
OS-SOMMELIER: Memory-Only Operating System
Fingerprinting in the Cloud

Yufei Gu†, Yangchun Fu†, Aravind Prakash‡, Zhiqiang Lin†, Heng Yin‡

†Department of Computer Science
The University of Texas at Dallas

800 W. Campbell RD
Richardson, TX 75080

{firstname.lastname}@utdallas.edu

‡Department of Computer Science
Syracuse University
400 Ostrom Avenue
Syracuse, NY 13210

{arprakas,heyin}@syr.edu

ABSTRACT
Precise fingerprinting of an operating system (OS) is critical to
many security and virtual machine (VM) management applications
in the cloud, such as VM introspection, penetration testing, guest
OS administration (e.g., kernel update), kernel dump analysis, and
memory forensics. The existing OS fingerprinting techniques pri-
marily inspect network packets or CPU states, and they all fall short
in precision and usability. As the physical memory of a VM is
always present in all these applications, in this paper, we present
OS-SOMMELIER, a memory-only approach for precise and efficient
cloud guest OS fingerprinting. Given a physical memory dump
of a guest OS, the key idea of OS-SOMMELIER is to compute the
kernel code hash for the precise fingerprinting. To achieve this
goal, we face two major challenges: (1) how to differentiate the
main kernel code from the rest of code and data in the physical
memory, and (2) how to normalize the kernel code to deal with
practical issues such as address space layout randomization. We
have designed and implemented a prototype system to address these
challenges. Our experimental results with over 45 OS kernels, in-
cluding Linux, Windows, FreeBSD, OpenBSD and NetBSD, show
that our OS-SOMMELIER can precisely fingerprint all the tested
OSes without any false positives or false negatives, and do so within
only 2 seconds on average.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.7 [Opera-
ting Systems]: Organization and Design; D.4.m [Operating Sys-
tems]: Miscellaneous

Keywords
Operating System Fingerprinting, Virtual Machine Introspection,
Memory Forensics, Cloud Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’12, October 14-17, 2012, San Jose, CA USA
Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00.

1. INTRODUCTION
In an Infrastructure as a Service (IaaS) cloud, there is an in-

creasing need for guest operating system (OS) fingerprinting. For
each virtual machine (VM) running in the cloud, the cloud provider
needs to know the exact OS version, such that OS-specific man-
agement and security tasks can be performed. For example, the
cloud provider may need to perform virtual machine introspection
(VMI [8, 14, 19, 27, 28]) to monitor the activities within the guest
VM, in order to detect and prevent malicious attacks. The cloud
provider may also conduct penetration testing to pinpoint the secu-
rity vulnerabilities in the guest OS, and perform memory forensic
analysis or kernel dump analysis on the memory snapshots of the
virtual machine. All these tasks require prior knowledge of the exact
guest OS version (especially for the recent binary code reuse based
VMI techniques such as VMST [14]). Although the cloud users
may provide the information about the OS version, such information
may not be reliable and may become out dated after the guest OS is
patched or updated on the regular basis.

Unfortunately, the existing OS fingerprinting techniques fall short
in precision and usability. More specifically, network-based finger-
printing (e.g., nmap [15, 16] and Xprobe2 [3]) recognizes the dis-
crepancies in network protocol implementations by sending crafted
packets and analyzing the difference in responses. This network-
based approach is often imprecise and cannot pinpoint the minor OS
differences such as Linux-2.6.18 vs Linux-2.6.20. Moreover, the
network-based approach becomes less usable since modern OSes
(e.g., Windows 7) disable many network services by default (by
closing the TCP/UDP ports).

Two other recent systems explore the end-host based information
such as CPU register values [30] and the interrupt handler code
hashes [10] for guest OS fingerprinting. They are still not precise
enough to pinpoint the different service packs for Windows and
minor revisions for Linux and BSD families. Filesystem-based
fingerprinting is another approach. Tools like virt-inspector [20]
examine the file system of the VM, look for main kernel code, and
determine the OS version. This approach is straightforward, but is
not feasible for a VM with encrypted file system, due to its privacy
concerns.

Therefore, to provide a strong support for management and se-
curity tasks in the cloud, we need to revisit the OS fingerprinting
problem. Since the memory state of a VM is always available to the
cloud provider, we propose to take a memory-only approach for OS
fingerprinting. This new approach needs to be precise enough to
recognize the minor versions of an OS kernel, and efficient enough
to get the fingerprinting result within a short period of time. To

make this technique as generic as possible, we choose not to rely
on other inputs (such as CPU state). As a result, our memory-only
fingerprinting can provide direct support to many other applications
such as memory forensics and kernel dump analysis.

To answer these needs, we have developed a new memory-only
OS fingerprinting system, called OS-SOMMELIER. The key idea of
OS-SOMMELIER is to compute unique core kernel code hashes as
the signature from a memory dump to precisely fingerprint an OS.
However, to realize this idea, we are facing several new challenges,
especially for the widely used x86 architecture in the cloud. The
first challenge is how to distinguish the main kernel code from the
rest of code and data. It is commonplace that code and data can
be mixed together. The device drivers should also be excluded
from the signature, as they are not part of the main kernel code and
can be loaded in different versions of the OS kernel. The second
challenge is how to tolerate real-world issues such as address space
layout randomization (ASLR [5, 6, 39, 41]), page swapping, and the
dynamic kernel code patches (i.e., hot-patches [36]).

We have devised a suite of new techniques to address these chal-
lenges such as core kernel code identification, correlative disassem-
bling, and normalized signature matching in our prototype system
OS-SOMMELIER. Our experimental results with over 45 OS ker-
nels, including Linux, Windows, OpenBSD, NetBSD, and FreeBSD
(BSD family), show that our system can precisely fingerprint all the
OSes we tested without any false positives and false negatives, in
under 2 seconds on average.

The main contribution of this paper is highlighted as follows:

• We present a novel approach to precisely fingerprint an OS
kernel when provided with only a physical memory dump.
Our approach is general (OS-agnostic) without relying on any
heuristics for particular OSes, and it uniformly works for all
the kernels we tested.

• We devise a set of novel techniques to automatically identify
core kernel code in the physical memory, by exploring the di-
rect control flow transfer pattern in kernel code and the unique
kernel code (i.e., system level) instructions, and normalize
the kernel code pages by retaining the op-code and register
operand of the disassembled instructions and hashing them as
the signatures.

• We have implemented our system OS-SOMMELIER, and
tested it over a variety of widely used OS kernels such as
Linux, Windows, and BSD family. Our experimental results
show that OS-SOMMELIER has no false positives or false
negatives for all the memory dumps in our data set. OS-
SOMMELIER is also efficient. It takes just a few seconds to
fingerprint a given OS.

2. SYSTEM OVERVIEW
In this section, we first describe the problem statement in §2.1,

then identify the challenges and outline our corresponding key tech-
niques in §2.2. Finally, we give an overview of our system in §2.3.

2.1 Problem Statement
Given a memory snapshot of a VM running in the cloud, we aim

to precisely determine the OS version. In particular, we have three
design goals: precision, efficiency, and robustness.

• Precision: We need to determine the OS family and the exact
version. For example, for Windows, we need to know whether
it is Windows XP or Windows 7, and further identify which
service pack has been installed. For Linux, we not only

need to know its major version (e.g., 2.6 or 3.0) but also the
minor version number. This is because many security tasks
(e.g., [14, 19, 27, 28, 37]) have to rely on the exact OS version
to make OS-specific decision.

• Efficiency: Given that the cloud provider usually manages
a large volume of live VMs, it becomes necessary to obtain
the information of the OS version within just few seconds for
each VM.

• Robustness: A VM running in the cloud may have been
compromised and attackers may manipulate the memory state
of the VM to bypass or mislead our fingerprinting system (to
further defeat VMI for instance). Thus, our OS fingerprinting
technique needs to be robust enough to counter various attacks.
For example, an intuitive solution might be searching the OS
version string or some particular byte sequence in the memory.
Then attackers can easily tamper with this string to defeat the
OS fingerprinting.

Threat Model and Our Assumption To achieve the goal of ro-
bustness, we need to consider a realistic thread model. As kernel
rootkits become commonplace, we imagine that attackers can often
obtain the highest privilege of the VM, infiltrate into the guest OS
kernel and can execute arbitrary code and modify arbitrary memory
locations within the VM. In order to defeat memory-based OS fin-
gerprinting, attackers can manipulate the memory state (including
the kernel data), by either modifying the existing kernel code and
data, or creating extraneous noisy data. However, we assume the
integrity of (at least the large body) the main kernel code. Recent
advance in trusted computing techniques (e.g., [24, 32]) and virtual
machine security (e.g., [4, 9, 43]) can easily ensure the integrity
of the kernel code pages. For this reason, we decide to focus on
the main kernel code to achieve robustness in memory-based OS
fingerprinting.

2.2 Challenges and Key Techniques
Our key idea is to correctly identify the core kernel code from a

physical memory dump, and then calculate hashes to precisely fin-
gerprint an OS. To realize this idea, we have to address the following
challenges:

(1) A robust and generic way to identify the kernel page tables.
Given a physical memory dump, the first step is to recover its virtual
memory view. As virtual-to-physical address translation is con-
ducted by looking up the page global directory (PGD) and page
tables, it is necessary that we correctly identify PGDs from the
physical memory dump. This step is required not only for this prob-
lem but also for many other applications such as code-reuse based
semantic-gap bridging [14] and memory forensics [40].

