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Abstract

Cyber attacks against IoT devices are a severe threat. These
attacks exploit software vulnerabilities in IoT firmware.
Fuzzing is an effective software testing technique for vul-
nerability discovery. In this work, we present FIRM-AFL, the
first high-throughput greybox fuzzer for IoT firmware. FIRM-
AFL addresses two fundamental problems in IoT fuzzing.
First, it addresses compatibility issues by enabling fuzzing for
POSIX-compatible firmware that can be emulated in a system
emulator. Second, it addresses the performance bottleneck
caused by system-mode emulation with a novel technique
called augmented process emulation. By combining system-
mode emulation and user-mode emulation in a novel way,
augmented process emulation provides high compatibility as
system-mode emulation and high throughput as user-mode
emulation. Our evaluation results show that (1) FIRM-AFL is
fully functional and capable of finding real-world vulnerabili-
ties in IoT programs; (2) the throughput of FIRM-AFL is on
average 8.2 times higher than system-mode emulation based
fuzzing; and (3) FIRM-AFL is able to find 1-day vulnerabili-
ties much faster than system-mode emulation based fuzzing,
and is able to find 0-day vulnerabilities.

1 Introduction

The security impact of IoT devices on our life is tremendous.
By 2020, the number of connected IoT devices will exceed the
number of people [10]. This creates an unprecedented attack
surface leaving almost everybody at danger. Even currently,
the hackers leverage the lack of security in IoT devices to
create large botnets (e.g., Mirai, VPNFilter and Prowli). These
malware attacks exploit the vulnerabilities in IoT firmware
to penetrate into the IoT devices. As a result, it is crucial for
defenders to discover vulnerabilities in IoT firmware and fix
them before attackers.
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Fuzzing, a software testing technique that feeds a program
with random inputs, has approved to be very effective in
finding vulnerabilities in real-world programs. In particular,
AFL [34], a coverage-guided greybox fuzzing tool, has been
used widely in both industry and academia. For instance, most
of the finalists in DARPA Cyber Grand Challenge used AFL
as the primary vulnerability discovery component [2].

Challenges in IoT firmware fuzzing. Despite the effec-
tiveness of fuzzing for programs on general-purpose plat-
forms, it is generally not feasible to directly apply fuzzing
on IoT firmware, due to its strong dependency on the actual
hardware configuration. For instance, simply extracting a user-
level program from a Linux-based firmware and fuzzing this
program with AFL would not work in most cases.

To this end, recent researches propose a series of solu-
tions, ranging from directly fuzzing the IoT devices (e.g.,
IoTFuzzer [14]), a hybrid solution that combines hardware
and software emulation (e.g., AVATAR [33]), to a full sys-
tem emulation (e.g., Firmadyne [13]). As a recent study by
Muench et al. [28] points out, full system emulation yields
the highest throughput, because IoT devices are much slower
than a desktop workstation or a server.

Throughput is a key factor for the effectiveness of fuzzing.
However, even for full system emulation, its performance is
far from being ideal. According to our evaluation (§5), full
system emulation is about 10 times slower than user-mode
emulation (which is used by AFL). 10 times slowdown means
approximately 10 times more computing resources are needed
to find a vulnerability in an IoT program than its desktop
counterpart. According to our analysis (§2.4), part of the enor-
mous runtime overhead of full-system emulation comes from
software implementation of memory management unit (i.e.,
SoftMMU) that is used to translate a guest virtual address into
a host virtual address for every single memory access hap-
pening in the virtual machine. The other part of the overhead
comes from the system calls emulation overhead.



Our solution: greybox fuzzing via augmented process em-
ulation. In this work, we present, to the best of our knowl-
edge, the first greybox fuzzer for IoT firmware, that achieves
two design goals simultaneously: (1) transparency that is no
modification should be needed for the program in firmware to
be fuzzed, and (2) efficiency that is the fuzzing throughput of
the overall system should come close to that of the user-mode
emulation. Our key insight is to find a novel combination of
full-system emulation and user-mode emulation to achieve
the best of two worlds: generality from full-system emulation
and efficiency from user-mode emulation.

More specifically, we propose a new technique called “aug-
mented process emulation”. As the name suggests, its main
idea is to augment process (or user-mode) emulation with
full system emulation. The program to be fuzzed is mainly
run in user-mode emulation to achieve high efficiency, and
switches to full system emulation only when necessary to
ensure correct program execution, thus achieving generality.

To evaluate the feasibility of this technique, we implement
a prototype system called FIRM-AFL, on top of AFL [34]
and Firmadyne [13]. From a user’s perspective, using FIRM-
AFL, we can conduct coverage-guided greybox fuzzing on
a user-specified program from an IoT firmware, the same as
fuzzing a normal user-level program using AFL. Under the
hood, FIRM-AFL occasionally switches to the full system
emulation mode in Firmadyne, to ensure the given program
can be correctly emulated.

We have evaluated FIRM-AFL with standard benchmarks
and a set of real-world IoT firmware images. The evaluation
results showed that (1) FIRM-AFL can faithfully emulate
the target programs as if they were running in full-system
emulation; (2) compared to a full-system emulation based
fuzzer (TriforceAFL [29] with lightweight snapshot enabled),
the throughput of FIRM-AFL is 8.2 times higher on average
and (3) FIRM-AFL can find 1-day vulnerabilities 3 to 13
times faster than full-system emulation based fuzzer, and was
able to find two 0-day vulnerabilities within 8 hours on a
single machine.

Contributions. In summary, we make the following contri-
butions in this paper:

• We point out that full system emulation exerts significant
runtime overhead, and is far from ideal to serve as the
base for IoT firmware fuzzing. We further investigate
the root cause of this runtime overhead.

• We propose a novel technique called “augmented process
emulation”, to reconcile the contradictory characteris-
tics of full-system emulation (high generality and low
efficiency) and user-mode emulation (low generality and
high efficiency).

• We design and implement the first coverage-guided grey-
box fuzzing platform for IoT firmware, FIRM-AFL.

• We extensively evaluate our system and show the over-
head for each part of our system. Our improvements lead
to 8.2 times speedup on average. As a result, FIRM-AFL
could find 1-day vulnerabilities 3 to 13 times faster than
full-system emulation, and was able to find two new
vulnerabilities within 8 hours on a single machine.

• The current implementation of FIRM-AFL supports
three CPU architectures, including mipsel, mipseb and
armel, which cover 90.2% firmware images in the Firma-
dyne datasheet [4]. The source code of FIRM-AFL can
be found at https://github.com/zyw-200/FirmAFL.

