengthy, we only include the Coreutils
dataset in this artifact. It is located in the data/binaries
directory. We include three versions (v5.93, v6.4, v8.1) of
Coreutils, and include different optimization levels (from O0
to O3) for version 5.93. We also include the clang version and
arm version of Coreutils in this directory. The source code
of Coreutils is located at data/sources, which is needed
during the evaluation of the cross-version diffing.

The complete dataset of our evaluation can be
downloaded from https://drive.google.com/drive/folders/
1IimJi-03B4ljogtk4hli6B5G12MnpWJ-?usp=sharing.

B. Artifact Installation & Configuration

To prepare the environment for the evaluation, it is rec-
ommended to create a conda environment and install all the
software dependencies listed in §F-A3.

Our release requires no installation. Detailed instructions
on using and running the tool are included in the README
file.

C. Major Claims

• (C1): SIGMADIFF outperforms the state-of-the-art sys-
tems in cross-version, cross-optimization-level, cross-
compiler, and cross-architecture diffing tasks. This is
proven by the experiment (E1) whose results are reported
in Table V, Figure 6, Table VI, and Table VII respectively
in the paper.

• (C2): SIGMADIFF is efficient with the help of GPU
and the pre-training and fine-tuning schema. This is also
proven by the experiments (E1) whose results are reported
in Figure 7.

D. Evaluation

1) Experiment (E1): [2 hours for setting up the envi-
ronment and 20-50 hours of execution time (depending on
the GPU)]: This experiment performs cross-optimization-level,
cross-version, cross-architecture, and cross-compiler diffing
on the Coreutils binary set. We only provide a scaled-down
version of our paper’s evaluation but it is sufficient to confirm
our conclusions since Coreutils is representative and it consists
of binaries of different sizes. Our evaluation metrics include
precision, recall, and F1-score. We also evaluate the efficiency
of SIGMADIFF by comparing the execution time with the size
of the binaries.

[How to] Run ./run.sh. The detailed diffing out-
put can be found in the out directory, the evaluation
results (precision, recall, and F1-score) can be found in
out/finalresults.txt, and the execution time results
can be found in out/time.txt.

[Preparation] Before running ./run.sh, the
json-simple-1.1.1.jar needs to be imported to
a Ghidra project (see README for detailed instructions).
Then the Ghidra home directory and the Ghidra project name
must be specified in run.sh.

[Execution] Run ./run.sh.

[Results] The evaluation script run.sh will generate
evaluation results in out/finalresults.txt. Each row
shows the average precision, recall, and F1-score of our diffing
results for each group of binaries. In total, it should generate 7
lines of results. These results should be compared with the cor-
responding rows in Table V, Table VI, Table VII in the paper
and the detailed cross-optimization-level results in the artifact
repository. It is possible there are variations caused by the
DGMC model. In most cases, the variation should be around
0.05. The maximum variation observed is approximately 0.1. It
is expected that the SIGMADIFF algorithm will achieve better
results than the baselines in terms of F1-score.

The execution time results are in out/time.txt. Each
row represents a pair of execution samples and shows the
execution time as well as the average size of the samples. The
data in each row corresponds to a dot depicted in Figure 7. It
is expected that the dots fall in the orange range approximately
in the figure if the GPU capability is similar to RTX 2080Ti.
If the GPU has a lower capability than the RTX 2080Ti, it will
result in a longer execution time.

19

https://github.com/yijiufly/SigmaDiff/tree/v0.1
https://github.com/yijiufly/SigmaDiff/tree/v0.1
https://doi.org/10.5281/zenodo.8287857
https://doi.org/10.5281/zenodo.8287857
https://developer.nvidia.com/cuda-gpus
https://drive.google.com/drive/folders/1IimJi-03B4ljogtk4hli6B5G12MnpWJ-?usp=sharing
https://drive.google.com/drive/folders/1IimJi-03B4ljogtk4hli6B5G12MnpWJ-?usp=sharing

	Introduction
	Motivation
	A Motivating Example
	Existing Techniques
	Our Technique

	Overview And Background
	Approach Overview
	Background

	Pre-processing
	Graph Construction
	Semantic Features Extraction
	Lightweight Symbolic Analysis
	Node Feature Extraction
	Function Feature Extraction and Call Graph Generation

	Pseudocode Diffing
	Graph Matching Consensus Model
	Training Node Selection
	Function-level Matching
	Training Node Selection

	Whole Binary Matching
	Post-processing

	Evaluation
	Experimental Setup
	Deep Learning Model Settings
	Datasets
	Baseline Techniques
	Evaluation Metrics

	Effectiveness
	Cross-version Diffing
	Cross-optimization-level Diffing
	Cross-compiler Diffing
	Cross-architecture Diffing
	C++ Programs Testing

	Efficiency
	Ablation Study
	Case Study
	Patch Detection on Open-source Libraries
	Vulnerability Analysis on a Closed-source Application

	Related Work
	Binary Diffing
	Patch-presence Test
	Graph Learning Models

	Discussion
	Conclusion
	References
	Appendix A: Hyperparameters Selection
	Appendix B: Example of merge and Soundness Analysis
	Appendix C: Function Features and Function Matching Results
	Appendix D: Number of Training Nodes
	Appendix E: Comparison with Source Code Clone Detection
	Appendix F: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Experiment (E1)

