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ABSTRACT

Software patching is one of the most significant mechanisms to
combat vulnerabilities. To demystify underlying patch details, the
techniques of patch differential analysis (a.k.a. patch diffing) are
proposed to find differences between patched and unpatched pro-
grams’ binary code. Considering the sophisticated security patches,
patch diffing is expected to not only correctly locate patch changes
but also provide sufficient explanation for understanding patch
details and the fixed vulnerabilities. Unfortunately, none of the
existing patch diffing techniques can meet these requirements.

In this study, we first perform a large-scale study on code changes
of security patches for better understanding their patterns. We then
point out several challenges and design principles for patch diffing.
To address the above challenges, we design a dynamic patch diffing
technique PatchScope. Our technique is motivated by two key
observations: 1) the way that a program processes its input reveals
a wealth of semantic information, and 2) most memory corruption
patches regulate the handling of malformed inputs via updating the
manipulations of input-related data structures. The core of Patch-
Scope is a new semantics-aware program representation, memory
object access sequence, which characterizes how a program refer-
ences data structures to manipulate inputs. The representation can
not only deliver succinct patch differences but also offer rich patch
context information such as input-patch correlations. Such infor-
mation can interpret patch differences and further help security
analysts understand patch details, locate vulnerability root causes,
and even detect buggy patches.
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1 INTRODUCTION

Software patching is one of themost significant mechanisms to com-
bat vulnerabilities [1]. Security patches imply abundant information
about the fixed vulnerabilities, which benefits the construction of
hot patches [54, 59], input filters [14, 39], and honey patches [2, 4].
Besides, by extracting patch signatures or semantics, researchers
propose to test the presence of patches [74], detect vulnerabilities
with patch-enhanced signatures [69], and evaluate the security im-
pacts of patches [68]. On the offense side, patch details promote the
study of attack vectors and potential variants of patched vulnerabil-
ities [8, 31, 50], such as “1-day” exploit generation [8, 47, 50, 55, 62]
and “buggy patch” [3, 24] detection.

Despite the significance of patches, demystifying patch details,
especially for commodity software, is challenging. Commodity soft-
ware vendors often release patches in binary format. Without the
support of patch source, it is difficult to understand patch details
or even locate patch-relevant code changes in binaries. Although
various online vulnerability databases (e.g., CVE, NVD) archive
identified vulnerabilities, most patch or vulnerability bulletins are
ambiguously worded on technical details [13, 48]. These bulletins
often report simple information such as vulnerability type and secu-
rity impacts [46], which is far away from investigating vulnerability
root causes and understanding patch details.

Patch analysis at the binary level.Given a patched program and
an unpatched one, patch analysis aims to locate differences induced
by patches and interpret such differences with rich semantics, for
investigating the root causes of the fixed vulnerability, as well
as understanding patch details such as how the patch fixes the
vulnerability. To ease presentation, we denote comparison-based
patch analysis as patch diffing.

To locate patch-relevant code changes, an intuitive approach is
to apply binary diffing techniques [27, 34, 49] to capture code differ-
ences, as differences may indicate the changes caused by patches.
The basic insight behind binary diffing techniques is to define code
similarity representations, ranging from static features (e.g., control
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flow/call graph [7, 25, 29]) to dynamic behaviors (e.g., system call
dependence [5, 64]), and then leverage such code representations
to measure the similarity between two binaries. The main limi-
tation of these techniques is that code similarity representations
are often specifically designed for different problem scopes, such
as vulnerability detection [16, 18, 21, 22, 71], software plagiarism
detection [40, 60, 64], or obfuscation-resilient malware compari-
son [5, 12, 44, 70]. As a result, these techniques may not be suitable
to locate patch-relevant code for sophisticated types of patches.
For example, up to 50% of security patches only modify less than 7
LOC [36]. Such a small degree of change includes resizing a buffer,
changing function parameters, etc., which may not exhibit any code
differences in generated binaries. Besides, false positives in binary
diffing [19] also affect the performance of patch diffing.

Locating patch-relevant code changes is just an intermediate step.
A more challenging task in patch analysis is to interpret identified
differences for investigating the root causes of the fixed vulnera-
bility, as well as for understanding patch details such as how the
patch fixes the repaired vulnerability.

To interpret patch differences, most of the existing static tech-
niques leverage security patch patterns. APEG [8] identifies a secu-
rity patch if the corresponding code difference involves a security
check. SPAIN [72] identifies security patches based on the assump-
tion that a security patch will not change program semantics and
it typically introduces a new branch for detecting invalid inputs.
SID [68] determines security impacts based on security patterns
by summarizing patterns of how security operations fix common
types of vulnerabilities.

However, security patch patterns used in existing techniques [8,
68, 72] may be incomplete to characterize types of patches. From
the perspective of programming, a vulnerability is mostly caused by
a specific programming logical fault. For example, a buffer overflow
can be caused by missing the input check, or error parameters for
invoking library functions. To fix the vulnerability, a patch will
consequently depend on specific program logics, which would vary
from vulnerability to vulnerability. To fix a use-after-free or double-
free vulnerability, a typical pattern is to make the invalid pointer
NULL. Another common pattern is to delete the dereference. With
the impact of sophisticated types of patches, security patch patterns
may be incomplete to interpret patch differences.

Taking advantage of detailed run-time information, execution
comparison techniques [53, 75] have also been proposed for rea-
soning execution differences. For an observed crash, differential
slicing [30, 67] constructs relevant control and data dependencies
for causal analysis. Although dynamic techniques often assume
a PoC is available, investigating the root cause of a vulnerability
and understanding patch details is still difficult, which may take
a significant amount of time and domain knowledge [6]. More-
over, identified differences at the binary level are represented as
low-level instructions and operands. Without the support of high-
level program abstractions, low-level differences fail to deliver rich
semantics for understanding how or why the two executions differ.

Our approach. In this study, we first perform a large-scale study
on code changes induced by security patches to understand their
patterns. We classify security patches into nine categories in terms
of their code changes. By inspecting code changes, we observe that

patterns used in existing studies are incomplete to characterize com-
plicated types of patches. Further, we point out several challenges
and design principles for patch analysis at the binary level.

To address challenges in patch analysis, we design a dynamic
patch diffing technique, named PatchScope. Compared with ex-
isting techniques that represent identified differences as low-level
instructions, PatchScope represents patch differences as a higher-
level abstraction with rich semantics, which can facilitate the in-
vestigation on the root causes and patch details.

The core of PatchScope is a semantics-aware program represen-
tation: memory object access sequence. Our approach is motivated
by two key observations: 1) the way that a program processes its
input reveals a wealth of semantic information; 2) most security
patches, especially for memory corruption vulnerabilities, aim to
better regulate the handling of bad inputs. More specifically, when
receiving an input, a program subsequently parses the received
input into multiple fields and references various data structures
to manipulate the input [9]. At the binary level, a data structure
reference is represented as a memory object access. Instead of syn-
tactical code changes, our insight regarding how a security patch
affects program semantics is: it typically modifies the manipulations
of input-related data structures. Therefore, given a PoC, we identify
patch differences via the comparison between the memory object
access sequences from the two executions on the unpatched and
patched programs respectively.

In detail, we dynamically excavate program memory objects that
are referenced during execution based on memory access patterns.
With multi-tag taint analysis, we further identify input fields that
are correlated with corresponding memory objects. Then, we define
a memory object access model to represent the manipulations on
input fields. In this way, we abstract the semantics of a dynamic
execution as a memory object access sequence. At last, we adopt
a local sequence alignment algorithm from bioinformatics [58] to
identify patch differences.

We evaluate the performance of PatchScope and existing bi-
nary diffing techniques on real-world vulnerabilities. Evaluation
results show PatchScope delivers more concise and accurate re-
sults than existing binary diffing techniques. Further, we detect
several cases that their security patch differences only reveal at
the level of memory object access sequence. To demonstrate that
PatchScope can facilitate understanding patch details, we sum-
marize how differences in memory object access sequence reflect
the impacts of patches, and present cases for dealing with compli-
cated patches such as overwriting an entire function. At last, we
find a “buggy patch” case that the patched vulnerabilities are not
completely repaired, leaving end-users still vulnerable.

Contributions. In summary, we make the following contributions:

• New insights froma large-scale study on security patches.

We perform a large-scale investigation on security patches
from the perspective of code changes, which is less studied in
previous literature. By inspecting the source code of patches,
we characterize security patches into nine categories with
respect to their code changes. Further, we study the impact
of patch patterns on code changes, and point out that several
challenges in locating patched code at the binary level. Our
investigation can promote studies on patch analysis.



• A memory-object-centric technique for patch diffing.

We propose a new angle to identify patch differences in terms
of how programs manipulate inputs via corresponding data
structures. Our semantics-aware approach is not only robust
for complicated types of patches, but also can deliver rich
semantics that other tools cannot offer. Such information can
assist security experts in patch analysis and free the burden
of manually reverse engineering efforts.

• Effectiveness in patch analysis. Evaluation on real-world
vulnerabilities shows that PatchScope outperforms existing
patch diffing techniques with more concise and accurate
results of located patch differences. Case studies demonstrate
that PatchScope can further interpret patch differences with
rich semantics delivered by memory object access sequence.

2 BACKGROUND AND MOTIVATION

In this section, we describe the problem setting, characterize se-
curity patch patterns via a large-scale study, and demonstrate the
limitations in existing binary diffing techniques.

2.1 Problem Setting

We use P and P ′ to denote a vulnerable program and the patched
version containing a security fix, respectively. Both P and P ′ are
stripped binaries. Their debug information and symbols are missing.
By comparing the execution traces of P and P ′ on the same PoC, our
goal is to 1) locate patched differences and 2) interpret identified
differences with rich semantics, for understanding patches as well
as fixed vulnerabilities.

