
DEEPDI: Learning a Relational Graph Convolutional Network Model on

Instructions for Fast and Accurate Disassembly

Sheng Yu†‡, Yu Qu†, Xunchao Hu‡, Heng Yin†‡

† University of California Riverside

‡ Deepbits Technology Inc.

Abstract

Disassembly is the cornerstone of many binary analysis

tasks. Traditional disassembly approaches (e.g., linear and re-

cursive) are not accurate enough, while more sophisticated ap-

proaches (e.g., Probabilistic Disassembly, Datalog Disassem-

bly, and XDA) have high overhead, which hinders them from

being widely used in time-critical security practices. In this

paper, we propose DEEPDI, a novel approach that achieves

both accuracy and efficiency. The key idea of DEEPDI is

to use a graph neural network model to capture and propa-

gate instruction relations. Specifically, DEEPDI firstly uses

superset disassembly to get a superset of instructions. Then

we construct a graph model called Instruction Flow Graph

to capture different instruction relations. Then a Relational

Graph Convolutional Network is used to propagate instruction

embeddings for accurate instruction classification. DEEPDI

also provides heuristics to recover function entrypoints. We

evaluate DEEPDI on several large-scale datasets containing

real-world and obfuscated binaries. We show that DEEPDI is

comparable or superior to the state-of-the-art disassemblers

in terms of accuracy, and is robust against unseen binaries,

compilers, platforms, obfuscated binaries, and adversarial at-

tacks. Its CPU version is two times faster than IDA Pro, and

its GPU version is 350 times faster.

1 Introduction

A disassembler takes a binary program as input and produces

disassembly code and some higher-level information, such

as function boundaries and control flow graphs. Most binary

analysis tasks [20, 31, 44, 51] take disassembly code as input

to recover syntactic and semantic level information of a given

binary program. As a result, disassembly is one of the most

critical building blocks for binary analysis problems, such as

vulnerability search [23, 57], malware classification [28], and

reverse engineering [52].

Disassembly is surprisingly hard, especially for the x86 ar-

chitecture due to variable-length instructions and interleaved

code and data. As a result, a simple linear sweep approach like

objdump1 or Capstone2, despite high efficiency, suffers from

low disassembly correctness on Windows binaries and bina-

ries compiled by the Intel C++ Compiler (where jump tables

are placed in the code section), and can be easily confused

by obfuscators. There has been a long history of research on

improving disassembly accuracy. For instance, the recursive

disassembly identifies true instructions by following control

transfer targets. It largely eliminates false instructions but

may miss true instructions that are not reached by other code

blocks, leading to a low true positive rate. Commercial disas-

semblers like IDA Pro and Binary Ninja employ linear sweep

and recursive traversal along with undocumented heuristics to

achieve high disassembly accuracy, at price of low runtime ef-

ficiency. Our experiments show that IDA Pro can only process

approximately 72 KB/s, and Binary Ninja 11 KB/s.

Recently, researchers have explored various novel ap-

proaches to further improve the disassembly accuracy, such as

probabilistic inference [39, 55], static program analysis [46],

logic inference [24], and deep learning [43]. However, the

improved accuracy often comes at price of even lower run-

time efficiency. For instance, Probabilistic Disassembly [39]

can only process about 4 KB/s, Datalog Disassembly [24]

4 – 50 KB/s. Even worse, XDA [43], based on expensive

BERT [19] model, when running on CPU, can only process

140 B/s according to our evaluation.

Despite the importance of disassembly, we still do not have

a disassembler that is both accurate and fast to support down-

stream binary analysis tasks. This is especially true when

dealing with malware, which is often obfuscated to thwart

disassemblers for evasion.

In this paper, we present a novel deep learning-based dis-

assembler called DEEPDI, which can achieve high accuracy

and efficiency simultaneously. It can be further accelerated on

GPU to gain hundreds of times speedup. In order to achieve

high efficiency, DEEPDI takes a very different approach than

XDA [43] to leverage deep learning. Instead of feeding raw

1https://www.gnu.org/software/binutils/manual/
2http://www.capstone-engine.org/



bytes as input to an expensive deep learning model as done in

XDA, DEEPDI first decodes all possible instructions and con-

verts them into high-level feature vectors, and then identifies

true instructions from all instruction candidates by construct-

ing logical relations (e.g., one instruction followed by another,

one instruction overlapped with another, etc.) between these

instruction candidates and performing graph inference on

them. In particular, we use a Relational Graph Convolutional

Network (Relational-GCN) [50], because it can capture dif-

ferent kinds of relations between nodes and it is small and

efficient. After supervised training, our model is able to iden-

tify true instructions. From these identified true instructions,

DEEPDI then recovers function entrypoints from the true

instructions using heuristics and a simple classifier.

We have conducted extensive experiments to evaluate

DEEPDI with respect to accuracy, efficiency, generalizabil-

ity and robustness. To evaluate the accuracy, we use four

datasets (i.e., BAP corpora [17], LLVM 11 on Windows3,

SPEC CPU2006 [6], and SPEC CPU2017 [7]), and compare

with five disassemblers (i.e., IDA Pro [3], Binary Ninja [1],

Ghidra [2], Datalog Disassembly [24] and XDA [43]). Experi-

mental results show that DEEPDI is comparable or superior to

these disassemblers in terms of accuracy on regular binaries.

For efficiency, the single-core CPU version of DEEPDI can

achieve a throughput of 146 KB/s, which is two times faster

than commercial disassemblers. A CUDA implementation

of DEEPDI can further improve the throughput by 170 times

on a modest GPU, reaching 24.5 MB/s, which is 350 times

faster than IDA Pro. To evaluate its generalizability, we first

train our model with BAP corpora on each optimization, and

evaluate on LLVM 11 to show the performance on unseen

binaries compiled with different compilers and on a different

platform. The result shows that our instruction precision and

recall are at least 97.1%. We use the model for the accuracy

test and test it on ten unseen real-world software to show the

performance on real-world binaries, and the result is compa-

rable with XDA. For robustness, we evaluate the performance

on obfuscated binaries provided by Linn and Debray [36]

and some real-world binaries obfuscated by Hikari [58]. Our

model achieves 84.1% precision and 95.2% recall within 1.2

seconds in the first test, whereas XDA and IDA Pro takes

over 200 seconds and are less accurate. In the second test,

our model has very consistent performance on five different

obfuscation techniques, and is several orders of magnitude

faster than the other disassemblers.

We further demonstrate how DEEPDI is used in malware

classification. We use the malware dataset from Microsoft

Malware Classification Challenge [48], and extend Gem-

ini [57] and EMBER [9] to use high-level features for malware

classification. Our evaluation shows our Gemini model can

achieve 98.2% training accuracy and beat MalConv [47] in

testing loss value. The extended EMBER model achieves

3https://github.com/llvm/llvm-project

99.5% training accuracy and beats the original EMBER.

While the traditional feature extractions take hours and even

days on this dataset, ours only takes 9 minutes in Gemini and 3

minutes in EMBER, showing the capability of classifying mal-

ware accurately and efficiently. We provide a binary release of

DEEPDI at https://github.com/DeepBitsTechnology/DeepDi.

Paper Contributions. In summary, we make the following

contributions in this paper:

• We design a novel deep learning-based disassembler

that can achieve accuracy and efficiency simultaneously.

It exemplifies how a deep learning-based system can

substantially improve the efficiency and accuracy over

the existing approaches.

• We propose a novel graph representation called “Instruc-

tion Flow Graph” to model different relations between

instructions. We then use a Relational-GCN to perform

inference and classification on Instruction Flow Graph

to classify instructions accurately.

• We conduct extensive experiments to show the practical

application value of DEEPDI. Experimental results show

that DEEPDI is comparable or superior to the state-of-

the-art disassemblers in terms of accuracy. DEEPDI is

also robust against unseen compilers and platforms, ob-

fuscated binaries, and adversarial attacks. Its efficiency

is several orders of magnitude higher than the baseline

approaches.

• We showcase malware classification as a downstream ap-

plication for DEEPDI. We show that DEEPDI can enable

fast and accurate malware classification by providing

high-level features efficiently.

2 Background

2.1 Traditional Disassembly Methods

Linear Sweep Disassembly. Linear sweep disassembly is the

most straightforward yet fast disassembly method. It disas-

sembles from the beginning of the buffer and assumes there is

no data in the buffer, meaning the starting point of an instruc-

tion is the ending point of the previous instruction. However,

this assumption may not hold as compilers may insert jump ta-

bles or strings [10], so the false positive rate and false negative

rate can be high, especially for obfuscated binaries. Modern

compilers do not place strings in the code section, but it hap-

pens a lot in shellcode. Besides that, the Microsoft Visual

C++ Compiler and Intel C++ Compiler will place jump

tables in the code section, adding errors to linear disassembly

results.

Recursive Traversal Disassembly. Recursive traversal dis-

assembly can greatly eliminate false positives. It starts from

the entry point of a binary file and follows control flow edges.

However, it cannot follow indirect jumps or calls, so it may

miss quite a number of code blocks. This method is usually

https://github.com/DeepBitsTechnology/DeepDi


Table 1: Comparison of Disassembly Approaches

Method Pros Cons
Efficiency1

CPU GPU

Traditional Approaches Close to 100% accuracy on regular files Slow and vulnerable to obfuscation 10 – 200 KB/s N/A

Superset Disassembly [13] Very fast and no false negative 85% false positive [39] 4 – 5 MB/s 1+ GB/s

Shingled Graph Disassembly [55] Similar accuracy to IDA Pro and 2x faster Small dataset and not open source 70+ – 200 KB/s N/A

Probabilistic Disassembly [39] No false negative 3% false positive and slow 4 KB/s N/A

Datalog Disassembly [24] Nearly 100% accuracy Slow and limited file format support 4 – 50 KB/s N/A

XDA [43] Close to 100% accuracy Slow 140 B/s 47 KB/s

DEEPDI (this work) Close to 100% accuracy – 146 KB/s 24.5 MB/s

1 Measured on our server, please refer to Section 4.1 for more details.

combined with some heuristics to detect missing code blocks.

