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Abstract. JavaScript has been used to exploit binary vulnerabilities of host soft-
ware that are otherwise difficult to exploit; they impose a severe threat to com-
puter security. Although software vendors have deployed techniques like ASLR,
sandbox, etc. to mitigate JavaScript exploits, hacking contests (e.g.,Pwn2Own,
GeekPwn) have demonstrated that the latest software (e.g., Chrome, IE, Edge, Sa-
fari) can still be exploited. An ideal JavaScript exploit mitigation solution should
be flexible and allow for deployment without requiring code changes. To this end,
we propose ChaffyScript, a vulnerability-agnostic mitigation system that thwarts
JavaScript exploits via undermining the memory preparation stage of exploits. We
implement a prototype of ChaffyScript, and our evaluation shows that it defeats
the 11 latest JavaScript exploits with minimal runtime and memory overhead. It
incurs at most 5.88% runtime overhead for chrome and 12.96% for FireFox. The
maximal memory overhead JS heap usage, observed using the Octane bench-
mark, was 8.2%. To demonstrate the deployment flexibility of ChaffyScript, we
have integrated it into a web proxy.

1 Introduction

JavaScript has been a popular programing language for decades. It has been widely
deployed in web browsers, servers, PDF processor, etc. JavaScript exploits, which take
advantage of JavaScript’s interactive features to exploit binary vulnerabilities (e.g., use-
after-free, heap/buffer overflow) of host software and inject malicious code into victim’s
machine, have been imposing a severe threat to computer security due to the rise of
exploit kits [36] and the sheer number of code execution vulnerabilities [8] reported in
host software every year.

To mitigate JavaScript exploits, software vendors have deployed many mitigation
techniques like Address Space Layout Randomization (ASLR), Data Execution Pre-
vention (DEP), control flow guard [7], sandbox [54], EMET [11], etc. These mitiga-
tion techniques increase the bar for exploitation. As a result, attackers have to combine
complex memory preparation, memory disclosure, code reuse and other techniques to
launch a successful exploit.

While these exploit mitigation techniques are constantly improving, hacking con-
tests like Pwn2Own [19] and GeekPwn [12], consistently demonstrate that the latest
versions of Chrome, Safari, Internet Explorer, and Edge can still be exploited. There
are at least two reasons for this. First, most of the latest proposed mitigation techniques
require changes on software or compiler tool chain and thus could not be deployed



promptly. For instance, ASLR-guard [43] is designed to thwart information disclosure
attacks, but requires compiler changes and cannot be quickly deployed by software
vendors. Second, the deployed mitigation techniques may fail due to newly invented
exploitation techniques (e.g., sandbox bypass technique). We argue that an ideal miti-
gation technique should be flexible to deploy without requiring code changes and should
subvert inevitable exploitation stage(s).

We observe that a typical JavaScript exploit adopts memory preparation to manip-
ulate the memory states. This is an essential step for JavaScript exploits since attackers
need to put deliberately chosen content (e.g., ROP chain, shellcode) into a known mem-
ory location prior to execution of that code. This offers an opportunity for defenders to
stop the exploits by disabling this memory preparation step.

In this paper, we propose ChaffyScript, a vulnerability-agnostic mitigation system
that blocks JavaScript exploits via undermining the memory preparation stage. Specifi-
cally, given suspicious JavaScript, ChaffyScript rewrites the code to insert chaff code,
which aims to perturb the memory state while preserving the semantics of the original
code. JavaScript exploits will inevitably fail as a result of unexpected memory states
introduced by chaff code, while the benign JavaScript still behaves as expected since
the memory perturbation code does not change the JavaScript’s original semantics.

Compared with current mitigation techniques, ChaffyScript has the following ad-
vantages: (1) it requires no changes to the host software and thus is easily deployable;
(2) it does not introduce false positive and can defeat zero-day (or previously unseen)
attacks; (3) the implementation of ChaffyScript is simple and robust; and (4) it incurs
low runtime and memory overhead, and can be deployed for on-line defense.

We have implemented a prototype of ChaffyScript, which consists of three main
components: a memory allocation/de-allocation discovery module to identify the po-
tential memory preparation operations, a lightweight type inference module to prune
the unnecessary memory preparation candidates, and a chaff code generation module to
insert chaff code alongside memory preparation operations. As a demonstration of the
deployment flexibility afforded by our approach, we have integrated ChaffyScript into
a web proxy to protect users against malicious HTML files. Our evaluation results show
that: 1) the probability of guessing the correct memory states after ChaffyScript is ex-
tremely low (Section 6.1), 2) ChaffyScript can thwart the latest JavaScript exploits ef-
fectively (Section 6.2) and 3) it incurs runtime overhead 5.88% for chrome and 12.96%
for FireFox at most, and the memory overhead is 6.1% for the minimal JS heap usage,
and 8.2% for the maximal JS heap usage during runtime on Octane benchmark [14]
(Section 6.3).

In summary, the contributions of this work are:

– We made a key observation that memory preparation is an essential stage in JavaScript
exploits.

– Based on this observation, we proposed and designed ChaffyScript to disable the
memory perturbation stage by inserting chaff code.

– We have implemented a prototype system, ChaffyScript, and our evaluation shows
that ChaffyScript incurs acceptable runtime performance overhead and memory
overhead on Octane benchmark and defeat all of the 11 JavaScript exploits.
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– We demonstrated the deployment flexibility via integrating ChaffyScript into a
web proxy to protect users against malicious HTML files.

2 Technical background and motivation

2.1 JavaScript Exploits

The interactive nature of JavaScript allows malicious JavaScript to take advantage of
binary vulnerabilities (e.g., use-after-free, heap/buffer overflow) that are otherwise dif-
ficult to exploit. JavaScript provides attackers with a much easier means to conduct heap
spraying [32], information leakage [49], and shellcode generation.