2 Background and Motivation

2.1 Fuzzing

Fuzzing is a software testing technique that aims to find bugs
by executing the target program with random inputs and look-
ing for interesting program behaviors such as the crashes.
Based on how much information is collected and used from
the execution, fuzzers can be categorized into blackbox, white-
box and greybox. A blackbox fuzzer treats the target program
as a blackbox and does not utilize any feedback from the
execution to guide the generation of random inputs. This ap-
proach was originally used to test Linux utilities [26]. On the
other hand, a whitebox fuzzer selects the inputs based on a
deep insight into the target program. This is usually achieved
through expensive program analysis techniques like dynamic
taint analysis and symbolic execution [22]. Finally, a greybox
fuzzer improves the testing by utilizing limited information
collected with lightweight monitoring techniques (e.g., code
coverage).

The most popular greybox fuzzers are coverage-guided
fuzzers. These fuzzers instrument the target program to col-
lect code coverage information. The collected information
is then used to guide the input generation—inputs that ex-
plore new execution paths will be used as seeds to generate
new inputs while inputs that did not yield new coverage will
be discarded. This simple strategy is extremely effective in
practice. In fact, greybox fuzzers can even outperform white-
box fuzzers when targeting real-world applications. Their
secret is speed, the lightweight instrumentation allows grey-
box fuzzers to execute hundreds or thousands times more
inputs than whitebox fuzzers [32]. In other words, throughput
is paramount for greybox fuzzers.

AFL [34] is a well-known greybox fuzzer. It can instrument
the program either statically or dynamically. Static instrumen-
tation is preferred when the source code is available. When the
source code is not available, e.g., when fuzzing commercial
off-the-shelf (COTS) programs, AFL utilizes a binary trans-
lator (i.e., user-mode emulation provided by QEMU [12]) to
perform the instrumentation. For most IoT devices, because
source code and design documents are often proprietary and
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only firmware image might be available, dynamic instrumen-
tation is the only viable option. As a matter of fact, even
extracting the binary from the firmware is not always straight-
forward [14].

2.2 QEMU
QEMU [12] is a fast processor emulator based on dynamic bi-
nary translation. Unlike traditional emulators that interpret the
target program instruction-by-instruction, QEMU translates
several basic blocks at a time. More importantly, it caches
translated blocks and uses block chaining to link them to-
gether. This allows the execution to remain inside the code
cache (i.e., the logic of the target program) for the most of the
time thus minimizes the overhead of the translation. Dynamic
instrumentation can be performed during the translation to
introduce new functionalities, such as branch monitoring [34]
and taint propagation [19, 23].

Besides the translation of instructions, the next most im-
portant task is address space translation. The translation is
done very differently based on the execution mode. In system
mode, QEMU implements a software Memory Management
Unit (MMU) to handle memory accesses. The software MMU
maps Guest Virtual Addresses (GVAs) to the Host Virtual Ad-
dresses (HVA). This mapping process is transparent to the
guest operating system (OS) meaning that QEMU still allows
the guest OS to set up the GVA to Guest Physical Address
(GPA) mapping through the interface of page tables and to
handle page faults. Under the hood, QEMU inserts a GVA to
GPA translation logic for every memory access. To speed up
the translation, QEMU uses a software Translation Lookaside
Buffer (TLB) to cache the translation results. Moreover, to
avoid invalidating the code cache and block chaining when-
ever the address translation changes, all translated blocks are
indexed using GPA and the block chaining is only performed
when the two basic blocks are within the same physical page.
GPA to HVA mapping is done using a linear mapping (i.e.,
HVA = GPA + OFFSET).

In contrast to system-mode emulation, in user-mode emu-
lation, the Host Virtual Address (HVA) is calculated as the
Guest Virtual Address (GVA) plus a constant offset. So this
translation is much faster than the one in system-mode emu-
lation.

2.3 Testing IoT Firmware
As IoT devices become a popular attack target, testing IoT pro-
grams to find vulnerabilities also becomes important. There
are two main challenges in testing IoT programs. The first
challenge is compatibility: many IoT programs depend on
special hardware components of the device thus cannot be
tested without proper support. The second challenge is code
coverage: blackbox fuzzers are known to have low code cov-
erage while whitebox fuzzers cannot scale to slightly larger

code base [20]. Table 1 compares some representative efforts
on IoT firmware testing using these two metrics.

Avatar [33] aims to enable dynamic program analysis for
embedded firmware by providing better hardware component
support. It achieves this goal through constructing a hybrid
execution environment consists of both a processor emulator
(QEMU) and real hardware where Avatar acts as a software
proxy between the emulator and the real hardware. This al-
lows Avatar to utilize the emulator to execute and analysis the
instructions while channeling the I/O operations to the physi-
cal hardware. As a demonstration, the authors have applied
S2E [15], a whitebox fuzzing tool to find vulnerabilities in
the Redwire Econotag Zigbee sensor. Due to the involvement
of whitebox fuzzing and slow hardware, the throughput of
Avatar is expected to be very low.

IoTFuzzer [14] performs blackbox fuzzing directly on
the real device. Its main advantage over previous blackbox
fuzzing based approaches is that it performs the fuzzing
through the companion mobile app of the target device. By
automatically analyzing the data flow in the companion app
to better understand the communication protocol, IoTFuzzer
can generate better test cases that are more likely to trigger
a bug. That said, based on its evaluation, IoTFuzzer never
exceeds a throughput of 1 test case per second, which is slow
(based on Table III in [14]).

Although it does not perform fuzzing, Firmadyne [13]
adds hardware support for IoT firmware to the system mode
QEMU. It provides support for both ARM and MIPS archi-
tectures that are popular among the IoT manufacturers. For
hardware support, Firmadyne fully emulates the system by
modifying the kernel and drivers to handle the IoT excep-
tions due to the lack of actual hardware. Compared to the
former two solutions, this solution is easier to adapt to new
IoT firmware and programs. The throughput of full-system
emulation is usually better than the native execution [28].

Muench et al. [28] compare the throughput of a blackbox
fuzzer [24] under different configurations, including native
execution (directly sending inputs to the hardware), partial
emulation (redirecting only hardware requests to the hard-
ware), and full emulation. Their emulation is based on image
replaying capability provided by PANDA [19]. They con-
cluded that full emulation (FE) has the highest throughput
mainly because the IoT processors are much slower than desk-
top processors. However, even in the best case, the throughput
did not exceed 15 test cases per second 1.

