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ABSTRACT

Concolic execution is a powerful program analysis technique for
code path exploration. Despite recent advances that greatly im-
proved the efficiency of concolic execution engines, path constraint
solving remains a major bottleneck of concolic testing. An intel-
ligent scheduler for inputs/branches becomes even more crucial.
Our studies show that the previously under-studied branch-flipping
policy adopted by state-of-the-art concolic execution engines has
several limitations. We propose to assess each branch by its po-
tential for new code coverage from a global view, concerning the
path divergence probability at each branch. To validate this idea,
we implemented a prototype MARco and evaluated it against the
state-of-the-art concolic executor on 30 real-world programs from
Google’s Fuzzbench, Binutils, and UniBench. The result shows that
Marco can outperform the baseline approach and make continuous
progress after the baseline approach terminates.
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1 INTRODUCTION

Concolic execution (CE), which conducts concrete and symbolic
execution of the program under test (PUT) simultaneously, is a
program testing technique used for code exploration and vulnera-
bility detection. Unlike dynamic symbolic execution (DSE), which
explores the program space by using symbolic inputs [7], concolic
execution is performed with a concrete input exercising a concolic
path consisting of branches that are dependent on a subset of input
bytes. Each input-dependent branch in the concolic path has two
directions: 1) a visited direction that is traversed by the concrete ex-
ecution; 2) an unvisited direction that can potentially lead to a new
path. Concolic execution effectively explores the program space by
generating new inputs that traverse these unvisited directions of
input-dependent branches.

Although powerful, concolic execution is known to be costly.
As a result, many efforts have been made to improve the runtime
efficiency of CE over the past few years, in terms of both constraint
collection and constraint solving [11, 12, 35, 36, 50]. In contrast,
another essential component in concolic execution, branch-flipping
policy, has not yet received enough attention. A branch-flipping
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policy dictates which symbolic branch needs to be flipped to gener-
ate a new testcase traversing the flipped branch. State-of-the-art
(SOTA) CE engines employ a very restrictive branch-flipping pol-
icy - to flip only a very small fraction of symbolic branches that
are most likely to reach new code coverage — in order to suppress
testcase/path explosion problems, where the number of generated
testcases quickly surpasses CE’s processing capacity.

In this paper, we conduct the first study on this branch-flipping
policy and have a few unique observations. On the one hand, we
show that this policy is too strict, misses many good branches that
could lead to much higher code coverage. On the other hand, this
policy is not as effective as expected since only a small fraction
(on average 27%) of branches selected by this policy can actually
lead to new code coverage (see §2.3). Consequently, we observe
that this rigid and nearsighted branch-flipping policy significantly
undermines the effectiveness of CE.

Moreover, we show that the path divergence problem [2] (i.e.,
the testcase generated by CE does not follow the expected path) can
be as high as 50% in practice and is a norm rather than an exception
due to the imperfect design and implementation of CE. Therefore,
we argue that a good branch-flipping policy needs to model the
path divergence on each symbolic branch when selecting the next
branch to flip.

To overcome the limitations, we propose a global-view new-
coverage directed branch scheduling algorithm for concolic exe-
cution. To find out which symbolic branch is the best to flip, we
estimate the potential of each symbolic branch (i.e., how likely we
can reach new code coverage by flipping this branch) and select
the branch with the highest potential. Specifically, we model the
concolic execution as a Markov process: each branch transition
is a probabilistic event, and an execution path is a sequence of
branch transitions, and thus a sequence of probabilistic events. To
obtain a global view of all testcases, we observe the executions
of all testcases and construct a stochastic Concolic State Transi-
tion Graph (CSTG) to characterize transition probabilities between
states and estimate the probability of a given branch reaching any
unvisited states. We refer to this probability as reachability score.
This reachability score is further dampened by the path divergence
rate observed on this branch.

To select the best branch (i.e., one with the highest reachability
score) to flip, our branch selection must be asynchronous. When
encountering a symbolic branch, the existing CE engines decide
synchronously whether to flip it based on the historical information
collected up to this point. This decision, however, might not be
globally optimal because a seemingly good branch to flip might
have already been traversed by the remaining execution of the
current testcase or the remaining testcases that have not been
processed yet. Therefore, we propose to process all testcases to
maintain an up-to-date global view (in the form of CSTG) and then
asynchronously select the best branch to flip. To do so, we develop
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an efficient concolic state saving and restoring mechanism. We save
the symbolic expression table and branch dependency information
for quick reloading after the highest potential state is identified.

To evaluate the efficacy of this idea, we implement a prototype
called MaRco!, atop SymSan [11]. We evaluated MARCO on 16 real-
world programs and 71 programs from the DARPA Cyber Grand
Challenge (CGC) binary set to demonstrate that MARCO, on average,
increases edge coverage by 13.03%. For 3 out of the 11 programs
where MARco finds more coverage, it also covers all edge coverage
found by SymSan. We further evaluate its bug detection efficiency
on 14 programs from Unifuzz [29]. The result shows that our ap-
proach can find 33.52% more unique bugs than the SOTA CE engine
SymSan. Furthermore, MARCO can uniquely find more than twice of
bugs than SymSan does. On 5 of the tested programs, MArco finds
more unique bugs in 12h than any of the seven fuzzers evaluated in
UniFuzz (excluding QSYM, which is configured as a hybrid fuzzer)
can find in 24h experimental runs.

The contributions of this paper are summarized as follows:

e We evaluate the state-of-the-art branch-flipping policy and
reveal several important yet unreported limitations.

e We propose a stochastic and asynchronous branch schedul-
ing algorithm that is able to effectively pick the most promis-
ing branch for new input generation.

e We implement a prototype MArco and evaluate its effi-
cacy on 16 real-world applications. The experimental re-
sults demonstrate that MARco can constantly outperform
the SOTA in terms of coverage finding and bug detection.

e We open-source the implementation of our prototype at
https://zenodo.org/record/8339481.

2 BACKGROUND AND MOTIVATIONS

In this section, we provide the background knowledge about sym-
bolic/concolic execution and existing branch-flipping policies and
further motivate our work by stating four key observations.

2.1 Symbolic Execution

Symbolic Execution (SE) is an automated program testing technique
that aims to maximize code coverage by generating specific inputs
to satisfy every condition check that is dependent on the input
within the program under test. With SE, the program is executed
with symbolic expressions instead of concrete values. An SE engine
maintains 1) the mapping between program variables and symbolic
expressions, and 2) a set of path predicates imposed by the sequence
of branches visited along the execution path.