Indirect control transfers are very common in complex pro-

grams. These programs have switch-case statements, virtual

functions, function pointers, etc. Jump tables, such as jmp

dword ptr [addr+reg*4], are relatively easy to resolve.

However, there exist different variants of jump tables, and

some can be difficult to resolve.

These two methods are straightforward and simple, but

neither is perfect. IDA Pro has a signature-based approach

to scan common patterns of code, others may have dedicated

data flow analysis to resolve indirect jumps. Neither is cheap.

Code patterns can be affected by compilers, optimization lev-

els, architectures, etc. Therefore, searching in such a large

knowledge base is time-consuming. Data flow analysis gener-

ally uses an iterative algorithm and requires a lot of compu-

tational time. Since the manually-defined heuristics are not

complete and slow, we build a machine learning model to au-

tomatically capture relations among instructions and use GPU

and SIMD instructions in CPU to accelerate the computation.

2.2 Superset Disassembly

Superset Disassembly [13] was proposed for binary rewriting.

It disassembles every executable byte offset. Figure 1 (a)

and (b) show an example of superset disassembly. Although

most of instructions are false positive, all true positives are

included in the result so that every possible transfer target can

be instrumented during binary rewriting.

2.3 Probabilistic Inference

Shingled Graph Disassembly [55] and Probabilistic Disas-

sembly [39] are both probability-based approaches, and they

both start from superset disassembly. Shingled Disassembly

maintains an opcode state machine that gives a probability of

transition from one opcode to another. It removes execution

paths with low probabilities (according to the opcode state

machine) to find an optimal execution path with a maximum

likelihood. Their algorithm runs in O(n) and according to

the paper, their approach is two to three times faster than

IDA Pro v6.3. Shingled Disassembly also has a similar accu-

racy compared to IDA Pro and has fewer missing instructions.

Probabilistic Disassembly is a recently proposed binary rewrit-

ing approach that uses probabilities to model uncertainties

(interleaved code and data, indirect transfer targets, etc.). It

considers register define-use relations, control flow conver-

gence, control flow crossing, and computes a probability for

each address based on these features. Its experiment shows

that it has no false negative, and false positive rate is only 3.7%

on average, making it particularly suited for binary rewriting.

2.4 Datalog Disassembly

Datalog Disassembly [24] is also a recently proposed binary

rewriting approach. Similar to Probablistic Disassembly, Data-

log is based on Superset Disassembly, and it defines a series of

rules to remove invalid instructions. For instance, if an instruc-

tion falls-through, or jumps, or calls an invalid instruction,

this instruction is also invalid. Combined with some heuristics

and potential references in data sections, it resolves overlaps

and achieves very high accuracy. The downside though, is

that such analyses are expensive and can take a lot of time.

2.5 XDA

XDA [43] is a deep learning-based disassembly approach. It

takes raw bytes as input, and then randomly masks some of

these bytes to learn a language model for instructions. For ex-

ample, XDA learns sub rsp and add rsp, a typical function

prologue and epilogue, is a pair, which can be used to indicate

function boundaries. With this pre-trained language model,

one can fine-tune it for various tasks (instruction boundary,

function boundary, etc.) with very little training data. XDA

also has a good accuracy on unseen real-world projects and

is robust to different optimizations. However, it has 12 multi-

head attention layers and a large hidden size, or 86,838,795

trainable parameters in total, which make this model very

complex and hinder the efficiency benefits brought by GPUs.

2.6 Summary

Each approach has pros and cons. Linear Sweep is the fastest,

but the disassembly results may be inaccurate. Recursive has

no false positives but can miss a substantial amount of code

due to indirect transfers. Superset Disassembly has bloated

false positives. Probabilistic Disassembly inherits the advan-

tage of Superset Disassembly, but its runtime performance



0: 83

1: FA

2: 5C

3: 75

4: 02

5: FF

6: 03

7: 8B

8: 0B

0: cmp edx, 0x5C

1: cli

2: pop esp

3: jnz 0x07

4: add bh, bh

5: inc dword [ebx]

6: add ecx, dword [ebx+0x9090900B]

7: mov ecx, dword [ebx]

8: or edx, dword [eax+0x90909090]

Line Opcode ModRM SIB REX Len 

0 83 FA 00 00 3 

1 FA 00 00 00 1 

2 5C 00 00 00 1 

3 75 00 00 00 2 

4 02 FF 00 00 2 

5 FF 03 00 00 2 

6 03 8B 00 00 6 

7 8B 0B 00 00 2 

8 0B 90 00 00 6 

 

RNN RNN RNN

u0 u3 u5

RNN RNN RNN

u3 u5 u7

(e) Instruction Flow 

Graph

Forward Edge

Backward Edge

Overlap Edge

h0 h1

h2h3h4

h5h6

h7h8

x
(1)

x
(2)

x
(3)

x
(1)

x
(2)

x
(3)

0: cmp edx, 0x5C

1: cli

2: pop esp

3: jnz 0x07

4: add bh, bh

5: inc dword [ebx]

6: add ecx, dword [ebx+0x9090900B]

7: mov ecx, dword [ebx]

8: or edx, dword [eax+0x90909090]

Valid Instruction

Invalid Instruction

(f) Instruction Classification Result

E
m

b
e
d

d
in

g
 L

a
y
e

r

u0

u3

u5

h0

h3

(a) Raw Bytes
(b) Superset of 

Instructions

(c) Instruction Metadata (d) Instruction Embedding

Superset

Disassembly
Graph 

Generation

Graph 

Inference

Extracting Metadata

DeepDi’s
Trainable 

Modules

F
u

lly
 C

o
n

n
e

c
te

d
 L

a
y
e

r

S
ig

m
o

id

Figure 1: Overview of DEEPDI with a Concrete Example

is much worse than traditional approaches. Shingled Graph

Disassembly has an opcode state machine to measure the

probability of transition from one opcode to another and re-

moves execution paths with low probabilities. However, it

is not open-source, so we cannot evaluate it on a large-scale

dataset. Datalog Disassembly adopts a similar idea, thus suf-

fers the same runtime performance issue. XDA uses GPU

to accelerate the analysis, but its complex and heavyweight

model still hinders its efficiency. These approaches show a

trade-off between accuracy and efficiency: a more accurate

result requires more sophisticated analysis, resulting in lower

efficiency. Table 1 summarizes and compares these existing

approaches. Our approach can achieve both high accuracy

and high efficiency, so it is applicable to time-sensitive tasks.

3 Design

We envision a good disassembler should achieve the following

design goals:

• High Accuracy. It should correctly identify instructions

and functions with very high recall and precision.

• High Efficiency. It should disassemble a binary program

at a very high speed, without compromising accuracy.

• Reasonable Robustness. While it is impossible to

achieve complete robustness against strong adversaries

that can be explicitly designed against a disassembler, a

good disassembler should be resilient to common obfus-

cations such as junk code and computed jumps.

• Support for Downstream Tasks. In addition to iden-

tifying instructions and functions, a good disassembler

should provide auxiliary information like call graph, con-

trol follow graph, etc., which is useful for downstream

analysis tasks.

Figure 1 serves as an overview and a running example

of DEEPDI. Our approach first uses superset disassembly to

disassemble raw bytes. According to the disassembled instruc-

tions, we build an instruction flow graph (IFG) representing

all possible execution paths. Each instruction is also converted

to a feature vector via instruction embedding while maintain-

ing its semantic meaning. The feature vectors are propagated

on the IFG using an R-GCN model to obtain neighboring

information, and then are fed into a classification layer to

predict whether the corresponding instructions are valid. All

the aforementioned layers are connected and are trained in an

end-to-end supervised fashion.

Moreover, we further leverage the prediction results to

recover function entrypoints (not shown in Figure 1). We treat

instructions that are not reachable by non control transfer

instructions as function candidates. We then train a classifier

to identify true function entrypoints from the candidates.

3.1 Superset Disassembly

We use Superset Disassembly [13] to ensure our input to the

model is a superset of true instructions. Given N raw bytes

b0,1,...,N−1, the output of superset disassembly is as follows:

ti = D(bi,...,i+14),∀i ∈ {0, . . . ,N −1} (1)

where D(⋅) disassembles the given bytes and each ti is an

(Opcode,ModRM,SIB,REX) tuple. We call this tuple in-

struction metadata. We feed 15 consecutive bytes (as shown

in Equation 1) because an instruction is composed of up to

15 bytes. If the rest of the bytes are less than 15, we will

pad them with 0x90 (nop). A decoded instruction may have



prefixes, Opcode, ModRM, SIB, Displacement, and Immedi-

ate [4], but we only use REX prefix, Opcode, ModRM and

SIB as its semantic representation, because displacement and

immediate contain arbitrary values and do not affect the se-

mantic meaning. More details are introduced in Section A in

the Appendix.

Figure 1 (c) shows an example of tk and how the tuple

is represented. Note that although an instruction often takes

more than one byte, superset disassembly will still disassem-

ble from its next byte to obtain all possible instructions, which

forms a superset of instructions.

Since disassembling any instruction is independent, this

process can be easily parallelized on GPU: given n raw bytes,

we simply create n GPU threads, and thread i disassembles

from bi [34]. A modern GPU can schedule over one billion

threads, so doing so will not cause performance issues.

Thread 0 1 ... 30 31

Memory 0 1 ... 30 31 32 ...

(a) Time 0

Thread 0 1 ... 30 31

Memory 0 1 ... 30 31 32 ...

(b) Time 1

Figure 2: GPU Disassembly State at Different Time

Figure 2 illustrates an example of data parallelism on GPU.

Assuming the address of the first instruction byte is 0, we

assign thread 0 to 31 (a warp) to disassemble instructions

starting at memory location 0 to 31. At time 0, all threads

consume one byte at location 0 to 31 accordingly at the same

time. At time 1, some threads may turn inactive because they

encounter 1-byte instructions and remain inactive until all

threads in this warp finish disassembling their instructions.

Other threads consume the next bytes, which are memory

location 1 for thread 0, 2 for thread 1, and so on. The number

of threads we create is the same as the number of bytes in the

code section, and each thread will output one instruction.