AFL [34] is a well-known greybox fuzzer that can sup-
port binary-only fuzzing through user-mode QEMU. Unfortu-
nately, lacking special hardware support, user-mode QEMU
can not successfully emulate most IoT programs. For exam-
ple, AFL with user-mode QEMU failed on all the programs
used in our evaluation (Table 3). Moreover, simply adopting
a full system emulator (e.g., Firmadyne) does not fully solve

1They reported 53390 cases/hour which is equal to 15 cases/second



Avatar [33] IoTFuzzer [14] Firmadyne [13] Muench et al. [28] AFL [34]

Technique Whitebox fuzzing Blackbox fuzzing PoC Blackbox fuzzing Greybox fuzzing
Compatibility High High High High Low
Hardware Support Hybrid Real Emulation Mixed None
Code Coverage Medium Low N/A Low High
Throughput Very Low Low Medium Low to Medium High
Zero-day Detection Yes Yes No Yes Yes

Table 1: Comparison of IoT firmware testing tools.

the problem because the throughput is low.
In summary, existing IoT firmware testing tools do not

provide satisfying code coverage yet sate-of-the-art fuzzers
(e.g., AFL) cannot be easily applied to test IoT programs. So
far, there is no greybox IoT fuzzer, not to mention a greybox
IoT fuzzer with good throughput.

2.4 Motivations

Given the unsatisfying status-quo of IoT firmware testing
tools, we aim to enable high-throughput greybox fuzzing for
IoT programs. To this end, we decide to build the fuzzer based
on emulation. This choice is based on two reasons. First, grey-
box fuzzing requires collecting execution information (e.g.,
branch coverage) to guide test case generation. As mentioned
in §2.1, this is usually done through lightweight instrumenta-
tion. Since most IoT programs are only distributed in binary
format, emulator-based instrumentation is the best available
option. The second reason is performance. Although it might
be possible to run instrumented binaries directly on the de-
vice, Muench et al. [28] have shown that full-emulation-based
approach is actually faster than the real device, because the
desktop processors are much faster.

Unfortunately, simply adopting a full system emulator (e.g.,
Firmadyne [13]) does not fully solve the problem because
the throughput is not enough. For example, even with the
full-emulation configuration, the fuzzer used in [28] never
exceeded 15 test cases per second. To understand the bottle-
neck, we profiled the execution time of two networking tools
(basename and uptime) under full-system emulation (with
lightweight snapshot) and user-mode emulation. The results
are shown in Table 2. Based on this measurement, we can see
that the throughput of fuzzing can be significantly boosted
if we can apply user-mode emulation to the target program.
There are several bottlenecks that contribute to the execution
time difference.

• B1. Memory address translation. In full-system emula-
tion, QEMU uses a software MMU to perform address
translation for every memory access. In contrast, in user-
mode emulation, the address translation is much simpler.
So even if we just consider time spent in user-mode
execution, user-mode emulation uses much less time.

• B2. Dynamic code translation. The code translation pro-
cess in user-mode emulation is faster than the full-system
mode. In full-system mode, block chaining is limited to
basic blocks in the same physical page, which means
the translator is invoked more often than in user-mode
emulation.

• B3. Syscall emulation. In user-mode emulation, system
calls are handled directly by the host OS and hardware.
Therefore, it is significantly faster than full-system em-
ulation where the OS also runs in the emulator and the
hardware devices are also emulated. Although hardware
emulation is necessary to allow the target program to run
correctly, not all system calls would rely on the special
hardware. In other words, not all system calls require
emulation.

In this work, we address all three bottlenecks to improve
the throughput of IoT program fuzzing.

3 Augmented Process Emulation

3.1 Overview
The goal of this work is to enable high-throughput greybox
fuzzing for IoT programs. As discussed in §2, to achieve this
goal, we need to overcome two challenges: compatibility and
performance. The first challenge can be solved through full-
system emulation but this would result in poor performance.
The second challenge can be solved through user-mode emu-
lation but would result in poor compatibility. In this section,
we present augmented process emulation, a new approach that
brings the best of both full-system emulation and user-mode
emulation.

Problem statement. Generally speaking, the goal of aug-
mented process emulation is to correctly execute a program of
an IoT firmware in a user-mode emulator, given the following
requirements are satisfied:

(1) The firmware can be correctly emulated in a system emu-
lator (e.g., system-mode QEMU). Fortunately, with the
help of Firmadyne [13], a large portion of IoT firmware
images are able to meet this requirement.



system mode (ms) user mode (ms)
program overall sys exec sys code trans user exec user code trans overall sys exec user exec user code trans
basename 4.08 1.79 0.53 1.41 0.35 0.34 0.02 0.11 0.22
uptime 7.48 2.39 0.76 2.79 1.55 0.89 0.04 0.31 0.54

Table 2: Runtime performance of system mode and user mode emulation
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Figure 1: Overview of Augmented Process Emulation

(2) The firmware runs a POSIX-compatible operating system
(OS). Fortunately, many IoT firmware images use Linux
as the OS hence satisfy this requirement.

With augmented process emulation, we aim to achieve the
following design goals:

• Transparency. The user-level program running in the
augmented process emulation should behave as if it were
run in the system-mode emulation.

• High efficiency. Since throughput is a dominating factor
for fuzzing, the augmented process emulation needs to
be as efficient as possible. Ideally, it should approximate
the performance of pure user-mode emulation.

Solution overview. To achieve the design goals mentioned
above, we resort to combine user-mode emulation with
system-mode emulation in a novel manner. Figure 1 illus-
trates the overview of our solution.

At first, the IoT firmware boots up in the system-mode
emulator and the user-level programs (including the one to be
fuzzed) are launched properly inside the emulator. After the
program to be fuzzed has reached at a predetermined point
(e.g., the entry point of main function, or after receiving the
first network packet), the process execution is then migrated
to the user-mode emulation in order to gain high execution
speed. Only at rare occasions, the execution is migrated back
to the system-mode execution to ensure the correctness of
execution.

To minimize the migration cost, the memory state is shared
between these two emulation modes. More concretely, the
physical memory of the virtual machine for the system-mode

emulation is allocated as a memory-mapped file, called RAM
file. This RAM file is also mapped into the address space of
the user-mode emulation. Note that system-mode emulation
and user-mode emulation access this RAM file in different
ways. System-mode emulation treats the RAM file as physi-
cal memory, and thus accesses it by physical address, while
user-mode emulation accesses the shared memory by virtual
address. Therefore, the physical pages in the RAM file need
to be mapped into the address space of user-mode emulation
by their virtual addresses at a page granularity. As a result,
when a page mapping is not established in the user-mode
emulation, the process execution needs to be migrated to the
system-mode emulation to establish this mapping. We will
discuss more details about the memory mapping in §3.2.

With a proper memory mapping, the process should be
able to execute correctly in the user-mode emulation, until
it reaches a system call. Directly executing the system call
locally on the host OS would not work in general, because
the host OS and the OS in IoT firmware are different and
the underneath hardware layers are also different. To ensure
transparency, we need to migrate the execution to the system-
mode emulation to process this system call. When the system
call returns, we migrate the execution back to the user-mode
emulation. More details will be discussed in §3.3.