To the best of our knowledge, none of the existing techniques
including those in memory forensics (e.g., Volatility [40]) have
provided a general solution for searching the PGDs. The current
practices are very OS-specific. More specifically, it is either through
profiling to get one exact PGD address, or by searching for the
PGD field in process descriptors (by using process descriptor’s
signature) [40], or from the kernel symbols (e.g., retrieving the
virtual address of swapper_pg_dir from the system.map file,
and then subtracting with 0xc0000000 [19]).

Since our goal is OS fingerprinting, such OS-specific knowledge
is not acceptable. Hence, we need a more generic way (i.e., OS-
agnostic) to identify PGDs. To this end, we have identified the

inherent characteristics including the point-to relations in page ta-
bles, which have to hold true independent of specific OS versions.
Based on these characteristics, we create a generic PGD signature.

(2) Correctly disassembling the kernel code. To compute hash
values of the kernel code, we have to correctly disassemble it. How-
ever, it is widely known that correct code disassembly is still an
open problem for x86 architecture. There are two main reasons: (i)
it is common to have code and data interleaved, and it is hence hard
to differentiate code and data; and (ii) because x86 instructions have
varied lengths, a completely different instruction sequence will be
disassembled if starting from a wrong instruction boundary.

To this end, we propose a correlative disassembling technique
by leveraging the correlation between a call instruction and the
function prologue of the call target. More specifically, we believe
a location to be a function entry point if and only if: (i) a function
prologue exists starting from this location; and (ii) a call instruction
is found, where this location is exactly the call target. Based on
this correlation, we are confident that the identified function body
is truly a function. However, we may not be able to identify all the
kernel code. Some functions may not have well-defined function
prologues. Fortunately, we can accept this limitation, as there is a
large amount of kernel code and the correctly identified portion is
sufficient enough to serve the purpose of our fingerprinting.

(3) Differentiating the main kernel code from the rest of code
and data. The kernel code includes the code of the main kernel,
as well as the code for the device drivers and other loadable kernel
modules. We aim to compute the hashes for the main kernel code
only, because the presence of the other kernel modules is deter-
mined by the hardware configuration of a system. Two systems may
have the same OS version installed, but due to different hardware
configurations, they may have completely different sets of kernel
modules.

To this end, we propose a direct call based clustering technique, to
group identified function bodies into clusters, each of which is either
the main kernel code or the code for a kernel module. Our insight is
that the target of a direct function call has to be located in the same
code module as the direct function call itself. This is because the
target of a direct function call is determined at compilation time,
the call target and the call site must be present in the same module.
Based on this insight, we cluster the disassembled code into code
modules.

Then, to tell which code module is the main kernel, we have
another insight: certain instructions have to appear in the main
kernel to implement some important functionality (such as context
switch and cache flushing), and it is unlikely for the other kernel
modules to have these instructions.

(4) Dealing with kernel address space layout randomization. To
prevent kernel exploits, modern OSes (such as Windows Vista
and Windows 7) have enabled address space layout randomiza-
tion (ASLR [5, 6, 39, 41]) in the kernel space. Consequently, on
each run, the base address of kernel code and data regions are ran-
domized. This security feature poses a challenge to our signature
generation and checking, because certain portions of the kernel code
have to be updated in order to be relocated to a different place. More
specifically, the data and code labels with their absolute addresses
have to be updated.

To address this challenge, we introduce a code normalization
process as well as a signature normalization process. Our code
normalization will zero out these code and data labels from the
disassembly. As such, the side effect of address space layout ran-

domization can be eliminated. Our signature normalization will
order the signatures based on the normalized virtual address.

(5) Other practical issues like page swapping and hot patch.
There are other practical issues that complicate the signature check-
ing problem. The kernel code pages may be swapped out. This is
true for Windows OS but not for Linux (Linux kernel code cannot
be swapped out [7]). Certain code areas may be hot patched by the
third-party kernel modules. Hence, we need a resilient signature
matching scheme.

To this end, we model the problem of signature matching as a
string matching problem. Each element of our string is the MD5-
hash value (with 32 bytes) of the identified pages. Some hash
values may be missing due to page swapping, and some are different
because of hot patching. Then we adopt the KMP algorithm [21] to
find the closest match.

2.3 System Overview

PGD
Identification

Kernel Code
Identification

PGD-i

Core Kernel
Code Pages

Signature
Generation

Signatures
(arrays of MD5s)

Signature
Matching

Result

Physical Memory
Snapshot

Signatures

Figure 1: Overview of our OS-SOMMELIER

An overview of our OS-SOMMELIER is presented in Fig. 1. There
are four key components in our system: (1) PGD Identification,
(2) Kernel Code Identification, (3) Signature Generation, and (4)
Signature Matching.

Given a physical memory snapshot, OS-SOMMELIER will first
invoke the PGD Identification to search all the possible PGDs. Once
correct PGDs are found, it invokes the Kernel Code Identification
to traverse the kernel page tables and identify only the kernel code
pages (based on the page directory entry and page table entry bit
properties), and further it will also split the kernel code based on the
virtual addresses and the internal caller-callee relation to identify
the “core” kernel code pages.

Next, our Signature Generation will use our correlative disassem-
bling technique to neutralize the side effect of code randomization,
and then hash (MD5) each disassembled page and store it in an
array based on the normalized virtual address of each hashed page.
Finally, our Signature Matching adopts a string matching algorithm
to compare the MD5-array with a database that contains the array-
signatures for all the possible OSes.

For simplicity of the paper presentation, we focus our discussion
on the widely used 32-bit x86 architecture. However, we believe our
techniques can potentially be generalized and adapted to support
64-bit systems and even other CPU architectures.

3. DETAILED DESIGN

10-bits 10-bits 12-bits

CR3

Page Directory

pte

Offset in PGD Offset in PDE Offset in Data Page

Page Table

PDE PTE

Data Page

X X 1 0 X 0 0 X 0 X 1 1 . .

12-bits

present

writable

cache write

throughcache

disabled
accessed

reserved page size

1 1 . .

presentR/Wglobal page U/S

12-bits

Page Directory Entry (PDE)

Page Table Entry (PTE)

0

Figure 2: Address translation and the key PGD and PTE bit
properties we exploited in 32-bits x86 architecture.

3.1 PGD Identification
To unveil the inherent characteristics of PGDs, we need to study

the page table structure in the x86 architecture. As illustrated in
Fig. 2, when translating a virtual address, the Memory Management
Unit (MMU) first uses the left-most 10 bits of a virtual address as an
index to look up the PGD table, which is normally pointed to by the
control register CR3. The PGD table is an array of Page Directory
Entry (PDE), which points to a page directory. The MMU then uses
the middle 10-bits of a virtual address to look up the page directory
table pointed to by the PDE entry. The Page Table Entry (PTE)
contains the pointer which points to the final page frames containing
the actual data.

Fundamentally, identifying PGDs is similar to the problem of data
structure identification in memory forensics, because a page table
is a three-level (points-to) table structure. Thus, we can leverage
robust signature schemes to solve this problem. In particular, we
make use of both field value-invariant [13] signatures in PGD entry
and the strong field points-to signatures [23] (i.e., the points-to
relationship between a PGD entry and the target page directory
table). More concretely, for a valid PGD, there must exist at least
one entry that points to a valid target page directory table, which
is used for the kernel space mapping. For each entry in this page
directory table, if the present bit (bit 0) is set, the system bit (bit 3)
and the global bit (bit 7) should also be set. To speed up this search
process, we can start from the middle of each page (i.e., the 512th
entries) when verifying PGD entries. This is because for all OS
implementations, the kernel space always occupies the upper half of
the virtual memory space (e.g., 0x80000000-0xFFFFFFFF for
some versions of Windows and 0xC00000000-0xFFFFFFFF for
Linux).

The identified PGDs may be still noisy. To further filter out the
erroneous PGDs, we perform consistency checks within these PGDs.
As the kernel space is shared by all the running processes, the kernel
portions of the identified PGDs should be extremely similar (if not
completely identical). Therefore, we can immediately filter out the
erroneous PGDs. The reason why all processes do not share the
exact kernel space mapping is that kernel space could contain some
process private data and the mapping for the private data will be
different for different processes. In our experiment, we see processes
share over 95% PGD entries in kernel space. Once all the possible
PGDs in the physical memory are identified, we could use any one
of them for virtual to physical address translation.

Also, there are other viable options to extract the PGD. For in-
stance, cloud providers can directly extract the CR3 value in each
running VM by modifying the hypervisor, and keep a copy of CR3
when saving the memory snapshot of a VM. In our design, we aim
to enable OS-SOMMELIER to transparently analyze the memory
snapshot without any other support. It therefore leads to the above
signature-based approach in identifying the PGD.

3.2 Kernel Code Identification
Once we have identified the PGDs, the next step is to identify the

possible “core” kernel code pages in the physical memory. There
are three steps: (Step-I) we will perform the virtual to physical
(V2P) address translation for kernel space by checking each PDE
and PTE entry, and group them based on the page table properties
to a number of clusters; (Step-II) we will further search from the
clusters to identify the possible kernel code by searching the special
kernel instruction sequences; and (Step-III) finally we will further
narrow down the kernel code. The first two steps are used to identify
the possible kernel code, and the third step is to identify the “core”
kernel code from the kernel code identified in Step-II.

