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Abstract—Resilient computation has been an emerging topic
in the field of high-performance computing (HPC). In particular,
studies show that tolerating faults on leadership-class supercom-
puters (such as exascale supercomputers) is expected to be one
of the main challenges. In this paper, we utilize dynamic binary
instrumentation and virtual machine based fault injection to
emulate soft errors and study the soft errors’ impact on the
behavior of applications. We propose Chaser, a fine-grained,
accountable, flexible, and efficient fault injection framework built
on top of QEMU. Chaser offers just-in-time fault injection, the
ability to trace fault propagation, and flexible and programable
interfaces. In the case study, we demonstrate the usage of Chaser
on Matvec and a real DOE mini MPI application1.

Index Terms—soft error; MPI; fault injection; resilience;
vulnerability; High Performance Computing.

I. INTRODUCTION

Resilient computation has been an emerging topic in the

field of high-performance computing (HPC) for several years.

In particular, studies show that tolerating faults on leadership-

class supercomputers (such as exascale supercomputers) is

expected to be one of the main challenges. Due to high error

rates, soft errors [36] pose a serious threat to the prospect of

exascale systems.

The HPC community often lumps all reliability under

the umbrella of “resilience.” However, there are many ways

that failures can affect supercomputers and the applications

running on them. Faults can be transient, intermittent, or

permanent. They can cause silent data corruptions (SDC),

crash the application, or cause hardware components to fail.

Faults can come from any range of events including (but

not limited to) aging [9], [33], poorly designed components

[13], material impurities/packaging [32], [41], [29], neutron

(“cosmic”) radiation [12], [7], electromagnetic interference

[30], electromigration [24], temperature [6], [23], voltage [11],

1This manuscript is submitted for DSN2020 tool category
1LA-19-27437

[37] extremes/fluctuations, and nefarious tampering/espionage

[31]. Furthermore, faults are not relegated to only being driven

by hardware influences; software plays at least some non-

trivial part in the rate of faults on computing systems today

[28], [15], [19], [16]. The lack of tools for characterizing and

studying these types of faults was brought up in a recent

governmental position paper on the challenges of resilient

exascale computing[10]. Without proper tools it is unlikely

that key advancements in HPC resilience will occur in time

for next generation systems.

Researchers have built various fault injection tools to char-

acterize the error resilience of applications. Current fault

injection tools typically rely on either source code instrumen-

tation [38], [39], [8], [35] or dynamic binary instrumenta-

tion [18], [26], [25], [40]. Such tools provide the capability

of emulating and injecting faults into targeted programs with

a variety of fault models. However, nearly all fault injectors

treat the application under test as a black box, as the main goal

of fault injection is to characterize the impact of soft errors.

On the other hand, studying error propagation within a

program is considered a critical task in the dependability

community. When a fault occurs, understanding how it affects

the program’s state and final outcome can be valuable to guide

the design and implementation of fault tolerant systems. Prior

studies [20], [27] have found that with more detailed infor-

mation about error propagation, applications can be optimized

and enhanced in robustness against soft errors. Traditionally,

tracing faults during the execution of a program requires

additional computational/memory resources, which inevitably

incurs significant performance overhead. This problem can be

exacerbated in the context of MPI applications, as the fault

might pass the process boundaries, requiring the tracer to

consider both the depth of the program (i.e. the complexity in

the single process), and the width of the program (i.e. across

multiple processes/nodes).

Statistical-based fault injection campaigns generally con-
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sume a large amount of cycles to reach a statistically sig-

nificant estimate of the impact of faults. Additionally, such

campaigns can take hours or days to finish [10]. For HPC

applications, performance has become a major concern when

running a large number (i.e. thousands) of fault injections.

As such, minimizing the overhead introduced by the fault

injector is critical. Therefore, a flexible, lightweight injection

framework with a dynamically configurable error tracer is

needed. Such a framework must also be able to record the

footprint of errors in memory and between MPI processes.