Our study explores the direction of dynamic patch diffing. Thus,
we assume a PoC is available. With our problem setting, how to
obtain or generate a PoC is application dependent and out of scope.
Actually, obtaining or generating a PoC is challenging and may cost
significant manual effort [10, 46, 73]. As we will show, dynamic
patch diffing with a PoC is a common yet challenging practice.

For one thing, crash analysis on a PoC is a common practice
for security analysts. When a security patch is released, only brief
information, such as vulnerability types and security impacts [46]
is indicated in vulnerability bulletins, which is far away from tech-
nical details. In such a scenario, security analysts often try to seek
or generate a PoC for further dynamic analysis. Take the vulnera-
bility CVE-2014-6332 for illustration. Microsoft released the patch
on Nov.11th 2014, with little information about technical details.
Later, a security researcher releases a PoC [61]. After that, multi-
ple technical reports present the vulnerability details via dynamic
analysis on the released PoC.

Even with a PoC, dynamic execution analysis is still challenging,
especially on binaries where high-level program abstractions are
missing. This process has been proven to be difficult and tedious [30,
67], which may take a significant amount of time and domain
knowledge, due to types of vulnerabilities and their complexities [6].

2.2 Security Patch Patterns

To understand security patch patterns, we perform a large-scale
study by manually analyzing security patches from five recent
studies [37, 41, 46, 65, 68]. These five datasets cover patches for a

Table 1: Statistics on different memory corruption patch

types from five recent datasets [37, 41, 46, 65, 68]. The num-

ber of LOC changes ranges from 1 to 43, and 5 is the median

number.

No. Category Percentage
1 add input sanitization checks 43.5%
2 change input sanitization checks 25.1%
3 add data structures 6.1%
4 change data structure definitions 6.5%
5 change data structure references 22.3%
6 change function parameters 10.9%
7 add or change function calls 15.3%
8 add functions 4.7%
9 change functions 7.6%

wide range of vulnerabilities in open-source programs. For our pur-
pose, we only select patches for memory corruption vulnerabilities
and exclude duplicate patches in these five datasets. In total, we
investigate 2, 205 security patches.

According to the definition of patch patterns in previous studies
[45, 66], we summarize these security patches into nine categories
in Table 1 in terms of their code changes. Please note that a security
patch may be counted into more than one category if it introduces
multiple change types. From the security patch patterns in Table 1,
we have two observations.

Types of patch patterns. First, security patch patterns are of so-
phisticated types. As shown in Table 1, the top two categories
involve adding or updating input sanitization checks, as they are
the most direct ways to block unsafe inputs. The types of No. 3,
4, and 5 augment the data structures that are used to reference
input data, including changing the data type of int to unsigned int,
resizing a buffer, and allocating a heap memory segment rather
than a buffer in the stack to receive program inputs. The types
of No. 6, 7, 8, and 9 are related to fixing vulnerable functions and
their parameters (e.g., replacing unsafe C library functions). These
results confirm that a non-trivial proportion of software vulnera-
bilities are caused by specific program logic faults, and how to fix a
vulnerability will consequently depend on program logic.

Previous patch analysis [72] and “1-day” exploit generation tech-
niques [8, 50] propose to identify security patches based on patterns.
These techniques mainly focus on the top two categories in Table 1,
but fail to analyze other types of patches. Figure 1 shows an example.
This patch tries to fix a buffer overflow vulnerability by changing
data structures, and it involves only 4 LOC changes within a single
function. In particular, two local arrays with fixed lengths are up-
dated to two dynamically allocated heap memory objects. Unlike
classical patches that will block bad inputs, this patch fixes the
vulnerability by updating program data structures.

Impact on Code Changes. Second, security patch patterns in-
dicate two extremes regarding the binary code difference effects.
At one end, 71% of them (e.g., No. 1, 7, 8, and 9 in Table 1) ex-
plicitly change the control flow graph (CFG) or call graph (CG):
they add new branches, basic blocks, or functions. At the opposite
end, the rest of the security patches do not break the integrity of
CFG/CG structures but only cause intra-basic-block differences.



1 int main() { …;   serveconnection(sockfd);  …;  } 
2 int serveconnection(int sockfd) {   
3 char tempstring[8192]; // tempstring is allocated to store program inputs.  
4 Log("Connection from %s, request = \"GET %s\"", inet_ntoa(sa.sin_addr), ptr); // ptr is a pointer to tempstring 

…; } 
5 void Log(char *format, … ){ void Log(char *format, … ){ 
6  char temp[200], temp2[200]; char *temp, *temp2;  
7  temp=malloc(strlen(format)); 
8  vsprintf(temp, format, ap1);   vsprintf(temp, format, ap1); 
9  temp2=malloc((strlen(temp)+strlen(datetime_final)+5)); 

10  sprintf(temp2, "%s - %s\n", datetime_final, temp); sprintf(temp2, "%s - %s\n", datetime_final, temp); 
  (a) ghttpd-1.4.3 (b) ghttpd-1.4.4 

 1 ap in Line 8 is the type of va_list, which stores a variable arguments list from program inputs. 

Figure 1: A security patch aims to fix a buffer overflow vulnerability in ghttpd-1.4.3. Line 1∼4 (main and serveconnection) are
shared by two versions. The patch updates two vulnerable data structures from stack memory to heap memory.

Some patches (e.g., increasing the size of a buffer) even leave no
evidence on the change of CFG, abstract syntax tree, or program
dependency graph. In particular, some security patches may cause
no basic-block or instruction differences. For example, a security
patch fixes a format string from %s to %39s . As the format string
belongs to the .RODATA section of a binary, this fix will induce no
instruction differences.

2.3 Limitations of Existing Work

In the binary diffing literature, there are four types of problem
scopes: literally identical, syntactically equivalent, semantically
similar, and slightly modified [18]. Code representations used for
measure similarity or identify differences, ranging from syntactic
(e.g., control flow/call graph [7, 25, 29]) to semantics-aware features
(e.g., dynamic behaviors [20] and system call sequences [5, 64]),
are specific to different problem scopes and vary a lot. Considering
sophisticated types of patch patterns and their impact on code
changes, we will discuss limitations in existing techniques in the
following sections.

Syntax-based binary diffing. BinDiff [27], Diaphora [34], and
DarunGrim [49] are three industry-standard binary diffing tools
with wide applications [31, 47, 48, 55, 62]. These techniques com-
pute the similarity with a set of heuristics on CFG/CG structures,
basic blocks, and instructions.

However, these binary diffing tools may not be robust or accu-
rate. The small degree of code changes, such as resizing a buffer,
updating the variable type, changing function parameters, may
exhibit no difference in assembly code. On the opposite side, some
patches involve a large degree of code changes such as overwriting
a function. Then, they will generate a large number of low-level
code differences that plague security experts [40]. Besides, recent
studies also show that binary diffing techniques may raise many
false positives [40].

Taking advantage of run-time information, dynamic execution
comparison [30] can filter irrelative code changes that are not tra-
versed along with the execution, which is more robust than static
binary diffing. The main limitation is execution comparison may
result in a large number of different instructions, and such low-level
differences in instructions or operand values cannot deliver rich
semantics for understanding patch details and fixed vulnerabilities.

For the example in Figure 1, BinDiff reports up to 30 differences
in terms of the instructions removed or added. Due to the page

limit, we list a snippet of the instruction alignment sequence in
Appendix A. We can observe that it is far from meeting the goal
of patch analysis. First, BinDiff did an inaccurate trace alignment.
Second, low-level differences cannot avail security experts much
regarding how to trigger this vulnerability. We will continue to
elaborate on this example in the later sections, but for now, we
remind the reader that Figure 1 (b) is a “buggy patch”. With the
help of PatchScope, we find this patch induces a new attack vector
by overrunning the objects in the heap.

Symbolic execution for binary diffing.Another line of research
employs symbolic execution for binary diffing, either at the source
code level [35, 51, 52] or the binary level [15, 25, 40, 70]. These tech-
niques perform symbolic execution to represent the code snippets
as formulas and then detect differences using a theorem prover.

There are several challenges when applying symbolic-execution-
based binary diffing for patch analysis. For one thing, most of
these techniques rely on static analysis to locate code differences.
DSE [51] and DiSE [52] leverage static analysis techniques to iden-
tify differences, and then perform symbolic execution to charac-
terize different program behaviors or effects. As we demonstrate
above, binary diffing tools may not be robust or accurate to locate
patch-relevant changes. Second, the output of symbolic execution—
symbolic formulas, especially formulas generated from instructions,
is difficult to understand the effects of patches. At last, symbolic
execution is typically performed within a basic block [15, 25, 40]
or a loop body [70] at the binary level, which may not be scalable
to deal with complicated patches involving library function calls
(e.g., No. 6, 7, 8, and 9 in Table 1).

Semantics-aware binary diffing. Semantics-aware binary diffing
techniques leverage system calls, or library API functions to rep-
resent program semantics, which are commonly adopted by clone
detection [20, 64] and malware variant comparison [5, 23, 33, 44].
However, such code representations are often too coarse-grained
to be sensitive for patch differences, or because many security
patches only induce a small degree of code changes. Another type
of semantics-aware technique treats a pair of binary code snip-
pets [20, 63] as a BlackBox and perform dynamic testing to compare
their behaviors for similarity measurement. For example, BLEX [20]
collects dynamic memory accesses for similarity measurement.
However, dynamic memory accesses are too fine-grained to pre-
cisely identify patch differences, as BLEX [20] reports 32 differences
for the example in Figure 1 (as shown in Appendix B).