Figure 1 illustrates the high-level stages of JavaScript exploits [20]. In the pre-
exploitation stage, malware fingerprints the victim machine to determine the OS ver-
sion and target software and then launches the corresponding exploit. The exploitation
stage triggers the vulnerability, bypassing exploit mitigation techniques (e.g., ASLR,
EMET [11], and Control Flow Guard [7]) and diverts the code execution to the injected
payload. The post-exploitation stage executes a Return-Oriented-Programming (ROP)
payload to bypass DEP, drops the malicious payload while attempting to evade detec-
tion from endpoint security products.

Pre-Exploitation
OS Identification 
Software Identification
Version Identification

Exploitation
Memory Preparation
Vulnerability Preparation
Memory Disclosure
Payload Preparation
Code Execution

Post-Exploitation
Return Oriented Programming
Payload Execution
Continuation-of-Execution
Persistence

Fig. 1: The overall exploitation stages.

Defense against these exploits has evolved to react to the advances in exploitation
techniques. Any defensive techniques that stop one of the exploitation stages can pre-
vent the exploits from infecting victim machines. Some exemplar defenses include:

1) Cloaking the OS/software version during the pre-exploitation stage to stop attackers
from launching the correct exploits.

2) Tools like BrowserShield [47] instrument the execution of JavaScript to match the
predefined vulnerability feature and block the execution once a match is found.

3) Randomization-based techniques like Instruction Set Randomization [38] introduce
uncertainty in the target.

4) Tools like ROPecker [28] exploit the Last Branch Record hardware feature to detect
the execution of ROP chains.

5) Control Flow Integrity (CFI) [23] based techniques [52] are used to prevent the
execution of injected payloads.

While these exploitation mitigation techniques are constantly improving, hacking
contests like Pwn2Own [19] and GeekPwn [12], consistently demonstrate that the lat-
est versions of Chrome, Safari, Internet Explorer, and Edge can still be exploited. The
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reasons are two-fold: (1) most of the latest proposed mitigation techniques require soft-
ware or compiler tool chain changes which may cause compatibility issues and thus
cannot be deployed promptly; and (2) the deployed mitigation techniques may fail due
to newly invented exploitation techniques. For instance, DEP mitigation can be defeated
by ROP attacks. The JITSpray [50] makes the ROP defense useless since ROP is not
needed anymore to bypass DEP in JITSpray based attack.

2.2 Memory Preparation

Based on our observations, the memory preparation stage is a critical stage for exploits.

Memory Management of the JavaScript Engine Before discussing memory preparation
techniques, we first take V8 [6] as an example to present an overview of memory man-
agement within a JavaScript engine. JavaScript engines dynamically manage memory
for running applications so that developers do not need to worry about memory manage-
ment like coding in C/C++. V8 divides the heap into several different spaces: a young
generation, an old generation, and a large object space. The young generation is divided
into two contiguous spaces, called semi-space. The old generation is separated into a
map space and an old object space. The map space exclusively contains all map objects
while the rest of old objects go into the old space.

Each space is composed of a set of pages. A page is a contiguous chunk of memory,
allocated from the operating system with system call (e.g., mmap). Pages are always
1 MB in size and 1 MB aligned, except in a separate large object space. This separate
space stores objects larger than Page::kMaxHeapObjectSize, so that theses large
objects are not moved during garbage collection process.

The allocated objects will be put into different spaces based on their size, type,
and age. Garbage collection process is responsible for 1) scavenging young generation
space by moving live objects to the other semi-space when semi-space becomes full; 2)
major collection of the whole heap to free unreferenced objects and aggressive memory
compaction to clean up fragmented memory. The other JavaScript engines like Spi-
derMonkey [21] and ChakraCore [5], JavaScriptCore [15] share the similar design of
memory management. Attackers commonly abuse the memory management features to
manipulate the memory states, known as memory preparation.

Memory Preparation Techniques Memory allocation and free operations are used to
manipulate the memory. We can categorize these techniques based upon how they
change the memory layout:

1) Emit data in a target address. This is usually implemented with a heap spray tech-
nique like Heap Fengshui [51] and its successors [3]. These techniques spray crafted
objects into the heap. The size and type of the objects are carefully chosen to exploit
the memory management of JavaScript engine. ¶

2) Emit adjacent objects. This is implemented by allocating two objects with the same
type and size sequentially so the JavaScript engine will likely keep them adjacent
in the heap; this technique is widely used by attackers. ·
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3) Create holes in memory. This is implemented by allocating adjacent objects first,
then freeing one of them. A hole is created among those adjacent objects. ¸

4) De-fragment the heap. This is usually implemented via calling a garbage collec-
tion API provided by host software (e.g., CollectGarbage() in IE) or via a
carefully crafted JavaScript snippet that forces the garbage collection process as
discussed in Section 4.1.¹

In theory, attackers can use any JavaScript types to prepare memory. However, in
practice String and Array are the best candidates because the implementations of
these two types, especially Typed Array, are very close to native string/array in
C/C++, making it easy for attackers to control them in memory. The implementation
of other primitive types (Boolean, Null, Number, Symbol) and objects (e.g.,
Math) are quite different. They are stored either as references or complex tree structures
in memory, and thus it is difficult to precisely manipulate them in memory. Realizing
that memory preparation is an essential step towards successful JavaScript exploit, a
natural question rises in our mind: “How can we disrupt this stage without changing the
code of the host software?” The answer is: memory perturbation.

2.3 Memory Perturbation Techniques

Table 1: The overview of memory perturbation techniques.