In this paper we utilize dynamic binary instrumentation and

virtual machine based fault injection to emulate soft errors. We

can then study the impact that such errors have on the behavior

of targeted applications. We propose Chaser, a fine-grained,

accountable, flexible, and efficient soft error fault injection

framework built on top of DECAF [14]. Chaser provides just-

in-time fault injection, fault propagation tracing, and flexible

fault injection interfaces. More specifically, Chaser allows the

user to define which application to inject soft errors into, as

well as when and where these soft errors will be injected, with

various levels of granularity. Researchers can also build dif-

ferent fault injectors using the interfaces exported by Chaser.

We demonstrate the use of Chaser against applications from

Matvec [2] and an MPI-based DOE mini-app CLAMR [1].

Because of the exported fault injection interfaces, the effort of

developing new fault injectors is substantially reduced, only

requiring around 100 lines of code.

Our main contributions are summarized as follows:

1) We propose Chaser, a fine-grained, accountable, flexible,

and efficient soft error fault tracer framework built on

top of DECAF.

2) We implement Chaser and evaluate its performance and

flexibility. Chaser can supervise the process of parallel

fault injection as well as provide tracing functions. Users

can trace the error propagation between parallel MPI

processes as well as between computing nodes.

3) We demonstrate Chaser with CLAMR, a DOE mini

application, to study error propagation using trace logs.

The rest of paper is organized as follows: Section II intro-

duces the design requirements and goals for Chaser and ex-

plains its major components and functions; Section III presents

the implementation of key functions and prototype of Chaser.

Next, evaluation results are presented in Section IV, and the

state-of-the-art studies related to this work are discussed in

Section V. Finally, we present our conclusions in Section VI.

II. CHASER DESIGN

A. Design Requirement

There are challenges in tracing errors in parallel computing

environments dynamically. For instance, the tracing overhead

can also significantly lower performance. Therefore, an error

tracer should be able to mark the errors and specifically track

the trajectory of errors in memory space across the execution

of an application. Secondly, current fault injection tools often

hypervise the injection locally in a single process of MPI

applications due to the performance and management cost.

It is possible for most fault injection tools to locally monitor

error propagation, however, they may be unable to track error-

corrupted messages shared between MPI ranks on different

physical nodes. The tracer tool should be able to coordinate all

MPI processes and notify the MPI processes of the incoming

errors synchronized by other MPI processes.

These incoming errors behave like “injected errors“ and

manifest locally again. An error propagation example is shown

in Fig 1.

Fig. 1: Error propagation example between MPI ranks. The

error injected in rank 0 will begin by propagating locally and

then contaminate the memory of other ranks.

B. Design Goal

The design of Chaser is based on the Parallel Fine-grained

Soft Error Fault Injector (PFSEFI) [18], [17] as an add-on

function. It is designed to achieve the following goals.

a) Fine-grained: The fault tracer should be able to inject

faults into a designated application and instruction after spe-

cific conditions are met. This allows researchers to construct

various complex fault models to study soft errors’ impact on

the behavior of applications.

b) Accountable: The fault tracer should be able to trace

how injected faults propagate within the application. By pro-

viding detailed information about traces across all MPI ranks,

researchers are able to analyze how faults impact the behavior

of an application in order to propose new resilient algorithms.

c) Flexible: The fault tracer should allow users to cus-

tomize and construct different fault models. This allows re-

searchers to design their own fault propagation experiments

without building the entire system from scratch.

d) Efficient: The fault tracer should introduce minimal

performance overhead to the system, since fault injection and

propagation experiments usually requires a large number of

runs.

C. Chaser Architecture

We propose Chaser, a new fault injection framework, to

satisfy the above design goals. Figure 2 shows the overall

architecture of Chaser. Inside the virtual machine, we run the

target application and conduct fault injection on it externally

via fault injection interfaces. To provide various fault injection

capabilities, Chaser is extensively involved with the dynamic

binary translation process, which is detailed in Section III-A.