3.2 Memory Mapping

Bootstrapping. When fuzzing a program with AFL, the
program executes to a predetermined point, and then the fork
server of AFL will repeatedly fork a new program instance
on this point (which is referred to as fork point) and feed
random inputs. Similarly, in this setting, we will boot up the
IoT firmware in system-mode emulation and further launch
the specified IoT program. Using Virtual Machine Introspec-
tion (VMI) provided by DECAF [23] (a system emulation
based dynamic analysis platform), we are able to monitor the
execution of the specified IoT program and get notified when
the execution reaches to the predetermined fork point.

At this moment, we will walk the page table of the specified
process and collect the virtual to physical page mapping infor-
mation and send it over to the user-mode emulation side. Then
for each mapping of virtual address (va) to physical address
(pa), the user-mode emulation side establishes a mapping by
calling mmap as below:

mmap(va, 4096, prot, MAP_FILE, ram_fd, pa);



The code above is self-explanatory. Essentially, we map a
page of the RAM file with the physical address as offset into
a specified virtual address. The argument prot is determined
by the protection bits from the corresponding page table entry.

From this point onward, the execution in system-mode
emulation is paused, the CPU state is sent over to user-mode
emulation, and the execution resumes there.

Page fault handing. During the process execution in user-
mode emulation, if the accessed memory addresses have al-
ready been mapped in this address space, the execution should
proceed successfully. Otherwise, the host processor will raise
a page fault. We register a signal handler for page fault in user-
mode emulation, so the host OS will pass along the page fault
event to the user-mode emulation. On receiving this signal,
the user-mode emulation records the CPU state at the faulting
instruction, pauses the execution, and passes the CPU state
to the system-mode emulation side, expecting that the page
fault can be handled in the system-mode emulation and a new
mapping for the faulting virtual address can be established.

When the system-mode emulation receives the CPU state
and resumes execution, the emulated processor will raise a
page fault, since the page is not present. The page fault han-
dler in the OS of the IoT firmware will respond to this page
fault and attempt to establish the mapping. Most likely, this
mapping will be established by the OS sooner or later (de-
pending on the scheduling of numerous kernel threads and
interrupt handlers) and the instruction that causes the page
fault will be re-executed. In very rare cases, if the OS can-
not establish a mapping for various reasons, it will kill the
process.

A key question here is to determine when the page mapping
has been established or an error occurs, so we can switch back
to the user-mode emulation to maximize execution speed. The
answer to this question is in fact non-trivial, because the OS is
handling multiple tasks simultaneously and enormous amount
of context switches may happen in the meantime.

To capture the right moment when a mapping is established,
we instrument the end of each basic block. If the execution is
currently within the specified process (or thread), it means the
execution has returned from the kernel to the user space to
resume the faulting instruction. The mapping must be present
in the software TLB. So we can just directly find the mapping
there. At this moment, we pass the mapping information and
the CPU state back to the user-mode emulation, which will
create this new mapping by calling mmap and resume the
execution.

If for some reasons, an error occurs and the process gets
killed, we can rely on the VMI (Virtual Machine Introspec-
tion) capability provided by DECAF [23] to get notified, and
then the whole execution on both sides get terminated.

Preload page mapping. Modern operating systems load
memory pages in a lazy manner. Although when a new pro-

cess starts, all code pages are assigned into its address space,
a mapping from each virtual page to its physical page is not
really established until a page fault caused by the first memory
access to it.

This lazy design has adverse effect on fuzzing performance.
As we will discuss in §4.1, a child process is repeatedly forked
from the parent process for each fuzzing iteration, and thus
there are always a series of page faults caused by un-mapped
code pages. This is especially harmful for our system, because
the overhead of page fault handling is much more expensive
than handling it locally on the host OS.

To solve this problem, we decide to preload the code pages
of the given process in the physical memory and perform
the mapping between the two modes. This helps us avoid
repeatedly loading the code pages at every fuzzing iteration,
and hence speed up the fuzzing throughput. To do that, we
simulate the access to each program code page in the system-
mode emulation during the bootstrap, to force the OS to map
each page into the process’ address space. As a result, we can
reduce the number of page faults caused by these pre-loaded
pages.

3.3 System Call Redirection

System calls and their implementation in IoT programs are
different because of the underlying IoT hardware, firmware
and requirements. Consequently, user-mode emulation of an
IoT program will likely fail if the exceptions caused by the
system calls are not properly handled (see §2). For exam-
ple, most IoT devices have network interfaces that are not
available on a local emulator. When an IoT program in the
user-mode emulation executes a system call that needs to
interact with a specific network interface in the IoT system,
there will be a fault that needs to be handled. Another exam-
ple is a system call that accesses NVRAM that is undefined
for a desktop computer.

Therefore, to ensure execution correctness, we must redi-
rect the system calls from the user-mode emulation to the
system-mode emulation. More specifically, when the user-
mode emulation encounters a system call, it pauses the ex-
ecution, saves the current CPU state, and sends it over to
the system-mode emulation. The system-mode emulation re-
ceives the CPU state and resumes execution. This will cause a
mode switch into the kernel mode in the guest system to pro-
cess the corresponding system call. Again, since the guest OS
kernel is multi-tasking, there might be many context switches
happening before the system call returns. So similar to how
we handle page faults, we will instrument the end of each
basic block. If the current basic block is in the kernel space,
but next program counter is in the user level, and the current
execution context is for the thread that makes the system call,
we detect the moment when the system call returns. Then at
this moment, we pause the execution in the system-mode em-
ulation, save the CPU state, and pass it back to the user-mode



emulation, which will then resume the execution.

Optimizing filesystem-related system calls. While exam-
ining the system calls made by a set of IoT programs, we
realize that many system calls are related to the file system.
The IoT programs either attempt to access files or directories
that already exist in the firmware or are newly created for
only temporary uses. We propose an optimization for this set
of system calls. We map the file system from the firmware
image, and mount it as a directory in the host OS, such that the
user-mode emulation can directly access it. In this way, the
user-mode emulation can directly pass through the file-system
related system calls to the host OS, instead of redirecting them
to the system-mode emulation.

As shown in §5.3, filesystem-related system calls take a
significant portion among all system calls, and thus this opti-
mization makes a significant contribution for the final perfor-
mance.

4 Firm-AFL Design and Implementation

Leveraging the technique described in §3, we design and im-
plement FIRM-AFL, an enhancement of AFL [34] for fuzzing
IoT firmware. In §4.1, we first describe the workflow of AFL,
and then in §4.2, we present how we integrate augmented
process emulation into the workflow of AFL.

4.1 Workflow of AFL

AFL is a coverage-guided greybox fuzzer. It maintains a seed
queue that stores all the seeds, including the initial seeds
chosen by the user as well as the ones that are mutated from
the existing seeds and cause the program to reach unique code
coverage.

The main program that drives the fuzzing process is
afl-fuzz. It picks a seed from the seed queue, performs
a random mutation, generates an input, and feeds this input
to the target program (assuming it is a binary executable).