AI-powered binary diffing. Taking advantages of AI techniques
(e.g., deep learning and neural networks), AI-powered binary diffing
techniques [18, 19, 26, 38, 42, 43, 71, 76] first translate binary code
snippets into a set of feature vectors, and then they apply machine
learning algorithms to the similarity calculation. When handling
security patches, this new trend encounters similar problems with
the above semantics-aware binary diffing: insensitive to a small
degree of code changes.

2.4 Design Principles

To overcome limitations in existing patch analysis techniques, we
design patch diffing to satisfy three unique principles.

• For types of patch patterns, patch diffing should be robust in
locating patch differences beyond assembly code. Otherwise,
it either falls short of capturing small patch differences or
suffers from too many code differences.

• Patch diffing should output interpretable results by providing
detailed patch relevant differences.

• Patch diffing should deliver rich semantics, especially high-
level program representations, for understanding patch de-
tails and fixed vulnerabilities.

3 MEMORY OBJECT ACCESS SEQUENCE

In this study, we design a new code representation, memory ob-
ject access sequence (MOAS), to represent program semantics and
compare MOAS for patch diffing. MOAS is motivated by two key
observations.

3.1 Key Observations

First, the way that a program references data structures to ma-
nipulate inputs can be regarded as a “side effect” of the program
semantics. To process a received input, a program typically man-
ages multiple data structures (e.g., variable, array, and struct) to
manipulate these fields. For example, “temp[200]” and “*temp” in
Figure 1 are defined to store a string that contains two fields: an
Internet host address and an HTTP request URL. Therefore, input
manipulations via various data structures reflect a wealth of pro-
gram semantics information. At the binary level, compilers allocate
various memory objects to represent high-level program data struc-
tures. Then, referencing a data structure to manipulate an input
field becomes a memory object access (MOA). The formal definition
of MOA is given next.

Second, to fix memory corruption vulnerabilities, most of the
security patches add new or update operations on input manipula-
tions for handling bad inputs. Then, security patches will introduce
different memory object access between the dynamic executions
on P and P ′. For example, the patches related to input sanitiza-
tion checks add or update path conditions to block unsafe inputs,
and thus they will introduce subtraction or a bit-wise logical and
operations to certain memory objects.

3.2 Semantics-aware Program Representation

Definition 1: Memory Object. At the binary level, we use amem-
ory object to represent a reverse-engineered data structure along
an execution trace. A memory object is denoted as mobj = (alloc,

size, type). alloc refers to the context information when allocating
the memory object, size indicates the size (in byte) of the memory
object, and type means its type. In our study, type includes static
variables, dynamically allocated variables in the heap, and local vari-
ables in the stack. As memory object allocations vary from different
types of data structures, the definition of alloc has to be considered
together with the program context where mobj is allocated.

• For a static variable, as its memory slot will not be reused,
its memory address can exclusively represent alloc.

• For a local variable in the stack, a function frame generally
holds the set of local variables. Thus, we represent alloc as a
pointer addressed by the frame pointer, as well as the calling
context of this function. An exception is register allocation
optimization, which assigns local variables into registers to
reduce the number of stack memory accesses. Our solution
is to use registers to represent such special local variables.

• For a dynamic variable in the heap, we hook the invocation
of memory-allocation functions, and then we use the calling
site and its return value (the pointer to the allocated heap
object) to represent alloc.

We illustrate alloc using our running example from Figure 1. The
function Log defines a local variable temp with 200-bytes length.
For the dynamic execution on ghttpd-1.4.3, the alloc for temp will
include the calling context,main-serveconnection-Log, and the offset
from the frame pointer of Log. As ghttpd-1.4.4 defines temp as a
heap variable, the alloc for temp includes the calling context, main-
serveconnection-Log, the malloc call, and the returned pointer to
temp. We will discuss how to identify size in §4.4.

Definition 2: Memory Object Access. A memory object access
is denoted as A(mobj) = (mobj, cc, op, optype, α ), where:

• mobj is a memory object as defined by Definition 1.
• cc records the context in which mobj is used. As mobj can be
accessed by other functions through pointers, cc includes the
function that references mobj as well as the calling context
of this function.

• The element op refers to the data-flow-related operations
on mobj. We consider three main kinds of instructions that
participate in input propagation: data movement instruc-
tions, arithmetic instructions, and calling instructions to
library/system calls. We denote op as the opcodes of these
instructions as well as their addresses.

• The element optype contains two access types of mobj: read
and write.

• The element α refers to the consecutive bytes of an input
that is correlated withmobj during an execution. Please note
that α may not be persistent with an input field defined by
syntactical formats, because a program subsequently parses
and manipulates inputs step by step.

3.3 MOAS Comparison

The temporal order of memory object accesses (MOA) along an
execution trace forms a memory object access sequence (MOAS).
With the above definitions, we monitor the execution of P and P ′
on the same PoC. Then we dynamically collect two memory object



mobj alloc size type   mobj alloc size type 

L1 <main-serveconnection>:ebp-0x4151 0x2000 stack   R1 <main-serveconnection>:ebp-0x4151 0x2000 stack 

L2 <main…Log>: ebp-0x172 0xc8 stack   R2 <main…Log>:0x804ac08: call malloc 0x26 heap 

L3 <main…Log>: ebp-0x23a 0xc8 stack   R3 <main…Log>:0x804aca5: call malloc 0x65  heap 

   R4 <main…Log>:eax 0x4 reg 

(a1) Memory object representation for ghttpd-1.4.3   (b1) Memory object representation for ghttpd-1.4.4 

L1 
<main-serveconnection-Log>   

R1 
<main-serveconnection-Log> 

0x804a35c: call 
vsprintf R [0x4,0x01d]   0x804ac29:call vsprintf R [0x4,0x01d] 

    

L2 
<main-serveconnection-Log>   

R2 
<main-serveconnection-Log> 

0x804a35c: call 
vsprintf W [0x4,0x01d]   0x804ac29:call vsprintf W [0x4,0x01d] 

 

 

   
  

R2 
<main-serveconnection-Log> 

  0x804ac83:call strlen R [0x4,0x01d] 
   

  
R4 

<main-serveconnection-Log> 
  0x804ac83:call strlen W [0x4,0x01d] 
   
  

R4 
<main-serveconnection-Log> 

  0x804aca5: call malloc R [0x4,0x01d] 
   

L2 
<main-serveconnection-Log>   

R2 
<main-serveconnection-Log> 

0x804a3cb:call sprintf R [0x4,0x01d]   0x804acd5: call sprintf R [0x4,0x01d] 
       

L3 
<main-serveconnection-Log>   

R3 
<main-serveconnection-Log> 

0x804a3cb: call sprintf W [0x4,0x01d]   0x804acd5: call sprintf W [0x4,0x01d] 

(a2) Memory object access sequence for ghttpd-1.4.3   (b2) Memory object access sequence for ghttpd-1.4.4 

We take the top left item in (a2) as an example to interpret memory object access (mobj, cc, op, optype, α).  
“L1” (mobj) represents a memory object defined in (a1); “<main-serveconnection-Log >” (cc) is the function that 
references “L1”; “0x804a35c:call vsprintf” (op) refers to the instruction operating on “L1”; “R” (optype) means 
the access type of read; “[0x4,0x01d]” (α) indicates the input field that is correlated with “L1”. 

                                  

 

 

 

Figure 2: MOAS comparison result for the patch differences shown in Figure 1. We highlight the misalignment places. “0x65”

in b1 indicates that the value of size is tainted.

access sequences from P and P ′, respectively. At last, we detect
their differences for patch analysis.

According to our observations in Section 3.1, a security patch
can leave a fingerprint on one of the following features of MOAS:
memory object allocations, memory object operations, or the corre-
lations between memory objects and input fields. Thus, MOAS com-
parison is able to interpret identified differences with the context
information represented by MOAS. Compared to existing tools [27,
34, 49] that highlight differences in assembly instructions, the pro-
gram representation by MOAS enables us to deliver comparison
results more concisely.

Figure 2 illustrates the MOAS comparison result for our run-
ning example, which only has six misalignment places. Recall that
BinDiff reports 30 misalignment differences. Figure 2(a1) and (b1)
present the allocated memory objects, and Figure 2(a2) and (b2)
show how these memory objects are referenced during runtime
execution. For the second memory object access in Figure 2(a2) and

(b2), we observe that their contexts, operations (call vsprintf ), op-
eration types (both are W), and correlated inputs (with the interval
[0x4, 0x15d]) are identical. However, as shown in Figure 2(a1) and
(b1), the allocations of L2 and R2 are different, as L2 is on the stack
whereas R2 on the heap. As L2 and R2 are different, the follow-on
accesses to L2 and R2 will be different as well. Similarly, L3 and R3
are different, which leads to the difference between the accesses to
L3 and R3. In addition to inferring that the patch fixes the vulner-
ability by updating data structures, Figure 2 also shows a telling
clue that cannot be obtained from Figure 5.

Note that both R2 and R3 are two dynamically allocated memory
objects in the heap to store the input. However, if we zoom in on
their memory object representations shown in Figure 2(b1), we
notice only R3’s malloc size is tainted—that means the size of R3
depends upon the input. This discrepancy motivates us to inves-
tigate why R2’s malloc size is not tainted. We perform backward
slicing from R2’s malloc size and find that the source is a const
string located in the read-only data section. That means the size of



R2 is fixed and decided by this const string. We have verified that
an unsafe input can still overflow R2 to crash ghttpd-1.4.4 if the
number of input bytes exceeds the const string length. Our CVE ID
request for this “buggy patch” is under review.