Step-I: Searching possible kernel code and clustering. With an
identified PGD, we can correctly find the entire kernel space by
checking the system bit in the page table entries. That is, without
any prior knowledge, we are able to find out that the kernel space
for Windows starts from 0x80000000 and the kernel space for
Linux starts from 0xc0000000.

Then we attempt to group these kernel pages into clusters, based
on the PDE and PTE properties. In particular, we put contiguous
pages into one cluster, if these pages share the identical page proper-
ties. There is an intuitive approach that we could narrow down the
core kernel code by identifying the read-only kernel pages, because
the kernel code should be protected as read-only. However, this ap-
proach is not general enough, as some legacy OSes may not enforce
this code integrity protection. Actually, according to our experiment
even Windows XP kernel code is not read-only. Its main kernel code
and data are all allocated in a big 4MB page, which is both readable
and writable. To be conservative, we do not take this approach.

The output of this step is a number of clusters, denoted as CK ,
and each cluster (CKi) contains the pages whose virtual addresses
have been resolved and these pages share the identical PTE bits and
the page size bit in PDE.

Step-II: Identifying the possible kernel code. Next, we aim to
identify which cluster contains the main kernel code. One possible
solution would be to search for the page which contains instructions
based on the code distributions [12], and such an approach has been
actually used in unpacking (e.g., [33]) to differentiate code and data.
However, this potential solution tends to be computation-intensive,
contradicting our design goal of efficiency.

Then an intuitive approach would be to search for the special sys-
tem instruction sequences that (1) often appear in main kernel code,

System Inst. Linux-2.6.32 Windows-XP FreeBSD-9.0 OpenBSD-5.1 NetBSD-5.1.2
Instructions Length #Inst. #pages #Inst. #pages #Inst. #pages #Inst. #pages #Inst. #pages
LLDT 3 17 10 4 3 5 3 5 4 2 2
SLDT 3 1 1 1 1 1 1 2 2 1 1
LGDT 3 10 8 1 1 1 1 3 2 3 2
SGDT 3 4 4 5 4 1 1 2 2 1 1
LTR 3 2 2 2 2 6 5 5 3 2 2
STR 3 2 2 2 2 1 1 1 1 2 2
LIDT 3 7 6 2 2 5 4 5 3 2 2
SIDT 3 2 2 5 4 1 1 2 2 1 1
MOV CR0 3 68 16 65 21 33 8 45 12 14 5
MOV CR2 3 5 5 2 2 2 2 12 5 5 2
MOV CR3 3 70 18 24 10 49 12 17 6 16 7
MOV CR4 3 94 23 22 7 25 7 24 8 12 5
SMSW 4 0 0 0 0 5 1 0 0 0 0
LMSW 3 0 0 0 0 5 1 0 0 0 0
CLTS 2 6 5 3 1 6 1 7 2 1 1
MOV DRn 3 0 0 262 8 0 0 0 0 0 0
INVD 2 0 0 0 0 5 1 2 1 2 1
WBINVD 2 28 14 6 3 15 8 14 8 1 1
INVLPG 3 7 3 4 3 24 10 14 4 3 2
HLT 1 12 6 1 1 5 5 4 1 4 3
RSM 2 0 0 0 0 0 0 0 0 0 0
RDMSR3 2 113 25 1 1 76 17 79 16 2 1
WRMSR3 2 111 28 1 1 51 15 54 17 2 1
RDPMC4 2 0 0 0 0 0 0 1 1 1 1
RDTSC3 2 26 12 21 7 14 4 5 3 3 2
RDTSCP7 3 0 0 0 0 0 0 0 0 0 0
XGETBV 3 0 0 0 0 0 0 0 0 0 0
XSETBV 3 3 3 0 0 0 0 0 0 0 0

Table 1: X86 System Instruction Distributions in Kernel Code Pages

(2) have unique pattern (short sequence will have false positive), and
(3) not in kernel modules.

According to the x86 instruction set [18], there are in total 28
system instructions and their instruction length and distributions in
Linux, Windows and BSD UNIX are summarized Table 1. We could
observe that not all of them can be used as the searching sequence,
such as SLDT and RDMSR3 as they only appear few times and
are distributed in few pages. Therefore, eventually, we decide to
choose MOV CR3 instruction (as it is related to PGD update and
process context switch). Moreover, a closer investigation with this
instruction yields the following 6 bytes unique instruction sequence:

0f 20 d8: mov EAX, CR3;
0f 22 d8: mov CR3, EAX;

In fact, these two consecutive instructions are used by the modern
OS to force a TLB flush, avoiding problems related to implicit
caching [18]. We confirm that this sequence (0f 20 d8 0f 22
d8) appears in all the kernels we tested.

Very often, the output of Step-II is a single cluster for the main
kernel code. Considering that there may still exist some noise, we
accept the possibility that the output may be a small number of
clusters, denoted as CKk.

Step-III: Narrowing down the core kernel code. In these possible
kernel code clusters, only one cluster has the core kernel code. Such
a cluster may still include the code for the other kernel modules
and the data, due to the imprecision in previous steps. To precisely
narrow down the core kernel code, we leverage an insight in direct
function calls. As the target of a direct function call has been
resolved at compilation time, this target is either within the same
code module, or from a static library.

For an OS kernel whose main kernel code can be relocated (e.g.,
Windows 7), any function call between the main kernel and a device
driver must be indirect, because the call target cannot be determined
at compilation time. That is, the direct call instruction and the call
target have to be located in the same code module. Therefore, by

checking direct calls, we can further narrow down the core kernel
code.

The situation is more complicated when the main kernel code is
static (e.g., Linux). In this case, a device driver can invoke a direct
function call (e.g., printk) into the main kernel, as its address can
be statically resolved. Nevertheless, the main kernel cannot make
a direct function call into a device driver, because its address can
only be determined at load time. To identify the main kernel code
in this case, we rely on another observation: the main kernel always
occupies the lowest kernel space, leaving the higher kernel space
for the device drivers. This is because the OS cannot predict how
many drivers will be loaded and how much kernel space is to be
allocated for the drivers. In our experiments, this observation holds
true for all the kernels whose main kernel code are static. Based on
this observation, we propose to explore the direct forward function
call relation.

V0 Vn-1Vi VjV1

Backward direct function call

V2 Vj+1

Forward direct function call

Core kernel code

Figure 3: Illustration of core kernel code clustering.

A direct forward function call is a call instruction whose operand
is a positive value (e.g., the case for e8 2a 25 38 00), and a
direct backward function call is a call instruction whose operand is
a negative value (e.g., e8 2a 25 38 ff where 2a 25 38 ff
is a negative value). As the main kernel occupies the lowest kernel
space, a direct forward function call has to be within the same code

module. Thus, as illustrated in Fig 3, by searching direct forward
calls, we can exclude the device drivers.

Since we do not know in advance whether the OS kernel to be
fingerprinted is relocatable or not, we choose the direct forward
call based clustering approach for both relocatable and static ker-
nels. This approach still works for the relocatable kernels, but the
identified kernel code cluster might be smaller than actual, because
the backward direct calls are omitted. For OS fingerprinting, this
is acceptable because our goal is not to get full code coverage. To
identify and verify the existence of a direct call instruction, we use
the correlative disassembling approach, which will be discussed in
the next subsection (§3.3).

Algorithm 1 Core Kernel Code Identification
Require: Vaddr(t) returns the virtual address for t. Page(t) returns the page in
which virtual address t resides. FunTarget(i) returns the target address for instruc-
tion i.
Input: The kernel code cluster CKk that contains a number of pages whose virtual
address has been resolved;
Output: CCK , which is a subcluster of CKk that contains the core kernel code part.
1: CoreKernelCodeIdentification(CKk){
2: C← new Cluster
3: C.start← Vaddr(p0)
4: C.end← Vaddr(p0) + 4096
5: C.page←∅
6: T ←∅
7: for each pi ∈ CKk do
8: C.page← C.page ∪ {pi}
9: for each DirectForwardFunCall f ∈ pi do
10: if FunTarget(f) >C.end then
11: C.end← FunTarget(f)
12: end if
13: end for
14: if Vaddr(pi) + 4096 >C.end then
15: T ← T ∪ C
16: C← new Cluster
17: C.start← Vaddr(pi)
18: C.end← Vaddr(pi) + 4096
19: C.page←∅
20: end if
21: end for
22: T ← T ∪ C
23: CCK ← T [0]
24: for each c ∈ T do
25: if (TlbFlush∈ c and |c|> |CCK |) then
26: CCK ← c
27: end if
28: end for
29: return CCK

30: }

Our detailed clustering algorithm is presented in Algorithm 1.
For each page in CKk, we will check whether there is a direct
forward function call (line 9), and if so, we will update the ending
boundary (C.end) for the current cluster (line 11). We will also
check whether the current cluster ends (line 14), if so we will store
the current cluster to a temporary cluster set T (line 15), and allocate
a new cluster (line 16 - line 19).

Finally, we will search for the largest size cluster which contains
the 6-byte instruction sequence for TLB flushing, and we identify
this cluster to be the main kernel code.

3.3 Signature Generation
A naive signature generation scheme is to hash (MD5) each page

in CCK as the signatures. However, such an approach will fail for
some modern OSes. For example, as shown in Fig. 4, Windows-7
actually randomizes the kernel instruction address, and during the
randomization some code and data labels (boxed in the figure) for
some instructions are changed as well.