Two types of SE are extensively researched: 1) online symbolic
execution and 2) concolic execution. Online symbolic execution en-
gines, such as KLEE [7] and S2E [15], explore the program space via
state forking: when encountering a branch point (whose direction
is dependent on the input), an SE engine will fork a new state to
explore the opposite branch direction (if it is feasible). As a result,
the number of states grows exponentially, leading to the state explo-
sion problem. To tackle the state explosion problem, some recent
works [25, 31] resorted to machine learning. Legion [31] leverages
Monte Carlo Tree Search (MCTS) to model the state exploration as a
sequential decision-making process on the tree-structured program
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space. Symbolic execution is performed lazily and only when a state
is deemed promising. Learch [25] trains a regression model on a
set of training programs to learn the state selection policy based on
a set of state-describing features. Then, the trained model is used
to test unseen target programs.

In contrast, concolic execution (CE) explores the program space
iteratively. Given an input, a CE engine (e.g., QSYM [50], SymCC [35],
and SymSan [11]) executes the program concretely and simulta-
neously collects symbolic constraints along its concrete execution
path. When a symbolic branch point (whose direction depends on
the input) is encountered, the CE engine collects the constraint of
the current branch condition to dictate which branch direction is
taken by the concrete execution. Additionally, based on a branch-
flipping policy, the CE engine may decide to generate a new input
that can traverse the untaken branch direction. To do so, the CE
engine constructs a constraint set that includes the negated current
branch condition and a number of preceding branch conditions
and queries an SMT (Satisfiability Modulo Theories) solver for a
solution. Then a new input is generated by replacing parts of the
original input with the values suggested by the solution. After the
CE finishes processing the current input, it will pick and process
one of the newly generated inputs. Obviously, the branch-flipping
policy is essential for concolic execution.

2.2 Branch-Flipping Policies

The most naive branch-flipping policy would be “flip all”. As the
name suggests, this policy tries to flip all possible branches. This
policy can ultimately achieve the highest code coverage, given un-
limited computing resources and time. No one has ever adopted this
policy because computing resources and time are never unlimited,
and many branches are either redundant or unworthy to be flipped.

A more realistic branch-flipping policy is to flip every branch
executed through a unique execution path prefix. More specifically,
this path prefix consists of a list of symbolic branches along the
execution path, while concrete branches are ignored. For this reason,
we refer to this policy as “PP policy”. However, even with this policy,
the number of branches to be flipped can still be enormous. This is
because a program often contains loops and function calls, and one
branch that appears in different loop iterations and different calling
contexts will be flipped repeatedly due to its unique path prefix in
each loop iteration and each calling context. Yun et al. observed
that constraints repetitively generated by the same code are useless
for finding new code coverage in real-world software [50].

Based on this observation, existing state-of-the-art CE engines
(e.g., QSYM [50], SymCC [35], and SymSan [11]) adopt a more
restrictive branch-flipping policy, which was first introduced in
QSYM. This policy looks at branch bigrams. It will flip the current
branch if its bigram (i.e., the pair of the previous symbolic branch
and the current one) is new. We refer to this policy as the “BR
policy” because it focuses on branches rather than paths. Compared
to the PP policy, the BR policy will flip significantly fewer branches
because only the last symbolic branch is included in the “context”
of the current branch instead of all preceding symbolic branches.

Some CE engines explore the branch selection heuristics with
respect to the branch locality. In particular, SAGE [22] executes
inputs in descending order of their code coverage and only flips
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branches that are located below the point where the current exe-
cution trace branches off from its parent trace to avoid redundant
exploration. To efficiently explore uncovered branches, CREST [6]
proposes a control flow graph (CFG) directed searching algorithm
to prioritize branches in close proximity to uncovered branches
through the statically constructed control flow graph and call graph.
Specifically, each branch is evaluated by a scalar value obtained by
adding up 1) the length of the shortest path to its nearest uncovered
branch and 2) the number of flipping attempts devoted to it. CREST
then flips branches in ascending order of this scalar value.

2.3 Motivation

To understand the effectiveness of different branch-flipping policies,
we conducted a measurement study. We equipped SymCC [35], one
of the SOTA CE engines, with both PP and BR policies. We selected
four programs in binutils (objdump, size, nm-new, and readelf)
and assembled an input corpus of 1000 seeds for each of them. We
made the following four observations.

(1) The BR policy is so overly strict that it filters out many promis-

ing branches. We investigate if the branches discarded by the
BR policy are indeed useless for reaching higher code coverage.
To answer this question, for each program, we compared the
code coverage after SymCC processed the same input corpus
and attempted to flip the branches according to the BR and PP
policies, respectively. To simplify the evaluation, we did not
allow SymCC to further process testcases generated from the
initial input corpus. Table 1 lists the results. We can see that
for all four programs, the PP policy achieved higher code cov-
erage than the BR policy. For readelf, the PP policy achieved
a whopping 43% higher code coverage. This evaluation shows
that the BR policy can miss promising branches that could lead
to higher code coverage?.

Table 1: Code Coverage w/ Single-Pass Exploration

Code Coverage

Program

BR PP
objdump 3571  4032(+13%)
size 2128 2192(+3%)

nm-new 1995  2040(+2%)
readelf 2461  3527(+43%)

—
Y
~

The strict BR policy often leads to early termination. Observa-
tion 1 tells us that the BR policy filters out promising branches
that directly lead to new code coverage. A promising branch
may indirectly lead to new code coverage after several genera-
tions of testcases that are derived from a testcase traversing this
branch. Ideally, a good branch-flipping policy would recognize
this kind of branch and make continuous progress by iteratively
processing newly generated testcases. Therefore, we would like
to see how well a CE engine performs when it continuously
processes newly generated testcases. Table 2 presents the re-
sults of this continuous exploration under the BR policy. We
can see that the CE engine terminated within five hours® for

2Edge coverage measured by SanitizerCoverage tool.
3 All experiments conducted in this paper are measured in terms of wall time.
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all four programs, because it exhausted its attempts to flip all
available branches in all initial inputs and generated testcases.
Moreover, the final code coverage only covers 6.53% to 13.90%
of the total coverage?.