Chaser has the following key components:
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a) Just-in-time Fault Injection: This component is able

to inject faults into the target process when the predefined

conditions are met. Unlike F-SEFI [18] which rewrites the

dynamic binary translation process for every instruction to

allow fault injection, Chaser only inserts fault injection logic

when that instruction is marked as a targeted instruction by

the user. Since only a tiny portion of targeted processes are

instrumented, this design significantly reduces the performance

overhead as demonstrated in Section IV-D. Meanwhile, the

previous works on fault injection [18], [4], [38], [26], [25]

target a specific task or fault model. This makes customization

of the fault injector very difficult for users. To address this,

Chaser exports its fault injection capabilities as interfaces.

Using the exported interfaces, users can then define their own

fault models by setting the injection location, target instruction,

etc. Details are further discussed in Section III-B.

b) Fault Propagation Tracing: Chaser traces the prop-

agation of faults via the dynamic tainting technique [42]. It

leverages DECAF’s bitwise tainting [21], [22] and extends

its tainting for floating point instructions. While instruction

level traces can record the most complete information about

fault propagation, the performance penalty is unacceptable in

practice. In contrast to instruction level tracing, Chaser records

tainted memory access activity only. This design sacrifices the

completeness of fault propagation tracing to an acceptable

degree while incurring a reasonable performance overhead.

Details are discussed in Section III-C.

Fig. 2: The overall architecture of Chaser.

III. IMPLEMENTATION

A. Fault Injection Component

a) Dynamic binary translation in QEMU: To support

multiple architectures, QEMU makes use of a compiler back-

end called Tiny Code Generator (TCG) as its dynamic binary

translation engine. QEMU translates each guest instruction

into a series of architecture-independent TCG instructions

grouped together as a TCG translation block (TB). The TCG

compiler translates each TB into a piece of native code that

can be executed on the host.

b) Placement of Fault Injector: The fault injector is

placed where the target process starts and the interested

instruction is translated. Chaser relies on DECAF’s built-in

Virtual Machine Introspection (VMI) technique to retrieve

the process’s states. Once the target process creation event

is captured, Chaser flushes the code translation cache and

triggers the next round of binary code translation. During

this translation process, the fault injector is injected into the

Fig. 3: Demonstration of fault injection for an fadd instruction.

instruction of interest. Figure 3 illustrates a demonstration of

how the fault injector is injected into an fadd instruction. (a) is

the original instruction fadd while (b) is the generated TCG IR

by QEMU without the fault injector. If the fadd is labeled as

the targeted instruction, Chaser generates a callback function

DECAF inject fault and invokes it before the fadd is executed.

As shown in (c), this is achieved by inserting the TCG IR code

at the beginning of the fadd’s translated TCG IRs.

Fig. 4: Overview of Chaser’s fault injection plugin.

c) Software Structure of Fault Injection Plugin: Figure 4

presents the software structure of the fault injection plugin

of Chaser, which injects faults for designated instructions

into the target application. When this plugin is loaded into

the fault injection framework, its plugin_init() function

is called to initialize the plugin and returns a pointer to

fi_interface_st, which specifies a new terminal com-

mand inject_fault defined by the plugin. Additionally,

the plugin registers callback fi_creation_cb() for the

process creation event.

When the user enters the inject_fault command in the

terminal, the registered callback do_fi_fault() is called.

This callback function sets the targeted program, targeted

instruction, injection condition, and self-defined fault injector,

and saves this information into fi_cmds_st. Once there is

a newly created process, the callback fi_creation_cb()
is called to check if it is the targeted program. If so,

it enables the fault injector and registers two callbacks -

tainted_mem_wt_cb() and tainted_mem_rd_cb(),

to log the fault propagation process.

During the execution of the targeted program,

fault_injector() is invoked before the targeted

instruction (fadd, mov, etc.) is executed. The instructions
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executed counter is then updated. Once the value of the

instructions executed counter reaches the injection condition,

the actual fault injection is called to emulate different kinds of

soft errors, which are defined in fi_trigger_st. After the

injection is finished, the callback function fi_clean_cb()
will turn off the screening on incoming new processes and

detach the injector.