Thus, we have to neutralize the randomization. To this end, we
introduce a code normalization technique which distills the memory

0x828432b6: 33 f6 xor esi, esi

0x828432b8: 83 3d 38 fe 99 82 02 cmp dword ptr ds[0x8299fe38], 0x2

0x828432bf: 0f 87 95 00 00 00 jnbe 0x8284335a

0x828432c5: 8b 0d 3c fe 99 82 mov ecx, dword ptr ds[0x8299fe3c]

0x828432cb: 33 c0 xor eax, eax

...

0x82843432: e8 e4 9e 09 00 call 0x828dd31b

0x828182b6: 33 f6 xor esi, esi

0x828182b8: 83 3d 38 4e 97 82 02 cmp dword ptr ds[0x82974e38], 0x2

0x828182bf: 0f 87 95 00 00 00 jnbe 0x8281835a

0x828182c5: 8b 0d 3c 4e 97 82 mov ecx, dword ptr ds[0x82974e3c]

0x828182cb: 33 c0 xor eax, eax

...

0x82818432: e8 e4 9e 09 00 call 0x828b231b

Figure 4: Address pace randomization in Windows-7 Kernel.

and immediate operands and only hashes the opcode and register
operand, based on a robust disassembly. In addition, we can also
observe from Fig. 4 that the operand for a direct call instruction
remains identical, because the target is referenced as a relative offset.
That explains why the direct forward call based clustering is general
enough to deal with randomized kernels.

Correlative Disassembling Robust disassembling in general is a
challenging task in x86, since code and data could be mixed, and
code could start at any location (may not be aligned). In our OS-
SOMMELIER, we take a special and robust approach by exploring the
constraint from the direct call instruction and the targeted function
prologue.

More specifically, considering a direct call instruction call
0xc108a8b0 (with the machine code e8 25 2c 00 00) shown
in Fig 5(a) as an example, the operand of this instruction 25 2c
00 00 (0x2c25) is the displacement to the target callee address
(0xc108a8b0), which can be computed from the PC of the direct
call instruction (0xc1087c86) plus the displacement (0x2c25) and
the instruction length (5). Meanwhile, the function prologue of the
callee instruction also has a unique pattern, namely, with a machine
code 55 89 e5 which is the instruction sequence of push ebp,
move ebp, esp. As a result, by searching for machine code e8
x x x x and computing its callee target address, as long as the
targeted callee address has the pattern of a function prologue, we
will start to disassemble the target page from the callee prologue.
When encountering a ret or a direct or indirect jmp instruction, we
stop disassembling this function. In other words, our disassembling
adopts a linear sweep algorithm [31]. We have tested this correlative
disassembly approach with many binary programs including the
OS kernel (to be presented in §4) and user level binary (c.f., our
Bin-Carver [17]), and we did not encounter any false positives.

It is worth noting that the function prologue has several variants.
Specifically, as depicted in Fig 5, the function prologue in Windows
kernel always starts with mov edi, edi instruction, and such
2-byte instruction is mainly used for hot-patches and detouring
(worked like a pseudo-NOP which can be on-line replaced with a
short 2-byte jmp instruction) [25]. Also, the assembly code mov
ebp, esp could have two different machine code representations,
namely, 89 e5 in Linux and FreeBSD, and 8b ec in Windows.
Thus, in our function prologue checking, we will examine whether
the machine code is 55 89 e5 (Linux/BSD UNIX) or 8b ff
55 8b ec (Windows).

We devise this disassembling algorithm specially for our fin-
gerprinting: (1) it is simple and efficient; and (2) the dissembled
instructions are correct with high confidence. These benefits are
achieved at the cost of a lower coverage. For a better coverage, we
could have taken a recursive disassembling approach (e.g., [22]).

0xc1087c86: e8 25 2c 00 00 call 0xc108a8b0

...

0xc108a8b0: 55 push ebp

0xc108a8b1: 89 e5 mov ebp, esp

(a) Linux Kernel

0x806eee0a: e8 3d 69 00 00 call 0x806f574c

...

0x806f574c: 8b ff mov edi, edi

0x806f574e: 55 push ebp

0x806f574f: 8b ec mov ebp, esp

(b) Windows Kernel

(c) FreeBSD/OpenBSD/NetBSD Kernel

0xc04d675f: e8 0c cf 00 00 call 0xc04e3670

...

0xc04e3670: 55 push ebp

0xc04e3671: 89 e5 mov ebp,esp

Figure 5: Exploring The Constraint between a caller instruc-
tion and the callee prologue for robust disassembling.

We do not choose this sophisticated approach because the disas-
sembly coverage is not a crucial factor for OS fingerprinting and it
would incur significant performance impact.

Another consideration is needed for kernel page swapping. Some
functions may not be disassembled because some pages are present
at signature generation time, but not at signature checking time, or
vice versa. Therefore, to stabilize the signature, we choose to only
disassemble the callee code if the caller code is within the same page
and incorporate the disassembled code into the signature. Because
of this solution, the coverage of disassembled kernel code may
decrease. We prefer to make a trade-off between the stability and
the disassembly coverage, because again the disassembly coverage
is not a critical factor for our fingerprinting problem.

Algorithm 2 Signature Generation
Require: LinearSweepDisass(p) returns one or more page that contains disas-
sembled code which has distilled the memory operand and un-disassembled code with
0. Vaddr(t) returns the virtual address for t. FunTarget(f) returns the target ad-
dress for function f . Prologue(t) returns true if the virtual address starting at t is a
function prologue. WinthinPage(p,q) returns whether p and q are within the same
page. MD5(d) returns the hash value of d.
Input: The core kernel code cluster CCK that contains a number of pages whose
virtual addresses have been resolved;
Output: A signature array S in which each element is a MD5 for the disassembled
page.
1: SignatureGeneration(CCK){
2: for each pi ∈ CCK do
3: pi.dis←∅
4: for each DirectFunCall f in pi do
5: taddr ← FunTarget(f)
6: if WithinPage(taddr, f) and Prologue(taddr) then
7: pi.dis← pi.dis ∪ {taddr mod 4096}
8: end if
9: end for
10: data← LinearSweepDisass(pi)
11: index← Vaddr(pi)-Vaddr(p0)
12: S[index]← MD5(data))
13: end for
14: return S }

Our detailed signature generation algorithm is presented in Al-
gorithm 2. In particular, for all the pages whose virtual addresses
have been resolved in CCK , we first search all the possible starting

addresses for disassembly (because within one page there could be
multiple function prologues) in each page by verifying the direct
function call instruction and its prologue (line 5 - line 8). After we
have identified all the starting addresses for disassembly in a page,
we next disassemble it (line 10). Our linear sweep disassembler
will stop when we encounter a ret or a direct or indirect jmp in-
struction. For the rest of un-disassembled code and data, we will
clear it with 0. We will also zero out the memory operands and
immediate operands of the disassembled instructions. Eventually,
we will have a new page data (or more than one if the disassembling
end point is in the other pages) which contains all the opcode of the
disassembled instructions and some of its operands such as registers.

Note that we could have generated just one MD5 for the entire
data in S. But to support a sensitive detection of any kernel code
modification, and the tolerance of possible kernel page swap (e.g.,
Windows kernel page may get swapped in a real run and in our
signature training phase we will turn off kernel page swap option),
we introduce a signature normalization technique.

Our signature normalization will order the MD5-signatures from
each disassembled page and store them in an array indexed on the
normalized virtual address of the page (line 11 - line 12). Thus, for
the swapped page, only the array element indexed by that particular
missing page will not have a hit in the signature matching. Mean-
while, our experiment with the real world OSes shows that our final
array-organized signatures are extremely strong and only a few hash
values are unique enough to precisely fingerprint an OS.

3.4 Signature Matching
Finally, to use our system, as a one time effort, a cloud provider

or a forensics examiner will have to first generate a database of sig-
natures by collecting all the ground-truth using an array-organized
MD5 representation for each of the OSes in their stable states. Sub-
sequently, given a physical memory snapshot of any unknown OS,
PGD Identification, Kernel Code Identification, and Signature Gen-
eration are performed to generate an array of MD5-signatures from
the given memory snapshot.

As a final step, to identify the precise OS version, the signature
of the memory snapshot is “string” matched against the database of
signatures where the “string” is composed with 32-bytes MD5 val-
ues. Here, we use the standard KMP [21] string matching algorithm.
The slightly tweak is that we have to represent the original single
character of a string with a 32-bytes MD5 value. For the comparison
of the 32-bytes MD5 value, we just sequentially compare each byte
since the hash function tends to have normal distributions for each
character. The details are elided (as the KMP string matching is a
standard algorithm).

4. EVALUATION
We have implemented our OS-SOMMELIER with 4.5K lines of

C code and our correlative disassembler is built on top of XED [2]
library. In this section, we present our experimental result. We first
tested its effectiveness in §4.1, using over 45 OS kernels from five
widely used OS families such as Microsoft Windows and Linux.
Then we report the performance overhead of each component of
our system with all the tested kernels in §4.2. Finally, we compare
our result with the state-of-the-art host-based OS fingerprinting
techniques in §4.3.