Table 2: Code Coverage w/ Continuous Exploration

BR
Program  Total Cov. Coverage  Time-to-Term.
objdump 32442 6252(7.58%) 2.68h
size 57871 3777(6.53%) 2.48h
nm-new 58378 3996(6.85%) 4.33h
readelf 31622 4394(13.90%) 0.52h

(3) Branches selected by the BR policy are of low quality. As de-
scribed above, the BR policy uses branch bigrams to select
promising branches to flip. We would expect that most of these
selected branches could lead to new code coverage. Table 3
illustrates our findings on the quality of the new inputs gen-
erated from these selected branches. In fact, on average, only
27.46% of the generated inputs from the branches selected by
the BR policy can lead to new coverage. In other words, the
majority (72.54%) of the flipping and solving efforts do not im-
mediately translate into code coverage gain. One major reason
why BR policy cannot select high-quality branches is that the
branch-flipping decision is only made based on the testcases
that have been previously processed and the current testcase
that is processed up to this point. It does not have a chance to
examine the remaining execution of the current testcase or the
remaining testcases to make a globally optimal decision.

Table 3: Quality of Generated Testcases

Program BR
New-cov Testcases Total Testcases
objdump 231(10.83%) 2,132
size 387(26.51%) 1,460
nm-new 493(45.23%) 1,090
readelf 873(27.25%) 3,204
(4) Path divergence (PD) rate of concolic execution is exceedingly

high that many constraint solving efforts go wasted. We ob-
serve that oftentimes, a generated testcase does not traverse
the intended unvisited path. This problem is referred to as path
divergence problem [22]. Table 4 lists our findings with respect
to path divergence. We can see that path divergence is very com-
mon (as high as almost 50% for size, and on average 28.72%).
We also observe that the path divergence issue is program-
specific and branch-specific. Many branches do not have path
divergence at all, while other branches constantly lead to path
divergence. Unfortunately, current branch-flipping policies do
not take this into account, leading to the low performance of
CE.

Based on the observations, we are motivated to design a new
concolic execution scheme that can overcome the aforementioned
limitations for more efficient testing.
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Table 4: Path Divergence Rate

Program PD Total Solving PD
Count (excluding unsat)  Rate
objdump 4628 16926 27.34%
size 5304 10728 49.44%
nm-new 4668 16975 27.50%
readelf 1551 11614 13.35%
Overall 16151 56243 28.72%

3 DESIGN AND IMPLEMENTATION

In this section, we introduce MARco, a novel stochastic and asyn-
chronous concolic explorer.

Specifically, to tackle the first two limitations, unlike SymSan,
Marco keeps all path constraints from a unique path prefix and in-
corporates extra information, including calling context and branch
direction, into branch definition to retain more meaningful branches.
To address the third limitation, our system implements a reachability-
guided branch scheduler that can accurately assess the potential of
finding new code coverage for every branch. The scheduler then
conducts asynchronous solving to make sure our decisions are glob-
ally optimal. Furthermore, to overcome the PD problem, MARco
models the PD rate for each branch and takes it into consideration
when making scheduling decisions.
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Figure 1: Approach Overview

3.1 Approach Overview

As shown in Figure 1, MARcO comprises three major components:
1) the asynchronous concolic execution engine, 2) the CSTG con-
structor, and 3) the reachability-guided branch scheduler.

At the beginning of the testing process, the asynchronous con-
colic execution engine receives an initial seed input and a binary
program as input. It then performs concrete and symbolic execution
simultaneously, without any constraint solving, to collect concolic
traces. These traces comprise symbolic branches encountered, along
with the path constraint information needed for branch flipping.

The resulting trace is then passed to the CSTG constructor, which
incrementally constructs a CSTG using branch points and branches
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as nodes, and branch point-to-branch transitions, as well as branch-
to-branch point transitions as edges. The reachability-guided state
scheduler assesses the potential of each node in the CSTG, calculates
a reachability score for each node, and ranks them based on their
scores. The highest-ranked node has the greatest potential to lead to
new code coverage. The asynchronous CE engine will be invoked to
solve a path constraint from the top-ranked node for new testcase
generation. MARco then executes the testcase to collect trace and
repeat the process.

3.2 A Running Example

To better explain our design, we will use an example program
from [9], illustrated in Listing 1. The program takes two symbolic
inputs, x and y, as input parameters for the function testme (). This
function contains two symbolic branches located at Line 7 and 8
respectively. The directions taken at these two branches depend on
the values of the symbolic inputs.

Listing 1: A Running Example
1 int twice (int v) {
2 return 2*v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10) { ERROR; 3}
9 3}
10 }

12 int main() {
13 X = sym_input();

14 y = sym_input();
15 testme(x, y);

16 return 0;

17 }

3.3 Asynchronous Concolic Execution Engine

Unlike synchronous CE engines [11, 35, 36, 50] that perform sym-
bolic tracing and branch flipping simultaneously, Marco takes an
asynchronous approach. Specifically, it decouples branch flipping
logic (which includes path condition collection and new testcase
generation) from the symbolic tracing logic and defers it until af-
ter all branch points uncovered are assessed, and a global optimal
branch choice is made. It is worth mentioning that although some
prior works (e.g., SAGE and CREST) collect execution traces and
then replay them offline for branch-flipping, the branch selection
is made while processing the current trace. In other words, their
branch-flipping policy adopts only a local view as compared to
Magrco, which will evaluate all branches to make a global optimal
selection.

Specifically, the asynchronous CE engine alternates between two
modes: 1) the symbolic tracing mode, where it executes the target
program with existing testcases to collect data for educated branch
prioritization, and 2) the path exploration mode, where it flips a
selected branch to find a new path.

3.3.1 Symbolic Tracing Mode. In this mode, the CE engine takes
one Program Under Test (PUT) and one testcase as input and pro-
duces a concolic path and an AST table. Since our implementation
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is based on SymSan [11], the AST table stores all the necessary
information for reconstructing symbolic expressions.

A concolic path consists of a list of symbolic branches that fol-
low the execution path and some auxiliary information. Below are
related definitions:

Branch Point. A branch point bp is defined as:
bp = (addr, ctx) , (1)

where addr is the address of the branching instruction, and ctx
represents the calling context, which is calculated as a hash of all the
call sites on the call stack. The context-sensitive definition of branch
point allows Marco to differentiate a branching instruction under
different calling contexts and characterize program exploration
status more accurately.