It is worth noting that the design of Chaser satisfies our de-

sign goals mentioned in Section II-B. The user can customize

the fault injector (flexible) to inject faults into a target program

and instruction (fine-grained) under customized injection con-

dition (accountable). And because only the targeted program

and instruction are instrumented, the performance overhead is

minimized (efficient). Detailed performance overhead results

are discussed in IV-D.

B. Fault Injection Interfaces

Chaser exports its fault injection capabilities as interfaces

for users. These interfaces allow users to customize the fault

injector in the following ways.

a) what application: Leveraging DECAF’s Virtual Ma-

chine Introspection technology, users can specify the tar-

geted application at runtime. Using the callback function

VMI_CREATEPROC_CB, users can retrieve the information of

a created process to determine if it is the application targeted

for fault injection.

b) when to inject: Chaser allows the user to define

different injection conditions for every X86 instruction. At

runtime, these conditions are checked by the user to determine

when to inject faults. For example, to inject a fault to fadd
after it is executed 1000 times, the user can define when

to inject faults and and how many bits to flip through the

data structure template defined in Chaser. This design makes

Chaser both highly customizable and extendable. Chaser, by

default, provides three types of fault models: probabilistic fault
model, deterministic fault model and group fault model. Table I

shows the definitions of the supported fault models.

TABLE I: Chaser supported fault models

Fault Model Functions

Probabilistic
fault injection location is based on a predefined
probability distribution function.

Deterministic fault injection location is the exact predefined location.
Group multiple faults are injected.

c) how to inject: For every X86 instruction, the user

can define custom fault injectors. Chaser maintains a func-

tion pointer to the fault injector for every instruction. If

the injection condition is satisfied, the corresponding fault

injector is invoked. Chaser also provides functions such as

CORRUPT_REGISTER and CORRUPT_MEMORY to ease the

injection process. These functions can write to any user

specified registers and memory locations.

TABLE II: Lines of code (LOC) required to develop injectors

InjectorName LOC
Probabilistic Injector 97
Deterministic Injector 100

Group Injector 98

d) Flexibility : We discuss the flexibility of the injection

interfaces in terms of lines of code (LOC) and time required

to develop new fault injection models. We implemented three

fault injectors described in F-SEFI - a probabilistic injector,

which injects faults at a predefined probability; a deterministic

injector, which injects faults into target instruction at certain

condition; and a group injector, which injects faults into all

floating point instrcutions. Table II summarizes the LOC and

time required to develop these fault injectors. As shown in the

table, it takes about 2 hours and 100 LOC to develop a new

fault injector, which is a relatively small task for researchers.

This demonstrates that with Chaser’s injection interfaces, it is

much easier to construct new fault injection models compared

to starting from scratch, which may require deep systemic

knowledge and tedious engineering work.

C. Fault Propagation Tracing

a) Dynamic Taint Analysis in DECAF: Dynamic taint

analysis runs an application and observes which computations

are affected by predefined taint sources such as user input

[34]. The purpose of dynamic taint analysis is to track the

flow of information between sources and sinks. This technique

allows Chaser to trace the propagation of faults by marking

the injected faults as sources.

DECAF implements its lightweight, bitwise taint propa-

gation mostly at the TCG instruction level. To achieve bit-

level precision, DECAF propagates tainted bits through CPU

registers, memory, and IO devices. TCG translates a basic

block of guest instructions into a translation block (TB) of

TCG instructions (a). The taint propagation rules are enforced

with TCG instructions (b). More details can be found at [21].
b) Taint Propagation for MPI applications: In MPI

applications, a fault can propagate from MPI process P1 to

MPI process P2. Neither the sender nor the receiver process

have enough information to accurately track the propagation

of faults through inter-process communication. [4] tackles

this problem by adding an extra header to the original MPI

message, and then propagating the faults with the assistance

of this extra header. This solution requires the modification of

source code.

Chaser takes a different approach. Figure 5 illustrates the

overview of our solution. We create a TaintHub module

to store and share the tainting status of MPI messages with

different MPI processes. Each MPI process can send and

receive messages using standard MPI interfaces. Chaser hooks

these functions, extracts the message information from the

stack, and then shares them with TaintHub.