4 PATCHSCOPE SYSTEM DESIGN

The section presents our design details to unleash the power of
MOAS comparison for security patch analysis.

4.1 System Overview

Figure 3 shows the overview of PatchScope. It contains four main
components: dynamic taint and execution monitoring, memory
object excavation, memory object access construction, and MOAS
alignment.

First, we leverage a fine-grained dynamic tainting technique to
monitor dynamic executions for both P and P ′ on the same PoC.
The fine-grained dynamic tainting component gives each input byte
a unique taint tag, and records the propagations of all tainted bytes.
Meanwhile, the execution trace records all executed instructions,
all operand values as well as their taint tags.

Second, we dynamically excavate memory objects from execu-
tion traces. The basic insight is that memory access patterns reflect
the types of program data structures. Moreover, our approach estab-
lishes the correlations between reverse-engineered memory objects
and input fields, for identifying memory objects that are used to
manipulate program inputs.

Third, we construct memory object access sequences for both P
and P ′, according to Definition 1 and Definition 2.

Finally, we leverage a sequence alignment algorithm to identify
differences by comparing memory object access sequences for both
P and P ′. To reason differences, we further use semantics reflected
on MOAS to identify vulnerable program data structures, invalid
inputs to trigger the vulnerability, as well as the context.

4.2 Dynamic Taint and Execution Monitoring

The component of dynamic taint and execution monitoring in
PatchScope is built on top of DECAF [28], which is a QEMU-
based whole-system dynamic binary analysis platform. We adapt
DECAF to our needs in supporting multi-tag taint propagation and
recording all necessary runtime information used in the follow-up
analysis.

Multi-tag taint analysis is indispensable to the correlations be-
tween memory objects and input fields. Our taint analysis begins
with labeling each input byte as a unique taint tag. During taint
propagation, if the multiple source operands of one instruction are
tainted, we will set the taint tags of the destination operand as the
union of all source operands’ taint tags.

DECAF also records fine-grained runtime information such as
concrete execution states (e.g., instructions and operand values),
which enables us to recover function call stacks and excavate mem-
ory objects. To track dynamically allocated memory objects in heap
and stack, we have to intercept related memory allocation system/li-
brary calls (e.g., mmap, malloc, and alloca).

4.3 Function Call Stack Identification

The allocations and accesses to memory objects bind with their
calling contexts. Therefore, our first step is to recover function call
stacks. For tracking function call stack, the most straightforward
way is to match the call/ret pairs and the balance of stack pointers. A
main challenge is security patches may trigger some latent compiler
optimization options that can mislead stack frame identification.

Common optimizations include tail call optimization [11] and
function inline. The tail call optimization avoids the overhead of
frequent stack frame set-up and tear-down. It switches to a jmp
instruction at the end of the caller function to enter the callee
function, instead of the general call instruction. GCC/Clang -O2
and -O3 enable this optimization. Appendix C shows a tail call
optimization example. InApache-1.3.35—one of our tested programs,
the proportion of jmp-based calls encountered at run time is about
12%.

We leverage the recent progress in dynamic function call detec-
tion work, iCi [17], to detect jmp-based inter-procedural calls. iCi
proposes a set of heuristics to filter out intra-procedural jumps (e.g.,
the jump target is within a function scope) and jmp-based calls (e.g.,
the jump target is a known function entry point). In this study, we
perform the iCi analysis at the end of execution so that we have
sufficient knowledge about function entry and exit information.

With the impact of function inline, there is no explicit control
flow transition between an inlined function and its caller. For this
problem, we just treat them as an extended function frame. If the
function inline only exists in one of the unpatched and patched
programs, the contexts for allocating memory objects will be dif-
ferent. Then the MOAS comparison will identify more differences.
We leave such misleading differences to analysts for further inspec-
tion. It is practical and not difficult, because all elements except the
contexts in two corresponding memory object accesses will be the
same, if and only if the differences are caused by function inline.

4.4 Excavating Data Structures & Input Fields

All types of data structures in source code are compiled into mem-
ory objects in binary code. Our approach of excavating memory
objects is inspired by previous work, Howard [57]. The basic in-
sight is that memory access patterns reflect the types of program
data structures. Therefore, we recover memory objects by tracing
pointer propagations, as memory accesses in binary code are im-
plemented via pointers, either using direct addressing or indirectly
via registers. Our differential with Howard [57] is we need to estab-
lish the correlations between reverse-engineered memory objects
and input fields. Following this requirement, our approach aims to
identify only memory objects that are used to manipulate program
inputs, instead of all the memory objects that are referenced during
execution.

Root Pointer Extraction. The allocation of a memory object typ-
ically returns a pointer for further access and reference. We denote
this pointer as a root pointer. In general, root pointers are unique
for different memory objects, and they are not derived from any
other root pointers. Following this definition, we identify memory
objects by extracting their root pointers.

For the three types of memory objects (see Definition 1), ex-
tracting the root pointer for a static variable or a dynamic variable
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lea     -0x172(%ebp) ,  %edi
mov   %edi,(%esp)
call    vsprintf

lea     -0x23a(%ebp) ,  %esi
movl  $0x804b108,0x4(%esp)
mov   %esi,(%esp)
call    sprintf

call   malloc

mov  %eax    ,  -0x1b0(%ebp)
mov  -0x1b0(%ebp),%edi
mov  %edi,(%esp)
call    vsnprintf

call     malloc

mov   %eax   ,   %esi
movl   $0x804b4e8,0x4(%esp)
mov    %eax,(%esp)
call     sprintf
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Figure 4: Reverse-engineered memory objects and their cor-

related input fields for the vulnerable and patched ghttpd.

in the heap is straightforward. We directly use a static variable’s
memory address, which will not be reused, to represent its root
pointer. For dynamic variables in the heap, we hook related memory
allocation functions and take the return value as the root pointer.
In Figure 4(b), eax holds the return value of malloc. Thus eax refers
to the root pointer of the allocated memory object.

Identifying the root pointer for a local variable is a little trickier.
Typically, a function stack frame holds the set of local variables,
and programs address a local variable with the base pointer ebp.
Thus, the root pointer of a local variable is indicated by the offset
from ebp, such as ebp-0x4. For example, the first instruction (lea
-0x172(%ebp), %edi) in Figure 4(a) indicates a root pointer with the
address ebp-0x172, because it is in the current stack frame and is not
derived from any other root pointers. The tricky issue here is a local
variable can also be addressed via the stack pointer esp, which may
lead to false positives on memory object identification. Our solution
is to normalize these two possible local variable access ways only
via ebp. Specifically, the concrete execution state that is recorded
during execution enables us to examine whether two pointers are
aliased. In Figure 4(a), the destination operand of mov $0x804b108,
0x4(%esp) is a parameter of sprintf. Function parameters are often
pushed into stack first. However, due to compiler optimization,
the parameter here is directly addressed by 0x4(%esp). After our
normalization, we regard esp+0x4 as ebp-0x24c by calculating the
offset of 0x4(%esp) from ebp.

An exception happens when the compiler optimization option
“- fomit-frame-pointer” is enabled, in which the generated binary
code will not keep the frame pointer ebp for a function call. At the
beginning of the function, there are no stack balance instructions
such as push ebp; mov esp, ebp. This optimization avoids the instruc-
tions to save, set up, and restore frame pointers, but it complicates

our root pointer identification for local variables. To address this
problem, we represent the stack frame pointer with esp’s offset if
we detect the non-existence of stack balance instructions.

MemoryObject Size Inference For a dynamically allocated mem-
ory object, the allocation function’s parameter explicitly indicates
the size. The obstacle is to infer the size for local variables and
static variables, because their types are invisible in binary code. We
approximate their size by calculating the offset interval between
two contiguous root pointers. For the example in Figure 4(a), the
size of two memory objects (200) is just the offset interval between
adjacent root pointers. The inferred size for a memory object may
not be accurate, which could be larger than its definition if the ad-
jacent memory object is not referenced during execution. However,
we argue that the comparison between two memory object access
sequences can counteract this inaccuracy.

Tracking Pointer Propagation. Through recognizing root point-
ers, we can identify the definition and allocation of memory objects.
The next step is to extract the references to these memory ob-
jects, which is more challenging because programs generally define
memory alias or transfer pointers to registers as de-references. Fur-
thermore, without context information, the usage of a register is
very similar when it is used as an address or a scalar. To solve
this problem, we also adopt similar heuristics in Howard [57] by
analyzing the context and tracking the movement of root pointers.

We first identify all root pointers. Second, we identify alias point-
ers by tracking the data movement of root pointers. Further, we
track all arithmetic calculations on root pointers, because the mem-
ory address for an internal item of a data structure is typically
calculated by adding an offset on the root pointer. Finally, for a
memory load/store, we identify its root pointer by checking the
data dependency of its memory address. Take the addressing mode
of x86 instructions as an illustration. An address is computed as
address = base + (index × scale) + offset, where base means the base
address. By tracking the movement of root pointers, we can identify
the pointer on which base depends as the root pointer.

Correlating Input Fields. We leverage multi-tag taint propaga-
tion results to establish the correlation between memory objects
and input fields. For each tainted operand, we first determine its
taint tags. If the operand is a register, we backtrack the execution
trace to obtain the dependent memory operand. Second, we extract
the root pointer, and the offset from the root pointer to the base
address of the memory operand. Third, we construct the correlation
between the referenced memory object and inputs with taint tags.