Experiment setup We evaluated a wide variety of OS kernels from
Microsoft Windows, Linux, to BSD family (including FreeBSD,
OpenBSD, and NetBSD). There are two phases of running our entire
system:

OS-kernels #PGD |CK | |CKk| #Pages |T | #Pages’ #DisPage Pr% Dr% |S| |S′|
∑

Time (seconds)

Win-XP 12 883 2 1024 16 384 232 60.42 11.91 232 1 0.544
Win-XP (SP2) 15 952 2 1024 13 421 277 65.80 15.18 277 1 0.6784
Win-XP (SP3) 15 851 2 1024 14 423 282 66.67 14.76 282 1 0.6606
Win-Vista 24 2310 1 1024 5 807 453 56.13 7.09 453 1 0.5818
Win-7 18 2011 2 280 1 280 178 63.57 5.75 178 1 0.522
Win-2003 Server 20 1028 2 1024 9 659 374 56.75 13.08 374 1 0.7676
Win-2003 Server (SP2) 19 1108 2 1024 6 563 342 60.75 12.66 342 1 0.7218
Win-2008 Server 20 1804 1 1024 9 849 542 63.84 7.71 542 2 0.6524
Win-2008 Server (SP2) 21 1969 1 1024 6 856 536 62.62 7.81 536 2 0.812
FreeBSD-7.4 27 369 1 3072 5 1758 1001 56.94 8.87 1001 1 1.3622
FreeBSD-8.0 20 350 1 3072 2 2959 1122 37.92 8.66 1122 1 1.4926
FreeBSD-8.2 27 360 1 3072 2 2956 1143 38.67 8.90 1143 1 1.5354
FreeBSD-8.3 18 412 1 4096 2 3966 1187 29.93 9.15 1187 1 1.6354
FreeBSD-9.0 21 360 1 4096 3 2281 1318 57.78 8.64 1318 1 1.6838
OpenBSD-4.7 20 187 1 1634 4 1631 1163 71.31 16.41 1163 1 1.9024
OpenBSD-4.8 12 833 1 1936 3 1934 1258 65.05 11.22 1258 1 1.6454
OpenBSD-4.9 8 834 1 1973 3 1971 1291 65.50 11.00 1291 1 1.665
OpenBSD-5 11 1106 1 1588 4 1585 1290 81.39 11.36 1290 1 1.6764
OpenBSD-5.1 7 1195 1 1596 3 1593 1293 81.17 11.00 1293 1 1.678
NetBSD-4.0 16 225 1 2006 3 1995 1069 53.58 7.81 1069 60 1.2532
NetBSD-4.0.1 11 220 1 2006 3 1995 1048 52.53 7.58 1048 60 1.2438
NetBSD-5.0 13 213 1 2048 11 1792 1148 64.06 8.43 1148 2 1.385
NetBSD-5.0.1 11 212 1 2048 11 1792 1147 64.01 8.28 1147 5 1.386
NetBSD-5.0.2 13 211 1 2048 13 1779 1138 63.97 8.45 1138 1 1.393
NetBSD-5.1 11 210 1 2048 8 1792 1182 65.96 8.28 1182 24 1.4256
NetBSD-5.1.2 13 210 1 2048 9 1792 1183 66.02 8.28 1183 24 1.4208
Linux-2.6.26 82 69 1 812 2 811 526 64.86 9.48 526 1 1.4514
Linux-2.6.27 77 72 1 845 2 844 548 64.93 9.57 548 1 1.4664
Linux-2.6.28 77 109 1 885 2 884 575 65.05 9.78 575 1 1.4884
Linux-2.6.28.1 77 31 1 1229 11 971 880 90.63 10.79 880 40 1.9248
Linux-2.6.28.2 74 31 1 1230 12 971 874 90.01 11.07 874 40 1.9502
Linux-2.6.29 79 106 1 908 2 907 597 65.82 9.76 597 1 1.5156
Linux-2.6.30 79 190 1 934 3 670 606 90.45 9.98 606 1 1.5734
Linux-2.6.31 84 26 1 1545 3 1098 976 88.89 10.99 976 2 2.1002
Linux-2.6.32.27 85 26 1 1589 2 1588 1005 63.29 11.33 1005 2 2.1686
Linux-2.6.33 87 28 1 1606 3 1152 1039 90.19 11.23 1039 2 2.1188
Linux-2.6.34 83 28 1 1617 2 1616 1043 64.54 11.19 1043 2 2.1304
Linux-2.6.35 96 28 1 1640 3 1175 1056 89.87 11.35 1056 1 2.1132
Linux-2.6.36 99 28 1 1641 3 1183 1071 90.53 11.15 1071 2 2.1128
Linux-2.6.36.1 78 36 1 1024 1 1023 926 90.52 11.29 926 5 2.0192
Linux-2.6.36.2 78 36 1 1024 1 1023 925 90.42 11.17 925 31 1.8254
Linux-2.6.36.3 76 36 1 1024 1 1023 930 90.91 11.15 930 31 1.8152
Linux-2.6.36.4 81 36 1 1024 1 1023 929 90.81 11.11 929 22 1.8272
Linux-3.0.0 58 149 2 1024 1 1023 975 95.31 15.55 975 1 2.2086
Linux-3.0.4 73 183 2 1024 1 1023 918 89.74 12.33 918 1 2.021
mean 43.24 481.57 1.17 1588.53 4.97 1351.57 879.91 69.75 10.41 879.91 8.5 1.5

Table 2: Detailed evaluation result of the first three components of OS-SOMMELIER for the tested OS kernels during the ground truth
signature generation.

• Ground-truth Collection Phase To generate the ground-
truth signature for each testing OS kernel, we used one phys-
ical memory dump. To ensure the signature quality, we dis-
abled page swapping for each OS version, and thus all the
kernel code pages were present in the memory. To obtain
the physical memory dumps, we run each of the OSes in a
QEMU [1] VM with 512M bytes RAM (131,072 pages with
4K bytes each). After the guest OS booted up, we took a
memory dump to compute the ground truth hash values.

• Testing Phase For the deployment testing (i.e., to evaluate our
signature matching in the cloud), we collected five memory
dumps for each testing OS with different VMs (including
VMware Workstation, KVM, Xen and VirtualBox) at different
moments after OS booted. As shown in Table 3, we also
varied the VM configurations with different physical memory
size (from 256M to 1G) and took the snapshot at different
time after the VM is power on. The page swapping is enabled
for these memory dumps in order to evaluate the robustness of
our signature scheme in real scenario. Our host machine has

an Intel Core i7 CPU with 8G memory machine, installing a
Ubuntu 11.04 with Linux kernel 2.6.38-8.

Configuration VMware QEMU KVM Xen VirtualBox
Mem Size (MB) 256 512 512 768 1024
Time (min) 5 10 10 15 20

Table 3: Testing Memory Snapshot Configuration. Time is cal-
culated right after the VM is power on.

4.1 Effectiveness
Table 2 presents the detailed experimental results for each tested

OS. The results show the effectiveness of each individual component.
More specifically,

PGD Identification As reported in the 2nd column of Table 2, for
each tested OS, our PGD Identification can identify on average
43.2 PGDs. We confirmed that these PGDs exactly matched with
the running processes in the OS. In other words, there were no
false positives and false negatives, thanks to the strong graph-based
signatures [23] of the PGD items.

Kernel Code Identification As three steps are involved in kernel
code identification, we report the output of these steps respectively.
As presented in column |CK |, we usually could identify 481.6
clusters based on whether any two contiguous kernel pages share
identical PTE and PDE bits, and by searching whether the cluster
contains the 6-bytes TLB flushing sequence, we can further narrow
down the core kernel code to at most 2 clusters (column |CKk|).
The largest cluster in CKk contains on average 1588.5 kernel code
pages, and this number is reported in the 5th column.

Signature Generation We report seven categories (from the 6th

to 12th column) of data for this component. In particular, in the
6th column, we report the total number of clusters |T | identified by
connecting the pages with direct forward function call constraint; the
7th column (#pages’) reports the total number of pages in the largest
cluster of |T |. For these pages, how many of them (i.e., #DisPage)
can be disassembled is reported in the 8th column, and this ratio
Pr reported in the 9th reflects the effectiveness of our correlative
disassembling. For the disassembled pages, how many bytes in
each page can be disassembled (i.e., the disassembled byte ratio Dr)
is reported in the 10th column and this ratio estimates how much
information we eventually retained after all of our transformations.
Finally, we report the total number of signatures generated in column
|S| (the 11th column). Among all of these signatures, at least how
many of the signatures |S′| (reported in 12th column) we need to
check in order to determine the corresponding kernel version.

From the table, we could see that on average we will further
divide the core kernel code into 4.97 clusters. The largest cluster
contains on average 1351.57 pages. Among these pages, on average
879.91 of them can be disassembled with a ratio (Pr) of 69.75%.
For each disassembled page, we covered 10.41% of bytes during
the disassembling. We have to emphasize that our goal is not for
accurate disassembly, and the disassembling rate is not a crucial
factor for the quality of our OS fingerprinting. In comparison, the
disassembled page ratio (Pr) make more sense, because it shows
how many different pages have contributed to the signatures. The
final signature cluster size on average is 879.91 MD5-hashes. Mean-
while, for all the hashes we generated, the majority of them only
needs one of the page hash to uniquely identify the target OS. Only
NetBSD-4.x requires 60 pages hash comparison in the worst case.