We make each thread in a warp disassemble a consecutive

memory location because of GPU global memory coalescing.

When threads in a warp access an aligned and consecutive

memory location, this is a coalesced access and GPU can fetch

up to 32 words in one memory transaction. If the memory

accesses were strided (for example, greater than 31 words),

each memory transaction would fetch only one word, wasting

almost 97% of memory bandwidth.

When GPU is not available, we can perform this task on

CPU, which is very straightforward. We just need to go over

one byte at a time and disassemble one instruction starting

from it. We can exploit multi-threading on CPU by creating

multiple threads, each of which sweeps through one chunk of

the input binary.

3.2 Instruction Embedding

After we get the superset of instructions, we would like to

use the R-GCN model to infer the true instructions. First, we

need to decide what kind of representation of each instruction

should be fed into the R-GCN model (the representations are

used as the node features in the R-GCN model). In this section,

we introduce how we construct instruction representations

from their metadata ti, as shown in Figure 1 (d).

The metadata ti, i.e., the (Opcode,ModRM,SIB,REX)
tuple, is integer-encoded, so we first convert it to a fixed-

dimensional embedding via a learnable embedding layer, then

incorporate the embeddings of an instruction and its follow-

ing instructions into the instruction representation (feature

vector) via a recurrent neural network (RNN). Note that Fig-

ure 1 (c) shows the original values of Opcode, ModRM, SIB,

and REX extracted from instructions. However, their value

ranges may overlap (e.g., the range of ModRM and SIB is

{0, . . . ,255}) and it will confuse the embedding layer. So we

add a constant value to Opcode, ModRM, SIB, and REX to

make their ranges non-overlapping. In total we have 1,025

distinct opcodes, 257 ModRM, 257 SIB, and 17 REX. Each

field has a reserved value which is used when the correspond-

ing field is not presented. This makes the overall input size of

the embedding layer 1,556. We use an instruction sequence

instead of a single instruction because one instruction carries

too little information to tell if it is valid. Take Figure 1 (b) for

example, instruction 4 alone looks valid. However, if we also

consider its following instruction, instruction 6 where ebx is

used as a base register, the modification of bh in instruction

4 becomes suspicious. In this way, the same instruction in

different execution paths can have different semantic repre-

sentations, and the context-aware representations can help

improve the classification accuracy. In our experiment, two

following instructions can give enough information and will

not cause much runtime penalty.

Formally, we define the instruction i’s feature vector as

follows:

x
(n)
i = f (x(n−1)

i ,ui⊕(n−1)),n = 1, . . . ,M (2)

where f is the vanilla RNN’s recurrent function [49], x
(n)
i ∈

R
d2 is the hidden state of the RNN network (x

(0)
i is an all-

zero vector, which is the initial hidden state of the RNN). M

is the sequence length, which is three in this paper. ui ∈R4⋅d1

is the embedding of ti generated by a learnable embedding

layer. Each item in the tuple is treated as a word index and

the embedding layer convert it to a d1-dimensional vector.

ui is the concatenation of the embeddings of the four items

(Opcode, ModRM, SIB, REX). For an instruction i in the

superset of instructions, we define that the operation i⊕ j

represents finding j-th non-overlap following instruction of

i. Take Figure 1 (d) for example, for instruction 0, 0⊕1 = 3,

0⊕2 = 5, etc. If i⊕(k+1) does not exist (out of bound or

instruction i⊕k being invalid), we define i⊕(k+1)= i⊕k.

Since we define M = 3 in this paper, a simpler unrolled

RNN equation of length three can be defined as follows:

x
(3)
i = funrolled(ui,ui⊕1,ui⊕2) (3)



Since only the RNN steps cannot be parallelized, a small

sequence length means it would not be particularly more

expensive. That is why our approach can still achieve high

efficiency even though an RNN is used.

After the RNN module, we can use x
(M)
i (in this paper,

M = 3) as the representation of instruction i and then feed this

representation as the node feature into the R-GCN model for

graph inference (see Section 3.4 for more details). We chose

the vanilla RNN over GRU or LSTM for better efficiency.

3.3 Instruction Flow Graph

Since we are exhaustively disassembling binaries, there exist

many false instructions. Even worse, instructions are variable-

length, thus the model cannot easily determine where the

true instructions are. To help the model better understand the

contexts, we propose to model different relations between in-

structions using a graph called Instruction Flow Graph (IFG),

which is used with the Graph Inference phase to propagate

information of each instruction to its neighbors and to classify

true instructions.

Formally, we define an instruction flow graph as a directed

graph G = (V,E,R). For each node vi ∈V , there is a feature

vector xi, a semantic representation of the instruction obtained

from Section 3.2. Each edge (vi,r,v j) ∈ E is labeled with a

relation r ∈ R denoting the edge type. R = { f ,b,o} represents

three types: forward, backward, and overlap, respectively. If

the label r in (vi,r,v j) is a forward relation, it means the

next instruction of i can be j, either i falls through to j, i

calls j, or i jumps to j. For example, if the instruction i is a

conditional jump which may fall through to j or jump to k,

there is a forward edge from i to j and a forward edge from

i to k. If instruction i is a return instruction or an indirect

jump/call, no forward edge from i is created since the transfer

target is unknown. A forward edge from i to j is the same

as a backward edge from j to i. If r is an overlap relation, it

means instruction i and j overlap with each other. That is, the

starting point of instruction j is inside instruction i, or vice

versa. These different relations can help the model propagate

different kinds of information.

Figure 1 (e) shows an example of an Instruction Flow

Graph. For instance, Node 3 has two forward relations be-

cause Instruction 3 is a conditional jump and thus has two

potential targets. Likewise, Node 0 has two overlap relations

with Node 1 and 2 because the length of Instruction 0 is three.

3.4 Graph Inference

For our graph inference, we use a Relational-GCN (R-

GCN) [50] to propagate information of each instruction to

its neighbors. In this network, nodes can have different kinds

of relations so that we can pass different messages along

different relations. Recall that a valid instruction makes its

successors valid, but not vice versa because it can have multi-

ple predecessors, and only one of them or even none of them

is valid. R-GCN is capable of modeling this and increases the

likelihood of valid instructions while decreases the likelihood

of invalid instructions.

As defined in Section 3.3, an instruction flow graph is

denoted as (V,E,R). We use the following propagation model

to update the hidden state of each node vi in each layer:

h
(l+1)
i = ReLU

⎛
⎜
⎝
∑
r∈R
∑
j∈Nr

i

1

∣Nr
i
∣
W
(l)
r h

(l)
j +W

(l)
0 h

(l)
i

⎞
⎟
⎠

(4)

where h
(l)
i ∈ Rd2 is the d2-dimensional hidden state of the

node vi in the l-th layer. Nr
i denotes the set of neighboring

indices of node vi under relation r ∈R. ∣Nr
i ∣ denotes the number

of nodes in Nr
i . W

(l)
r ∈Rd2×d2 is the weight matrix for relation

r ∈ R in the l-th layer. W
(l)
0 ∈Rd2×d2 is the weight matrix for

the node itself in layer l (self-connection). Initially, h
(0)
i = xi,

the feature vector associated with node vi (see Section 3.2).

The final output of R-GCN with L layers is the hidden state of

the last layer h
(L)
i . Figure 3 illustrates the propagation process

at layer l.

+ ReLU

X

X

X

input vector

embedded vector 

at layer l+1

Figure 3: Embedding propagation at layer l of R-GCN

During training, each instruction embedding is propagated

and updated L times via different relations: forward, back-

ward, and overlap to capture information from neighboring

nodes. The final output h
(L)
i is fed into a classifier: a fully-

connected layer to reduce the dimension to one, and then

activated by sigmoid to generate a probability p. We try to

minimize the Binary Cross Entropy loss function:

J(Θ, p,y)=∑(−(y ⋅ log(p)+(1−y) ⋅ log(1− p))) (5)

where Θ denotes the model parameters and y is the true label.

As shown in Figure 1, all the trainable modules of DEEPDI

are linked together and trained in an end-to-end fashion.



3.5 Function Entrypoint Recovery

To recover function entrypoints, we first identify a set of func-

tion entrypoint candidates, and then feed each candidate and

its surrounding instructions into a classifier. To identify the

candidates, we first obtain the metadata of valid instructions,

and exclude instructions that are int3, jmp, ret, nop, or are

reachable via instruction fallthrough or conditional jump be-

cause these instructions will not be function entrypoints. We

also assume the targets of call instructions are function entry-

points. This not only reduces false positives, but also greatly

reduces the number of candidates to evaluate.

We then stack each candidate instruction with three pre-

ceding instructions and three following instructions into our

function entrypoint recovery model. The model has a learn-

able embedding layer followed a GRU layer and a two-layer

perceptron classifier. This will determine if this candidate

instruction is indeed a function entrypoint. Let the valid in-

struction metadata be {t0,t1, . . . ,tk}, we define the function

entrypoint recovery model as follows:

gi = f (ui−3,ui−2,ui−1,ui,ui+1,ui+2,ui+3) (6)

where f is the GRU’s recurrent function, and ui ∈R4⋅d1 is the

embedding of ti generated by a learnable embedding layer

(not the same embedding layer in Section 3.2). gi is the hidden

state of the GRU layer and is then fed into a classification

layer.

During evaluation, we only feed function entrypoint candi-

dates into our model. Since the number of function candidates

is very limited compared to the number of superset instruc-

tions (about 1:30), this model has almost no impact on runtime

performance. Our experiment shows that it helps achieve the

average F1 score of function recovery 98.6%.

Guo et al. [27] show that RNN-based function identification

tends to learn specific bit patterns, such as push ebp. How-

ever, we identify function entrypoints based on high-level

features learned by the neural network model and accurate

instructions, which can likely lead to higher robustness. The

drawback of this approach is that we will miss tail jumps and

functions with unseen prologues. To identify tail jumps, we

can use the same heuristics in other works [45, 46]. If the

jump target address is larger than the next function start or

smaller than the current function start, it is considered as a

tail jump. For unseen prologues, we are able to find many of

them via call targets.