Category Approaches
Memory
Change

Code
Trans.
Overhead

Storage

a. Split Variables 1, 2 High
b. Change Encoding 1 High
c. Promote scalars to objects 1, 2 High
d. convert static data to procedure 1, 2 Medium

Aggregation
e. Merge scalar variables 1, 2 High
f. Split, merge, fold, flatten arrays 2 High

Ordering
g. Reorder instance variables 2 Medium
h. Reorder arrays 2 High

Inserting
i. Insert noise data allocation/free 2 Low
j. Insert holes into arrays 2 High

1: content change 2: layout change

At a high level, memory perturbation stands for the semantically-equivalent trans-
formation of an existing program, such that the transformed program exhibits a different
and unpredictable memory layout. By nature, this technique shares some similarity with
the data obfuscation technique used in code obfuscation [29] to defeat reverse engineer-
ing attacks because both of them transform the program without changing the program
semantics. In the context of JavaScript-based exploit defense, our goal is to subvert
the memory preparation stage through memory perturbation, so that exploits are de-
feated at runtime due to unpredictable memory states. While data obfuscation can make
very aggressive obfuscation, memory perturbation technique in ChaffyScript has to be
lightweight for performance concern. To the best of our knowledge, we are the first to
propose lightweight memory perturbation technique for JavaScript exploit defense.
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var x= 48;
var  y =9;
C = x +y;

var z = x <<32| y;
C = z>>32 + z &0xFFFFFFFF;

e
var b 

=[2,3,4,5,6];
var b1 = [2,3];
var b2=[4,5,6];

f.split

f.merge

var a = [2, 3, 
4, 5, 6,7]

var b =[[2,3,4], 
[5,6,7]]

f.fold

f.flatten

var a =[6]
var b =[7]

var b =[7];
var a = [6];

var c = [1,2,3];
var d =c[2];

var c=[3,2,1];
var d=c[0];

h
var a =[6];
var b =[7];

var a =[6];
var noise = [8];
var b =[7];

i

var d =[7,8,9];
var c = d[2];

var d = [7,8,hole,9]
Varc=d[3]

var A = true;
If(A){}

var c = 1;
var d = 0;

If(and(c,d)){}
a

var A=5;
C = A*2;

var A=5^key;
C = A^key*2;

var c = 2017;
var c = new 

Number(2017);
c var s ="HELLO"

function getHello(){
     var s="ABCDHELLO";
      return  s.substr(4,9);
}

d

Fig. 2: Samples of memory perturbation techniques summarized in Table 1.

Table 1 provides an overview of memory perturbation techniques. In general, these
techniques can be divided into 4 categories as affecting the storage, aggregation, or-
dering or inserting of the data in memory. Figure 2 presents sample code snippets for
each of the approaches referenced in Table 1. While each of the approaches can induce
similar memory changes regarding memory layout or content, the overhead associated
with each of these approaches varies. For instance, Approach i only needs one statement
insertion operation for the code transformation. It does not need any further program
analysis to keep the semantics intact since the inserted statement does not affect the
original code’s data and control flow. However, Approach f requires additional program
analysis to keep the program semantics intact. This is because after the array is restruc-
tured, a whole program def-use analysis has to be conducted to identify all the affected
code and then update the code accordingly (update array index, array name, etc.). Col-
umn D of Table 1 presents the code transformation overhead for each approach.

2.4 Our Mitigation Solution

Based upon the previous discussion, we propose a vulnerability-agnostic defense ap-
proach for JavaScript exploits, ChaffyScript. Specifically, given suspicious JavaScript,
ChaffyScript rewrites the code to insert chaff code to perturb memory states at runtime,
while preserving the semantics of the original JavaScript code.

At first glance, our technique seems very similar to the diversification techniques
summarized in [40], which also introduce randomness to stop exploits. These tech-
niques diversify the host software at instruction level, basic block level, function level,
program level, and system level, and require modifications to the source code or bi-
nary code of the host software. On the contrary, ChaffyScript diversifies the input
(JavaScript is the input of the host software (e.g., Chrome, IE, etc.)) to stop exploits,
and no code changes on the host software are required. Therefore, the deployment of
ChaffyScript is effortless.

To summarize, compared with current mitigation techniques, ChaffyScript has the
following advantages:

1) Vulnerability-agnostic nature. ChaffyScript does not rely on any specific vulnera-
bility features as BrowserShield [47] does. Thus it is vulnerability-agnostic and can
be used to defend against 0-day attacks.
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Memory 
Allocation/Free

Candidates 
Discovery

Lightweight 
Type Inference

Chaff Code
Generation

Suspicious
JavaScript

Defanged
JavaScript

Memory Perturbation

Fig. 3: The overall architecture of ChaffyScript.

2) Flexible deployment. JavaScript rewriting can be implemented without the change
of host software (e.g., Chrome and IE). This makes the deployment of ChaffyScript
very flexible. Users can disable or enable ChaffyScript promptly based upon their
needs.

3) Stronger protection. As evaluated in Section 6.1, ChaffyScript provides much stro-
nger protection than randomization-based approaches (e.g., ASLRGuard [43]).

In the following sections, we will elaborate details on the threat model and scope,
design, and implementation of ChaffyScript.

3 Threat Model and Scope

To make sure our solution is practical, we define our threat model based on strong
attack assumptions. We assume a commodity operating system with standard defense
mechanisms, such as no-executable stack and heap, and ASLR. We assume attackers
are remote, so they do not have physical access to the target system, nor do they have
prior control over other local programs before a successful exploit.

We assume that the attacker use JavaScript to exploit the memory corruption vulner-
abilities (use-after-free, memory disclosure, etc.), manipulate the memory layout, and
divert the control flow to execute arbitrary code of his/her choice. These exploitations
include but are not limited to control data attack, non-control data attack [55], and side
channel attack [35]. With the deployed standard defense mechanisms, it is reasonable
to assume that the attacker uses memory preparation to manipulate the memory lay-
out since the bypass of the standard defense mechanisms needs precise memory layout
preparation. This is true even when the attacker can exploit memory disclosure vulnera-
bilities because 1) most of the memory disclosure vulnerabilities needs precise memory
preparation to trigger; 2) even in an extreme case that the attacker may read memory
without memory preparation, the success of the other stages of JavaScript exploit (pay-
load preparation, code execution, etc.) still rely on precise memory preparation. We
impose no restrictions on the exploitation techniques.