To ensure the error related information is synchronized

between MPI ranks, on the sender side, Chaser hooks the

MPI message sending functions to collect the taint status

and broadcasts that status to TaintHub before sending
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Fig. 5: Design of taint propagation for MPI applications

out the MPI messages to other ranks. When the function

MPI_send is invoked, Chaser first extracts the buf, where

the actual message is stored, to check if it is tainted. If it

is not tainted, Chaser simply returns without any operation.

Otherwise, Chaser extracts (tag, dest) as the ID of this

MPI message. The taint status of this message will be read

using information ( count, datatype, buf). Chaser

then shares the ID and taint status with TaintHub.

On the receiving side, Chaser hooks the MPI message

receiving functions to retrieve tainting status of the current

MPI message from TaintHub. When MPI_recv function

is invoked. Chaser first extracts (tag, source) and uses

them to poll TaintHub so that the tainting status of the

current MPI message can be retrieved. Based on the retrieved

information, if the current MPI message is not tainted, Chaser

simply returns without any operation. Otherwise, it will mark

the MPI message as tainted with the taint status information

and the taint propagation continues from one MPI process to

the next.

c) Fault Propagation Log: Chaser uses

callbacks DECAF_READ_TAINTMEM_CB and

DECAF_WRITE_TAINTMEM_CB from DECAF to record

propagation of fault. These two callbacks are invoked when

the targeted program reads/writes the tainted memory. Chaser

logs the eip (instruction pointer) , virtual memory address,

physical memory address, tainted value and current value

in this memory location for post analysis. We believe that

this detailed information will provide us with new ways to

analyze and evaluate soft errors’ impact on applications.

IV. CASE STUDY

A. Setup and Benchmark

The testbed cluster used for testing Chaser includes four

Dell Xeon servers with 16 cores 3.0 GHz CPU and 32GB

of RAM. Servers are interconnected with a 10GB network.

TaintHub is running on the head node of the cluster for

fault injection experiments on MPI applications. The cluster

is running Ubuntu 14.04 as the OS on each node.

To show the broad usage of Chaser, we evaluate it using

applications from two different categories. The first category

is common applications that are executed on a single ma-

chine. The second category is HPC applications. These two

categories combined represent the majority of usage for fault

injection techniques.

1) Rodinia : We select bfs, kmeans and lud from Ro-

dinia [3]. During each run, Chaser randomly injects faults into

the operands (fadd,fmul and mov) of the and instructions after

it is executed n times and the faults are x bits flipped within

the operand. We executed each application 5000 times.

2) Matvec: Matvec [2] uses MPI to compute a matrix-

vector product b = A*x. We use this to illustrate our fault

injection capabilities on MPI applications. Matvec is config-

ured to use four MPI ranks running on four Chaser hypervised

nodes. Faults are only injected into the master node. During

each run, Chaser injects faults into the operands of the mov
instruction after it is executed n times and the faults are x bits

flipped within the operand. We executed Matvec 5000 times.

3) CLAMR: CLAMR [1] is a DOE mini app, which is used

for testing new architectures and runtime systems. CLAMR is

a cell-based adaptive mesh refinement application. It supports

multiple platforms and provides the result check by applying

domain specific mass conservation criteria. CLAMR generates

results visualizations that can better help domain experts tune

their codes and understand the insight of the physics behind

the problem. CLAMR allows the users to define the size

of problem, length of simulation, checkpoint frequency and

correctness checker.

B. Fault Injection

Figure 6 summarizes the fault injection results for three

benchmarks from Rodinia benchmark suite, namely bfs,

kmeans and lud, Matvec and CLAMR. In this study, Chaser

randomly chooses a floating point instruction or mov instruc-

tion at runtime to inject the fault (except for Matvec that

only mov instructions are selected), and for each application

we perform 3,000 to 5,000 fault injection runs (one fault per

run), to reach a statistically significant estimate on the result.