4 Evaluation

In this section, we evaluate DEEPDI’s performance. Our ex-

periments aim to answer the following Research Questions

(RQs).

RQ1 How does it perform on regular binaries?

RQ2 How does it perform on unseen binaries?

RQ3 How does it perform on obfuscated binaries?

RQ4 How resilient is it against adversarial attacks?

4.1 Implementation and Setup

We use PyTorch [41] to implement our model and write a plug-

in to disassemble raw bytes and return instruction metadata

and an IFG as PyTorch Tensors. To disassemble instructions

on GPU, we used a header-only library LDasm4 and modified

the code so that it can run on GPU, and its look-up tables are

properly cached and shared among GPU threads. The IFG

is represented as a set of sparse adjacency matrices, and we

used the PyTorch Sparse5 library to avoid expensive memory

coalescing operations. We ran all the experiments on a dedi-

cated server with a Ryzen 3900X CPU @ 3.80 GHz×12, one

GTX 2080Ti GPU, 16 GB memory, and 500 GB SSD.

Baseline. We select the following disassemblers for baseline

comparison: Binary Ninja 2.2 [1], IDA Pro 7.2 [3], Ghidra

9.1.2 [2], Datalog Disassembly [24], and XDA [43]. IDA Pro,

Ghidra, and Binary Ninja are widely used in reverse engi-

neering and binary analysis practices, and their results are

considered high-quality. Datalog is a recently proposed bi-

nary rewriting approach. XDA is the state-of-the-art machine

learning-based approach. This selection covers the state-of-

the-art commercial disassembler tools and the most recent

research prototypes.

We used the default settings when evaluating IDA Pro and

Binary Ninja. For Ghidra, we disabled its decompiler, ASCII

string analyzer, x86 exception handling, and constant refer-

ence analyzer to boost its efficiency. We finetuned two XDA

models, one for instruction and one for function entrypoints,

both based on the pre-trained model that XDA provided. We

kept the same hyperparameters as in their paper and finetuned

each model for five epochs.

Dataset. We conducted experiments on BAP corpora [17],

LLVM 11 for Windows6, SPEC CPU2006 [6], and SPEC

CPU2017 [7]. The BAP corpora contain 1,032 x86 and x64

ELF binaries compiled by GCC with optimization levels O0

to O3. Though these corpora also come with ELF binaries

compiled by Intel C++ Compiler (ICC) and PE files, these

binaries are not used in experiments due to the existence of

jump tables in the code section. LLVM 11 is compiled by

Microsoft Visual Studio 2019 with optimization levels

Od, O1, O2, Ox for both x86 and x64 architectures. SPEC

CPU2006 is compiled by GCC-4.8.4 and MSVC 2008 for

x86 and x64 architectures and with four optimization levels.

SPEC CPU2017 is also compiled on the two ISAs with four

optimization levels by using GCC-7.5 and MSVC 2019. To

reduce the training time for XDA, we excluded files larger

than 5MB.

In total, we have 1,032 ELF files (268 MB) from BAP,

266 PE files (322 MB) from LLVM, 152 PE files (152 MB)

4https://github.com/Rprop/LDasm
5https://github.com/rusty1s/pytorch_sparse
6https://github.com/llvm/llvm-project



and 190 ELF files (79 MB) from SPEC CPU2006, and 270

PE files (287 MB) and 218 ELF files (120 MB) from SPEC

CPU2017. Note that we only count code section size.

It is straightforward to extract the ground truth from ELF

files, since there is no data in the code section according to

Andriesse et al. [10]. We get instruction boundaries by lin-

early disassembling the code section. We use pyelftools7 to

get function entrypoints come from the symbol table where

the symbol type is “STT_FUNC” and the symbol index is not

“SHN_UNDEF” (to exclude external functions). To obtain the

ground truth for PE files, we modified DIA2Dump, an exam-

ple that comes with Visual Studio, to dump all functions, data,

and label addresses from pdb files. We can only find data

addresses but no data lengths in pdb files, so to estimate data

ranges, we first find the label where the data belongs, then

treat the data address to the end of that label as data. When

creating the labels, we set the label to one if the corresponding

byte is the starting point of an instruction or a function.

Evaluation Metrics. For the accuracy evaluation, we use F1

scores to measure the performance because both precision

and recall are pretty high for almost all disassemblers. For

generalizability and obfuscation evaluation, we use Precision

(P) and Recall (R) to measure the performance.

Deep Learning Model Settings. We use the Adam optimiza-

tion algorithm [32] and a default learning rate 10−3. As in-

troduced in Section 3.4, we use the Binary Cross-Entropy

Loss to calculate the loss. We choose the following hyper-

parameters through an informal parameter sweep process:

d1 = 8, d2 = 16, L= 2, M = 3, and the batch size is 1,048,576.

If a code section is larger than the batch size, we obtain an

Instruction Flow Graph for each batch, and edges outside of

this graph are dropped. We apply the same strategy to keep the

graph small and fit in the GPU memory during the inference.

In each batch, the average valid-to-invalid instruction ratio is

about 1:1 because compilers tend to insert sufficient padding

instructions to align instructions. If we count the paddings as

invalid, the ratio becomes 1:4. The graph size is roughly five

times the batch size: almost all instructions have only one for-

ward and one backward relation (fallthrough), each of which

overlaps with three instructions on average. We also apply a

row normalization to make each node in a similar range [50].

As for the function model, the output length of the embedding

layer is 8, the hidden size of GRU is 64, and the hidden layer

size of the two-layer perceptron is 64, 1, respectively. In total,

our model only has 49,889 trainable parameters.

4.2 Accuracy and Efficiency

In this section, we evaluate the accuracy and the efficiency of

DEEPDI and other baseline tools. First, we introduce some

details and settings of the experiments, then report and discuss

experimental results.

7https://github.com/eliben/pyelftools

Training and Testing Details. We randomly shuffled the

dataset and did a 90-10% split (90% of binaries are used

for training, 10% for testing). Both XDA and DEEPDI are

trained for five epochs because XDA converges after five

epochs according to their paper. We feed code sections (raw

bytes) to XDA and binary files to DEEPDI.

4.2.1 Accuracy

To answer RQ 1, we measure F1 scores of DEEPDI and base-

line models at instruction and function levels, as shown in

Table 2.

When evaluating instruction level results, we treat nop,

int3, hlt and jmp instructions, and lea instructions whose

source and destination registers are the same as padding in-

structions, thus they do not count towards positive or negative

instructions. Similarly, for the function entrypoint evaluation,

if the first instruction of a function is jmp, this function does

not count towards positive or negative functions.

Datalog only supports x64 ELF files, so its evaluation on

LLVM binaries is not available, and the corresponding cells

show “N/As” in Table 2. From the table, we observe that

most disassemblers struggle to identify function entrypoints

on SPEC datasets. By looking into the datasets, we find that

functions from the BAP and the LLVM dataset are mostly

aligned, meaning padding instructions can be found between

functions. These padding instructions are a strong indicator of

function boundaries. However, functions from SPEC datasets

are not aligned. To make it worse, many functions end with

non-return calls, and frame pointers are often omitted on high

optimization levels. With frame pointers omitted, the first

instruction of a function is not push ebp/rbp, but xor, cmp,

mov, etc. These are normal instructions after a call instruc-

tion, and this explains why many disassemblers struggle to

recover function entrypoints. IDA Pro treats many small func-

tions as error handling code, or “__unwind”. That is why IDA

Pro misses many functions in the LLVM dataset. Note that

DEEPDI is not the best performer, but is comparable with

the other disassemblers. We are unable to evaluate Shingled

Graph Disassembly [55] on our dataset because it is not open

source. Still, according to their paper, the accuracy of Shin-

gled Disassembly is comparable to IDA Pro, meaning its

instruction-level accuracy is similar to DEEPDI.

4.2.2 Efficiency

Figure 4 shows the correlations between code section size and

disassembly time for our approach, IDA Pro, Binary Ninja,

Ghidra, Datalog, and XDA. The y-axis of this figure is log-

scaled. For IDA Pro, Binary Ninja, and Ghidra, we run them

in console/headless mode to avoid unnecessary GUI costs.

For Datalog Disassembly, we take the numbers reported from

the tool directly. When disassemblers are tested on CPU, only

one CPU core is used to ensure fairness.

DEEPDI on GPU clearly stands out in this experiment. Its

throughput is about 24.5 MB/s, about 170 times faster than



Table 2: Instruction and Function Level Accuracy

Dataset Opt.
Instruction F1 (%) Function Entrypoint F1 (%)

DEEPDI XDA Datalog IDA Pro Binary Ninja Ghidra DEEPDI XDA Datalog IDA Pro Binary Ninja Ghidra

BAP

O0 99.9 99.9 100 99.9 99.9 100 99.9 99.9 100 100 99.9 100

O1 99.8 99.9 100 99.9 99.8 99.9 99.3 99.5 100 99.9 99.8 99.9

O2 99.7 99.9 99.9 99.9 99.8 99.9 98.6 99.4 100 99.9 99.8 99.9

O3 99.7 99.9 100 99.9 99.7 99.9 99.0 99.5 100 99.9 99.7 99.9

LLVM

Od 99.8 99.9 N/A 99.9 99.8 99.9 99.8 99.9 N/A 99.9 97.1 99.9

O1 99.8 99.9 N/A 99.9 99.7 99.9 99.8 99.9 N/A 99.8 96.8 99.9

O2 99.8 99.9 N/A 99.9 99.6 99.9 99.8 99.9 N/A 99.8 89.7 99.7

Ox 99.7 99.9 N/A 99.9 99.7 99.9 99.8 99.9 N/A 99.8 84.9 99.7

SPEC 2006

O0 99.9 99.9 100 99.9 99.6 98.9 98.4 99.9 99.9 88.8 88.7 97.3

O1 99.7 99.8 100 99.8 99.3 97.2 97.0 99.3 100 86.3 88.7 93.4

O2 99.9 99.9 100 99.9 99.2 97.6 96.4 99.5 100 85.2 91.5 92.7

O3 99.9 99.9 100 99.9 98.9 98.0 98.6 99.5 100 93.3 96.0 99.9

Os/Ox 99.8 99.9 100 99.9 99.4 97.5 95.3 98.3 100 85.6 87.1 91.6

SPEC 2017

O0 99.9 99.9 99.9 99.9 99.7 94.2 99.0 99.8 100 89.4 93.6 86.7

O1 99.9 99.9 100 99.9 99.5 95.9 99.7 99.8 100 80.8 95.6 76.8

O2 99.8 99.9 100 99.9 99.4 95.1 99.5 99.9 100 79.4 96.7 75.5

O3 99.6 99.9 100 99.9 98.9 90.1 98.9 99.4 100 88.4 93.5 85.0

Os/Ox 99.7 99.8 100 99.9 99.6 96.5 96.3 99.5 100 72.5 92.1 68.7

Figure 4: Efficiency Evaluation

DEEPDI on CPU, 146 KB/s. The latter still is noticeably

faster than the remaining disassemblers: IDA Pro 72 KB/s,

XDA (GPU) 47 KB/s, Binary Ninja 11 KB/s, Ghidra 10 KB/s,

Datalog 5 KB/s (for files around 1 MB), and XDA (CPU) 140

B/s. Shingled Graph Disassembly, according to their paper, is

two to three times faster than IDA Pro, making it comparable

to our CPU approach.