In order to collect the code coverage information from the
execution of the target program, AFL starts the program using
the user-mode QEMU, and instruments the branch transitions
of the target program, and the code coverage information is
encoded and stored in a bitmap.

Since during fuzzing we need to execute the target program
repeatedly, AFL utilizes “fork” as a mechanism to speed up
this process. It first runs the target program up to a certain
point (e.g., the entry point of the main function) such that the
program’s code and data have been properly initialized, and
then repeatedly forks a child process from it. In this way, the
initial setup of a new process is skipped. For this reason, the
parent process is called fork-server. Then the input is fed
into the forked child process, and the coverage information
is collected and stored in the bitmap, which is shared among
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Figure 2: Overview of FIRM-AFL

all three processes (afl-fuzz, fork-server, and the child
instance). afl-fuzz will compare the bitmap from the child
instance and the accumulative bitmap from all past executions
to determine if this mutated input should be kept as a new
seed and stored in the seed queue.

4.2 AFL with Augmented Process Emulation
We would like to keep the workflow of AFL intact, but allow
AFL to fuzz a target program in an IoT firmware image. To do
so, we replace the user-mode QEMU with augmented process
emulation, and the rest of the components remain unchanged.
The new workflow is illustrated in Figure 2.

Bootstrapping. To fuzz a program in the IoT firmware im-
age, we need to boot up the firmware image and launch the
program after the system boots up. This is done in the system-
mode emulation within fork-server.

We leverage Firmadyne [13] to correctly emulate a
firmware image. We further integrate DECAF [23] with Fir-
madyne to make use of its VMI (Virtual Machine Introspec-
tion) capability. In this way, we are able to capture the precise
moment when the target program is started or terminated. We
can also know when the execution of the target program has
reached the pre-determined fork point.

Forking. The default fork point chosen by AFL is the en-
try point of the main function. In our case, we are interested
in finding vulnerabilities in the IoT programs that are trig-
gered through the network interface. Therefore, we hook the
network-related system calls. And the first invocation of any
of these system calls becomes the fork point.

In the standard workflow of AFL, we can simply leverage
the fork system call to fork a child process and start the
next fuzzing instance. In our case, we not only need to fork a
child process for the user-mode emulation, but also “fork” a
new virtual machine instance for the system-mode emulation,
because two modes must synchronize with each other.

Actually forking a new virtual machine would be too expen-
sive. Instead, we can make a snapshot of the virtual machine



at the fork point, and when one fuzzing execution is finished,
we can restore the snapshot. System-mode QEMU offers
save_snapshot function that saves all the CPU registers and
the memory space to a specific file. However, file write/read
operations would still be very slow.

In our system, we implement a lightweight snapshot mecha-
nism based on the Copy-on-Write principle. More concretely,
we first mark the RAM file mapped into the system-mode
QEMU as read-only. Then a memory write will cause a page
fault. We make a copy of the page, and then mark this page
as write-able. As such, we record all memory pages that have
been modified during one fuzzing execution. When restor-
ing the snapshot, we only need to write these recorded pages
back.

Feeding input. The inputs are fed through instrumenting
system calls. For the IoT programs that are receiving input
from network interface, we instrument the network-related
system calls in the user-mode emulation directly, so we don’t
need to redirect these system calls to the system-mode emula-
tion.

Collecting coverage information. Since most of execution
happens in the user-mode emulation and system-mode emula-
tion is only needed for handling page faults and some system
calls, we can simply instrument the branch transitions in user-
mode QEMU to compute the coverage bitmap, just like how
the original AFL does it in user-mode QEMU.

5 Evaluation

In this section, we evaluate the prototype implementation of
our fuzzer FIRM-AFL. The purpose of this section is to test
whether our approach has resolved the performance bottle-
necks and achieved the two design goals. In short, we would
like to answer following questions:

• Transparency. Can FIRM-AFL fuzz programs extracted
from IoT firmware as if they are running inside a full-
system emulator?

• High efficiency. How close is FIRM-AFL’s throughput
(executions/sec) to the throughput of a pure user-mode
emulation based fuzzer?

• Effectiveness of optimization. Do our optimization tech-
niques successfully resolved the performance bottle-
necks we identified?

• Effectiveness in vulnerability discovery. How effective
is FIRM-AFL in finding real vulnerabilities in IoT
firmware?

Experiments setup. We used three sets of programs in our
evaluation. The first set of programs are two standard bench-
marks: nbench [9] and lmbench [7]. They are used to access
the correctness of the emulation and the overhead of the em-
ulation. The second set of programs consist of seven IoT
programs from four different vendors (Table 3). We selected
these program since they are the key service programs that
handle network requests thus are good targets for remote at-
tacks. They are used to access the performance of greybox
fuzzing. The third dataset is the Firmadyne dataset which
includes firmwares whose HTTP and uPnP services are re-
lated to 15 1-day exploits (Table 6). We collected them to
evaluate the transparency and effectiveness of FIRM-AFL in
vulnerability discovery.

Experiments (except the ones in §5.4) are conducted on a 8-
core Intel(R) Core(TM) i7-3940XM 3.00GHz CPU machine
with 23.5GB of RAM 1TB hard disk . The operating system is
Ubuntu 16.04.5 LTS. The version of QEMU and AFL is 2.10.1
and 2.06b. We obtain each measurement value after every ten
iterations. Our final reported numbers are the average value of
20 measurements. By default, we set fork point at the position
after the network data received, and feed the random input
provided by AFL engine.

5.1 Transparency

To evaluate the transparency of our augmented process emula-
tion, we first evaluated our emulator with the nbench test suite.
After generating the output, the benchmark will compare the
outputs with expected outputs. If the generated outputs are
wrong, then it implies the emulation is not correct. The results
showed that our system can finish all the benchmarks without
errors.

We also empirically evaluated the transparency of FIRM-
AFL using the Firmadyne dataset [4]. We collected 120
firmware images with HTTP services and unique device mod-
els. We first tried to run HTTP service programs in them
directly using user-mode QEMU. We extracted the file sys-
tems from the firmware images and used chroot to mount
the file systems. However, all these programs crashed at the
very beginning due to the lack of expected system environ-
ment. Then we tried to run them with normal inputs (the
initial seeds) under full-system emulation, as well as under
augmented process emulation. We observed that in both set-
tings, all the programs could run properly. For each program,
we further compared the system call sequences generated
under full-system emulation as well as augmented process
emulation, and confirmed that the system call sequences were
identical.