To zoom-in why we have to perform at most |S′| number of hash
value comparison, we reported the total number of hash conflicts
between these kernels in Table 4, Table 5, and Table 6 for each
different category of the OS, respectively. If any two kernels are
from different category, there is no conflict. Also, there is no page
hash conflict for FreeBSD and OpenBSD. That is, any page hash
could be used as a unique signature to fingerprint its kernel. For
NetBSD-4.0 and NetBSD-4.0.1, there are 59 pages which have the
same hash value as shown in Table 5.

Additionally, we did a manual verification on the identified largest
core kernel code cluster, and we found the exact core kernel code
for Win-XP whose kernel code is allocated in a 4M bytes page. For
Win-7, it uses fine-grained kernel code pages, and our technique
gets a more condensed kernel code. For BSD UNIX, it tends to have
larger code size, and the identified core kernel code does belong to
the original code.

Signature Matching With the generated signatures, we evaluate the
correctness of efficiency of the signature matching process of OS-
SOMMELIER. We used 5 physical memory dumps for each OS that
we collected from the virtual machines with different configurations.
We found that OS-SOMMELIER can correctly identify the right OS
versions for all the memory dumps in our data set, regardless of the
different configurations of the guest OS.

OS-kernels W
in

-X
P

W
in

-X
P

(S
P2

)

W
in

-X
P

(S
P3

)

W
in

-V
is

ta

W
in

-7

W
in

-2
00

3
Se

rv
er

W
in

-2
00

3
Se

rv
er

(S
P2

)

W
in

-2
00

8
Se

rv
er

W
in

-2
00

8
Se

rv
er

(S
P2

)

Win-XP - 0 0 0 0 0 0 0 0
Win-XP (SP2) 0 - 0 0 0 0 0 0 0
Win-XP (SP3) 0 0 - 0 0 0 0 0 0
Win-Vista 0 0 0 - 0 0 0 0 0
Win-7 0 0 0 0 - 0 0 0 0
Win-2003 Server 0 0 0 0 0 - 0 0 0
Win-2003 Server(SP2) 0 0 0 0 0 0 - 0 0
Win-2008 Server 0 0 0 0 0 0 0 - 1
Win-2008 Server(SP2) 0 0 0 0 0 0 0 1 -

Table 4: Summary of Page Hash Conflict for Windows Kernels

OS-kernels N
et

B
SD

-4
.0

N
et

B
SD

-4
.0

.1

N
et

B
SD

-5
.0

N
et

B
SD

-5
.0

.1

N
et

B
SD

-5
.0

.2

N
et

B
SD

-5
.1

N
et

B
SD

-5
.1

.2

NetBSD-4.0 - 59 0 0 0 0 0
NetBSD-4.0.1 59 - 0 0 0 0 0
NetBSD-5.0 0 0 - 1 0 1 1
NetBSD-5.0.1 0 0 1 - 0 4 4
NetBSD-5.0.2 0 0 0 0 - 0 0
NetBSD-5.1 0 0 1 4 0 - 23
NetBSD-5.1.2 0 0 1 4 0 23 -

Table 5: Summary of Page Hash Conflict for NetBSD Kernels

While our OS-SOMMELIER uses KMP string matching algo-
rithm [21] to match the final signature string with the ground truth
signature string (which has hundreds of page hash values), we can
in fact use only few page hashes to uniquely pinpoint the exact OS.
We confirmed this observation and verified that in most cases, we
can just use one MD5 to differentiate the kernel (as shown in the
|S′| column in Table 2), thanks to our strong, sensitive code hash
based signatures.

4.2 Efficiency
We also measured the performance overhead of OS-SOMMELIER.

The total signature generation time is presented in the last column
of Table 2 for the testing kernel when we generate their ground truth
signatures with 512M physical memory. For the real kernel test, we
also have to go through this signature generation process. It is 1.50
seconds on average (with the worse case 2.21 seconds). For a fair
comparison, this number does not include the physical memory file
loading time, which is about 6.67 seconds. This is because for some
application scenarios (such as virtual machine introspection), the
live memory is already available for the fingerprinting.

To evaluate the efficiency, we fed the 5 memory snapshots for each
of the testing kernels to OS-SOMMELIER, and it took on average an
additional 0.03 seconds for the signature matching, and therefore
in total given a physical memory dump, our system takes about 2
seconds in total to fingerprint an OS, which we believe is efficient
enough for many application scenarios.

We further break down the total runtime into individual compo-
nents, and list the results in Fig. 6. We can see that the biggest
portion of the runtime is spent on the signature generation com-
ponent, which takes on average 41% of the total time, because of
the disassembling as well as the hashing procedure. The next one
is the PGD Identification component which takes 32% of the time
(to determine one physical page, we need to traverse many next

OS-kernels L
in

ux
-2

.6
.2

6

L
in

ux
-2

.6
.2

7

L
in

ux
-2

.6
.2

8

L
in

ux
-2

.6
.2

8.
1

L
in

ux
-2

.6
.2

8.
2

L
in

ux
-2

.6
.2

9

L
in

ux
-2

.6
.3

0

L
in

ux
-2

.6
.3

1

L
in

ux
-2

.6
.3

2.
27

L
in

ux
-2

.6
.3

3

L
in

ux
-2

.6
.3

4

L
in

ux
-2

.6
.3

5

L
in

ux
-2

.6
.3

6

L
in

ux
-2

.6
.3

6.
1

L
in

ux
-2

.6
.3

6.
2

L
in

ux
-2

.6
.3

6.
3

L
in

ux
-2

.6
.3

6.
4

L
in

ux
-3

.0
.0

L
in

ux
-3

.0
.4

Linux-2.6.26 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linux-2.6.27 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linux-2.6.28 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linux-2.6.28.1 0 0 0 - 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linux-2.6.28.2 0 0 0 39 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linux-2.6.29 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0
Linux-2.6.30 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0
Linux-2.6.31 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0
Linux-2.6.32.27 0 0 0 0 0 0 0 1 - 0 0 0 0 0 0 0 0 0 0
Linux-2.6.33 0 0 0 0 0 0 0 0 0 - 1 0 1 0 0 0 0 0 0
Linux-2.6.34 0 0 0 0 0 0 0 0 0 1 - 0 1 0 0 0 0 0 0
Linux-2.6.35 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
Linux-2.6.36 0 0 0 0 0 0 0 0 0 1 1 0 - 0 0 0 0 0 0
Linux-2.6.36.1 0 0 0 0 0 0 0 0 0 0 0 0 0 - 4 4 4 0 0
Linux-2.6.36.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 30 21 0 0
Linux-2.6.36.3 0 0 0 0 0 0 0 0 0 0 0 0 0 4 30 - 21 0 0
Linux-2.6.36.4 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 21 - 0 0
Linux-3.0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0
Linux-3.0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Table 6: Summary of Page Hash Conflict for Linux Kernels

layer pointer fields), and kernel code identification takes 25% of the
time, because it has to compare any two contiguous PTE properties
and perform a lightweight forward call search, verification, and
clustering.

4.3 Comparison with Other Systems
Finally, we compared OS-SOMMELIER with the other two state-

of-the-art host-based OS fingerprinting systems: UFO [30] and an
IDT-based approach [10]. UFO explores the x86 CPU states, i.e.,
the register values of GDT, IDT, CS, CR, and TR, to fingerprint an
OS. The IDT-based approach is similar to our system in that we both
hash the OS kernel code for the fingerprinting, but the difference
is that the IDT-based approach only hashes the interrupt handler
pointed from the IDT registers. To evaluate these two systems, we
implemented an IDT-based approach based on the description in the
paper [10], and obtained the source code of UFO from the authors.

As summarized in Table 7, both UFO and the IDT-based approach
are not accurate enough. UFO can identify all the FreeBSD/OpenBSD,
and it also works for the majority of the Linux kernel we tested.
However, it cannot correctly fingerprint several Windows versions.
For the IDT-based approach, although it works well on Linux ker-
nels, its accuracy on other OS families is unsatisfactory: it cannot
pinpoint the differences between Win-XP, SP2 and SP3, and cannot
differentiate the minor version in FreeBSD, OpenBSD and NetBSD.
In contrast, our OS-SOMMELIER works perfectly for all the OS
versions in our data set.

5. DISCUSSION
Given the threat model described in §2.1, in this section, we

discuss the possibility of various evasion attacks and the limitations
of OS-SOMMELIER.

Creating extra noisy data As in our threat model, we assume that
the integrity of main kernel code in the VM can be enforced by the
cloud provider. After compromising a VM, the adversary cannot
directly modify the main kernel code to evade our OS fingerprinting.
She can only generate extra fake data to mislead our system. For
example, by exploiting our kernel code identification process, the
adversary may make up some data to make OS-SOMMELIER believe

that some of the fake pages are kernel code. As a result, incorrect
fingerprinting results will be reported based on the fake code pages.

To counter this kind of attack, we can configure OS-SOMMELIER
to examine all possible kernel code clusters. As the true kernel code
remains intact, it will still be correctly identified to be one of the
clusters. Then instead of picking the biggest cluster for signature
matching, we can check all the clusters one by one and report the
recognized OS version respectively.