For the running example, we have two branch points {L7, main
— testme} and {L8, main — testme} at Line 7 and 8 respectively. For
brevity, we refer to them as L7 and L8 in the following discussion.

Branch. A branch brc is defined as:
bre = (bp, dir) , @)

where bp is a branch point defined by Definition (1), and dir is the
direction taken from the branch point. Each branch point has two
branches. We use T and F to denote “then” and “else” branches re-
spectively. In the running example, we have four branches denoted
as L7T, L7F, L8T, and L8F.

For each symbolic branch, we need to collect essential informa-

tion about its path constraints. In traditional symbolic execution,
the path constraints include all preceding symbolic branches. How-
ever, this strategy is often overly strict: generating a new input
that follows the exact same path and visits the untaken branch is
often impossible [15]. However, there may exist a new input that
follows a slightly different path and successfully visits the desirable
branch. EXE [8] presents constraint independence optimization
which divides path constraints into subsets which are dependent
on disjoint sets of input bytes to solve them separately. This idea is
then adopted by QSYM [50] and SymSan [11] for concolic execution.
Specifically, when negating a branch, SymSan includes any preced-
ing branch that shares data-flow dependencies with the current
branch or another preceding branch already included. The resulting
set of branches are referred to as nested branches in SymSan. Since
we perform concolic execution asynchronously, we prefer not to
collect branch constraints right away. Instead, we just record their
nested branches.
Nested Branch Set. We define Nested Branch Set NBS for a branch
brc as a set of branches in a recursive manner: if a branch brc; has
a data-flow dependency with the target branch brc, then bre; €
NBS(brc); and if 3brc; € NBC(brc) and bre; has a data-flow de-
pendency with brc;, then bre; € NBS(brc).

Concolic Path. A Concolic Path CP is defined as a list of 2-tuples:
CP =[(brco, NBS(brcy)), (bre1, NBS(brey)),

.oy (brep, NBS(brey))] , ®)

where brc; is the i-th symbolic branch encountered in the execution
trace, and NBS(brc;) is the nested branch set of brc;.

For the running example, there are three unique concolic paths
including: {(L7F,0)}, {(L7T, 0), (L8F, {L7T})}, {(L7T, 0), (L8T, {L7T})}.
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Loop Pruning Optimization. Furthermore, we employ optimiza-
tion to speed up the concolic path collection. Real-world programs
often have many loops. Symbolic branches in loops will repeatedly
appear in the concolic paths. It takes time to collect their nested
branch sets, even though it is much faster than collecting the nested
branch constraints. It is also unlikely to iterate through all these sets
in order to generate new testcases in the later stage. Therefore, we
decide to prune the nested branch sets early on. More specifically,
during the execution, we trace the visit count of each encountered
symbolic branch. For a branch whose visit count does not evaluate
to the power of 2, we do not generate its NBS. In other words, its
NBS is 0.

In summary, in symbolic tracing mode, the CE engine traces all
the testcases in the queue to collect the concolic paths and AST
tables. Then it switches into path exploration mode.

3.3.2  Path Exploration Mode. In this mode, the CE engine invokes
the reachability-guided branch scheduler (discussed in §3.5) to find
a global optimal branch choice. With the constraint data of the
chosen branch, the CE engine will assemble the path constraint set
for traversing this branch and solve it to generate a new testcase.
The constraint data of the chosen branch consists of 1) bre,, the
chosen branch; 2) NBS,,, nested branch set of brc,; and 3) the AST
table of the execution where the chosen branch is encountered. We
start by initializing the PC, the path constraint set as 0. Then we
query the AST table for the branch predicate of brc, and add it into
PC.If NBS,, is not empty, we query the AST table for each branch
in NBS,, for their branch predicates and add them into PC. Then we
reuse the solving strategy proposed in QSYM [50]. Specifically, if
PC is not satisfiable, we resort to optimistic solving, which will only
solve the branch predicate of the target branch and disregard any
predicates collected from NBS,,. If optimistic solving is not viable
either, the branch scheduler will be prompted again to generate
another set of constraint data until a new seed is generated.

3.4 CSTG Constructor

After collecting concolic paths in the asynchronous CE engine, we
seek to construct CSTG, which further enables the reachability-
guided branch scheduler. The graph is a directed heterogeneous
graph defined as follows.

Concolic State Transition Graph (CSTG). A CSTG is defined
over a set of CPs as:

G=(V,E), 4)

where V is a set of branch points and branches, and E is a set of
vertex transitions. In addition, a virtual root vertex denotes the
program entry point. Each vertex v € V is associated with a set of
attributes including: 1) v.vis: the number of concrete visits at v; 2)
v.atp: the number of branch flipping attempts at v; 3) v.win: the
number of successful branch flipping attempts at v; and 4) v.pcq:
the queue of path constraint sets for generating new testcase that
potentially will traverse v. Note that attributes 2) to 4) only apply
to vertices representing branches instead of branch points. Each
edge e € E is associated with a concrete visit count e.vis.
Algorithm 1 illustrates how MaRrco constructs the CSTG in-
crementally. Initially, the graph contains one root node R as the
program entry, and the edge set is empty. The procedure takes as
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Figure 2: CSTG Construction of Example Program

Algorithm 1 The CSTG Construction Algorithm

1: lastChosen « state chosen from last scheduling round
2: procedure GRAPHUPDATE(G, CP, lastChosen)
3: lastnode = R

4 while ! CP.empty() do

5: (addr, ctx, dir) = CP.pop()

6: if !G.findNode(addr, ctx) then

7: bp = G.newNode(addr, ctx)

8: brcg = G.newNode(addr, ctx, dir)

9: brecy = G.newNode(addr, ctx, !dir)
10: G.newEdge(<lastnode, bp>,<bp, dpo>,<bp, dp;>)
11: else
12: bp = G.getNode(addr, ctx)

13: brey = G.getNode(addr, ctx, dir)

14: breq = G.getNode(addr, ctx, !dir)

15: end if

16: for s € [bp, breg, brei] do

17: G.updateNode(s, lastChosen)