Finally, we evaluated a set of exploits targeting known vul-
nerabilities listed in Table 6. For each vulnerability, we fed a
proof-of-concept (PoC) exploit in both full-system emulation
and augmented process emulation and compared the execu-
tion traces. We confirmed that the collected two traces are



Program Size (KB) Description Vendor Devices Model Version CPU Arch

cgibin 129.4 CGI binary program DLINK Router DIR-815 1.01 MIPSEL
httpd 90.2 Embedded HTTP server

dnsmasq 162.3 Embedded DNS server
dropbear 307.3 Embedded SSH server TPLINK Router TL-WR940N V4_160617 MIPSEB

httpd 1692 Embedded HTTP server
jjhttpd 103.3 Embedded HTTP server Trendnet Router TEW-813DRU v1(1.00B23) MIPSEB

lighttpd 327.3 Embedded HTTP server Netgear Router WNAP320 3.0.5.0 MIPSEB

Table 3: IoT programs used for evaluation

identical.
In summary, this evaluation showed that FIRM-AFL can

provide transparent emulation as if the program is executing
in full-system emulation.

5.2 Efficiency

Benchmark Augmented mode User mode Slowdown

Numeric sort 679.12 686.56 1.08%
String sort 78.36 79.54 1.48%

Bitfield 3.47E+08 3.45E+08 0.00%
FP emulation 163.85 161.72 0.00%

Fourier 1383.6 1,384.00 0.00%
Assignment 20.45 20.75 1.40%

IDEA 4,864.10 4,854.10 0.00%
Huffman 1,749.00 1,743.10 0.00%

Neural Net 1.93 1.95 0.60%
LU Decomp 61.26 61.92 1.00%

Table 4: nbench results, the unit is iterations/second. The last
column shows the slowdown of augmented mode.

Syscall Augmented mode User mode Overhead

null 0.48 0.48 0.00%
read 0.62 0.60 3.33%
write 0.57 0.52 9.62%
stat 1.31 1.24 5.64%
fstat 0.63 0.61 3.28%
open 2.61 2.50 4.40%

select file 3.52 3.48 1.15%
select tcp 32.74 12.64 159%

pipe(latency) 6.73 6.57 2.44%

Table 5: lmbench syscall testing results, the unit is microsec-
ond. The last column shows the overhead of augmented mode.

Standard benchmarks. We evaluated the efficiency of our
approach from two angles. First, we evaluated the perfor-
mance overhead of augmented process emulation using stan-
dard performance benchmarks. The result of nbench is shown
in Table 4. nbench is a CPU-bound benchmark suite. On

this benchmark, the augmented mode did not impose much
overhead, largely due to the fact that these benchmarks are
relatively simple, so they do not require many memory syn-
chronization operations and syscall redirection. To evaluate
the overhead of syscall redirection, we used the lmbench. The
result is shown in Table 5. As we can see, for syscalls that
are executed locally (e.g., file related syscalls), the overhead
is almost negligible. For syscalls that still require redirection
(e.g., TCP related), the overhead is much higher.

Fuzzing throughput. In the second performance evalua-
tion, we measured the throughput of FIRM-AFL, under dif-
ferent optimization levels:

(a) Baseline: we used TriforceAFL [29] as the baseline. Tri-
forceAFL uses full-system emulation to support fuzzing
IoT programs. To avoid rebooting the virtual machine, in
this configuration, we added support for QEMU’s stock
snapshot mechanism (qemu_savevm and qemu_loadvm)
to TriforceAFL. We also use VMI provided by DE-
CAF [23] to capture the precise moment when program
is started and terminated.

(b) Lightweight snapshot: in this configuration, we changed
the snapshot mechanism to our lightweight snapshot (§4).

(c) Augmented process emulation: in this configuration, we
switched the emulation mode from full-system mode to
our augmented process emulation mode (§3).

(d) Full: in this configuration, we applied all optimization
techniques, including selective syscall redirection.

Figure 3 shows the throughput improvement. Overall,
lightweight snapshot boosted the throughput for about 9.3
times (b vs. a). Augmented process emulation boosted the
throughput for about 3 times on average (c vs. b). With selec-
tive syscall redirection, the throughput had another boost for
about 2.9 times on average (d vs. c). So compared with the
best result on full-system emulation based fuzzing (b), FIRM-
AFL (d) provided an average improvement of 8.2 times.

5.3 Effectiveness of Optimization
In §2.4, we identified three major bottlenecks of full-system
emulation: memory address translation, dynamic code trans-



Figure 3: Fuzzing throughput of FIRM-AFL under differ-
ent optimization level. The x-axis is the optimization level:
(a) baseline, (b) w/ lightweight snapshot, (c) w/ augmented
process emulation, and (d) w/ selective syscall redirection.
Fuzzing throughput for each program is shown in a different
color.

lation, and syscall. In this section, we evaluated whether our
optimization techniques successfully addressed these bottle-
necks. For this purpose, we break down the total execution
time into five parts:

• User execution time: the total time spent in executing the
logic of the target program, this includes the time spent
on software address translation.

• Memory synchronization time: in augmented emulation
mode, time spent on setup the memory mapping between
the user-mode emulator and the full-system emulator.

• Code translation time: total time spent on translating the
target program.

• Syscall execution time: total time spent on system calls
in an iteration of execution.

• Syscall redirection time: in augmented emulation mode,
time spent on redirecting the system call to the full-
system emulator.

• Snapshot time: the total time spent on storing and restor-
ing memory and CPU states in an iteration of fuzzing.
Note that different snapshot mechanisms have different
time overhead values. We record the starting and ending
time for each page store and restore operations.

Lightweight snapshot. Snapshot overhead only exists for
the system-mode emulator. In augmented process emulation,
a synchronization mechanism is required to ensure the consis-
tency of snapshot between system and user mode. For these

Figure 4: Execution time breakdown: system-mode emulation
w/o and w/ lightweight snapshot.

Figure 5: Execution time breakdown: augmented process
emulation vs. full-system emulation.

experiments, we measure the snapshot synchronization cost
and add it to the snapshot overhead. When comparing the
snapshot overhead in Figure 4 and Figure 5, we can see that
the lightweight snapshot mechanism leads to more than 100x
reduction in the snapshot overhead.

Augmented process emulation. Figure 5 shows the execu-
tion time breakdown of full-system emulation and augmented
process emulation for the seven IoT programs. The total ex-
ecution time on average reduces more than 50% except for
dnsmasq. When analyzing breakdown of execution time, we
can see huge reduction on user execution time and code trans-
lation time. On average, the user execution time (green bar)
was reduced by about 9 times. This is mostly due to the elimi-
nation of software address translation. Even if we combine



Figure 6: Execution time breakdown: augmented process
emulation w/o and w/ selective syscall redirection.

the memory synchronization time (purple bar), the execution
time was still reduced by about 5 times.