Out-of-scope threats. Cross-site scripting (XSS) [39] and Cross-site forgery(CSRF)
[25] are out of our scope since they do not target at memory corruption vulnerabilities.

4 Design

In theory, all of the memory perturbation techniques discussed in Section 2.3 could
be used to sabotage the memory preparation stage in JavaScript exploits. In practice,
an on-line defense approach should incur minimal code transformation overhead and
thus cannot afford complex program analysis. With that in mind, we only apply Ap-
proach i in ChaffyScript for memory perturbation, which is good enough for defeating
JavaScript exploits as demonstrated in Section 6. Specifically, ChaffyScript conducts
JavaScript rewriting by inserting chaff code to 1) allocate random chunks of memory
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along with existing memory allocation operations, and 2) disable memory free opera-
tions by adding an additional reference to freed objects. We leave the exploration of the
rest memory perturbation techniques as future work.

Figure 3 demonstrates the overview of ChaffyScript. Given a suspicious JavaScript,
it first traverses the code to discover memory allocation/de-allocation candidates. Then
a lightweight type inference process is conducted on these candidates to identify the
interesting memory allocation/free candidates that are usually used for memory prepa-
ration by attackers; this reduces unnecessary chaff code insertions and improves run-
time performance. Finally, the chaff code is generated and inserted into the original
JavaScript code to get a transformed JavaScript. At runtime, the chaff code will allocate
random memory or disable memory free operations to destroy the memory preparation
stage of JavaScript-based exploits. Benign JavaScript still executes normally since the
chaff code does not change the original code’s expected semantics.

4.1 Memory Allocation/De-Allocation Candidate Discovery

As discussed in Section 2, there are two kinds of operations that affect the memory state:
object allocation and de-allocation. ChaffyScript inspects JavaScript code to identify
the following memory manipulation candidates:
Memory Allocation Candidates As discussed in Section 2.2, String and Array are two
common data types used by attackers to fill memory. ChaffyScript traverses JavaScript
code to identify potential memory allocation candidates for String and Array operations.
However, precise type inference for JavaScript is quite expensive [24]. So, to be simple,
the new expression (e.g., var c = new Array(5)), value initialization expression (e.g.,
var c = [3,7]), and built-in function callsite (e.g., var c = a.substr(0,10)) are all consid-
ered as memory allocation candidates since they can trigger memory allocation in the
heap. Note that the callee name can be dynamically generated in JavaScript. Thus, we
cannot statically determine if it is a targeted built-in function callsite. To be complete,
the callsites with dynamically generated callees are also considered as memory alloca-
tion candidates. In JavaScript String objects are immutable, so operations that change
String objects (e.g., the ‘+’ and ‘+=’ operators) will also cause memory allocation.
ChaffyScript also considers expressions with the ‘+’ and ‘+=’ operators as potential
memory allocation candidates.

Memory De-allocation Candidates In JavaScript, there are three ways to explicitly free
memory: assign null to the object, use the delete operator and explicitly trigger garbage
collection. The first two methods remove the reference to the allocated object. For in-
stance, delete object.property removes the reference to the property object. However, it
does not directly free the property object in memory. When the property object is no
longer referenced by any other objects, garbage collection process will eventually free
it in memory. ChaffyScript still considers null assignment and delete calls as memory
de-allocation candidates because attackers often use them to create holes in memory,
so objects allocated later can fill these holes to trigger some vulnerabilities (e.g., Use-
after-Free).

Explicit garbage collection (GC) calls are usually used by attackers to defragment
the heap [32]. Some browsers like Internet Explorer and Opera provide public APIs
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(e.g., CollectGarbage() for IE) to trigger garbage process. ChaffyScript can easily
identify this kind of garbage collection process by matching the API name. However,
the other browsers’ garbage collection process can only be triggered when certain mem-
ory states are reached; in these cases there are no APIs to explicitly trigger the process.
In these cases, attackers usually fill objects in memory to trigger the garbage collection
process. For instance, the following code can fill up the 1MB semi-space page of V8
engine and force V8 to scavenge NewSpace.

1 f o r ( v a r i =0 ; i < ( (1024*1024) / 0 x10 ) ; i ++)
2 {
3 v a r a = new S t r i n g ( ) ;
4 }

This kind of GC trigger is implicit and difficult to identify. Nevertheless, it includes
memory allocation operations and will be considered as a memory allocation candidate
and will still be captured by ChaffyScript. GC events using DOM objects instead of
String and Array are not captured by ChaffyScript, but this is only one of the mem-
ory preparation techniques used by attackers. Furthermore, JavaScript exploits usually
combine multiple memory preparation techniques, thus allowing ChaffyScript to be
effective even when hybrid memory preparation methods are used.

The host software also provides APIs to allocate and free objects. For instance,
on the browser, users can invoke the DOM API to add or remove node objects from
the DOM tree. While in theory, it is possible for attackers to manipulate those APIs
during memory preparation, as discussed in Section 2.2, it is challenging to do that since
the layout and content of DOM objects are difficult to control. When a new memory
preparation technique is discovered, we can update the memory allocation/de-allocation
candidate discovery stage in ChaffyScript to block this new attack technique.

4.2 Lightweight Type Inference

The collection of memory allocation candidates is a superset of the memory alloca-
tion candidates of String and Array objects. If we insert chaff code along with all the
candidates, the runtime performance would be unacceptable. To improve the runtime
performance of rewritten JavaScript, we conduct lightweight type inference to prune
the memory allocation candidates that are not related to String and Array objects. It is
executed in two steps: static type inference and dynamic type inference.

Static type inference ChaffyScript only keeps the memory allocation candidates that
operate on variables typed as String, Array, ArrayBuffer, Int8Array, Uint8Array, Uint8-
ClampedArray, Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, or
Float64Array. We can infer the types of the variables in expressions statically based
upon how they are used. ChaffyScript uses the three following type inference rules:

1) The constructor of the new operator indicates the type of created object. For in-
stance, the constructor Int16Array in var b = new Int16Array(256) indicates the
type of b is Int16Array.
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2) The return value of a built-in function indicates the type based on its description.
For instance, var c = s.split(”a”) indicates that the type of c is Array.