18: end for

19: for e € [<lastnode, bp>,<bp, brcy>] do
20: e.vis++

21: end for

22: lastnode = brcg

23: end while
24: end procedure

input the graph G and a new concolic path CP as defined in (3).
The algorithm then performs a preprocessing step to retain a set of
visited branches along with their concrete path prefixes and remove
from CP any branch that is visited through the observed path prefix.
When a new branch (according to the Definition 2) is observed for
the first time, we insert three nodes (one for its branch point bp
and two for the taken and untaken branches brcg and brey, and
three edges into the current graph (Ln.6-10). If the branch has been
observed and thus has already existed in the graph, we simply re-
trieve the existing three nodes (one branch point and two branches)
from the graph (Ln.12-14). Then, the algorithm calls updateNode
to update the nodes’ attributes defined in §3.4 as needed (Ln.16-17).
Specifically, for bp and brcy, we update visit count v.vis. If breg
matches lastChosen, we update its win count v.win. For brcq, we

update the path constraint queue v.pcq to include the new path
constraint collected from the current execution path to potentially
force execution down brc;y. Further, if the currently taken branch
breg is equal to the node picked by the last scheduling round to per-
form branch flipping on lastChosen, it means the testcase generated
from the last round (i.e., the current testcase) indeed traverses the
selected branch. In this case, it will increase the current branch’s
win count by one.

In our running example, we consider three concolic paths {(L7F,0)},
{(L7T, 0), (L8F, {L7T})}, {(L7T, 0), (L8T, {L7T})}. Marco gradually con-
structs CSTG of the example program as illustrated in Figure 2 (a),
(b), and (c).

Initially, the graph is empty with a root node, which denotes the
program entry. For the first concolic path {L7F}, since node L7F is a
new node, we add three nodes, i.e. L7, L7F, and L7T, and three edges,
ie. (R, L7), (L7, L7F), (L7, L7T), into the graph. We increase the visit
counts of node L7, L7F, edge (R, L7), (L7, L7F) from 0 to 1. After
processing this concolic path, the graph is presented as Figure 2(a).
Similarly, MARrco then takes the second concolic path {L7T, L8F}
as input. As the first branch L7T already exists in the graph, we
increase the visit counts of node L7, L7T and edge (L7, L7T) by
1. However, the second branch L8F is not an existing node in the
graph. Therefore, we insert three nodes, i.e. L8, L8F and L8T, and
three edges (L7T, L8), (L8, L8F), (L8, L&F) into the graph. And we
update the visit counts accordingly. After processing this concolic
path, the graph is shown as Figure 2(b). Moreover, we make similar
changes as discussed above for the concolic path {L7T, L8T}. Hence,
after processing the three concolic paths, Figure 2(c) is the final
CSTG, which will then be used for branch scheduling.

3.5 Reachability-guided Branch Scheduler

Reachability-based branch scheduler aims to find the branch that
bears the highest potential for new code coverage and gives the
path constraint data of the top-ranked node to the asynchronous
CE engine for input generation.

Essentially, we assess the potential of a branch by the number of
reachable yet unvisited branches deeper in the execution paths that
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traverse the branch. To do so, we generate a reward score for each
untaken branch, consider a concolic trace as Markov Chain and
compute a transition probability to take the path divergence (PD)
rate into consideration, and further accumulate the rewards up to
calculate a node reachability score that estimates the potential of
every branch in the CSTG, in order to pick the best one for further
exploration. However, one technical challenge is that the transition
probability between nodes and the estimated reward of nodes are
unknown at the beginning of the testing. Here in this section, we
discuss how Marco tackles this challenge.

Edge Transition Probability Calculation. The transition prob-
ability of an edge captures how likely an execution will branch
to the end node from the start node. As discussed in §3.4, there
are two types of edges in MARco: 1) the bp-to-brc edges and 2)
the bre-to-bp edges. And we calculate their transition probability
differently.

The transition probability of a bp-to-brc edge is associated with
the success rate of generating a testcase traversing brc by solving a
path constraint associated with brc, i.e., the opposite of the path di-
vergence rate of this edge. The total solving attempt count at brc is
bre.atp, and the success count is brc.win. Intuitively, the estimated
transition probability is brc.win/brc.atp. The estimation is rela-
tively accurate when the attempt count at brc is high enough. But
this assumption does not always hold, especially at the early stage of
testing and for the less-explored code regions. For better estimation
of the transition probability and to balance between exploration
and exploitation, we resort to Thompson Sampling (TS) [39]. The
key idea of TS is to sample the success rate of an action over the
Beta Distribution defined by the outcomes of the past trials. The
Beta distribution is defined by two positive parameters «, denoting
the win count, and f, denoting the loss count. It becomes more and
more concentrated around the empirical success rate a/(a + ff) as
the number of total trials (a + f) grows. For a bp-to-brc edge, « is
brc.win and f is (brc.atp - brc.win). The transition probability of a
bp-to-brc edge is calculated by Equation 5.

p(bp, bre) = t(y.win, y.atp — y.win) , (5)

where 7 denotes Thompson Sampling. Note that, each bp has two
bp-to-brc edges, each leading to one viable branch. We normalize
the transition probabilities of these two edges to ensure they sum
up to one.

The bre-to-bp edge transition differs from that of bp-to-brc edge
in the following aspects: 1) CE engine cannot actively steer exe-
cution from a brc node to one particular bp node through path
constraint solving; 2) one bp node has two outgoing edges, each
leading to one viable branch, while a brc node potentially has zero
to multiple succeeding bp nodes; 3) each brc has only one parent
node which is its branch point while each bp can potentially have
multiple preceding brc nodes. Therefore, Equation 5 does not apply
to computing the transition probability for a bre-to-bp edge.

The transition probability of an edge leading from brc to bp can
be estimated as the success rate of transitioning from brc to bp. In
this case, each visit at edge ey pp is considered a win. The total
amount of trials for visiting this edge includes the visit count and
attempt count at brc. In other words, each time brc is visited or
attempted, but the subsequent execution does not lead from brc
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to bp is considered a losing attempt. Similarly, when the total trial
count is low, the accuracy of the estimation can be low. Again, we
leverage TS for the transition probability computation for brc-to-
bp edge with a being ey, pp-vis and f being bre.vis + bre.atp —
€bre,bp-Uis as shown in Equation 6.

p(bre,bp) = t(epre pp-vis, bre.vis + bre.atp — eppe pp-vis)  (6)

Again, we normalize the transition probabilities of the edges
leading from the same brc node and ensure they sum up to one.