Another huge reduction is the code translation time. As
briefly mentioned in §2, this is due to two optimization tech-
niques. First, when running in full-system mode, QEMU only
performs block chaining for basic blocks within the same
physical page. This means the emulator has to be invoked
to resolve control transfer between pages. In augmented pro-
cess emulation, QEMU can link any basic blocks as long as
they are translated. Second, when using full-system mode for
fuzzing, the fuzzer (Triforce) will reset the virtual machine
after processing each input. Although we have optimized this
step with lightweight snapshot, the code cache will be reset
during the restore. This means the same basic block could be
translated repeatedly for every fuzzing iteration. In augmented
process emulation, we can utilize the code cache pooling tech-
nique from AFL to avoid this re-translation. As a result, the
amortized code translation time became very small.

Unfortunately, the reduction on user execution time and
code translation time is at the cost of increase in overall
syscall time, i.e., the combination of syscall execution time
and syscall redirection time. In general, the more syscalls the
target program issues, the higher the redirection overhead.
This is why dnsmasq spent significantly more time on syscall
redirection than the other programs: it issued more than one
thousand system calls which caused more than two thousand
state transitions between system mode and user mode. This
highlights the necessity of selective syscall redirection.

Selective syscall redirection. Figure 6 shows the execution
time breakdown with and without selective syscall redirec-
tion. Recall that the goal of redirecting system calls to the
full-system emulator is to ensure correct emulation. However,
not all system calls require special kernel or hardware sup-

port. Therefore, by locally executing system calls that can be
fully supported by the host system (e.g., file system related
syscalls), we reduce most of the syscall time without jeopar-
dizing correctness. As shown in the figure, after applying this
optimization, we observed a huge reduction in system call
execution time, because many system calls are now executed
by the host OS without address/code translation and device
emulation. At the same time, we also observed reduction in
syscall redirection time, which has a great impact on programs
that issue many syscalls, like dnsmasq. A majority of syscalls
issued by dnsmasq were file operations which can be handled
locally by mounting the IoT firmware file system in the host
OS. By doing so, the total execution time of dnsmasq can be
reduced by another 14 times.

To summarize, this evaluation showed that our solutions
(augmented process emulation and selective syscall redirec-
tion) have successfully addressed the three bottlenecks we
identified in §2.4.

5.4 Vulnerability Discovery

In this section, we aim to evaluate how effective FIRM-AFL is
in finding vulnerabilities in real-world IoT firmware images.

Data collection. We started with the Firmadyne dataset [4].
We collected these firmware images and tested the emula-
tion condition and network reachability, and then checked the
liveness of HTTP and uPnP services by probing their ports.
Eventually, we obtained 288 firmware images with active
HTTP and uPnP services. We then used getsploit [1] to col-
lect exploits targeting HTTP and UPnP services from online
resources, such as exploit-db [3], metasploit [8], and Packet
Storm [6]. Then we fed these exploits into the 288 images,
and eventually identified 15 exploits that can be launched
successfully against 51 firmware images. Table 6 lists these
15 exploits.

We further ran the programs related to these 15 exploits
in user-mode QEMU, and observed that only one program
tcapi that is related to the last five exploits can continue to
work in user-mode QEMU. This result once again confirms
the necessity of augmented process emulation.

Experiment setup. As our focus in this case study is on
fuzzing HTTP and uPnP services, which have well-structured
protocol formats. To expedite fuzzing, we made use of the
dictionary option “-x” in AFL. We collected keywords for
HTTP (from honggfuzz [5]), uPnP and HTTP CGI services
(extracted directly from binary programs) respectively. For
each service, we then provided a normal service request as
the initial seed .

Moreover, to avoid underestimating the performance of full-
system emulation with its default snapshot implementation,
we enabled lightweight snapshot in it.



Exploit ID Vendor Model Version Device Program
Full-System

Time to crash
FIRM-AFL

Time to crash
CVE-2018-19242 Trendnet TEW-632BRP 1.010B32 Router httpd 21h43min 6h2min
CVE-2013-0230 Trendnet TEW-632BRP 1.010B32 Router miniupnpd >24h 9h16min
CVE-2018-19241 Trendnet TV-IP110WN V.1.2.2 Camera video.cgi 19h13min 4h55min
CVE-2018-19240 Trendnet TV-IP110WN V.1.2.2 Camera network.cgi 12h0min 2h21min
CVE-2017-3193 DLink DIR-850L 1.03 Router hnap 21h3min 2h54min
CVE-2017-13772 TPLink WR940N V4 Router httpd >24h >24h
EDB-ID-24926 DLink DIR-815 1.01 Router hedwig.cgi 16h38min 1h22min
EDB-ID-38720 DLink DIR-817LW 1.00B05 Router hnap 4h26min 1h29min
EDB-ID-38718 DLink DIR-825 2.02 Router httpd >24h 22h3min
CVE-2016-1558 DLink DAP-2695 1.11.RC044 Router httpd 16h24min 2h32min
CVE-2018-10749 DLink DSL-3782 1.01 Router tcapi 247s 20s
CVE-2018-10748 DLink DSL-3782 1.01 Router tcapi 252s 22s
CVE-2018-10747 DLink DSL-3782 1.01 Router tcapi 249s 20s
CVE-2018-10745 DLink DSL-3782 1.01 Router tcapi 236s 25s
CVE-2018-8941 DLink DSL-3782 1.01 Router tcapi 281s 24s

Table 6: 1-day exploits

The experiments were conducted on a server with 40-core
Intel Xeon(R) E5-2687W(v3) 3.10GHz CPU and 125GB of
RAM.

Finally, to ensure our evaluation results on fuzzing perfor-
mance are statistically significant, as suggested by Klees et
al. [25], we ran each fuzzing experiment ten instances in paral-
lel for 24 hours. In addition to FIRM-AFL, we also evaluated
full system emulation with lightweight snapshot support. We
report cumulative number of unique crashes found over time,
using plot_data in AFL output files.

Evaluation results. We calculate the median time to first
crash in full-system emulation and augmented process emu-
lation respectively and record them in the last two columns
of Table 6. We can see that FIRM-AFL can find a crash at
least 3.6 times faster than full-system emulation, and in many
cases more than 10 times faster.

We also plot cumulative number of unique crashes found
over time by FIRM-AFL (blue), and fuzzing with full emula-
tion (red) in Figure 7. In each plot, the solid line represents the
median result from 10 rounds while the dashed lines represent
the lower and upper bounds of 95% confidence intervals for
a median. Since last five cases in Table 6 are related to the
same program and the results are similar, we just plot the case
for CVE-2018-10749 as the representative.

From the result, we can see that in spite of large variations
across fuzzing runs, FIRM-AFL was able to find significantly
more unique crashes and find them multiple times faster than
full emulation. We further investigated these crashes and con-
firmed that most of these crashes were caused by the same
known vulnerabilities. We indeed found two new vulnerabili-
ties, which we will describe next.