In contrast, XDA is several orders of magnitude slower than

the other disassemblers when running on CPU, and its GPU

version is merely comparable to the other CPU disassemblers.

It is worth noting that we obtained XDA source code from

their GitHub repository, but we could not reproduce their

reported efficiency. One possible reason is that they used

three GPUs [43] whereas we only used one.

The answer to RQ 1: DEEPDI is very accurate on

regular binaries. Its accuracy is comparable to all

the commercial tools and recent research prototypes.

Moreover, DEEPDI is significantly more efficient.

4.3 Generalizability

To answer RQ 2, we conduct two experiments. First, we train

our model on the BAP corpora and test it on the LLVM dataset,

and then compare it with another machine learning-based

model – XDA [43]. We did not do it in the opposite way

(i.e., training on the LLVM and testing on the BAP corpora)

because XDA is pre-trained on the BAP corpora [43] and this

dataset should not be considered unseen for XDA. DEEPDI

and XDA are trained on each optimization level of BAP cor-

pora for five epochs and tested on the LLVM binaries. This

experiment shows disassemblers’ performance on unseen bi-

naries of different compilers (GCC vs MSVC), platforms (Linux

vs Windows), and optimization levels. Second, we evaluate

our model and XDA’s model from Section 4.2 on the same

unseen real-world software used by XDA. This experiment

uses unseen real-world software to show the performance in

real-world scenarios.

Table 3 lists the evaluation results on instruction and func-

tion recoveries. Even though DEEPDI has not seen LLVM

binaries before, it still reaches 97.1%+ precision and recall

on recovering instruction boundaries. However, XDA only

obtains a high precision while recall is constantly below 50%.

One possible explanation is that XDA’s attention header is

too conservative, and does not perform well when instruction

patterns are unseen. The function entrypoint recovery eval-

uation shows a greater degradation when analyzing unseen

binaries of unseen compilers. As the optimization level in-

creases, function prologues become less obvious and differ



Table 3: Precision and Recall on Unseen Binaries from an Unseen Compiler

Model
Train

Test
Instruction Function

Od O1 O2 Ox Od O1 O2 Ox

P R P R P R P R P R P R P R P R

DEEPDI

O0 98.6 99.1 98.1 97.6 98.0 97.6 98.2 97.7 94.5 42.3 95.9 38.4 74.8 26.2 73.1 26.0

O1 98.6 98.9 97.2 96.6 97.9 97.1 98.0 97.1 94.9 60.5 93.3 76.8 72.2 72.1 69.5 71.9

O2 98.9 99.7 98.3 98.6 98.3 98.5 98.2 98.6 89.4 47.3 86.7 61.6 82.6 55.0 83.1 53.7

O3 98.2 99.0 97.7 96.9 98.1 97.3 98.1 97.4 80.4 21.0 78.7 39.5 72.9 30.9 74.3 32.5

XDA

O0 98.7 38.9 96.1 43.9 97.1 42.1 97.5 42.6 56.9 0.1 77.6 0.7 5.3 0.03 45.5 0.6

O1 99.0 37.5 97.2 44.2 98.1 42.5 98.4 43.0 2.6 0.4 8.9 1.2 2.3 0.9 3.6 1.4

O2 99.1 38.7 97.2 46.5 98.2 44.2 98.5 44.6 16.8 0.5 57.6 3.8 29.5 2.9 34.1 3.9

O3 98.9 39.8 97.3 47.6 98.1 44.8 98.4 45.1 8.7 0.2 40.4 1.4 7.6 0.4 20.5 1.4

Table 4: Precision and Recall of Function Entrypoint Recovery on Real-world Software

Model Opt.
curl diffutils GMP ImageMagick libmicrohttpd libtomcrypt OpenSSL PuTTy SQLite zlib

P R P R P R P R P R P R P R P R P R P R

DEEPDI

O0 99.9 99.9 99.4 99.2 97.7 97.2 99.6 99.9 99.5 99.5 97.7 94.2 99.7 100 99.9 99.8 99.8 99.9 100 99.3

O1 98.5 99.4 94.6 94.8 96.9 85.6 98.2 94.9 93.6 89.5 97.9 77.1 97.3 93.5 99.4 91.6 97.7 96.9 98.3 85.6

O2 96.2 96.6 94.4 96.5 95.7 90.7 94.1 95.3 91.7 92.7 97.8 95.6 92.6 95.5 98.5 95.6 94.9 95.5 99.1 84.3

O3 96.7 97.4 88.9 97.9 96.0 91.3 94.1 95.1 88.7 93.4 97.9 95.1 92.8 96.0 99.0 96.2 94.7 95.9 98.0 84.2

XDA

O0 100 100 100 100 99.2 96.7 99.9 100 99.5 100 99.6 95.6 100 100 100 99.9 100 100 100 100

O1 91.6 96.0 96.1 96.6 94.1 94.2 98.9 98.7 89.8 92.8 91.4 95.8 93.0 96.1 95.4 97.3 92.9 97.0 94.8 92.7

O2 88.9 95.6 95.9 95.4 95.9 91.9 97.9 98.4 93.9 95.5 98.0 96.0 89.6 95.1 96.1 95.9 95.9 94.0 99.1 90.9

O3 88.9 96.1 94.1 95.7 96.3 94.7 97.1 97.8 96.6 95.8 97.0 96.6 83.8 97.3 96.2 94.3 95.3 94.9 98.2 93.3

a lot from compilers to compilers, making function identifi-

cation much harder. Despite that, DEEPDI outperforms XDA

by a large margin.

Table 4 shows the precision and recall of function entry-

point recovery on each software and optimization. We find

that DEEPDI is on par with XDA. The F1 scores of both XDA

and DEEPDI are close to 100 on instruction recovery, and

their performance is almost identical, so we omit the table for

instruction recovery.

The first experiment shows that DEEPDI can generalize

function entrypoint recovery to some extend when analyzing

binaries from unseen compilers and optimization levels. The

second experiment shows DEEPDI can generalize pretty well

when compilers and optimization levels are already known.

This indicates that each compiler has its function patterns on

each optimization level, so for DEEPDI, training the model

on binaries compiled by gcc and MSVC with different opti-

mization levels is good enough for most general software.

The answer to RQ 2: For unseen binaries, DEEPDI

is still able to achieve high precision and recall. It

outperforms another machine learning-based model,

XDA, by a large margin for unseen compilers and

optimization levels, and is on par with XDA for un-

seen real-world binaries. These results suggest that

DEEPDI has good generalizability.

4.4 Obfuscation Evaluation

To answer RQ 3, we used two different obfuscators to eval-

uate whether our approach is resilient to obfuscations, and

how it compares with the disassemblers with sophisticated

heuristics. The first obfuscator was developed by Linn and

Debray [36]. In that paper, the authors proposed to insert

junk code to confuse both linear and recursive disassembly.

Moreover, unconditional jumps are redirected to a universal

function that modifies its return address based on callers. This

nonstandard behavior hides jump targets and breaks common

heuristics. We used the models trained in Section 4.2 and

the ground truth provided by Linn and Debray [36]. They

provided 11 obfuscated x86 ELF binaries of the SPECint

2000 benchmark suite that have been obfuscated by their tool.

Evaluation results of these binaries are shown in Table 5.

We excluded Datalog Disassembly and Binary Ninja be-

cause Datalog Disassembly does not support x86 ELF files,

and Binary Ninja consumed all memory resources and was

killed by the OS. We can observe from Table 5 that DEEPDI

is the best performer with respect to precision, recall, and run-

time efficiency. In contrast, Ghidra took almost three hours to

analyze these binaries and achieved low precision and recall.

XDA is slightly worse than DEEPDI in terms of precision and

recall, but 235 times slower than DEEPDI on GPU.

Table 5: Obfuscation Test Results

Disassembler Precision Recall Time

DEEPDI (GPU) 84.1 95.2 1.2s

XDA (GPU) 80.2 95.1 282s

IDA Pro 75.8 44.8 262s

Ghidra 69.1 47.0 10,240s

We also evaluated another obfuscator called Hikari [58].