In summary, we leverage Thompson Sampling to dynamically
optimize the estimation of transition probabilities of the two types
of edges in CSTG which allows us to balance between exploration
and exploitation.

Node Reachability Score Calculation. We compute a node reach-
ability score for each node in CSTG, which indicates the nodes’
potential for leading to new code coverage in future testing. We
then use it to guide the path prioritization in concolic execution.

The reachability score of the brc node should capture two as-
pects: 1) potential new code coverage reachable from brc and 2)
the difficulty of generating a new testcase that visits the brc node.
We measure a node’s reachable new code coverage as a numerical
value denoted as Coverage Score and compute it by Equation 7 (for
leaf nodes) and Equation 8 (for interior nodes).

N.score = 7(0, N.vis + N.atp) (7)

The coverage score of a leaf node is calculated by Equation 7. In
particular, for an unvisited leaf node, the coverage score is affected
by the number of solving attempts devoted to it. When the number
of attempts grows but the node remains unvisited, it means that this
node could be too hard to reach. Therefore, our limited resources
are better off being relocated to other nodes. For a visited leaf
node, apart from the attempt count, the visit count also affects its
coverage score. Each visit to a node without steering the execution
into a deeper state is considered a failed attempt. Consequently, the
exploration should try to avoid such nodes. As the visit count and
the attempt count grow, the coverage score of a visited leaf node
will decrease.

We compute an interior node’s coverage score by Equation 8:

N.score = ) p(N,M;) = Mj.score, (8)

n
i=0
where M; (i € [0,n]) denotes a child node of N. Essentially, the
coverage score of an interior node is affected by two major factors.
First, a node that is adjacent to a large number of unvisited nodes
is in general of higher potential than a node that has only a small
number of unvisited neighbor nodes. Hence, the number of a node’s
unvisited successors in CSTG can strongly indicate its potential
for new code coverage. Second, given any path in a program, the
number of inputs that go through the child node is strictly less
than or equal to the number of inputs that go through the parent
node. Subsequently, the distance between a node and its unvisited
successors also plays an essential role in estimating the potential
for new coverage.

The coverage score of each node in CSTG is updated periodically
to reflect the most recent changes. Apparently, CSTG can be a cyclic
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graph which imposes a challenge for efficiently updating each one
of the nodes for an updated coverage score. We periodically perform
the whole graph score updates by first performing a post-order
traversal over the graph to extract all the nodes into an ordered
list. Then we traverse the list to update each node’s coverage score.
The reachability score for each bre node in the graph is computed
by Equation 9.

bre.rs = p(bp, brc) * bre.score 9)

Essentially, for a branch brc with a high path divergence rate (i.e.
low in-edge transition probability), it is hard to generate a testcase
traversing that branch and it renders the coverage score in vain. We
then prioritize the branch nodes in CSTG for scheduling by their
reachability score.

Branch Prioritization. After calculating reachability scores, the
node (i.e., branch) with a better potential of reaching new code
will have a higher score and be promoted in the scheduling. The
path constraint associated with this top-ranked node is sent to
the Path Constraint Solver for new input generation. In case of an
unsatisfiable path constraint, the scheduler is prompted again until
a new testcase is successfully generated and the testing continues.

4 EVALUATION

In this section, we evaluate the efficacy of our proposed approach

by answering the following research questions:

e RQ1: Effectiveness of end-to-end concolic execution. Can
our model improve the performance of end-to-end concolic exe-
cution?

o RQ2: Effectiveness of design choices. What are the unique
contributions of each design choice in Marco?

e RQ3: Vulnerability detection. Can MARco be more effective
when detecting vulnerabilities?

4.1 Evaluation Plan

To better answer the aforementioned research questions, we use

the following configurations:

e SymSan [11], the SOTA CE engine, which adopts the traditional
synchronous solving (i.e., the constraint solving is conducted at
the time when the branch is encountered) with the same native
branch flipping policy as QSYM [50]. This baseline is to directly
compare with MARco.

o SymSan-pp, a variant of SymSan that adopts a PP branch-flipping
policy, where each branch is defined by its path prefix. The test-
cases are executed in a First-In-First-Out (FIFO) order, with all
branches flipped by the visit order. This baseline is to show that
simply selecting more branches to flip will not improve CE per-
formance.

e MaRrco-rdm, a variant of MARco that defines each branch by
its path prefix and picks a random branch from the last visited
program path to flip and generate a new testcase. This configura-
tion is to demonstrate the effectiveness of our branch scheduling
strategy.

e MaRrco-cfg, a configuration that applies the CFG-directed search-
ing algorithm of CREST [6] on our dynamically generated CSTG.
The assessment of each branch is determined by the branch count
between the branch itself and the nearest unvisited branch, as
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well as the flipping attempt count. This configuration is used to

show the effectiveness of our branch scheduling strategy.

e MARCO-uv, a variant of MArRco which only allows the scheduler
to pick from unvisited nodes. This configuration is used to show
the necessity of flipping the visited branches.

e MaRrco-MC, a variant of MArco with Markov Chain modeling
but no Thompson Sampling. This configuration evaluates the
importance of Thompson Sampling in MARco.

e MaRrco, our full-fledged system.

To answer RQ1, we compare the code coverage metric of the
full-fledged model against SymSan. The experiment is conducted
on real-world programs listed in Table 5. For RQ2, we compare the
code coverage per path constraint solving for all the configurations
listed to showcase the effectiveness of each design choice. Finally,
to answer RQ3, we run both Marco and SymSan on the UniFuzz
dataset, and compare the number of unique bugs found by them.

Dataset. We collect a dataset consisting of 30 popular real-world
programs as shown in Table 5, as well as 71 programs from the
DARPA Cyber Grand Challenge (CGC) dataset. To answer RQ1
and RQ2, we conduct experiments on the CGC programs, as well
as programs No. 1 to 16 (Binutils and Fuzzbench [1] binaries). To
answer RQ3, we further leverage programs No. 17 to 30, which are
the subset of the Marco compatible Unibench dataset proposed in
UniFuzz [29]. We configure the experiment to align with the original
setup in UniFuzz, including each program’s execution option and
the initial seed corpus used.