For an input field that containsmultiple bytes such as a buffer or a
string, a program generally allocates an array and manipulate them
in a loop or C-string library function [57]. Within a loop, a program



typically manipulates consecutive input bytes via corresponding
memory cells with the same root pointer and consecutive offsets.
Based on the heuristics, we further group memory accesses that
manipulate input fields (such as a string) via the same memory
object (such as an array). Specifically, we first identify memory cells
that belong to the same memory object. If two memory cells with
consecutive offsets from the root pointer are used to manipulate
consecutive input bytes, then we can group them into one memory
object access.

4.5 MOAS Construction

After we excavated memory objects and correlated input fields, we
have confirmed three items, mobj, cc, and α , for a memory object
access as Definition 2, leaving op and optype undecided.

For a datamovement instruction, we track thememory load/store
for its tainted operands. The optype of read or write for the related
memory object is decided by whether the tainted operand is loaded
from or stored into memory.

Dealing with arithmetic instructions is a bit more complicated,
because it is likely that only register operands are involved in an
arithmetic instruction. We first identify whether a tainted register
is a copy of a memory object. If yes, we take the arithmetic opcode
as the op and identify optype by whether the tainted register is a
source or destination operand.

For a C library call instruction that also propagates taint tags,
we have optimized it using function summary at run time. Here we
update the related memory object’s op and optype according to the
function summary’s semantics.

Till now, we construct a memory object access with the root
pointer of such memory object, the calling context, data-flow-
related opcode, access type, and the correlated input field bytes that
are addressed by the same root pointer. Then, we form a sequence
with all the constructed memory object accesses in temporal order.

4.6 MOAS Alignment

To identify patch differences, we explore sequence alignment algo-
rithms. The longest common subsequence (LCS) algorithm looks
at the entire sequence, but it does not always deliver the most
meaningful alignment in our context. In this study, we leverage the
Smith-Waterman algorithm [58], which tends to find similar local
regions between two sequences.

A challenge in MOAS alignment is that memory objects are
represented as root pointers, which could be different for the same
memory objects. To address the challenge, we treat a memory object
access as a vector and measure two vectors’ similarity. In detail,
both memory object and memory object access can be represented
as vectors according to Definition 1 and Definition 2. For a pair
of memory object accesses, we first calculate the similarity between
two corresponding memory objects and then quantize the similarity
between two memory object accesses. The details about how we
apply the Smith-Waterman algorithm are presented in Appendix D.

5 EVALUATION

The prototype of PatchScope includes a total of 2, 070 lines of C
and Python code. 560 lines of C code is used to extend DECAF [28]
for multi-tag taint analysis and execution monitoring. Our offline

analysis, including memory object excavation and local sequence
alignment, is implemented with 1, 510 lines of Python code.

We conduct our experiments with three objectives. First, we
did a comparative evaluation to demonstrate that PatchScope is
particularly fit for capturing security patch differences. Second, to
demonstrate that differences identified by PatchScope have rich
semantics, we present the patch impacts on memory object accesses
and input manipulations, by inspecting different items identified by
PatchScope. Third, we perform case studies to show that Patch-
Scope can assist reverse-engineers in further patch analysis.

5.1 Experiment Setup

Our experiment platform contains two Intel Xeon Gold 6134 pro-
cessors, two GeForce GTX 1080 Ti 11GB graphic cards, and 256G
memory, running Ubuntu 18.04 LTS.

Datasets and Ground Truth Collection. We select real-world
vulnerabilities for evaluation considering several factors, including
the vulnerability type, the patch complexity, and the patch patterns
reported in Table 1.

Considering these factors, we select vulnerable applications from
the datasets [37, 41, 46, 65, 68] according to the following criteria:
1) the vulnerable program, the security patch, and a PoC are all
available; 2) types of vulnerabilities include stack overflow, heap
overflow, integer-to-buffer overflow, off-by-one, use-after-free, and
double free; 3) patches cover all types listed in Table 1. Besides, we
exclude vulnerable applications (such as 64-bits and interpreted
language engines) that cannot be supported by our prototype. In
this way, we select 37 applications in total from these datasets.

For each application, we use the same compiling options to gener-
ate two binaries, an unpatched one, and a patched one, respectively.
To collect the ground truth, we manually identify patch differences
between each pair of binaries with the assistance of patches.

Besides the 37 applications of which the patch source is avail-
able, we also select 8 applications of which the patches are not
available. That is, the vulnerabilities in these applications are fixed
in the new release versions instead of patches. This patching type
represents a more challenging case for patch analysis, because the
update version may contain security patches, general bug fixes, and
functionality changes. As a result, it is difficult to identify and dis-
tinguish security patch differences. These 8 applications are listed
in the last eight rows in Table 2. Through these applications, we
aim to demonstrate that PatchScope can facilitate patch analysis
with the assistance of rich information from identified differences.
To collect ground truth for these eight applications, we manually
identify their patched code in binaries by debugging PoCs.

Baseline Techniques. We select both prominent static and dy-
namic diffing approaches as baseline techniques.

We select three industry-standard binary diffing tools: BinDiff [27],
Diaphora [34], and DarunGrim [49]. We also select an AI-powered
binary diffing technique, DeepBinDiff [19], which is recently pub-
lished and open-source. These four techniques work on static bi-
naries directly. For a fair comparison, we setup dynamic execution
comparisons by leveraging binary diffing techniques to compare
execution traces caused by PoCs. For all different items identified
by binary diffing, we regard an item as a difference only if it is



Table 2: Comparative evaluation results. “OF” is short for “overflow”.

Program

Vulnerability Security Patch Time(s) Result (Number of different items detected)

CVE Type LOC Type Trace Diff
BinDiff Diaphora DarunGrim DeepBinDiff BLEX CoP BinSim PatchScope
(Inst.) (Inst.) (Basic Block) (Basic Block) (Inst.) (BB.) (Syscall) (MOA)

static trace static trace static trace static trace

streamripper-1.61.25 2006-3124 stack OF 6 data struc. & func. PRM 147 123 0 0 0 0 0 0 0 0 361 0 0 1
newspost-2.1 2005-0101 stack OF 2 change checks 141 92 4 2050 8 2052 2 1025 1 1024 2075 2 0 1
mcrypt-2.5.8 2012-4409 stack OF 2 add checks 99 81 15 14 45 38 6 5 4 2 151 3 0 3
tiffsplit-3.8.2 2006-2656 stack OF 5 function calls 108 88 5 5 5 5 3 3 2 2 29 2 4 4
unrar-3.9.3 NA stack OF 4 function calls 291 135 11 6 11 6 2 1 3 1 41 2 5 3
xmp-2.5.1 2007-6731 stack OF 3 data structures 138 84 1 1 1 1 1 1 1 1 16 1 0 1

gif2png-2.5.2 2009-5018 stack OF 6 add checks 117 104 25 17 131 38 16 11 2 2 203 12 0 5
libsndfile-1.0.25 2015-7805 heap OF 5 function PRM 110 116 33 1579 97 2523 9 850 1 1 94 3 0 3
nasm-0.98.38 2004-1287 stack OF 2 function calls 222 148 3 2 2 2 1 1 4 4 43 1 3 2
0verkill-0.16 2006-2971 numeric error 1 change checks 129 91 2 2 2 2 1 1 0 0 87 1 0 2

ringtonetools-2.22 2004-1292 stack OF 4 data struc. & add checks 179 111 2 4082 2 4082 1 2041 1 2041 2359 1 0 2
Unalz-0.52 2005-3862 stack OF 2 add checks 81 104 22 22 16 16 4 4 2 2 245 3 0 2
O3read-0.03 2004-1288 stack OF 1 add checks 79 99 13 11264 5 5120 4 3072 1 1024 3323 2 0 1
gzip-1.2.4 2001-1228 stack OF 2 function calls 135 151 2 1 2 1 2 1 3 1 601 2 0 2

binutils-2.12 2005-4807 stack OF 8 function calls 103 138 7 2 4 2 4 1 2 1 92 2 2 2
conquest-8.2a 2007-1371 stack OF 5 change checks 1537 189 10 3072 36 5124 11 2049 0 0 1139 8 0 1
poppler-0.24.1 2013-4473 stack OF 4 function calls 444 163 2 2 2 2 1 1 0 0 121 1 0 3
ntpd-4.2.6 2014-9295 stack OF 11 add functions 208 157 52 45 70 55 15 11 5 5 76 7 0 6
libsmi-0.4.8 2010-2891 stack OF 7 change checks 178 125 37 2948 59 3092 8 259 4 258 1112 6 0 5

fontforge-20100501 2010-4259 stack OF 18 function PRM 277 148 0 0 0 0 0 0 0 0 72 0 0 4
2fax-3.04 2004-1255 stack OF 27 add func. & func. PRM 119 135 97 4588 100 5394 12 1080 3 768 1584 14 0 4

libpng-1.2.5 2004-0597 stack OF 25 add checks 69 110 21 8 47 12 13 5 0 0 111 11 0 5
ytree-1.9.4 NA stack OF 4 function calls 52 82 9 9 9 9 1 1 0 0 81 1 0 3
sox-12.17.4 2004-0557 stack OF 8 add checks 101 90 76 27 26 13 8 3 6 3 372 5 0 4

ettercap-0.7.5.1 2013-0722 stack OF 2 function PRM 405 106 0 0 0 0 0 0 0 0 128 0 0 1
binutils-2.15 2006-2362 stack OF 15 add checks 157 143 107 32 189 28 35 10 8 2 337 25 0 5
prozilla-1.3.6 2004-1120 stack OF 10 function calls 189 130 11 2 21 6 6 1 6 1 436 6 0 3
nginx-1.4.0 2013-2028 numeric error 4 add checks 88 97 49 12 9 4 3 2 3 2 210 3 0 6

proftpd-1.3.3a 2010-4221 stack OF 4 add checks 111 91 5 5 3 3 1 1 1 1 189 1 0 2
tiff2pdf-4.0.9 2018-15209 heap OF 8 add checks 116 91 111 47 202 52 40 8 10 4 527 28 0 5
nginx-1.12.0 2017-7529 numeric error 3 add checks 309 173 15 8 16 10 6 2 3 1 532 4 0 3