The types of failure outcomes include benign (the output

data files compared bit-wisely the same as the files from

the “golden” run of the benchmark), terminated (either the

application crashes due to a OS signal such as SIGSEGV, or

the application is terminated due to program level assertion),

and silent data corruption (SDC) (the output data files differ

bit-wisely from the “golden” run).

Rodinia’s BFS contains frequent comparison operations. So

we choose cmp as the targeted instruction to inject faults at

runtime. Kmeans has a computation kernel for calculating

the distance between data samples. We inject floating-point

faults into Kmeans. For lud, we are using a combined of

floating-point and “cmp“ faults. Three Rodinia benchmark

applications demonstrate the capability of injecting faults into

target instructions.

We chose CLAMR as the target of our case study. CLAMR

is a cell-based adaptive mesh refinement (AMR) hydrodynam-

ics DOE mini-app that simulates the long range propagation

of waves. The computation model uses the shallow water

equation to simulate the fluid dynamics and harnesses the three

conservation laws of mass, x momentum, and y momentum.
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TABLE III: Termination breakdown for MPI application

Matvec

Tests OS Exceptions MPI error detected Slave Node failed

Total* 89.77% 9.94% 0.23%

Propagation§ 72.77% 27.23% 0

*: The total runs of Matvec. §: The subset of Matvec runs in which faults
propagated between master node and slave node.

Fig. 6: Fault Injection Results.

We analyze the impact of injecting random transient errors

into registers. We run CLAMR 5195 times and randomly inject

a single bit error into the floating point instructions in each

run. Within 5195 runs, CLAMR detected the injected faults in

4349 (83.71%) runs and 846 (16.28%) resulted in undetected

faults. These undetected faults are of interest as they can result

in silent data corruption. We further investigated the output of

CLAMR with these faults and discovered that 618 (11.89%)

of the undetected faults still produced the correct results while

228 (4.38%) of the runs produced incorrect results. This kind

of analysis can be useful in discovering the vulnerability of

an application to injected faults.

Analysis for terminated cases For MPI applications in our

study, the dominant percentage of failures belong to applica-

tion termination. Chaser is able to provide the understanding

of the source of the terminated cases. For example, for Matvec,

As shown in Table III, 89.77% of terminated cases are due to

OS exceptions such as SIGSEGV, and nearly 9.94% are caused

by the MPI runtime exceptions, and interestingly, 0.23% of

terminations are due to the faults propagating from the master

node to slave nodes. Table III also shows that for the cases

where the fault propagate to the slave node, 72.77% of the

terminations on the slave node are due to OS exceptions, while

the rest are due to MPI runtime errors. Our observation shows

that for MPI applications, the majority of the terminations of

the application are due to the the faults occurring in the same

node.

C. Fault Propagation Analysis

In this section, we examine the characteristics of injected

faults and how they propagate. In particular, we are in-

terested in discovering the propagation characteristics from

the perspective of memory operations. In the second set of

experiments, we run CLAMR 2973 times and in addition to

registers.

Tainted bytes in the Propagation. Since it is not possible

to show all of the graphs, we randomly selected two fault

Fig. 7: Termination analysis.

Fig. 8: Distribution of # of tainted memory reads across all

MPI ranks over all fault injections runs. For example, most of

injected faults will trigger the taint read operation maximum

at 2500k times. Majority of the cases are under 800k times of

taint read operations.

injection cases from 2973 runs. These two cases are executed

again with the same injected faults as the first run. Once the

faults are injected, the number of tainted bytes in memory

is extracted every 100K executed instructions. The results are

seen in Figure 7. The number of tainted bytes finally reaches a

constant number in both case 1 and case 2. This is because the

injected faults can only affect a fixed portion of the memory.

When CLAMR does not access that memory region after some

time, the injected faults cease to propagate.

We also discover that the number of tainted bytes fluctuates

during fault propagation. It even drops to zero at times. This

is due to the fact that tainted bytes are overwritten by the

program with clean data.

Memory Operations In the Propagation Chaser keeps

track of two types of memory operations as described in Sec-

tion III-C. The tainted memory read and tainted memory write

operations represent how faults propagate through memory.