Table 5: Details of Real-world Applications Evaluated

No. | Program Version No. | Program Version

1 nm-new 2.33.1 16 libtiff 2e822691

2 readelf 2.33.1 17 tepdump  4.8.1 + libpcap 1.8.1
3 objdump 2.33.1 18 flvmeta 1.2.1

4 size 2.33.1 19 tiffsplit libtiff 3.9.7

5 libpng 1.2.56 20 jhead 3.00

6 libxml2 29.2 21 imginfo jasper 2.0.12

7 file 5.42 22 | iq 15

8 vorbis c1c2831f 23 lame lame 3.99.5

9 curl 2481dbe 24 wav2swf  swftools 0.9.2

10 lems 430916 25 mujs 1.0.2

11 woff2 9476664 26 sqlite3 3.8.9

12 libjpeg-turbo ~ b0971e47 27 mp3gain 1.5.2-r2

13 sqlite3 c78cbf2 28 mp42aac Bento3 1.5.1-628
14 tepdump 4.99.1 29 cflow 1.6

15 freetype cd02d359a | 30 infotocap  ncurses 6.1

Experiment Setup. All evaluation was done on a workstation with
two-socket, 48-core, 96-thread Intel Xeon Platinum 8168 processors.
The workstation has 768G memory. The operating system is Ubuntu
18.04 with kernel 5.4.0.

4.2 ROQ1: Effectiveness of MARCO

To demonstrate the effectiveness of MARco in terms of exploring
new code coverage, we measure the edge coverage during testing
and compare our full-fledged model with SymSan. Each configura-
tion is repeated 10 times to reduce randomness.

We collect the edge coverage at the end of each 24h trial and mea-
sure the coverage improvement ratio of MARco over the baseline
SymSan. For each program, we further investigate the relative code
coverage between SymSan and Marco with the formula proposed
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in QSYM [50]. For code coverage A (Marco) and B (SymSan), we
can quantify the coverage difference by using:

A-B|—|B-A .
d(A B) = {W ifA#B (10)
0 otherwise

With the coverage difference score d(A, B), we can infer the
number of unique edges that A covered, out of the total edge cov-
erage that either A or B can uniquely explore. A positive score
means A (MARco) finds more unique coverage than B (SymSan).
The value will be 1 if A (MARrco) not only finds more coverage
than B (SymSan) but also covers all edge coverage explored by B
(SymSan).

In our experiment, we evaluate the performance of MARco on 16
real-world programs (programs No.1 to 16 in Table 5). On average,
Marco is able to cover 13.03% more edges, with a maximum im-
provement on readelf for 88.56%. This indicates the effectiveness
of our approach in improving the effectiveness of concolic testing
for real-world programs. Out of the 16 tested programs, MARcO
finds more edge coverage than SymSan on 11 programs (68.75%).
Moreover, MARcO dominates the coverage findings on three targets
(file, 1cms, and sqlite3), where it also covers all the edges found
by SymSan.

Real-world programs
HY NEE EEEEES

CGC binaries
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Figure 3: Coverage Difference Score of Real-world Programs
and CGC Binaries

We further evaluate the performance of Marco on 87 programs
(71 DARPA CGC binaries + 16 real-world programs) and compute
the coverage difference score between Marco and SymSan. Inspired
by [50], we visualize the results in Figure 3: the blue color indicates
that Marco finds more edge coverage than SymSan, and the red
color indicates that SymSan finds more. The results indicate that
Marco can do better than SymSan on 49 programs, and worse on
17 programs.

Further investigation (Table 6) shows that SymSan would ter-
minate within 5 hours on 75% (12/16) of the real-world programs,
even though there still exist many edges unexplored. This is due to
the overly strict branch definition and ill-advised branch-flipping
strategy adopted in SymSan.

To evaluate the scalability of MaRrco, we investigate the graph
size growth and the memory cost for each of the 16 real-world
programs during testing. The results show that the number of nodes
in CSTG grows sub-linearly during the 24h trials. At the end of each
trial, the minimum, maximum, average, and median values of the
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Table 6: Average Termination Time for SymSan

Program  Term. Time(h) [ Program Term. Time(h)

nm-new 4.33+1.40 | curl 0.10£0.03
readelf 0.52+0.05 | lecms 0.06+0.01
objdump 2.68+0.54 | woff2 >24
size 2.48+0.31 | libjpeg-turbo 15.43£2.90
libpng 0.05+0.01 | sqlite3 0.02+0.00
libxml2 1.5740.16 | tcpdump 0.75+0.81
file 0.27+0.01 | freetype 10.36+0.79
vorbis 8.66+0.79 | libtiff 1.93%+0.26

node counts are 0.26k, 118.98k, 13.89k, and 3.10k correspondingly.
We then record the amount of memory taken by storing the AST
tables and see that the disk usage grows linearly. At the end of
the trial, the minimum, maximum, average, and median values of
memory usage are 7.88G, 63.19G, 23.90G, and 20.66G.

4.3 ROQ2: Effectiveness of Design Choices

As discussed earlier, SymSan terminates very early in 75% of the
tested programs, meaning only a limited number of solving attempts
have been made. In RQ2, we allocate the same amount of solving
attempts for the other configurations and assess their new code
coverage. By doing so, we can demonstrate the effectiveness of our
design choices in improving the branch prioritization scheme.
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Figure 4: Coverage Difference Score Within Solving Budget

We look into the edge coverage for SymSan-pp, MArRco-rdm,
Marco-cfg, Marco-uv, and Marco-MC with the 16 real-world
programs and compute the coverage difference scores compared
with MARco as defined in Equation 10. The experimental results
are displayed in Figure 4. Each row depicts the coverage difference
score of A (MARco) and B (the baseline labeled to the left of the row).
The blue color indicates that MARco finds more edge coverage than
the corresponding baseline, and the red color suggests otherwise.
The results exhibit a few major conclusions:

Firstly, Marco outperforms SymSan-pp and MArRco-rdm on
all 16 programs. On average, MARCO covers 55.99% and 86.64%
more code than SymSan-pp and Marco-rdm. This result explic-
itly demonstrates that the novel branch prioritization strategy in
MARco, other than a simple FIFO or random selection, is extremely
useful when it comes to code exploration.