Aircrack-ng-1.2 2014-8322 stack OF 2 add checks 455 187 6 3 34 2 2 1 2 1 324 2 0 3
leptonica-1.70.1 2018-7186 stack OF 2 function PRM 97 131 0 0 0 0 0 0 0 0 319 0 0 1
openjpeg-2.1.1 2016-7445 Null pointer 4 add checks 163 149 48 11 24 3 9 2 10 8 362 8 0 4
Jasper-1.900.9 2016-8887 Null pointer 5 function calls 193 127 32 23 24 15 5 4 4 4 144 4 0 3
libzip-1.2.0 2017-12858 double free 3 function calls 125 113 40 16 108 15 12 6 8 5 514 8 1 1

GraphicsMagick-1.3.26 2017-14103 UAF 51 function calls 643 190 275 35 361 49 50 10 19 10 634 41 11 5
putty-0.66 2016-2563 stack OF NA NA 339 176 675 63 696 21 110 5 33 9 4564 87 18 12
mutt-1.4.2.2 2007-2683 stack OF NA NA 312 131 31 2 33 4 8 1 9 2 148 4 6 2
inetutils-1.8 2011-4862 stack OF NA NA 137 159 2483 436 2506 597 441 155 207 81 6029 135 41 17

Apache-1.3.35 2006-3747 off-by-one NA NA 358 168 198 0 198 0 21 0 45 0 158 16 38 0
xrdp-0.4.1 2008-5904 heap OF NA NA 284 141 7 7 9 8 2 2 2 2 342 2 2 5

alsaplayer-0.99.80-rc2 2007-5301 stack OF NA NA 252 111 16 2 16 2 1 1 0 0 147 1 0 2
opendchub 2010-1147 stack OF NA NA 203 126 56 8 73 25 17 4 27 9 266 14 18 2
nasm-2.14 2018-19214 heap OF NA NA 209 125 1144 394 1409 493 166 46 33 24 3672 63 27 13
In Total 10209 5729 5758 30852 6611 28926 1060 10687 475 5306 34370 542 176 164

traversed in dynamic executions. With this setting, these four tools
output two results for each application: all differences from the
comparison between binaries (indicated by “static” in Table 1), and
trace-relevant differences (indicated by “trace” in Table 1) from the
comparison between executions caused by PoCs.

CoP [40] is a representative binary diffing tool based on sym-
bolic execution. CoP identifies an equivalent basic block pair with
symbolic execution and theorem proving and then measures the
similarity with semantically equivalent basic blocks.

Besides, we select two dynamic and semantics-aware binary diff-
ing technique, BinSim [44] and BLEX [20], as baseline techniques.
BinSim [44] performs system call sliced segment equivalence check-
ing to find relations between binaries. BLEX [20] collects dynamic
behaviors such as memory accesses and syscalls during execution
and then computes the similarity of the functions.

Evaluation Metrics. Since PatchScope and baseline techniques
have metrics to represent differences, directly showing their results
is not informative. As a normalization, we represent their results by
counting the number of different units, including different instruc-
tions (BinDiff, Diaphora), basic blocks (DarunGrim, DeepBinDiff,
and CoP), system calls (BinSim), memory cells (BLEX), and memory
object access items (PatchScope).

5.2 Locating Patch Differences

Table 2 summarizes our comparative evaluation results in terms
of located patch differences. The left three columns list vulnera-
ble programs, CVE ID, and vulnerability types. The following two
columns list lines-of-code changes and security patch types. For the
last eight applications, as we do not have their concrete security
patch information, the corresponding items (“LOC” & “Type”) are
denoted as “NA”. The two sub-columns under “Time (s)” shows
PatchScope’s overhead. The runtime overhead imposed by multi-
tag taint analysis and execution monitoring (as shown in “Trace”
sub-column) is about 10X slowdown on average. “Diff” sub-column
shows the running time of PatchScope’s offline comparison. Con-
sidering that PatchScope attempts to free security professionals
from the burden of manually reverse-engineering security patches,
PatchScope’s overhead is acceptable.

By examining the numbers of located differences from Table 2,
we have several observations. The most important take-away in-
formation is PatchScope delivers more accurate results than other
techniques. PatchScope and DeepBinDiff identify much fewer dif-
ferences than other techniques. Intuitively, this result indicates that
PatchScope and DeepBinDiff are more effective. A deeper analysis
shows that DeepBinDiff fails to identify more patch differences



than PatchScope. We will compare their false positives and false
negatives as follows.

Second, three industry binary diffing tools and BLEX [20] report
more numbers than other techniques. By associating the numbers
of differences and the lines-of-code changes, we further observe
that these tools work well when the small LOC changes explicitly
modify CFG/CG structures. However, with the LOC number in-
creasing, they suffer from a large number of low-level assembly
code differences.

Third, BinSim identifies patch differences accurately only in
12 applications. This result confirms our theoretical analysis that
program representations used in semantics-aware binary diffing
techniques are too coarse-grained to fit patch analysis, because
many security patch types do not involve any API/syscall changes.

Static vs. Dynamic. Static and dynamic techniques have their own
advantages. Dynamic techniques based on PoCs can filter out patch-
irrelevant differences. However, dynamic techniques may also miss
patch-relevant differences due to incomplete coverage.

By comparing the numbers of identified differences, we can fur-
ther observe that dynamic techniques identify fewer differences
than static techniques for most of the applications. For example,
trace-based binary diffing reports much less number of differences
than static-based binary diffing, except for 7 applications (includ-
ing newspost-2.1, libsndfle-1.0.25, ringtonetools-2.22, O3read-0.03,
conquest-8.2a, libsmi-0.4.8, and 2fax-3.04).

For these 7 exception applications, we manually examined the
code changes and execution traces, and find that most of the identi-
fied differences are duplicated within a loop. That is, patches for
these seven applications involve a code change with a loop. For
example, the security patch in newspost-2.1 checks the index of an
array within its boundary for each memory access to the internal
bytes of the array. Then, the code change corresponding to the
check will be repeated along with the execution.

To move further, we observe that PatchScope identifies fewer
differences for these seven applications, which is less impacted
by code changes in a loop. For example, trace-based binary diff-
ing tools report thousands of differences in newspost-2.1, whereas
PatchScope reduces the large difference number to only 1. To con-
firm this result, we inspect the result of PatchScope and observe
that PatchScope does not capture the difference caused by the
security check on index, because the index does not directly depend
on program inputs and thus is not tainted. Instead, PatchScope
detected a pair of different memory object access items, where
the continuous bytes (the element α in Definition 2) differ. With
this information, we can infer that the patched program regulates
the handling of the PoC by cutting the received input. This case
demonstrates that the memory object access enables PatchScope to
capture higher-level patch differences beyond assembly code.

False positives and False Negatives. To verify that located dif-
ferences are patch relevant, we manually examine identified differ-
ences, and calculate the false positives and false negatives based
on the ground truth. Unlike binary diffing techniques that directly
identified different instructions or blocks, BLEX [20] identifies dif-
ferent memory accesses regarding values of memory cells, and
PatchScope identifies different memory object access items. To cal-
culate false positives and false negatives, we associate the identified

Table 3: False positive and false negative rates.

FPR FNR

BinDiff static 42.23% 15.56% (7/45)
trace 32.67% 15.56% (7/45)

Diaphora static 39.29% 15.56% (7/45)
trace 29.37% 15.56% (7/45)

DarunGrim static 33.75% 15.56% (7/45)
trace 22.76% 15.56% (7/45)

DeepBinDiff static 18.31% 26.67% (12/45)
trace 12.12% 26.67% (12/45)

BLEX 81.56% 2.22% (1/45)
CoP 27.12% 51.11% (23/45)

BinSim 0.00% 73.33% (33/45)
PatchScope 14.73% 2.22% (1/45)

item with patched code via its operation instruction. The statistics
are shown in Table 3.

The false-positive rate is calculated as the ratio of the number of
patch-irrelevant differences to the number of all identified differ-
ences. Please note that we only calculate false positives for the 37
applications of which the patch source is available. Among these
37 applications, only one patch is involved for each pair of patched
and unpatched applications. For the other 8 applications where the
vulnerabilities are fixed in update versions, the updated versions
may contain multiple fixes and there are multiple differences indeed.
Thus, we cannot regard an identified difference that is irrelevant to
the fixed vulnerability as a false positive.

A false negative refers to a missed patch difference. The false-
negative rate is calculated as the ratio of the number of missed
patches to the number of all patches. In total, the statistics of false
positives covers 37 applications, and the statistics of false negatives
covers all 45 applications.

As shown in Table 3, the false-positive rate in PatchScope is a lit-
tle larger than that in the trace-based DeepBinDiff, butmuch smaller
than those in other techniques. In fact, some patch-irrelevant MOA
items identified by PatchScope are affected by the patch. For exam-
ple, if a memory object is overwritten during the execution of a PoC,
accessing this memory object will be identified as a difference by
PatchScope. To alleviate false positives, we can further tie different
MOA items according to their data dependencies. By contrast, false
positives in other techniques lack such associations.