It is an improvement over Obfuscator-LLVM [29], and it

can generate hard-to-read code to provide tamper-proofing

and increase software security. We used five obfuscation



Table 6: Function Entrypoint Recovery on Obfuscated Unseen Binaries, P: Precision, R: Recall, T: Time

Obfuscation
DEEPDI XDA IDA Pro Binary Ninja Ghidra Datalog

P R T P R T P R T P R T P R T P R T

bcfobf 98.9 98.9 1.6s 99.6 99.4 396s 99.5 100 129s 86.1 100 621s 35.9 33.1 208s 99.7 100 783s

cffobf 99.4 97.9 0.7s 99.6 99.1 342s 99.9 100 112s 98.6 100 593s 39.8 33.0 920s 99.7 100 1,231s

indibran 99.8 98.0 0.5s 99.8 99.0 229s 20.5 100 842s 75.5 99.9 248s 39.7 33.3 230s 98.8 100 905s

splitobf 99.7 98.6 0.6s 99.8 99.3 312s 100 100 117s 98.5 100 539s 42.4 33.2 198s 99.7 100 480s

subobf 99.7 97.9 0.5s 99.8 98.8 187s 100 100 63s 98.6 100 409s 50.6 33.3 105s 99.7 100 284s

strategies, namely bogus control flow (bcf), control flow

flattening (cff), basic block splitting (splitobf), instruction

substitution (subobf), and register-based indirect branching

(indibran) to obfuscate seven popular open-source projects,

including curl-7.74.0, diffutils-3.7, gmp-6.2.1,

ImageMagick-7.0.10, libmicrohttpd-0.9.72, SQLite

-3.34.0, and zlib-1.2.11. We also turned off optimizations

as instructed by Hikari [58]. The function entrypoint evalu-

ation results are shown in Table 6. In this experiment, IDA

Pro has low precision when files are obfuscated by Indirect

Branching. It fails to resolve some indirect jump instructions

and treats these jump targets as function entrypoints. Ghidra

misidentifies many function entrypoints, indicating that

signature-based function identification is not very resilient

to unseen patterns. IDA Pro, Binary Ninja, Ghidra, and

Datalog Disassembly show increased analysis time due to

the increased control flow complexity. In contrast, machine

learning-based approaches like DEEPDI and XDA are not

affected by this.

Based on the results in Table 5 and Table 6, we can see that

the two machine learning-based approaches, DEEPDI, and

XDA, are superior in accuracy when dealing with obfuscated

binaries, but DEEPDI is hundreds of times faster than XDA

on GPU.

The answer to RQ 3: For obfuscated binaries,

DEEPDI is superior in accuracy and its efficiency

is not affected by the increased code complexity.

4.5 Adversarial Evaluation

An extensive answer to RQ 4 would deserve a separate inves-

tigation. In this section, we conduct a preliminary evaluation.

Since our model relies on jump relations to recognize true in-

structions, one possible adversarial attack would be replacing

some of these jumps with computed jumps. In this experiment,

we trained our model on O3 BAP corpora. In evaluation, we

use O0 BAP corpora and randomly drop 50% and 90% of

jump edges.

The evaluation results show that if 50% of the jumps are

removed, the false positive rate (FPR) increases slightly from

0.0473% to 0.0524%, and the false negative rate (FNR) from

0.24% to 0.51%. If 90% are removed, the FPR is 0.0575%,

and the FNR is 0.81%. By analyzing false-negative cases, we

find most false negatives are the first instruction of a short

basic block, or nop instructions at the beginning of a basic

block. This makes sense because the first instruction of a basic

block, especially a short one, has the least context information

if it is not a jump target.

We also evaluate the function entrypoint accuracy. When

all jump edges are removed, precision drops to 93.8% and

recall to 98%. Precision drops a lot because GCC may align

basic blocks and insert nops between them. If a function has

multiple exits, we can find code patterns like return - nop -

mov reg, [reg]. The third instruction looks like a function

entrypoint even to humans, and thus confuses the model.

We speculate that the high resiliency of DEEPDI against

this jump-obfuscation attack is attributed to graph inference,

which takes into account several kinds of relations between

instructions. Context information still exists in adjacent in-

structions and overlapping instructions. Destroying only a

part of these relations (in this case, jump relations) does not

cause a drastic impact on the overall graph inference task.

The answer to RQ 4: Through a preliminary eval-

uation on jump-obfuscation attacks, we show that

DEEPDI has good resilience.

5 Downstream Application

In this section, we showcase how DEEPDI can support down-

stream applications. Particularly, we choose malware clas-

sification in this demonstration. We leave more extensive

evaluations on downstream applications as future work.

We use the malware dataset from Microsoft Malware Clas-

sification Challenge [48]. This dataset contains nine malware

families, and is split into 10,868 malware training samples

and 10,873 testing samples. Each malware sample comes

with IDA Pro disassembly results and raw bytes (represented

as hexadecimal values) of the code sections. Some raw bytes

are represented as “??”, so we removed such bytes and con-

verted other hex strings back to bytes. For all the following

experiments, we use 10-fold cross-validation on the training

data and report mean accuracy as well as standard deviation.

The ground truth of the test dataset is not released to the pub-

lic, and the only evaluation metric returned from the online

judge system is logloss, so we report logloss instead of accu-



racy on the test dataset. As a reference, the logloss of random

guessing on the test dataset is 2.19722.

The top models in this challenge used both disassembly and

raw bytes to extract high-level features such as N-gram and

strings [48]. These features are expensive and can take hours

or even days to extract [8, 59]. Although they could achieve

over 99.7% training accuracy and 0.0063 in loss, those models

are impractical for real-time analysis.

To demonstrate how the high-level features benefit malware

classifiers, we conduct two experiments. First, we compare

MalConv [47] with Gemini [57] to compare the performance

of classifiers that take raw bytes and high-level features. Sec-

ond, we compare the original EMBER [9] with a modified

version where high-level disassembly features are added.

For the first experiment, we extend Gemini [57] which

takes attributed control-flow graph (ACFG) as input, gener-

ates embeddings for all basic blocks, and finally outputs an

embedding for each function by summing up all basic-block

embeddings. To build a malware classifier, instead of gener-

ating function embeddings, we concatenate min- and max-

pooling of all basic-block embeddings of the program, and

then feed them into a 2-layer perceptron followed by a tanh

activation function. It finally outputs 9-dimensional vectors

for classification. We can then use softmax to get a probability

for each class. We expect that a classifier based on high-level

features can achieve good accuracy and generalizability.

We use Adam optimizer with the default learning rate 10−3

and Cross Entropy Loss to train the model. At the input layer,

we added a fully connected layer to increase the vector size to

32 to allow more information to pass through ACFGs. We also

set the output embedding size 32, and information propagates

five hops. In this simple case study, we did not attempt to

find the optimal hyperparameters or explore different network

architectures, so there is certainly room for improvement.

We also evaluated MalConv [47], a convolutional neural

network model that takes raw bytes as input for malware

classification. We used the same training strategy described

above to train a MalConv model.

Table 7: Malware Classification Results

Model Training Accuracy Testing Loss Time (GPU)

Gemini 96.52%±0.595 0.134974±0.036 7m

MalConv 97.81%±0.659 0.159165±0.048 48.6s

Table 7 lists the results of this experiment. We can see that

although MalConv has better training accuracy, Gemini can

better generalize with 0.13 logloss. This result substantiates

that a malware classifier based on high-level features tends to

be more accurate on unseen samples. In terms of efficiency,

MalConv only takes 48.6 seconds to process all testing sam-

ples (5.2 GB in total) on GPU, because it takes raw bytes as

input. Gemini takes 7 minutes to process the same amount of

samples on GPU. This is still a notable achievement, given

that DEEPDI has to disassemble the malware samples and

extract ACFG as high-level features and then hand them over

to Gemini to perform classification.

For the second experiment, we evaluate EMBER which

uses static features such as byte code histogram and imported

functions to train a gradient-boosted decision tree (GBDT)

model. We first train the original EMBER model with the de-

fault parameters except changing the objective from binary to

multiclass. Later, we add high-level features: code histogram

and code entropy histogram to the static features to show how

they benefit classification. Code histogram and entropy his-

togram are extracted from instruction metadata mentioned in

Section 3.2, similar to how byte histogram and byte entropy

histogram are extracted.

Table 8: EMBER Classification Results

Model Training Accuracy Testing Loss Time

EMBER 99.13%±0.1747 0.041541±0.0022 21m

EMBER w/ code 99.40%±0.2465 0.024391±0.0018 24m

Table 8 shows that we can lift the training accuracy from

99.1% to 99.4%, and almost halve the testing loss while

adding minor overhead (3 minutes).

This case study shows that DEEPDI opens up a lot of op-

portunities for fast and accurate binary analysis. It will be in-

teresting to explore other machine-learning and deep-learning

models that take disassembly results and high-level features

as input to produce even more accurate classification results

and conduct other binary analysis tasks.

6 Discussion

In this section, we have more discussions about our evaluation

results.

Learning-based vs. Rule-based Approaches. In this work,

we demonstrate that a learning-based approach outperforms

rule-based approaches used in the commercial disassemblers

with respect to accuracy (especially on obfuscated binaries)

and efficiency. This result might be surprising to many people,

as binaries are generated by the compilers following a well-

understood compilation process. So experts should be able

to develop good rules and heuristics to correctly disassemble

the binaries. However, much of higher-level information is

lost during the compilation process, and ambiguities start to

emerge. The situation is further exacerbated by deliberate

obfuscations that aim to break these rules and heuristics, as

demonstrated by our obfuscation evaluation in Section 4.4.

A learning-based approach, if done right, can automatically

learn from a large number of real data on how to resolve the

ambiguities and tolerate certain obfuscation attempts. We also

demonstrate that a learning-based approach (particularly, a

neural network-based approach) can be more efficient than

rule-based approaches. A deep neural network model can bet-

ter leverage the parallelism in modern processors to perform



vector and matrix computation very efficiently. In contrast, a

rule-based approach may not be easily parallelized.

Generalizability. A common problem for a machine learn-

ing model is overfitting, meaning that the model only learns

superficial features existing in the training dataset and cannot

generalize on unseen dataset. Our evaluation in Section 4.3

shows that our model is able to learn intrinsic features from

the training set, and perform well on a completely different

dataset containing a different set of programs generated by a

different compiler for a different operating system. We spec-

ulate that this excellent generalizability mainly comes from

how we make use of Relational-GCN, as it captures a number

of important relations between instructions. These relations

generally hold true across programs, compilers, and OS.

Adversarial Attacks. A machine-learning system is known

to be vulnerable to adversarial attacks. DEEPDI is no excep-

tion. However, the disassemblers we evaluated face the same

problem, and perform even worse than DEEPDI on obfus-

cated binaries. Section 4.5 shows that DEEPDI at least is able

to counter attacks that simply hide direct jumps. A strong

adversary may be able to perform in-depth analysis on our

model (e.g., based on the gradients), to construct adversarial

examples. This problem deserves a separate investigation, and

we leave it as future work. Nevertheless, our evaluation in

Section 4.4 and Section 4.5 shows that DEEPDI is already

more robust than the existing commercial disassemblers.