Secondly, Marco outperforms MARco-cfg on 13 out of 16 tested
programs. For the other three programs (vorbis, curl, and woff2)
where Marco-cfg finds more coverage, the differences are slight
(<1%). MaRco is able to find 83.92% more code coverage than MArco-
cfg. This result indicates that our branch flipping strategy is better
than the CFG-directed approach.

Thirdly, compared with MARco-uv, MARCO manages to find more
coverage on 15 programs out of 16, with only one exception curl.
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Figure 5: Number of Unique Bugs Detected

On average, MARco finds 29.22% more code coverage than Marco-
uv. This shows that it is indeed a good strategy to deem both visited
and unvisited nodes as candidates for path constraint solving.
Lastly, Marco outperforms MArco-MC on 12 out of 16 tested
programs with an average coverage improvement ratio of 57.21%,
indicating that modeling edge transition and reachability score with
Thompson Sampling to balance between exploration and exploita-
tion is crucial to making effective branch prioritization decisions.
We further evaluate the significance of difference comparing
Marco and the other configurations in Figure 4 across the 16 tested
programs on their code coverage findings using p-values from the
Mann-Whitney U-Test. We use p-value < 0.05 as the threshold
for statistical significance. We observed p-values above 0.05 in
only two programs, curl (0.07) and woff2 (0.48), when comparing
Marco and MARco-cfg. For the rest of the results, the p-values are
below 0.001 for majority of the cases. The result suggests significant
difference between Marco and the other configurations.

4.4 RQ3: Vulnerability Detection

Lastly, we showcase the capability of vulnerability detection for
Marco by using the UniFuzz dataset, which consists of 14 programs.
Specifically, we run both MArco and SymSan 5 times for 24 hours
and compare the average number of unique bugs detected. Accord-
ing to the results, MARco is able to find 33.52% more bugs (47.8
v.s. 35.8) than SymSan. Among them, MARco can uniquely identify
2.41 times the bug count of SymSan (20.5 v.s. 8.5). More concretely,
Marco finds more unique bugs than Symsan on 7 programs, less
on 2, and the same amount on 5. These numbers show that MARCO
has its unique advantages when finding vulnerabilities compared
with state-of-the-art CE engines.

We further cross-check our results with that reported in UniFuzz
paper* in UniFuzz [29] paper for 7 fuzzers (AFL [51], AFLFast [5],
Angora [13], HonggFuzz [48], MOPT [32], T-Fuzz [34] as well as
VUzzer64 [37]) in 24h. We draw the box plot of all 8 baselines
in Figure 5. According to the result, MArco is able to find more

4We contacted the authors for the original experiment data but didn’t get a
response by the time of submission. Therefore we repopulated the bug detection result
based on the data reported in their supplementary result: https://github.com/unifuzz/
supplementary_results/blob/master/UNIFUZZ_Supplementary_Paper.pdf

unique bugs in 12h than any of the 7 fuzzers can find in the 24h
trial on 5 (imginfo, jhead, mp42aac, jq and tcpdump) out of the
14 tested programs. Marco ranks the second place on mujs and
sqlite3, second to Angora and MOPT respectively. We further
explore the statistical rankings among MARco and the 7 fuzzers by
their average unique bug detection counts for each program. MARco
beats 6 fuzzers and is second to MOPT only. This demonstrates that
MaRrco can find bugs very efficiently.

5 DISCUSSION

Magrco still has some limitations. First, MARCO requires access
to the source code for instrumenting the PUT with the symbolic
tracing and branch-solving logic through the compiling pass. In
practice, however, a real-world PUT can be developed with a set of
external libraries whose source codes are not accessible. In addition,
the cost of reconstructing the branch dependency for recovering the
nested path constraint set can be expensive when the dependency
is very complex. We leave the performance optimization as future
work. Moreover, in this paper, we do not study how to coordinate
concolic execution with fuzzing better. SymSan [14] reported that
the existing hybrid fuzzing scheme cannot consistently outperform
pure fuzzing such as AFL++ [18]. A recent work by Jiang et al. [27]
proposed edge-oriented scheduling to improve the performance
of hybrid fuzzing. How a more efficient and intelligent concolic
execution engine affects the design of hybrid fuzzing deserves more
investigation.

6 RELATED WORK
In this section, we discuss precedent works closely related to MARco.

Symbolic Execution. Symbolic Execution [21, 40] has proven to be
a powerful program testing technique for test case generation and
bug detection. However, due to the state explosion problem and
the large overhead imposed by path constraint solving, it has low
scalability for real-world program testing. To tackle this problem,
a series of research has been done to prune states [7, 22, 43, 49],
merge states [24, 28, 41], prioritize states [25, 31], and perform
constraints reduction [16] and solution caching [7, 8] in order to
improve the scalability.
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Seed Scheduling in Fuzzing. Many techniques [4, 10, 20, 23, 30,
33, 45, 47, 52, 53] have been proposed for improving fuzzing. One
important optimization is to improve the seed selection [26, 38].
AFLfast [5] favors the less explored paths and allocates more pow-
ers for them. Vuzzer [37] prioritizes test cases that traverse paths,
which are more likely to reveal a vulnerability. Entropic [3] lever-
ages information-theoretic entropy for scheduling seeds to optimize
coverage gain and bug-finding ability. AFL-Hier [46] implements
a reinforcement learning model for scheduling seeds clustered by
multi-level coverage metrics. K-scheduler [42] performs graph cen-
trality analysis to promote seeds that have a higher potential for
reaching new code coverage.

Markov Chain Modeling. In AFLfast [5], the greybox fuzzing
process is modeled as Markov Chain to identify the high-frequency
paths and steer exploration away from those paths. Sparks et al. [44]
model the program control flow as Markov Chain and seek to
drive the testing toward less-explored code regions leveraging a
fitness function concerning the path exploration frequency. Other
reinforcement learning strategies such as Probably Approximately
Accurate (PAC) bounds [17, 19] were proposed for solving Markov
Decision Process. Integrating these approaches remains a potential
future direction of this paper.

7 CONCLUSION

In this work, we propose to model the concolic execution as a
Markov Chain process and construct a stochastic concolic state
transition graph to assess each branch’s potential for code coverage
in a global view. The states are evaluated by their reachability to
new code coverage with respect to path divergence rate along the
execution trace. Evaluation of our prototype Marco shows that
the new approach proposed in this paper outperforms the state-
of-the-art concolic execution engine in both code coverage and
vulnerability detection.
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