CoP [40] encounters more false negatives, because CoP does
not deal with library functions. Thus, changes related to library
functions will be missed by CoP. We observe that the false-positive
rate of BLEX is pretty high. As BLEX [20] identifies different values
read from or written to memory cells, code changes would result
in a number of differences, including function pointers, instruc-
tion addresses, function parameters, and values of variables. By
contrast, PatchScope outperforms BLEX [20] on two aspects: 1)
PatchScope identifies differences on top of the reverse-engineered
memory objects, which is a higher-level program abstraction than
memory cells in BLEX [20]; 2) PatchScope only captures differ-
ences regarding input manipulations via memory objects, whereas
BLEX [20] identifies all memory access behaviors.

We can observe that PatchScope encounters the least false neg-
atives, which fails to identify patch differences for only one ap-
plication. The only one false negative is caused by an off-by-one



vulnerability in Apache-1.3.35 and its patch. With basic code com-
parison, we identify that patch changes an instruction from cmp
$0x5,%ecx to cmp $0x4,%ecx . All the techniques fail to identify this
small code change. Through dynamic debugging, we observe that
the off-by-one operation overruns a memory object with a pointer
pointing to a memory object for received inputs. As our dynamic
taint component only tracks input propagations on memory objects,
pointers to these memory objects will not be tainted. Thus, our
approach fails to identify this patch points.

PatchScope and other dynamic techniques may miss a part of
patch-relevant differences if the corresponding code is not traversed.
By examining the ground truth, we find that the vulnerability (CVE-
2005-4807) exists in 4 different locations in binutils-2.12. The se-
curity patch fixes 4 different vulnerable statements. PatchScope
only identifies 2 locations that are covered by the execution trace,
because the PoC did not trigger the vulnerability at the other two
locations. An interesting observation is that DeepBinDiff identifies
only 2 differences, even though all the 4 differences are induced by
the same fix.

By comparing the false negatives of PatchScope with other
techniques, we find 4 applications of which the security patch dif-
ferences can only be captured by PatchScope. Further inspection
shows that these patches include resizing a buffer length, chang-
ing a parameter, and changing the value of a const variable. For
example, the security patch of streamripper increases a buffer size
from 0x32 to 0x f b8. The security patch of Fontforge changes a for-
mat string from %[\”] to %99[\”]. Other techniques fail to identify
them because these patches induce no changes in assembly code.
By contrast, PatchScope can identify them via MOAS comparison
because such code changes induce different input manipulations.

5.3 Interpreting Identified Differences

In terms of granularity, differences identified by PatchScope is the
most fine-grained and informative one among these units. Accord-
ing to Definition 1 and Definition 2, different items in MOAS
include details of memory objects, contexts, operations on mem-
ory objects, and correlated input manipulations. Such contexts can
interpret and determine differences caused by security patches.

To demonstrate that PatchScope delivers rich information for
interpreting differences, we summarize the details of different MOA
items identified by PatchScope, and present detailed elements
between a pair of MOA items. Besides, we also present the impacts
on input manipulations by examining the elements of α . Please
note that elements can impact others. For example, changes of cc
and op typically lead to different α . For this problem, we mark α as
different if and only if the elements of α differ.

From Table 4, we observe that security patches include changes
in both memory objects and the accesses to memory objects. For
security patches that induce no changes in assembly code, such
as streamripper and Fontforge, PatchScope can detect different
MOA items via the impact on input manipulations (α ). Indicated by
such information, a reverse-engineer can reason this difference by
backtracking the contexts for calling library functions, and identify
the different parameters.

On the contrary, PatchScope can also locate patch-relevant
differences with our program abstraction for complicated patches.

Table 4: Interpreting differences via the elements in MOA.

Impacts on input manipulations
cut the inputs filter the inputs None

Diff in MO
alloc 0 0 1
size 3 0 0
type 1 0 0

Diff in MOA
cc 0 17 0
op 7 0 5
α 10 0 0

For example, the patch for 2fax-3.04 overwrites a function. Most of
the baseline techniques identify a pair of unmatched functions and a
large number of unmatched items, which is impractical to interpret
these differences as security experts could be plagued by such a
large number of low-level code differences. With the assistance of
PatchScope, we find that the MOAS from the patched program
adds a security check. More details are presented in Appendix C.

Another remarkable case is putty, of which the patch is unavail-
able. Its new version contains quite a lot of updates. Diaphora shows
up to 696 different instructions. BLEX [20] identifies up to 4564
different memory accesses, and these differences would overwhelm
reverse-engineers. Besides, it is difficult to extract semantics and
contexts from these differences.

To further reveal the advantages that PatchScope provides rich
patch context information that other tools cannot offer, we present
several case studies in the appendix to show how PatchScope can
assist patch analysis.

6 DISCUSSION AND CONCLUSION

Our approach relies on dynamic taint analysis to excavate program
data structures. It may lead to under-tainting problems caused by
control-flow dependencies and pointer tainting. A possible solution,
like DTA++ [32] and pointer tainting policy [56], is to add additional
taint rules for implicit data flows.

We focus on security patches for memory corruption. Our insight
that most security patches aim to better regulate the handling of
bad inputs may also apply to other types of vulnerabilities such as
permission bypassing. We will leave it as future work.

The evaluation only consists of x86 applications, because the
runtime analysis is built on top of DECAF [28] and DECAF for
supporting x86-64 is still under development. To support x86-64
applications, we should revise our algorithm for excavating pro-
gram data structures as the calling convention changes. We believe
it is not difficult since the calling convention in x86-64 should also
follow memory access patterns.

Patch analysis is a prominent application of binary diffing tech-
niques. In this paper, we develop a memory object centric dynamic
approach for patch analysis. Our technique can not only capture
small security patch differences but also reveal more patch details.
Security professionals utilizing PatchScope will enjoy a simpler
and a more streamlined patch analysis process than ever before.
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APPENDIX

A OUTPUT RESULTS FROM BINDIFF
For the example in Figure 1, we leverage BinDiff to compare the
dynamic execution traces of the two ghttpd versions on a given
PoC. It reports up to 30 differences in terms of the instructions
removed or added. We list a snippet of the instruction alignment
sequence in Figure 5.
  ghttpd-1.4.3 ghttpd-1.4.4 1 xor %eax,%eax xor %eax,%eax 2 lea 0x374(%esp),%eax  3 mov %eax,0x10(%esp) mov %bx,0x3b(%esp) 4 mov 0x370(%esp),%eax mov $0x2e64,0x27(%esp) 5 lea 0xbd(%esp),%esi  6 mov %bx,0x3b(%esp) mov %edi,(%esp) 7  mov $0x252e,0x2b(%esp) 8  mov $0x5b20,0x2f(%esp) 9  mov $0x253a,0x33(%esp) 10  mov $0x5e25,0x37(%esp) 11  call strlen 12 lea 0x20(%esp),%ebx lea 0x400(%eax),%ebx 13 mov $0xc8,0x8(%esp) mov %ebx,(%esp) 14  call malloc 15 mov $0x1,0x4(%esp) mov %ebp,0x14(%esp) 16  lea 0x3d(%esp),%ebp 17 mov %eax,0xc(%esp) mov %edi,0x10(%esp) 18 mov %esi,(%esp) mov %ebp,%edi 19 mov $0x2e64,0x27(%esp) mov %ebx,0x4(%esp) 
 
 
 
 

Figure 5: A partial sequence of Figure 1’s instruction align-

ment returned by BinDiff.

With the output like Figure 5, it is far from meeting the goal of
patch analysis. First, we can observe that BinDiff did an inaccurate
trace alignment. The instruction at Line 19 in the left should be
aligned to Line 4 in the right. Second, an expert may infer that it is
an out-of-boundary vulnerability, because the patch redefines two
dynamically allocated heap spaces with flexible length. Even so,
low-level differences cannot avail security experts much regarding
how to trigger this vulnerability.

B OUTPUT RESULTS FROM BLEX
For the example in Figure 1, BLEX [20] can successfully identify the
two different functions because the similarity score is pretty low.
However, if we employ BLEX [20] to identify differences for patch
biffing, BLEX [20] reports 32 different memory accesses, which are
shown in Figure 6.

Please note these differences only include memory accesses gen-
erated by the instructions belonging to the vulnerable function Log
in Figure 1. That is, we exclude different memory accesses during
the execution of library function calls. Otherwise, BLEX [20] would
report thousands of different memory accesses, because this patch
changes two local variables in the stack to dynamically allocated
variables in the heap. As a consequence, all memory accesses dur-
ing the library function calls (such as vsprintf and strlen) would be
identified as differences, because of the memory cell types (stack
vs. heap).

Our further analysis on the reported 32 different memory ac-
cesses shows that these differences include memory accesses via
function pointers, instruction addresses, parameters, and so on. This
result indicates that the patch in Figure 1 results in types of differ-
ent elements regarding memory accesses. By contrast, PatchScope
outperforms BLEX [20] as the memory object access is constructed
on top of reverse-engineered memory objects and it only captures
memory objects used for manipulating program inputs.

Through this example, we highlight code representations defined
in binary diffing techniques are specific for problem scopes. As
demonstrated in the literature [20], BLEX explicitly considers the
case where different compilers and optimization settings produce
different binary programs from identical source code. For patch
analysis, however, BLEX may not be suitable because it reports a
number of differences.