3) For expressions with the ’+’ or ’+=’ operators, if the type of the operands is String,
then the result is also a String.

These three simple rules do not require complex program analysis and can be used to
efficiently determine the variable types to filter out the memory allocation candidates.
If static type inference cannot determine the types of all the variables used in memory
allocation candidates, we conduct dynamic type inference to determine the variable
types at runtime.

Dynamic type inference Static type inference does not always work for two reasons.
First, since a function call’s name can be dynamically generated, we cannot determine
an object’s type based upon the function’s return value. Second, the three typing rules
can be insufficient to determine the variable types in some cases. For instance, the three
typing rules cannot be applied to candidates {var d = a + b + c}. It is possible
to determine the type of a, b and c via backward analysis, but that is likely too expensive
for our online defense system use case. Instead, we conduct dynamic type inference with
the help of certain JavaScript features. In JavaScript, a variable’s type can be extracted
at runtime using the instanceof operator. With this operator, ChaffyScript inserts
the dynamic type inference after the memory allocation candidate to check if it operates
on one of the targeted types. While dynamic type inference incurs runtime performance
overhead, it is less expensive than static type inference.

As a result, the combination of static and dynamic type inference makes it impossi-
ble for attackers to bypass our type inference process.

4.3 Chaff Code Generation

The goal of inserted chaff code is to affect the memory states at runtime. It achieves this
goal via the following two methods.

Disable object de-allocations For object de-allocations using public APIs like Collect-
Garbage() in IE, ChaffyScript directly removes the API call from the original code.
This does not change the semantics of original JavaScript code because garbage collec-
tion APIs does not have data or control dependency on the original code.

For object de-allocations using the delete operator or assigning a null value,
the above method does not work because simply removing such code will change the
semantics of the original code. The attackers’ goal of freeing an object is to create holes
in memory, so later allocated objects can occupy the freed memory. If we keep a refer-
ence to the object before the free operation is executed, the later allocated object can not
occupy the position since the allocated memory still has a reference to it. Figure 4.(a,b)
illustrates an example of such a transformation. In code snippet [a], x is assigned
the value null. In the transformed code [b], ChaffyScript has added a new variable
4613335ea9901 to store a reference to ‘‘abcdefgh’’. Although x is assigned
to null, the object ‘‘abcdefgh’’ will not be scavenged since 4613335ea9901
keeps a reference to it.
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v a r x = ” a b c d e f g h ” ;

x = n u l l ;

c o n s o l e . l o g ( x ) ;

[a]

v a r x = ” a b c d e f g h ” ;

v a r 4613335 ea9901 =

x ;

x = n u l l ;

c o n s o l e . l o g ( x ) ;

[b]

v a r y = new

A r r a y B u f f e r

( 1 0 2 4 ) ;

[c]

v a r y = new A r r a y B u f f e r

( 1 0 2 4 ) ;

v a r e512da1951cdd7 = new

A r r a y B u f f e r ( y .

b y t e L e n g t h + RANDOM)

;

93 f208876cd2bd . push (

e512da1951cdd7 ) ;

[d]

Fig. 4: Chaff code samples.

Insert chaff code after object allocations As discussed in Section 2, if two objects of
the same type are allocated sequentially and with the same size, it is likely their posi-
tions on the heap are adjacent to each other. Attackers exploit this feature to manipulate
the memory layout and content. ChaffyScript is also able to exploit this detail to de-
feat this exploit. After every memory allocation candidate, ChaffyScript inserts code to
allocate additional memory with the same type, but with variable-length padding (RAN-
DOM) at the end. Figure 4([c],[d]) presents an example of such code transformation.
As you see in code snippet [d], a new ArrayBuffer is allocated with size (y.byteLength
+ RANDOM). With this randomness, it is almost impossible for attackers to guess the
combinations of memory states as evaluated in Section 6.1.

To generate RANDOM, ChaffyScript provides two approaches to increase an at-
tacker’s uncertainty. The first one is at runtime; every time the inserted chaff code is
executed, a new random number is generated for RANDOM. So if a given piece of chaff
code is executed 1000 times, and the range of RANDOM is 0-50, it will create 501000

possible memory states at runtime. The second approach happens when we are inserting
the chaff code into original JavaScript code; a random number is generated for RAN-
DOM. This value is used to randomly increase the size of the memory chunk allocated
by this piece of chaff code. For example, if 15 places are inserted by the chaff code, and
the range of RANDOM is 0-50, 5015 possible memory states will be created at runtime.
Both approaches can defeat the JavaScript exploits with different security guarantees
and performance overhead as discussed in Section 6.

The range of RANDOM cannot be too big. Otherwise, the objects allocated by chaff
code might be allocated in a different location. Thus that fails to break adjacent arrays
(·). In our implementation, we set it as 0-50. This range works against memory prepa-
ration techniques while providing enough randomness as demonstrated in Section 6.1.

Since our inserted code is independent of the original code, attackers may abuse
garbage collection to scavenge the allocated chaff memory and neutralize the effects
of inserted chaff code. To avoid this, ChaffyScript keeps a reference to every allo-
cated piece of chaff memory. This prevents scavenging of chaff memory by the garbage
collection process because there is always at least one reference to the allocated chaff
memory.

The variable names used in the chaff code are generated randomly. This prevents
attackers from identifying memory allocated by the chaff code alongside their mem-
ory preparation code. Thus attackers cannot leverage variable naming conventions to
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identify memory used as part of our countermeasures, thus making bypass of these
countermeasures impossible.