7 Related Work

We have discussed existing disassembly techniques in Sec-

tion 2. In this section, we briefly discuss other related works.

Function Identification. Function identification in stripped

binaries is a fundamental challenge in reverse engineering

and binary analysis. Nevertheless, many security solutions,

such as binary rewriting and control flow integrity, rely on

accurate function identification. There exist many machine-

learning-based solutions, such as ByteWeight [12] and Shin

et al.’s work [53]. ByteWeight extracts features from code

(raw bytes or linearly disassembled instructions) and builds a

prefix tree to evaluate the probability of a sequence of instruc-

tions or raw bytes being function boundary. Shin et al. builds

a multi-layer RNN network and feeds one raw byte a time

to the network [53]. The output is whether this byte is func-

tion boundary or not. Some machine-learning-based models

turned out to capture specific patterns, such as push ebp [27],

as function entrypoint signature, and are likely to miss func-

tions if the first instructions in the function are rarely used

(e.g., frame pointer omitted). Others are rule-based solutions

such as Nucleus [11] and Qiao et al.’s work [46]. Fundamen-

tally, they rely on various heuristics or program analysis. The

problem of function identification is that a precise identifica-

tion result does not guarantee a precise disassembly because

the function body may not be contiguous and may contain

data. Another problem is that the runtime performance of

function identification is not good.

Differentiating Code and Data. This is another way of think-

ing disassembly. If we know which part is data, linear sweep

disassembly can give us the correct result. Wartel et al. [56]

uses a compression model to estimate the probability of a

sequence, but its efficiency is not evaluated.

Dynamic Disassembly. Many researchers have made great

contributions [14–16, 40, 42, 54] to this direction. Dynamic

disassembly can achieve better accuracy on the code path

that is actually executed compared to static disassembly, and

is resilient to obfuscation and packing, but imposes extra

runtime overhead and limited code coverage.

Deep Learning for Binary Analysis. There has been a surge

of research efforts on applying deep learning techniques to

solve binary analysis problems. A prominent one is binary

code similarity analysis and search. Its central theme is to

generate an embedding for a piece of code (function or basic

block), and then use the generated embedding to search simi-

lar code snippets [37, 38, 57, 60]. Researchers also leverage

deep learning to perform other sophisticated binary analysis

tasks, such as inferring function type signatures [18], and con-

ducting coarse-grained value set analysis [26]. All of these

schemes except αDiff [37] require disassembly code or fea-

tures extracted from disassembly code as input. As a result, no

matter how efficient these schemes are, the end-to-end system

performance is bounded by the disassembler. By integrating

DEEPDI with these downstream tasks, the end-to-end system

performance can be improved substantially.

Decompilation. Decompilation takes one step further to re-

cover source code from binaries, and is very useful in under-

standing or analyzing binaries when their source code is not

available. [30] uses an encoder-decoder model to translate

raw bytes to pseudo C code, [25, 33] translate instructions to

AST. There are also some commercial decompilers such as

Hex-Rays Decompiler and Binary Ninja. However, compilers

may generate different machine code from the same source

code, or the same machine code from different source code.

It is hard to evaluate the quality of decompilers.

8 Conclusion

In this paper, we have proposed DEEPDI, a novel deep learn-

ing based technique for disassembly that achieves both ac-

curacy and efficiency. Our experimental results have shown

that DEEPDI’s accuracy is comparable to the state-of-the-

art commercial tools and research prototypes, and it is two

times faster than IDA Pro, and its GPU version is 350 times

faster. DEEPDI is able to generalize to unseen binaries, and

counter obfuscations and certain adversarial attacks. When

used with EMBER [9] for malware classification involving

5.2 GB testing samples, we are able to increase training ac-

curacy to 99.4% and only add 3 minutes to feature extraction



time, showing its capacity of classifying malware accurately

and efficiently.

Acknowledgement

We would like to thank the anonymous reviewers for their

helpful and constructive comments. This work was supported

in part by National Science Foundation under Grant No.

1719175, and Office of Naval Research under Award No.

N00014-17-1-2893. Any opinions, findings, and conclusions

or recommendations expressed in this paper are those of the

authors and do not necessarily reflect the views of the funding

agencies.

References

[1] Binary ninja, a new type of reversing platform. https:

//binary.ninja/.

[2] Ghidra – software reverse engineering framework.

https://www.nsa.gov/resources/everyone/

ghidra/.

[3] The ida disassembler and debugger. https://www.

hex-rays.com/products/ida/.

[4] Intel® 64 and ia-32 architectures software developer’s

manual, volume 2. http://tiny.cc/vskytz.

[5] Researchers easily trick cylance’s ai-based antivirus into

thinking malware is ‘goodware’. http://tiny.cc/

qnijuz.

[6] Standard performance evaluation corporation. spec

cpu2006 benchmark, 2006.

[7] Standard performance evaluation corporation. spec

cpu2017 benchmark, 2017.

[8] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov,

Mikhail Trofimov, and Giorgio Giacinto. Novel feature

extraction, selection and fusion for effective malware

family classification. In Proceedings of the sixth ACM

conference on data and application security and privacy,

pages 183–194, 2016.

[9] H. S. Anderson and P. Roth. EMBER: An Open Dataset

for Training Static PE Malware Machine Learning Mod-

els. ArXiv e-prints, April 2018.

[10] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia

Slowinska, and Herbert Bos. An in-depth analysis of

disassembly on full-scale x86/x64 binaries. In 25th

{USENIX} Security Symposium ({USENIX} Security

16), pages 583–600, 2016.

[11] Dennis Andriesse, Asia Slowinska, and Herbert Bos.

Compiler-agnostic function detection in binaries. In

2017 IEEE European Symposium on Security and Pri-

vacy (EuroS&P), pages 177–189. IEEE, 2017.

[12] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael

Turner, and David Brumley. {BYTEWEIGHT}: Learn-

ing to recognize functions in binary code. In 23rd

{USENIX} Security Symposium ({USENIX} Security

14), pages 845–860, 2014.

[13] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, et al.

Superset disassembly: Statically rewriting x86 binaries

without heuristics. In NDSS, 2018.

[14] Andrew R Bernat and Barton P Miller. Anywhere, any-

time binary instrumentation. In Proceedings of the 10th

ACM SIGPLAN-SIGSOFT workshop on Program analy-

sis for software tools, pages 9–16, 2011.

[15] Derek Bruening and Saman Amarasinghe. Efficient,

transparent, and comprehensive runtime code manipula-

tion. PhD thesis, Massachusetts Institute of Technology,

Department of Electrical Engineering, 2004.

[16] Derek Bruening, Timothy Garnett, and Saman Amaras-

inghe. An infrastructure for adaptive dynamic optimiza-

tion. In International Symposium on Code Generation

and Optimization, 2003. CGO 2003., pages 265–275.

IEEE, 2003.

[17] David Brumley, Ivan Jager, Thanassis Avgerinos, and

Edward J Schwartz. Bap: A binary analysis platform.

In International Conference on Computer Aided Verifi-

cation, pages 463–469. Springer, 2011.

[18] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and

Zhenkai Liang. Neural nets can learn function type sig-

natures from binaries. In 26th {USENIX} Security Sym-

posium ({USENIX} Security 17), pages 99–116, 2017.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding. In Pro-

ceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 4171–4186, 2019.

[20] Alessandro Di Federico, Mathias Payer, and Giovanni

Agosta. rev. ng: a unified binary analysis framework

to recover cfgs and function boundaries. In Proceed-

ings of the 26th International Conference on Compiler

Construction, pages 131–141, 2017.

https://binary.ninja/
https://binary.ninja/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
http://tiny.cc/vskytz
http://tiny.cc/qnijuz
http://tiny.cc/qnijuz


[21] Steven HH Ding, Benjamin CM Fung, and Philippe

Charland. Asm2vec: Boosting static representation ro-

bustness for binary clone search against code obfusca-

tion and compiler optimization. In 2019 IEEE Sym-

posium on Security and Privacy (SP), pages 472–489.

IEEE, 2019.

[22] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin.

Deepbindiff: Learning program-wide code representa-

tions for binary diffing. In Network and Distributed

System Security Symposium, 2020.

[23] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,

Brian Testa, and Heng Yin. Scalable graph-based bug

search for firmware images. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 480–491, 2016.

[24] Antonio Flores-Montoya and Eric Schulte. Datalog

disassembly. In 29th {USENIX} Security Symposium

({USENIX} Security 20), pages 1075–1092, 2020.

[25] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuan-

dong Tian, Farinaz Koushanfar, and Jishen Zhao. Coda:

An end-to-end neural program decompiler. In Advances

in Neural Information Processing Systems, pages 3703–

3714, 2019.

[26] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and

Dawn Song. {DEEPVSA}: Facilitating value-set analy-

sis with deep learning for postmortem program analysis.

In 28th {USENIX} Security Symposium ({USENIX} Se-

curity 19), pages 1787–1804, 2019.

[27] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang

Wang, and Xinyu Xing. Lemna: Explaining deep learn-

ing based security applications. In Proceedings of the

2018 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 364–379, 2018.

[28] Xin Hu, Tzi-cker Chiueh, and Kang G Shin. Large-

scale malware indexing using function-call graphs. In

Proceedings of the 2009 ACM SIGSAC Conference on

Computer and Communications Security, pages 611–

620, 2009.

[29] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie

Michielin. Obfuscator-LLVM – software protection for

the masses. In Brecht Wyseur, editor, Proceedings of

the IEEE/ACM 1st International Workshop on Software

Protection, SPRO’15, Firenze, Italy, May 19th, 2015,

pages 3–9. IEEE, 2015.

[30] Deborah S Katz, Jason Ruchti, and Eric Schulte. Us-

ing recurrent neural networks for decompilation. In

2018 IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER), pages

346–356. IEEE, 2018.