0-day vulnerabilities. We discovered two 0-day vulnera-
bilities using FIRM-AFL, after 7.5 hours and 6 hours respec-
tively. We also tried fuzzing these two programs with full-
system emulation using the same initial seeds, and no crash
was found within 24 hours. we reported them to IoT manufac-
turers and MITRE corporation. The details about these two
vulnerabilities are described as below.

• CVE-2019-11417: Buffer overflow in Trendnet TV-
IP110WN (firmware version: v.1.2.2 build 68). Attackers
can exploit the device by using ‘languse’ parameter in
system.cgi.

• CVE-2019-11418: Buffer overflow in Trendnet TEW-
632BRP (firmware version: v.1.010B32). Attackers can
exploit the device by crafting the soapaction HNAP
interface.

6 Discussion

In this section, we discuss the limitations in our system and
shed some light for future work.

Limitation on supported CPU architectures. The current
implementation of FIRM-AFL supports the following CPU ar-
chitectures: mipsel, mipseb and armel, which already account
for 90.2% images in the Firmadyne dataset. We expect that
supporting more CPU architectures is relatively easy, because
the majority of the emulation logic in QEMU is implemented
in an architecture-independent manner.

Limitation on supported IoT firmware. Even after more
CPU architectures are supported, FIRM-AFL can only fuzz a



Figure 7: Crashes found over time

program in a firmware image that can be properly emulated
by Firmadyne and runs a POSIX-compatible OS (e.g., Linux).
This limitation stems deeply from the design of FIRM-AFL,
and thus there is no simple solution. An improvement on IoT
firmware emulation is orthogonal to this paper. We will leave
it for future work. Supporting a non-POSIX program would
require a virtualization layer, such that they can run properly
within a POSIX process. We are not aware of an existing
solution for this. Thus, it can be an interesting future work.

7 Related Work

With the increasing number of IoT devices and their security
issues, several techniques are proposed to find the IoT devices
vulnerabilities in an automatic manner. These techniques can
be categorized into static or dynamic analysis. Lacking the
source code of the IoT firmware, static analysis often relies
on the binary image and reverse engineering techniques.

Static analysis. Costin et al. presented a large scale analy-
sis of IoT firmware by coarse-grained comparison of files and
modules [17]. Their approach is able to find a lot of known
bugs within the common third-party projects used by different
vendors. Cojocar et al. proposed another approach to heuris-
tically identify parsers and complex processing logics from
IoT firmware, and they find several vulnerabilities [16]. That
said, these approaches suffer from high false positives and
cannot find completely new vulnerabilities. Feng et al. pre-

sented a cross-platform bug search technique for firmware
images [21]. The technique is based on high-level numeric
features comparison, and only takes 0.1 second on average
to finish all 154 vulnerabilities searching. Xu et al. further
proposed a novel neural network-based approach to detect
cross-platform binary code similarity [31]. It can significantly
reduce training time and feature vector generation time, as
well as improve search accuracy.

Firmalice is another IoT binary analysis framework that
employs static analysis techniques [30]. Firmalice utilizes
symbolic execution on the firmware binary and uses backward
slicing to make the vulnerability analysis tractable. Firmalice
focuses only on one slice of the program based on an analyst’s
specification. The specification provides a clue about the
privileged program code. Isolating the potential vulnerable
code, Firmalice makes the analysis scalable while also capable
of finding new vulnerabilities. That said, Firmalice can only
find the authentication vulnerabilities and relies on manual
analysis for the slice specification.

Dynamic analysis. On the other hand, dynamic analysis
techniques for IoT firmware require either the real devices
or an emulation of some sort. Black-box fuzzing is a com-
mon approach to discover vulnerabilities by directly inter-
acting with devices. Recently, several works have developed
dynamic emulators for IoT devices. For example, Zaddach
et al. developed a dynamic analysis framework for IoT de-
vices by redirecting hardware requests from the emulator to



the actual hardware [33]. Based on it, Marius et al. devel-
oped a dynamic multi-target orchestration framework that
can enable interoperability between different dynamic binary
analysis framework, debuggers, emulators and real physical
devices [27]. However, the large number of hardware limits
its scalability, and also imposes a large overhead.

Chen et al. proposed a robust software-based full system
emulation. Their emulation is based on kernel instrumenta-
tion [13]. Their goal is to perform automatic vulnerability
verification that has no ability to find unknown vulnerabilities.
Both Avatar and Firmadyne do not use techniques such as
fuzzing that are capable of finding completely new vulnera-
bilities in real applications. Anderi et al. conducted dynamic
analysis to achieve automated vulnerability discovery within
embedded firmware images [18]. The tool aims at discovering
web-interface related vulnerabilities by using web pentesting
tools. However, it cannot find vulnerabilities of other modules
in IoT firmware.

IoT fuzzing. For IoT fuzzing, and closest to our work,
Muench et al. developed six live analysis heuristics including
call stack tracing and call frame tacking [28]. Muench et al.
built their system on top of Avatar [33] and PANDA [19], and
their system can effectively detect memory corruption for IoT
devices. However, this system takes target systems as black-
box and feeds input from outside which imposes overhead
on the devices startup and rebooting for each fuzzing session.
Further, unlike greybox fuzzing, the input space exploration is
very blind, and hence the chance of finding a bug is very low.
In our work, we utilize greybox fuzzing, and aim to minimize
each fuzzing iteration overhead so that the fuzzer can test
more test cases in the same unit of time. In addition, Alimi
et al. proposed to use fuzzing techniques and specific simu-
lators (JCOP) to discover vulnerabilities in programs hosted
into smart cards [11]. The methodology does not scale due to
emulation problems of various kinds of IoT firmware.

8 Conclusion

Coverage-based greybox fuzzing has proven to be an effec-
tive way to find vulnerabilities in real-world programs. Yet,
applying greybox fuzzing to IoT firmware has not been re-
alized due to two main challenges. Firstly, state-of-the-art
greybox fuzzers like AFL fail to run many IoT programs due
to specific hardware dependencies. Secondly, solutions that
can tackle the first challenge (e.g., by employing full-system
emulation) yield very low throughput. We proposed a novel
technique, augmented process emulation to address both chal-
lenges at the same time. With augmented process emulation,
we achieve high throughput fuzzing by running the target
program in a user-mode emulator and switch to a full-system
emulator when the target program invokes a system call that
has specific hardware dependencies.

We evaluated the transparency and the efficiency of FIRM-
AFL, our prototype implementation of greybox IoT fuzzing
based on the augmented process emulation. The results
showed that our system is transparent and its throughput out-
performs all the state-of-the-art IoT firmware fuzzers by one
order of magnitude. Our case study further showed that FIRM-
AFL could indeed find both 1-day vulnerabilities much faster
than full-system emulation and was able to find two new
vulnerabilities within only two hours on a single machine.
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