5 Implementation

We implemented ChaffyScript using esprima [10]. It is a JavaScript parser used to
generate Abstract Syntax Tree (AST) with full support for ECMAScript 6. Since it
is written using JavaScript, it can be easily embedded into different documents like
HTML or PDF. This makes the deployment very flexible. We use Estraverse [9] to
traverse the AST, discover memory allocation/free candidates and perform lightweight
type inference. The chaff code insertion is implemented via directly manipulating the
original code with the offset information collected from AST generation process. We do
not operate on AST directly to insert the chaff code because generating code from AST
is more expensive than directly manipulating the original code. Section 6.3 evaluates
the difference of rewriting performance for these two approaches.

The deployment of ChaffyScript is very flexible. It can be deployed as a browser
extension, a web proxy, a standalone rewriting engine or one component of a JavaScript
engine. In this paper, we demonstrated one deployment approach to protect users against
malicious HTML files.

HTML Protector Ideally, it is most user-friendly to deploy ChaffyScript as a browser
extension. Unfortunately, JavaScript rewrite, used to implement code transformation
in ChaffyScript, is not natively supported in browser extensions. Instead, we deploy
ChaffyScript as a web proxy. The downside is that a user needs to install an exter-
nal program (and certificate) as opposed to only an extension. The benefit is that this
proxy-based solution is browser-independent and can be easily deployed with minimal
configuration.

We implemented the prototype in Node.js [17], using the http-mitm-proxy pack-
age [13]. ChaffyScript becomes an integral part of the Web proxy. We followed Dach-
shund [44]’s approach to handle dynamically generated code. Specifically, the dynamic
code generation functions (e.g., eval, SetTimeout, Function, SetInterval) were hooked
via new injected JavaScript code. To rewrite dynamically generated code, we used syn-
chronous XMLHttpRequest requests from hooked JavaScript functions to the proxy. The
response from the proxy contains the rewritten JavaScript code.

6 Evaluation

In this section, we present the evaluation of ChaffyScript. The evaluation tries to an-
swer the following questions: First, How secure is ChaffyScript’s approach in theory,
compared to general randomization approaches? Second, how secure is ChaffyScript’s
approach against practical JavaScript-based exploits? Third, how much overhead does
ChaffyScript impose, with respect to chaff code generation, runtime and memory over-
head of the resulting chaff code?

Experimental setup. The performance overhead experiment was run under Chrome
57 and Firefox 54. All the experiments are conducted on a test machine equipped with
intel Core i7-4790 CPU @ 3.60GHz x 8 with 16GB RAM.
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Table 2: Experimental results of 11 latest JavaScript-based exploits using ChaffyScript

CVE Environment Setup
Memory
Preparation M N Defeated?

CVE-2015-2419 IE11/32bit win7 ¶ · ¹ 28 12594 Y
CVE-2015-1233 Chrome 41.0.2272.118/win1032bit ¶ · ¹ 9 8194 Y
CVE-2015-6086 IE11/32bit win7 ¸ ¹ 12 1280 Y
CVE-2015-6764 Chrome 46.0.2490.0/win10 32bit ¶ · ¹ 14 393224 Y

CVE-2016-9079 FireFox 50.0.1 32bit /Windows8.1
¶ · ¹

(JITSpray)
13 20564 Y

¶ · ¹ 28 17408 Y
CVE-2016-3202 (ms16-063) IE11/Win7 32bit ¶ · ¸ ¹ 12 110005 Y
CVE-2016-1646 Chrome 46.0.2490.0/win10 32bit ¶ · ¹ 18 393226 Y

V8 OOB write
Chrome 60.0.3080.5
Linux14.04 64bit

· 10 10 Y

X360 videoPlayerActiveX
IE10/VideoPlayerActiveX 2.6,
win7 64bit ¶ · 9 352258 Y

CVE-2017-5400 Firefox 51.0.1 32bit/Win10 64bit ¶ · ¹ 7 2702 Y
M: # of inserted chaff code N: Executed times # of chaff code at runtime

6.1 Security Analysis

In this subsection, we present an analysis to determine the probability that an attacker
could predict the memory layout after memory perturbation is introduced by ChaffyScript.
The randomness introduced by ChaffyScript is determined by the following parame-
ters:

1) RANDOM - the size variation range of created object by chaff code.
2) M - number of inserted chaff code.
3) N - executed times of chaff code at runtime.

The probability of guessing the correct memory states is defined as the following
equation.

probability =

⎧⎪⎪⎨⎪⎪⎩
RANDOM -M predefine RANDOM

RANDOM -N GenRANDOM atruntime

If RANDOM is predefined when ChaffyScript inserts the chaff code, the probability
is RANDOM -M . If a random number is generated for RANDOM every time the chaff
code is executed, the probability is RANDOM -N . If it is too big, the allocated objects
by chaff code may not be adjacent to the objects allocated by original code. Thus it
cannot break memory preparation ·. In our implementation, we set RANDOM as 50
and it worked well on defeating JavaScript exploits as evaluated in Section 6.2.

The values of M and N vary case by case. Column 4 and Column 5 in Table 2 record
the values of M and N for 11 exploits. The average of M was 15, and the average of
N was 130876. The probability for JavaScript exploits in our implementation should
be 50-15 and 50-130876. This provides much stronger randomness than ASLR [43] (2-64

at most). The highest probability of the 11 exploits was 50-10 which is still stronger
than 2-56. Through this analysis, we conclude that the probability for an attacker to
predict the memory layout is extremely low after memory perturbation is introduced by
ChaffyScript.
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BuggyArray(0x80) FixedArray(0x18)  JSArray(0x30)

FixedDoubleArray(0x20)  JSArray(0x30) FixedArray(0x18)

ArrayBuffer

Fig. 5: Expected memory layout of sample chromev8 OOB write

6.2 Effectiveness

Although in theory ChaffyScript can stop JavaScript exploits, we wanted to know how
well it performed at defeating real JavaScript exploits without the knowledge of the
targeted vulnerabilities. We went over browser-related PoCs in recent years from public
resources like metasploit and technical blogs, collected around 40 of them since 2015,
and eventually managed to successfully set up exploitation environments for 11 of them.
This is our best effort, due to the scarcity of public exploits resources. These 11 exploits
are representative of JavaScript exploits because:

1) The vulnerabilities targeted by these 11 exploits are quite new (from 2015 to 2017).
2) The target host software of these exploits covered the most popular web browsers

(IE11, Chrome, and Firefox)
3) These 11 exploits used all of the memory preparation techniques presented in Col-

umn 3 in Table 2.
4) These 11 exploits covered the popular exploitation techniques - JITSpray and Heap-

Spray.
5) These 11 exploits not only targeted at vulnerabilities in host software, but also in

the browser plugin (X360 videoPlayerActiveX).