To create an inverse page for a MD5 tends to be impossible,
and the fake page only introduces mis-matches with our database.
Thus, we will eventually be able to recognize the true kernel code
pages. It is also possible that an attacker can present kernel code
pages obtained from a different OS kernel, in order to mislead OS-
SOMMELIER. Such an attack would trick OS-SOMMELIER into
reporting a fake OS version in addition to a real one. Then subse-
quent verifications can be done to invalidate the fake OS version.
For example, virtual machine introspection can try each reported
OS version to check if the extracted OS-level semantics is valid.

Obfuscating the kernel code If a VM user is uncooperative or
malicious, she can obfuscate the kernel code to bypass our finger-
printing. To name a few, she can mess with function prologues to
disrupt our correlative disassembling if the adversary can access the
kernel source code. She can also manipulate direct function calls
and indirect function calls to confuse our kernel code identification
process. She can even recompile the kernel with different options
(e.g., omitting the stack frame pointer) if she has the source code.

In general, this kind of evasion attacks is equivalent to fingerprint-
ing a completely new and unknown operating system, which we
consider to be out of our current scope. Meanwhile, cloud providers
need to maintain an up-to-date signature database for all the kernels
including with new patches. Otherwise, if an OS is patched, OS-
SOMMELIER may not be able to recognize it. In addition, we have
not tested OS-SOMMELIER with any microkernels (e.g., MINIX).
We leave it as one of our future works.

6. RELATED WORK
In general, fingerprinting an OS could be done from (1) network

protocol perspective, (2) CPU-register perspective, (3) file system

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

W
in

-X
P

W
in

-X
P

(s
p

2
)

W
in

-X
P

(s
p

3
)

W
in

-V
is

ta

W
in

-7

W
in

-2
0

0
3

W
in

-2
0
0
3
(s

p
2
)

W
in

-2
0

0
8

W
in

-2
0
0
8
(s

p
2
)

F
r
ee

B
S

D
-7

.4

F
r
ee

B
S

D
-8

.0

F
r
ee

B
S

D
-8

.2

F
r
ee

B
S

D
-8

.3

F
r
ee

B
S

D
-9

.0

O
p

en
B

S
D

-4
.7

O
p

en
B

S
D

-4
.8

O
p

en
B

S
D

-4
.9

O
p

en
B

S
D

-5

O
p

en
B

S
D

-5
.1

N
et

B
S

D
-4

.0

N
et

B
S

D
-4

.0
.1

N
et

B
S

D
-5

.0

N
et

B
S

D
-5

.0
.1

N
et

B
S

D
-5

.0
.2

N
et

B
S

D
-5

.1

N
et

B
S

D
-5

.1
.2

L
in

u
x
-2

.6
.2

6

L
in

u
x
-2

.6
.2

7

L
in

u
x
-2

.6
.2

8

L
in

u
x
-2

.6
.2

8
.1

L
in

u
x
-2

.6
.2

8
.2

L
in

u
x
-2

.6
.2

9

L
in

u
x
-2

.6
.3

0

L
in

u
x
-2

.6
.3

1

L
in

u
x
-2

.6
.3

2
.2

7

L
in

u
x
-2

.6
.3

3

L
in

u
x
-2

.6
.3

4

L
in

u
x
-2

.6
.3

5

L
in

u
x
-2

.6
.3

6

L
in

u
x
-2

.6
.3

6
.1

L
in

u
x
-2

.6
.3

6
.2

L
in

u
x
-2

.6
.3

6
.3

L
in

u
x
-2

.6
.3

6
.4

L
in

u
x
-3

.0
.0

L
in

u
x
-3

.0
.4

PGD Identification Kernel Code Identification Signature Generation Signature Matching

Figure 6: Normalized performance overhead for each component in OS-SOMMELIER.

perspective, and (4) memory perspective. In this section, we exam-
ine these related works and compare them with OS-SOMMELIER.

Network protocol based fingerprinting OS fingerprinting has ini-
tially been investigated from a network protocol perspective. In-
spired by earlier efforts leveraging TCP stacks to find (1) proto-
col violations, (2) vendor-specific design decisions [11], and (3)
TCP implementation differences [26], TCP based fingerprinting
was proposed. The basic approach is to actively send carefully
created TCP/IP or ICMP packets to the target machine, analyze
the differences in the response packets, and derive fingerprints
and match the database with known OS fingerprints. Nmap [15],
Xprobe2 [3]/Xprobe2++ [42], and synscan [38], are all such tools
based on network based fingerprinting. Besides the active packet
probing fingerprinting, there are other passive OS fingerprinting
techniques through sniffing network packets such as p0f [35].

The rationale behind network-based fingerprinting is that differ-
ent OSes tend to have different implementations for certain network
protocols and services. While this rationale is often true, it is not
accurate enough to distinguish the minor versions of an OS kernel,
because minor OS versions may have the same protocol implemen-
tations.

Moreover, the network-based fingerprinting may not be applicable
in many new application scenarios. For example, in many cases
of memory forensics, the only input available is a memory dump.
Also, as an enhanced security measure, many modern OSes (such as
Windows Servers) disable most of the network services as a default
security policy, and hence no responses can be observed.

Furthermore, a network based fingerprinting approach is not ef-
fective against anti-fingerprinting techniques (e.g., [29, 34]), which

are used to defeat vulnerability scanner, penetration testing, and
automated malware propagation. For an anti-fingerprinting pro-
tected machine, the accuracy will be quite limited while probing its
OS-versions as the TCP/IP packets have been obfuscated.

CPU-based fingerprinting Recently Quynh proposed a system
called UFO [30] to fingerprint the OS of a virtual machine in the
cloud computing environment. It explores the discrepancies in the
CPU state for different OSes. The intuition is that in protected mode,
many CPU registers such as GDT, IDT, CS, CR, and TR, often have
unique values with respect to different OSes. Thus, by profiling,
extracting, and differing these values using a VM monitor (VMM),
UFO generates unique signatures for each OS.

While UFO is effective and efficient in fingerprinting certain
OS families (e.g., Linux kernels), as shown in our experiment 4.3
– it does not work well for many other OS families, such as the
Windows OS and close versions of Linux kernels. Moreover, the
requirement of access to the CPU state cannot be always met for
various application scenarios (such as memory forensics and kernel
dump analysis).

Filesystem-based fingerprinting In a cloud VM management sce-
nario, it would be straightforward to identify the OS version by
examining the file system of the virtual machine. For example, one
can look for the kernel code on the file system and check its hash. In
fact, tools such as virt-inspector [20] already support this capability.

However, this approach is not feasible for a machine with en-
crypted file systems. For security and privacy concerns, it is very
reasonable for cloud users to run their virtual machines with en-
crypted file systems. While it is possible for cloud providers to
retrieve the cryptographic keys of the encrypted file system using

OS-Kernels UFO IDT-based OS-Sommelier

Win-XP 7 7 X
Win-XP (SP2) 7 7 X
Win-XP (SP3) 7 7 X
Win-Vista X X X
Win-7 X X X
Win-2003 Server 7 X X
Win-2003 Server (SP2) 7 X X
Win-2008 Server X X X
Win-2008 Server (SP2) X X X

FreeBSD 7.4 X 7 X
FreeBSD 8.0 X X X
FreeBSD 8.2 X 7 X
FreeBSD 8.3 X X X
FreeBSD 9.0 X X X
OpenBSD 4.7 X 7 X
OpenBSD 4.8 X 7 X
OpenBSD 4.9 X 7 X
OpenBSD 5.0 X X X
OpenBSD 5.1 X 7 X
NetBSD 4.0 7 7 X
NetBSD 4.0.1 7 7 X
NetBSD 5.0 X X X
NetBSD 5.0.1 7 7 X
NetBSD 5.0.2 7 7 X
NetBSD 5.1 7 7 X
NetBSD 5.1.2 7 7 X

Linux-2.6.26 X X X
Linux-2.6.27 X X X
Linux-2.6.28 X X X
Linux-2.6.28.1 X X X
Linux-2.6.28.2 X X X
Linux-2.6.29 X X X
Linux-2.6.30 X X X
Linux-2.6.31 X X X
Linux-2.6.32 X X X
Linux-2.6.33 X X X
Linux-2.6.34 X X X
Linux-2.6.35 X X X
Linux-2.6.36.1 7 X X
Linux-2.6.36.2 7 X X
Linux-2.6.36.3 7 X X
Linux-2.6.36.4 X X X
Linux-3.0.0 X X X
Linux-3.0.4 X X X

Table 7: Comparison with other techniques.

such as VM introspection techniques, then the bottle neck for such
approach will lie in how to reliably retrieve the keys. Note that
a running VM may have multiple keys, e.g., some of them may
be used for communications, and some of them maybe used for
other encryption and decryption (besides the file system). Also, the
requirement of access to the file system may not be viable for some
applications such as memory forensics when only having a physical
memory dump.

Memory-based fingerprinting Recently a couple of techniques
were proposed to utilize the memory data for OS fingerprinting, but
none of them can simultaneously achieve all of the three design
goals: efficiency, accuracy, and robustness. In particular, Christodor-
escu et al. [10] proposed to use the interrupt handler for OS finger-
printing, because the interrupt handler varies significantly across
different OSes. While efficient, this approach is not accurate enough
to differentiate Windows XP kernels with different service packs,
and it also cannot pinpoint some of the FreeBSD and OpenBSD
kernels (as summarized in Table 7 in our experiment). Meanwhile,
this approach also requires access to CPU registers because they
directly identify the interrupt handler from the IDT register. Again,
it is not directly suitable for applications such as memory forensics
when only memory is available.