We count the number of these two operations for every run of

CLAMR and summarize them in Figure 8 and 9. The figures

illustrate that the number of involved memory operations vary

significantly between CLAMR runs. Out of the 2973 total runs,

1402 (47.1%) runs have more tainted memory read operations,

118 (3.97%) runs only have tainted memory read operations,

and 444(14.93%) only have tainted memory write operations.
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Fig. 9: Distribution of # of tainted memory writes within a

single run across all MPI ranks over all fault injection runs.

For example, most of the injected faults will trigger the taint

write operation maximum at 12k times.Majority of the cases

are under 1k times of taint write operations.

Intuitively, the injection points that resulted in higher tainted

memory operations should considered candidates for further

hardening via resilience techniques. Armed with fault injection

information, researchers can design more resilient algorithms

through the analysis of the relationship between different

injection points and the propagation of faults.

D. Performance Overhead

Fig. 10: The performance overhead of Chaser. Results are

based on running the application under DECAF++ [14], which

imposes only 4% overhead when compared to running the

application natively on the host.

We used the Matvec and CLAMR to test the performance

overhead of Chaser with and without fault propagation tracing.

Since injected faults can change the behavior of an application

and cause unfair comparisons of performance, we simply

inject the original values into the memory or register instead

of flipping any bits. The normalized overhead results are

presented in Figure 10.

For CLAMR, the faults are injected into the fadd instruction

after it has been executed 1000 times. We use (-n 250 -l 2 -t
20 -i 10) for our CLAMR arguments. With fault propagation

tracing enabled, it takes 103s to finish the execution with and

without fault injection (0% overhead). It takes 89s and 91s

(2.2% overhead) if fault propagation tracing is disabled. The

performance overhead of fault propagation tracing is about

15.7% (103s vs 89s).

V. RELATED WORK

There is a long history of using fault injection technologies

to profile the vulnerability of applications, but not for fault

propagation study. The work from [5] proposes an error

propagation framework which utilizes LLVM instrumenta-

tion to inject faults. They then instrument the MPI message

“sender“ to customize the message structure and format by

adding more data corruption related tags and information. The

“receiver“ can then be notified with incoming corrupted data.

Our solution is similar but we add an extra hub (TaintHub)

to coordinate the information exchanges between the “sender“

and “receiver“. With TaintHub, the message “receiver“ does

not have to keep parsing each individual incoming message.

Instead, only when informed by TaintHub, “receiver“ will

start to record data corruption in the message. Therefore, the

overhead of turning on the tracing module in Chaser is much

smaller. Still based on LLVM, Li [27] presents the study of

error propagation. By dividing the memory into Total Mem-

ory(TM), Result Memory(RM) and Output Memory(OM),

they traced the errors travels between these three layers at

coarse grained level. No syntax is needed, but at the same

time, the findings from the error propagation is not useful in

guiding the resilience design at the software and algorithm

levels. Guo et al. [20] propose FlipTracker, which uses

PIN tool to inject errors into the instructions, trace the error

propagation, and further analyze the resilience properties in

HPC applications. Program codes are partitioned into multiple

code regions. By monitoring the input and output of each

code regions, the errors are marked and tracked through the

execution. FlipTracker provides limited error tracing capability

and the accuracy is largely dependent on the choice of the code

region. Moreover, FlipTracker cannot support fault injection

and analysis in MPI environments as the faults corrupt not only

the local memory space but also the other parallel processes.

VI. CONCLUSIONS

In this paper, we utilized dynamic binary instrumentation

and virtual machine based fault injection to emulate soft

errors and error propagation. We proposed Chaser, a fine-

grained, accountable, flexible, and efficient soft error fault

tracing framework built on top of DECAF as an add-on

to PFSEFI. Chaser provides fault propagation tracing and

demonstrates the PFSEFI add-on interfaces built with DECAF.

We demonstrate that the overhead is small and the tool can be

used to study sequential parallel applications to discover how

faults propagate through an application. We show that using

Chaser, one can evaluate properties of an application such as

the relationship of tainted reads and writes as well as how

faults spread in a parallel application.
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