BuggyArray(0x80) FixedArray(0x18)  JSArray(0x30)

FixedDoubleArray(0x20)  JSArray(0x30) FixedArray(0x18)

ArrayBuffer

Chaff Memory

Chaff Memory

Chaff Memory

Chaff Memory Chaff Memory

Chaff Memory Chaff Memory

Fig. 6: Memory layout of sample chromev8 OOB write after rewritten by
ChaffyScript

For each exploit, we manually confirmed whether it could be stopped by ChaffyScript.
Column 6 in Table 2 presents the result. As shown in the results, ChaffyScript de-
feated all 11 of the exploits without requiring knowledge of vulnerabilities targeted.
This experiment demonstrated that ChaffyScript can effectively defeat JavaScript ex-
ploits without knowledge of the targeted vulnerability.

Note that the chaff codes inserted into the sample chromev8 OOB write are only
executed 10 times, but still thwart the exploit. This is not like the other samples, in
which the chaff codes are executed thousands of times and change the memory states
substantially. In fact, the memory preparation of this exploit expects the memory layout
as shown in Figure 5. After the chaff code is inserted, the actual memory layout is close
to the layout as shown in Figure 6. The chaff memory breaks adjacent array layout(·).
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Table 3: Rewriting Performance on well-known JavaScript libraries

JS library
jquery.mobile
1.4.2

angular
1.2.5

react
0.13.3

Modify Code string 99 ms 99 ms 100 ms
Modify AST 174ms 169 ms 155 ms

Therefore, the memory preparation of this exploit fails and this exploit is thwarted even-
tually. This case further demonstrates the effectiveness of memory perturbation used in
ChaffyScript since it uses very few memory perturbation operations.

6.3 Performance

Rewriting Overhead In order to evaluate the rewriting overhead of ChaffyScript, we
chose to measure the three popular and large JavaScript libraries - JQuery (mobile-
1.4.2), AngularJS (1.2.5), and React (0.13.3). These libraries are commonly embed-
ded in web pages and relatively large compared with other JavaScript applications
(JQuery has 443KB, AngularJS has 702KB, React has 587KB). For the evaluation, we
rewrote these libraries using ChaffyScript 1000 times. We measured the time required
to rewrite these libraries, including all the steps required to generate chaff JavaScript.

We tested two code transformation approaches. The first approach modified the code
directly based upon the offset information collected by the JavaScript parser. The sec-
ond approach modified code within the AST. As demonstrated in Table 3. The time
spent by the second approach is 1.67 times more than the first approach. ChaffyScript
chose the first approach in the implementation. On average, It took 1̃00ms to rewrite
JQuery, AngularJS, and React. Note that rewriting is a one-time effort and we can fur-
ther optimize performance by rewriting multiple scripts in parallel.

Table 4: Overall Overhead of ChaffyScript on Octane benchmark
Cofiguration Chrome Firefox
a. Runtime Generated RANDOM + GC escaper 5.88% 12.96%
b. Runtime Generated RANDOM 4.54% 7.98%
c. Predefined RANDOM + GC escaper 5.68% 11.27%
d. Predefined RANDOM 4.53% 6.60%

Runtime Overhead Next, we evaluated the runtime performance that is incurred on
the client side due to the modified JavaScript code. We leverage Octane, a commonly-
used benchmark for JavaScript engines [14]. For the evaluation, we ran the Octane
benchmarks 5 times and used the mean scores as the final results.

Table 4 summarizes the overall overhead on the Octane benchmark under different
ChaffyScript configurations. With the strongest protection, ChaffyScript incurs 5.88%
overhead in Chrome, and 12.96% in FireFox. With the weakest protection, ChaffyScript
incurs 4.53% in Chrome and 6.60% in Firefox. As discussed in Section 6.1, the weak-
est protection can still provide an acceptable randomness strength. Note that our threat
model is only relevant to non-trusted and attacker-controlled JavaScript. Thus the over-
head of popular JavaScript libraries can be eliminated by whitelisting trusted scripts.
This overhead after the whitelisting should allow ChaffyScript to be deployed online
to protect users against JavaScript exploits.
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Table 5: Memory Overhead of Chrome on Octane benchmark
Usage Original a b c d

Min(MB) 34.4
36.5
(6.10%)

36.5
(6.10%)

36.5
(6.10%)

36.4
(5.81%)

Max(MB) 609
659
(8.2%)

656
(7.71%)

640
(5.09%)

638
(4.76%)

a, b, c , d refers to the four ChaffyScript configurations described in Table 4

Memory Overhead In theory, the memory overhead should be around 2 times at most.
This is because along with each object allocation, ChaffyScript could allocate another
object with a similar size to disturb memory states. If all of the inserted objects by chaff
code are not freed finally by Garbage Collector, the memory usage of the defanged
JavaScript would be up to 2 times of the original JavaScript.

To evaluate the actual memory overhead, we ran Octane on Chrome and recorded
the memory usage of JavaScript heap. Table 5 summarizes the results. Min refers to
the observed minimal memory usage of JavaScript heap during the running of Octane,
while Max refers to the observed maximal memory usage. As demonstrated in the table,
for all four different ChaffyScript configurations, the memory overhead never exceeded
8.2%. This is not a big overhead since RAM has become very cheap and current per-
sonal computers are usually equipped with at least 8GB memory. Thus, ChaffyScript
can be deployed by users without requiring upgraded hardware.