[31] Johannes Kinder and Helmut Veith. Jakstab: A static

analysis platform for binaries. In International Confer-

ence on Computer Aided Verification, pages 423–427.

Springer, 2008.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In ICLR (Poster), 2015.

[33] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz,

Miltiadis Allamanis, Claire Le Goues, Graham Neu-

big, and Bogdan Vasilescu. Dire: A neural approach to

decompiled identifier naming. In 2019 34th IEEE/ACM

International Conference on Automated Software Engi-

neering (ASE), pages 628–639. IEEE, 2019.

[34] Evangelos Ladakis, Giorgos Vasiliadis, Michalis Poly-

chronakis, Sotiris Ioannidis, and Georgios Portokalidis.

Gpu-disasm: A gpu-based x86 disassembler. In Interna-

tional Conference on Information Security, pages 472–

489. Springer, 2015.

[35] Quan Le, Oisín Boydell, Brian Mac Namee, and Mark

Scanlon. Deep learning at the shallow end: Malware

classification for non-domain experts. Digital Investiga-

tion, 26:S118–S126, 2018.

[36] Cullen Linn and Saumya Debray. Obfuscation of exe-

cutable code to improve resistance to static disassem-

bly. In Proceedings of the 10th ACM conference on

Computer and communications security, pages 290–299,

2003.

[37] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li,

Feng Li, Aihua Piao, and Wei Zou. αdiff: cross-version

binary code similarity detection with dnn. In Proceed-

ings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering, pages 667–678.

ACM, 2018.

[38] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio

Petroni, Roberto Baldoni, and Leonardo Querzoni. Safe:

Self-attentive function embeddings for binary similarity.

In International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, pages 309–

329. Springer, 2019.

[39] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang,

Xiangyu Zhang, and Zhiqiang Lin. Probabilistic dis-

assembly. In Proceedings of the 41st International

Conference on Software Engineering, ICSE ’19, pages

1187–1198, Piscataway, NJ, USA, 2019. IEEE Press.

[40] Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi-cker

Chiueh. Bird: Binary interpretation using runtime disas-

sembly. In International Symposium on Code Genera-

tion and Optimization (CGO’06), pages 12–pp. IEEE,

2006.



[41] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-

torch: An imperative style, high-performance deep learn-

ing library. Advances in Neural Information Processing

Systems, 32:8026–8037, 2019.

[42] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor,

Andrew Sun, and Anand Karunanidhi. Pinpointing

representative portions of large intel® itanium® pro-

grams with dynamic instrumentation. In 37th Inter-

national Symposium on Microarchitecture (MICRO-

37’04), pages 81–92. IEEE, 2004.

[43] Kexin Pei, Jonas Guan, David Williams King, Junfeng

Yang, and Suman Jana. Xda: Accurate, robust disassem-

bly with transfer learning. In NDSS, 2021.

[44] Manish Prasad and Tzi-cker Chiueh. A binary rewriting

defense against stack based buffer overflow attacks. In

USENIX Annual Technical Conference, General Track,

pages 211–224, 2003.

[45] Rui Qiao and R Sekar. Effective function recovery for

cots binaries using interface verification. Technical re-

port, Technical report, Secure Systems Lab, Stony Brook

University, 2016.

[46] Rui Qiao and R Sekar. Function interface analysis: A

principled approach for function recognition in cots bina-

ries. In 2017 47th Annual IEEE/IFIP International Con-

ference on Dependable Systems and Networks (DSN),

pages 201–212. IEEE, 2017.

[47] Edward Raff, Jon Barker, Jared Sylvester, Robert Bran-

don, Bryan Catanzaro, and Charles K Nicholas. Mal-

ware detection by eating a whole exe. In Workshops at

the Thirty-Second AAAI Conference on Artificial Intelli-

gence, 2018.

[48] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-

Tov, and Mansour Ahmadi. Microsoft malware classifi-

cation challenge. CoRR, abs/1802.10135, 2018.

[49] David E Rumelhart, Geoffrey E Hinton, and Ronald J

Williams. Learning representations by back-propagating

errors. nature, 323(6088):533–536, 1986.

[50] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,

Rianne Van Den Berg, Ivan Titov, and Max Welling.

Modeling relational data with graph convolutional net-

works. In European Semantic Web Conference, pages

593–607. Springer, 2018.

[51] Alexander Sepp, Bogdan Mihaila, and Axel Simon. Pre-

cise static analysis of binaries by extracting relational

information. In 2011 18th Working Conference on Re-

verse Engineering, pages 357–366. IEEE, 2011.

[52] Monirul Sharif, Vinod Yegneswaran, Hassen Saidi,

Phillip Porras, and Wenke Lee. Eureka: A framework for

enabling static malware analysis. In European Sympo-

sium on Research in Computer Security, pages 481–500.

Springer, 2008.

[53] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.

Recognizing functions in binaries with neural networks.

In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 611–626, 2015.

[54] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,

Nick Stephens, Mario Polino, Andrew Dutcher, John

Grosen, Siji Feng, Christophe Hauser, Christopher

Kruegel, et al. Sok:(state of) the art of war: Offensive

techniques in binary analysis. In 2016 IEEE Symposium

on Security and Privacy (SP), pages 138–157. IEEE,

2016.

[55] Richard Wartell, Yan Zhou, Kevin W Hamlen, and Murat

Kantarcioglu. Shingled graph disassembly: Finding

the undecideable path. In Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pages 273–285.

Springer, 2014.

[56] Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat

Kantarcioglu, and Bhavani Thuraisingham. Differenti-

ating code from data in x86 binaries. In Joint European

Conference on Machine Learning and Knowledge Dis-

covery in Databases, pages 522–536. Springer, 2011.

[57] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,

and Dawn Song. Neural network-based graph embed-

ding for cross-platform binary code similarity detection.

In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, pages 363–

376, 2017.

[58] Naville Zhang. Hikari – an improvement

over obfuscator-llvm. https://github.com/

HikariObfuscator/Hikari.

[59] Yunan Zhang, Chenghao Rong, Qingjia Huang, Yang

Wu, Zeming Yang, and Jianguo Jiang. Based on multi-

features and clustering ensemble method for automatic

malware categorization. In 2017 IEEE Trustcom/Big-

DataSE/ICESS, pages 73–82. IEEE, 2017.

[60] Fei Zuo, Xiaopeng Li, Zhexin Zhang, Patrick Young,

Lannan Luo, and Qiang Zeng. Neural machine transla-

tion inspired binary code similarity comparison beyond

function pairs. In NDSS, 2019.

A Instruction Representation

In this section, we discuss different design choices of the

Pre-processing phase.

https://github.com/HikariObfuscator/Hikari
https://github.com/HikariObfuscator/Hikari


Raw Bytes vs. Features. Although some recent studies

(e.g., [35]) feed raw bytes to deep learning models and show

encouraging results, we argue that raw bytes contain limited

semantic information because they are encoded and have vari-

able length. To fully understand the raw bytes, the model has

to learn decoding rules, which are already explicitly defined

by instruction specifications. Moreover, [5] shows features at

raw-byte level are superficial and are vulnerable to adversarial

attacks.

Table 9: Instruction Format

Legacy

Prefix

REX

Prefix

Opcode ModRM SIB Displacement Immediate

(optional) (optional) 1-, 2- or

3-byte

opcode

1 byte

(op-

tional)

1

byte

(op-

tional)

1, 2, or

4 bytes

(optional)

1, 2, or 4

bytes (op-

tional)

String Representation vs. Metadata The string representa-

tion of instructions is very expressive: it has no ambiguity and

good readability. Some recent studies [21, 22] are based on

the string representation, then utilize NLP models for further

analysis. If we see the string representation as source code,

then the metadata of instructions is similar to intermediate

language. Table 9 shows instruction format in x86-64 archi-

tecture. It essentially shows what each byte in an instruction

represents. However, it is still highly encoded, for example,

some fields are optional, and some bits in one field can influ-

ence the meaning of other fields. Our approach uses metadata

because translating from byte code into strings is slow, and

relies on our model to learn the meaning of each field.

B Analysis of False Positives and False Nega-

tives

We also dive into the underlying causes of these false results.

They are discussed as follows.

First, for false positives, MSVC generates jump stubs at the

beginning of the code section due to incremental linking.

Such patterns do not exist in ELF binaries and it confuses

the model when several false instructions look legitimate.

Listing 1 shows an example where 00FC100A and 00FC100F

should be two valid jump instructions, but the model favors

instructions starting from 00FC100B. The xor instruction sets

the PF flag, and the jpo instruction checks the PF flag and

does a conditional jump. Both jump targets are legitimate,

and it is hard even for humans to decide whether these three

instructions are valid or not.

The second outstanding case is the add esp instruction.

The model favors the opcode C4, and all add esp instructions

become les instructions. les instructions do not exist in the

training set, which might be the reason the model does not

perform well.

1 00 FC100B 31C2 xor edx ,eax

2 00 FC100D 7B 00 jpo 00 FC100F

3 00 FC100F E9 CCC9E400 jmp 01 E0D9E0

Listing 1: Clang False Positive Example

For false negatives, MSVC sometimes generates some very

short yet sparse functions. These instructions have very little

context information and thus cannot be correctly identified by

our model. See Listing 2 for an example.

1 01012 F0F int3

2 01012 F10 mov dowrd ptr ds:[ecx], 021 A7014

3 01012 F16 retn

4 01012 F17 int3

5 01012 F18 int3

6 01012 F19 int3

Listing 2: Clang False Negative Example


	Introduction
	Background
	Traditional Disassembly Methods
	Superset Disassembly
	Probabilistic Inference
	Datalog Disassembly
	XDA
	Summary

	Design
	Superset Disassembly
	Instruction Embedding
	Instruction Flow Graph
	Graph Inference
	Function Entrypoint Recovery

	Evaluation
	Implementation and Setup
	Accuracy and Efficiency
	Accuracy
	Efficiency

	Generalizability
	Obfuscation Evaluation
	Adversarial Evaluation

	Downstream Application
	Discussion
	Related Work
	Conclusion
	Instruction Representation
	Analysis of False Positives and False Negatives