Most recently, SigGraph [23] was proposed as a graph signature
scheme to reliably identify kernel data structures from a memory
dump. As different OSes tend to have different data structure defini-
tions, it has been demonstrated that SigGraph can also be used for
OS fingerprinting [23]. However, SigGraph is not accurate enough
to differentiate minor kernel versions, as the differences in kernel
data structures in these two OS versions may be fairly small. In
addition, SigGraph is far from being efficient, as it scans every
pointer and non-pointer field and examines the data structures in
many hierarchical levels.

7. CONCLUSION
We have presented the design, implementation, and evaluation of

OS-SOMMELIER, a physical memory-only based system for precise
and efficient OS fingerprinting in the cloud. The key idea is to
compute the core kernel code hash to precisely fingerprint an OS,
and the precision and efficiency are achieved by our core kernel
code identification, correlative disassembling, code and signature
normalization, and resilient signature matching techniques. Our ex-
perimental result with over 45 OS kernels shows that OS-Sommelier
can precisely fingerprint all the OSes without any false positives and
false negatives within only 2 seconds on average.

Acknowledgment
We would like to thank the anonymous reviewers for the insightful
comments to further improve our paper. We also thank Nguyen
Anh Quynh for sharing his UFO source code with us. This work
is supported in part by a research grant from VMware Inc, and by
National Science Foundation under Grants #1018217 and #1054605.
Any opinions, findings, and conclusions or recommendations in this
paper are those of the authors and do not necessarily reflect the
views of the VMware and NSF.

References
[1] QEMU: an open source processor emulator. http://www.qemu.org/.

[2] Xed: X86 encoder decoder. http://www.pintool.org/docs/24110/Xed/html/.

[3] O. Arkin, F. Yarochkin, and M. Kydyraliev. The present and future of
xprobe2: The next generation of active operating system fingerprinting.
sys-security group, July 2003.

[4] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky.
Hypersentry: enabling stealthy in-context measurement of hypervisor
integrity. In Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 38–49, Chicago, Illinois,
USA, 2010. ACM.

[5] E. Bhatkar, D. C. Duvarney, and R. Sekar. Address obfuscation: an
efficient approach to combat a broad range of memory error exploits. In
Proceedings of the 12th USENIX Security Symposium, pages 105–120,
2003.

[6] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In Proceedings
of the 14th Conference on USENIX Security Symposium, Baltimore,
MD, 2005. USENIX Association.

[7] D. Bovet and M. Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[8] P. M. Chen and B. D. Noble. When virtual is better than real. In Pro-
ceedings of the Eighth Workshop on Hot Topics in Operating Systems,
pages 133–, 2001.

[9] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports. Overshadow: a
virtualization-based approach to retrofitting protection in commodity
operating systems. In Proceedings of the 13th international conference
on Architectural support for programming languages and operating
systems, ASPLOS XIII, pages 2–13, Seattle, WA, USA, 2008. ACM.

[10] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, and D. Zam-
boni. Cloud security is not (just) virtualization security: a short paper.
In Proceedings of the 2009 ACM workshop on Cloud computing secu-
rity (CCSW ’09), pages 97–102, Chicago, Illinois, USA, 2009. ACM.

[11] D. E. Comer and J. C. Lin. Probing tcp implementations. In Pro-
ceedings of the USENIX Summer 1994 Technical Conference, Boston,
Massachusetts, 1994.

[12] G. Conti, S. Bratus, B. Sangster, R. Ragsdale, M. Supan, A. Lichten-
berg, R. Perez, and A. Shubina. Automated mapping of large binary
objects using primitive fragment type classification. In Proceedings of
DFRWS 2010 Annual Conference, 2010.

[13] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Robust
signatures for kernel data structures. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS’09),
pages 566–577, Chicago, Illinois, USA, 2009. ACM.

[14] Y. Fu and Z. Lin. Space traveling across vm: Automatically bridging
the semantic-gap in virtual machine introspection via online kernel data
redirection. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, San Francisco, CA, May 2012.

[15] Fyodor. Remote os detection via TCP/IP fingerprinting (2nd genera-
tion). insecure.org, January 2007. http://insecure.org/nmap/osdetect/.

[16] L. G. Greenwald and T. J. Thomas. Toward undetected operating
system fingerprinting. In Proceedings of the first USENIX Workshop
on Offensive Technologies, pages 1–10. USENIX Association, 2007.

[17] S. Hand, Z. Lin, G. Gu, and B. Thuraisingham. Bin-carver: Automatic
recovery of binary executable files. In Proceedings of the 12th Annual
Digital Forensics Research Conference (DFRWS’12), Washington DC,
August 2012.

[18] Intel-64 and IA-32 Architectures Software Developer’s Manual Com-
bined Volumes 3A, 3B, and 3C: System Programming Guide, Parts 1
and 2 : 11-28.

[19] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction. In Proceed-
ings of the 14th ACM Conference on Computer and Communications
Security (CCS’07), Alexandria, VA, November 2007.

[20] R. W. Jones and M. Booth. Virt-inspector - display operating
system version and other information about a virtual machine.
http://libguestfs.org/virt-inspector.1.html.

[21] D. E. Knuth, J. H. M. Jr., and V. R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977.

[22] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly
of obfuscated binaries. In Proceedings of the 13th conference on
USENIX Security Symposium - Volume 13, San Diego, CA, 2004.

[23] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. Siggraph: Brute
force scanning of kernel data structure instances using graph-based
signatures. In Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS’11), San Diego, CA, February
2011.

[24] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig.
Trustvisor: Efficient tcb reduction and attestation. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages
143–158. IEEE Computer Society, 2010.

[25] Hot Patching and Detouring, http://www.ragestorm.net/blogs/?p=17.
[26] V. Paxson. Automated packet trace analysis of tcp implementations. In

Proceedings of the ACM SIGCOMM, pages 167–179, Cannes, France,
1997. ACM.

[27] B. D. Payne, M. Carbone, and W. Lee. Secure and flexible monitoring
of virtual machines. In Proceedings of the 23rd Annual Computer
Security Applications Conference (ACSAC 2007), December 2007.

[28] B. D. Payne, M. Carbone, M. I. Sharif, and W. Lee. Lares: An architec-
ture for secure active monitoring using virtualization. In Proceedings
of 2008 IEEE Symposium on Security and Privacy, pages 233–247,
Oakland, CA, May 2008.

[29] G. Prigent, F. Vichot, and F. Harrouet. Ipmorph: fingerprinting spoofing
unification. J. Comput. Virol., 6:329–342, November 2010.

[30] N. A. Quynh. Operating system fingerprinting for virtual machines,
2010. In DEFCON 18.

[31] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable
code revisited. In Proceedings of the Ninth Working Conference on
Reverse Engineering (WCRE’02). IEEE Computer Society, 2002.

[32] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a tiny hypervi-
sor to provide lifetime kernel code integrity for commodity oses. In
Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, SOSP ’07, pages 335–350, Stevenson, Washington,
USA, 2007. ACM.

[33] M. Sharif, V. Yegneswaran, H. Saidi, and P. Porras. Eureka: A frame-
work for enabling static analysis on malware. In Proceedings of the
13th European Symposium on Research in Computer Security, Malaga,
Spain, October 2008. LNCS.

[34] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP stack
fingerprinting. In Proceedings of the 9th Conference on USENIX
Security Symposium, Denver, Colorado, 2000. USENIX Association.

[35] C. Smith and P. Grundl. Know your enemy: Passive fingerprinting.
identifying remote hosts without them knowing. Technical report,
Honeynet Project, 2002.

[36] A. Sotirov. Hotpatching and the rise of third-party patches. In Black
Hat Technical Security Conf., Las Vegas, Nevada, August 2006.

[37] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process out-grafting: an
efficient "out-of-vm" approach for fine-grained process execution mon-
itoring. In Proceedings of the 18th ACM conference on Computer and
communications security (CCS’11), pages 363–374, Chicago, Illinois,
USA, 2011.

[38] G. Taleck. Synscan: Towards complete tcp/ip fingerprinting. In Pro-
ceedings of the Canada Security West Conference (CanSecWest ’04),
Vancouver B.C., Canada, 2004.

[39] P. Team. Pax address space layout randomization (aslr).
http://pax.grsecurity.net/docs/aslr.txt.

[40] A. Walters. The volatility framework: Volatile
memory artifact extraction utility framework.
https://www.volatilesystems.com/default/volatility.

[41] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomiza-
tion for security. In Proceedings of the 22nd International Symposium
on Reliable Distributed Systems (SRDS’03), pages 260–269. IEEE
Computer Society, 2003.

[42] F. Yarochkin, O. Arkin, M. Kydyraliev, S.-Y. Dai, Y. Huang, and
S.-Y. Kuo. Xprobe2++: Low volume remote network information
gathering tool. In Proceedings of IEEE/IFIP International Conference
on Dependable Systems Networks, 2009.

[43] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested vir-
tualization. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 203–216, Cascais,
Portugal, 2011. ACM.

	Introduction
	System Overview
	Problem Statement
	Challenges and Key Techniques
	System Overview

	Detailed Design
	PGD Identification
	Kernel Code Identification
	Signature Generation
	Signature Matching

	Evaluation
	Effectiveness
	Efficiency
	Comparison with Other Systems

	Discussion
	Related Work
	Conclusion