7 Discussion

Limitations of ChaffyScript First, attackers may find methods to bypass the JavaScript
rewriting process. For instance, lexer confusing attacks [16] confuse the lexer caus-
ing executable code to be interpreted as the content of strings or comments, allow-
ing an attacker to slip arbitrary unsafe code past a rewriter or verifier. The rewriter
of ChaffyScript is vulnerable to this attack. In the future, we would like to adopt
JaTE’s [53] approach by considering all formats of JavaScript comments to gain re-
silience to this attack. It is also possible to attack the JavaScript parser esprima with
crafted JavaScript. As a result, the code transformation cannot be finished. Fortunately,
ChaffyScript can identify such attacks because it can detect esprima errors. ChaffyScript
can alert security researchers for further analysis once such failures are observed.

Second, the JavaScript extraction approach used in deployment may undermine
ChaffyScript. Attackers may hide JavaScript in an unusual way to escape from the
extraction, thus preventing ChaffyScript from rewriting those portions. For instance,
attackers may abuse PDF parsers to hide malicious JavaScript code [26]. This is not a
ChaffyScript issue, but rather is a JavaScript extractor issue. Deployment of a state-of-
art JavaScript extractor with ChaffyScript would reduce the risk of such attacks.

Third, ChaffyScript does not work on hybrid JavaScript exploits. Basically, such
kind of exploits use JavaScript to trigger the vulnerability, and use other script language
(e.g., ActionScript in Flash) to prepare the memory. This is quite common in recently
years since vector-related rehabilitates in Flash are quite exploit-friendly, allowing con-
struction of arbitrary memory read/write primitives [4]. However, it is possible to deploy
the techniques used in ChaffyScript on ActionScript to stop such attacks as discussed
in the following subsection.

Fourth, although extremely difficult, attackers may be able to find object types other
than String and Array to prepare memory layout. This is only a limitation for our
current implementation. Once these new memory preparation techniques are identified,
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ChaffyScript just needs an update to its memory allocation/free candidate discovery
process to reflect the new memory preparation technique.

Applicability on the other script-based exploits JavaScript is not the only script lan-
guage that can be used to launch exploits; other script languages like VBScript [22] and
ActionScript [1] are commonly used to launch exploits. These script-based exploits are
widely used to create malicious Microsoft Documents (word, excel, powerpoint,etc.),
flash files, web pages [2]. So the question rises in our mind - Can ChaffyScript be
applied to stop the other script-based exploits?

The answer is yes because: 1) Script-based languages share a similar memory man-
agement approach. They all use some sort of garbage collector to recycle the memory
and conduct automatic garbage collection at runtime. 2) Memory preparation is a gen-
eral stage in exploits. Attackers require this stage to bypass mitigation techniques like
ASLR, CFG [7] with crafted memory. This stage is also used by the other script-based
exploits. 3) Other script-based languages also execute interpretively and can be rewrit-
ten as JavaScript. This allows ChaffyScript to provide the protection via rewriting.

To demonstrate this, we set up the exploitation environment for CVE-2016-0189 [18].
It is a VBScript-based exploit targeting a VBScript memory corruption in IE11. We
manually applied ChaffyScript’s rewriting process and insert the memory perturbation
code. The test shows that this exploit is successfully blocked by memory perturbation.
This demonstrates that ChaffyScript can also be applied to stop the other script-based
exploits.

To apply ChaffyScript on the other script language, we need the corresponding
script parser, and also need to adapt the lightweight typing rules on the new script
language since different languages support different typing systems. These adaptations
are feasible and can be implemented with engineering efforts.

8 Related Work

Malicious JavaScript Detection Malicious JavaScript detection has been a hot research
topic. Several systems have focused on statically analyzing JavaScript code to identify
malicious web pages [41][33][48][31].

Then dynamic analysis [30,42,37] is widely deployed to expose behaviors of ob-
fuscated JavaScript code. These approaches often require complex code analysis and
cannot be deployed online to protect users against malicious JavaScript. Therefore, they
are used to generate IDS rules for runtime detection. In comparison, ChaffyScript can
provide users real-time protection without any knowledge of the targeted vulnerabili-
ties.

Exploit Mitigation Mitigation techniques (Control Flow Integrity [23,52,56,46], ROP
Mitigation [27,28,11], Randomization [35,43,34] have been evolving with the advance-
ment of exploitation techniques. However, the current mitigation techniques usually
require changes to source code or binaries and thus cannot be deployed promptly. In
addition, once deployed, they cannot be rapidly upgraded as exploitation techniques
advance. In contrast, ChaffyScript’s JavaScript rewriting approach allows for a more
flexible deployment.
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JavaScript Rewriting JavaScript rewriting has been used by researchers to meet var-
ious security requirements. BrowserShields [47] uses it to stop JavaScript exploits by
matching predefined vulnerability features. It does not work for 0-day exploits, while
ChaffyScript does. ConScript [45] rewrites JavaScript to specify and enforce fine-
grained security policies for JavaScript in the browser. Dachshund [44] secures against
blinded constants in JIT code via removing all the constants from JavaScript code.

9 Conclusion

In this paper, we made a key observation that memory preparation is an essential stage
in JavaScript exploits and can be disturbed via a memory perturbation technique. Based
on our observation, we proposed and designed ChaffyScript, a vulnerability-agnostic
system to thwart JavaScript exploits by inserting memory perturbation with JavaScript
rewriting. We have implemented a prototype system, ChaffyScript, and our evalua-
tion shows that ChaffyScript incurs acceptable runtime performance overhead (5.88%
for Chrome, 12.96% for FireFox) and memory overhead (6.1% for minimal JS heap
usage, 8.2% for maximal JS heap usage) on Octane benchmark and defeat all of the
11 JavaScript exploits. We also demonstrated the deployment flexibility via integrating
ChaffyScript into a web proxy to protect users against malicious HTML files.
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