 
804abbb mov %ebx,(%esp)  W@0xbfffb360[0x0804b34c] 
804abd9 call strlen   W@0xbfffb35c[0x0804abde] 
804abe3 mov %eax,(%esp)  W@0xbfffb360[0x00000426] 
804abe6 call malloc   W @0xbfffb35c[0x0804abeb] 
804abeb mov %ebx,(%esp)  W@0xbfffb360[0x0804b34c] 
804abee mov %eax,-0x1b0(%ebp) W@0xbfffb388[0x08051da8] 
804abf4 call strlen    W@0xbfffb35c[0x0804abf9] 
804abf9 mov -0x1b0(%ebp),%edi R@0xbfffb388[0x08051da8] 
804ac15 mov %edi,(%esp)  W@0xbfffb360[0x08051da8] 
804ac25 mov %eax,0x4(%esp) W@0xbfffb364[0x00000426] 
804ac29 call vsnprintf   W@0xbfffb35c[0x0804ac2e] 
804ac75 call strftime   W@0xbfffb35c[0x0804ac7a] 
804ac7a mov -0x1b0(%ebp),%edi R@0xbfffb388[0x08051da8]  
804ac80 mov %edi,(%esp)  W@0xbfffb360[0x08051da8] 
804ac83 call strlen   W@0xbfffb35c[0x0804ac88] 
804ac90 mov %eax,(%esp)  W@0xbfffb360[0xbfffb492] 
804ac93 call strlen   W@0xbfffb35c[0x0804ac98] 
804ac9c mov %eax,(%esp)  W@0xbfffb360[0x0000011c] 
804aca5 call malloc   W@0xbfffb35c[0x0804acaa] 
804acaa mov %edi,0x14(%esp) W@0xbfffb374[0x08051da8] 
804acd2 mov %eax,(%esp)  W@0xbfffb360[0x08052230] 
804acd5 call sprintf   W@0xbfffb35c[0x0804acda] 
804ad24 mov -0x1b0(%ebp),%eax R@0xbfffb388[0x08051da8] 
804ad2a mov %eax,(%esp)  W@0xbfffb360[0x08051da8] 
804ad2d call free    W@0xbfffb35c[0x0804ad32] 
804ad32 mov %esi,(%esp)  W@0xbfffb360[0x08052230] 
804ad35 call free    W@0xbfffb35c[0x0804ad3a] 
804ad54 pop %ebx   R@0xbfffb52c[0xbfffb577] 
804ad55 pop %esi    R@0xbfffb530[0x00001000] 
804ad56 pop %edi    R@0xbfffb534[0x00000003] 
804ad57 pop %ebp   R@0xbfffb538[0xbffff6c8] 
804ad58 ret     R@0xbfffb53c[0x0804a0f7] 

 

Figure 6: A partial sequence of differences returned by

BLEX. Each item includes the instruction, its operands,

and the corresponding memory access during the in-

struction execution. Take the item in the first line,

W@0xbfffb360[0x0804b34c], for illustration. W refers to

writing tomemory. 0xbfffb360 refers to thememory address,

and 0x0804b34c is the value written to the memory cell at

0xbfffb360.

C TAIL CALL OPTIMIZATION EXAMPLE

Tail call optimization uses the stack memory more efficiently but
hides inter-procedural call relationship. We simplify the example
in Figure 7 with pseudo-assembly languages.



 function Foo (Argument1, Argument2) {     A (Argument1);     return B (Argument2); }no optimization
Foo:  mov  reg, [esp+offset1];  push reg;  call A              pop                  mov  reg, [esp+offset2];   push reg;              call B              pop                ret

1  2  3  4             5 6   7              8             9               10 

Foo:  mov  reg, [esp+offset1];  push reg;  call A              pop                  mov  reg, [esp+offset2];   mov  [esp+offset1], reg;              jmp B               

1  2  3  4             5 6   7              8                             

tail call

Figure 7: Tail call optimization example.

D SMITH-WATERMAN ALGORITHM

The input to Smith-Waterman algorithm is two sequences A =
a1,a2, ...an and B = b1,b2, ...bm of length n andm respectively. A
maximum similarity matrix H is filled using the equation below.
H(i ,0) = 0, 0 ≤ i ≤ m,
H(0, j) = 0, 0 ≤ j ≤ n,
and

H(i , j) = Max


0

H(i−1, j−1) + Sim(ai ,bj )

Maxk≥1H(i , j−k ) +Wk

Maxl ≥1H(i−l , j) +Wl


(1)

1 ≤ i ≤ m, 1 ≤ j ≤ n
HereA andB are twomemory object access sequences. Sim(ai ,bj )

is the similarity score of two memory object access items. We treat
a memory object access’s definition as a vector and measure two
vectors’s similarity using Jaccard index: |A ∩ B |/|A ∪ B |. BothWk
andWl are the gap penalty scheme. In our comparison, the simple
gap penalty scheme that uses a fixed score for each gap already
delivers good precision. We tune the value ofWk andWl as -2.

E CASE STUDIES

Nginx-1.4.0. The vulnerability CVE-2013-2028 is a classic integer-
to-buffer-overflow. A signed and negative integer is mistakenly
used as a parameter for calling recv. By comparing MOAS between
two executions, we find that the MOAS from the patched program
is much shorter than that from the unpatched one. With this obser-
vation, an intuitive inference is that the patched program blocks
the bad inputs. Further, we identified an MOA item that only exists
in the patched program, of which the operation code is cmp. This
item confirms our inference that the patch fixes the vulnerabil-
ity via a security check. This patch seems very simple. However,
the long MOAS from the unpatched program indicates that the
patch point is far away from the crash point, which motivated us to
look for a deeper understanding of the fixed vulnerability. Finally,

we identified a memory object access that was caused by a buffer
overflow.

An interesting observation from this case is that the operations
and corresponding variables in the code changes of patches may
not be the vulnerable variables. For this example, it first receives
an integer, and then uses this integer to allocate a second memory
object and calculates the length for further received inputs. The
mistake calculation leads to a fault parameter for invoking recv.
This observation also suggests that previous techniques [68, 74]
that extract patch signatures, vulnerable operations, and vulnerable
variables from patches should consider more patch patterns.

2fax-3.04. The patch for this application overwrites a function,
which is the most complicated one. As shown in Table 1, the LOC
is 27, and the industry binary diffing tools report a large number of
differences. By examining these results, we observe that these in-
dustry binary diffing tools identified a pair of unmatched functions
and a large number of unmatched items in the pair of functions.

Security experts could be plagued by such a large number of
low-level code differences. By contrast, PatchScope only identified
4 differences. Examining the different details in MOA, we found
that the new function in the patch only adds a security check. With
the impact of the security check, the patched program blocks the
PoC. This case further demonstrates that the core of PatchScope,
memory object access sequences, is particularly fit for patch analysis
by identifying differences in input manipulations.

Besides, we can also observe that DeepBinDiff [19] performs
well in this case, as it identifies only three different basic blocks.
To confirm this result, we discussed this case with the author of
DeepBinDiff. The reason is DeepBinDiff adopts a program-wide
code representation learning, whereas traditional binary diffing
works on function similarity.

libsndfile. This vulnerability is difficult to understand due to com-
plicated program logical faults. The patch for fixing this vulnera-
bility changes multiple statements in different locations. Although
complicated, PatchScope still provides valuable clues to reason
about the vulnerability. First, PatchScope successfully narrows
down the patch differences to only three different memory object
access items, which are marked with colors in Figure 8.

We can observe one extra sub manipulation on memory object
R1 and R3 in the patched program, and this manipulation calculates
the value of R3. Then, R3 is passed to memcpy as a parameter. By con-
trast, the vulnerable program takes L2 as the parameter of memcpy.
We can learn that this patch fixes a vulnerability by changing the
parameter value of memcpy. As both L2 and R3’s types are registers,
we infer that both L2 and R3 are memcpy’s size parameter—number
of bytes to copy. This finding motivates us to backtrack L2 and R3’s
data flow in MOAS. We show their dependencies at the bottom of
Figure 8.

The missing line of L2’s data flow dependencies reveals the root
cause of the vulnerability: L2 can be manipulated by syscall read
before it is passed to memcpy. The patch adds one line to initialize
R3 again before memcpy accepts it. Note that L2 has two correlated
input fields, and one of them ([0x176, 0x303]) does not exist in R3.
This clue implies that overflowing this particular input field can
trigger the vulnerability, and we confirm this in our PoC exploit.



L1 
<main…header_read >   

R1 
<main…header_read > 

0xb7fa70fb:sub R [0x36,0x36]   0xb7fa7107:sub R [0x36,0x36] 

    

L2 
<main…header_read >   

R2 
<main…header_read > 

0xb7fa70fb:sub W [0x36,0x36]   0xb7fa7107:sub W [0x36,0x36] 

    

L2 
<main…psf_read>   

R2 
<main…psf_read> 

0xb7fa8bd8: add R [0x36,0x36]   0xb7fa8bd8: add R [0x36,0x36] 

    

L2 
<main…psf_read>   

R2 
<main…psf_read> 

0xb7fa8bd8: add W 
[0x36,0x36]; 

[0x176,0x303] 
  

0xb7fa8bd8: add W 
[0x36,0x36]; 

[0x176,0x303] 
          

     
R1 

<main…header_read> 

     0xb7fa7133:sub R [0x36,0x36] 

         

     
R3 

<main…header_read> 

     0xb7fa7133:sub W [0x36,0x36] 

    

L2 
<main…header_read >   

R3 
<main…header_read > 

0xb7fa7148:call memcpy R 
[0x36,0x36]; 

[0x176,0x303] 
  

0xb7fa714a:call memcpy R [0x36,0x36] 

 
(a) Memory object access sequence for libsndfile-1.0.25.  

 
Data flow dependencies: 

L2 = 0x3004 –L1; 
L2 = L2 + read(); 

 
memcpy(dst, src, L2); 

  

 
(b) Memory object access sequence for the patched libsndfile. 

 
Data flow dependencies: 

R2 = 0x3004 –R1; 
R2 = R2 + read(); 
R3 = 0x3004 –R1; 

memcpy(dst, src, R3); 

 

Figure 8: PatchScope’s comparison result for libsndfile.
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