
BinDSA: Efficient, Precise Binary-Level Pointer Analysis
with Context-Sensitive Heap Reconstruction
LIAN GAO, University of California at Riverside, USA
HENG YIN, University of California at Riverside, USA

Pointer analysis serves as a fundamental component in the realm of binary code reverse engineering. It can be
leveraged to reconstruct a binary program’s call graph and can be further applied to various security analyses.
However, the absence of symbols and type information within binary code presents formidable challenges to
effective pointer analysis. Existing works often apply approximations when performing pointer analysis on
binary. Nevertheless, these methods tend to be inefficient and produce numerous false positive targets. In this
paper, we propose BinDSA, a novel model tailored for binary pointer analysis. BinDSA prioritizes precision
and efficiency over soundness. It is field- and context-sensitive, employing unification-based techniques and
reconstructing a context-sensitive heap. It jointly recovers data structure and points-to relations so that
precision can be further improved. In evaluation, we demonstrate that BinDSA is 5 times more efficient and
notably more precise than the current state-of-the-art technique without significantly sacrificing soundness.
We also apply BinDSA on CVE reachability analysis and vulnerability detection, demonstrating its effective
application to security tasks.

CCS Concepts: • Security and privacy→ Software reverse engineering; • Software and its engineering

→ Automated static analysis.

Additional Key Words and Phrases: Pointer Analysis, Data Structure Recovery.

ACM Reference Format:

Lian Gao and Heng Yin. 2025. BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive
Heap Reconstruction. Proc. ACM Softw. Eng. 2, ISSTA, Article ISSTA053 (July 2025), 22 pages. https://doi.org/
10.1145/3728928

1 Introduction
Pointer analysis is essential in binary code reverse engineering. It is the foundation of reconstructing
a complete call graph and value flow of a given binary program. Recovering points-to relations
precisely and efficiently holds immense value for various downstream analyses such as binary code
diffing [14, 16, 27], static taint analysis [11, 15], and bug detection [21, 22, 42].
However, pointer analysis on binary code is very challenging. When dealing with stripped

binaries, source-level information such as variables and types is lost. Consequently, it becomes
imperative to pre-identify the variable-like entities in order to facilitate subsequent static analysis of
the binaries. Additionally, since types are missing, every register or memory location can potentially
be a pointer, and the presence of type casts in binary code introduces additional complexities.
Moreover, memory can be accessed indirectly through pointer arithmetics in binary code, further
complicating the analysis process.

Authors’ Contact Information: Lian Gao, University of California at Riverside, Riverside, USA, lgao027@ucr.edu; Heng Yin,
University of California at Riverside, Riverside, USA, heng@cs.ucr.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2994-970X/2025/7-ARTISSTA053
https://doi.org/10.1145/3728928

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0002-4899-875X
HTTPS://ORCID.ORG/0000-0002-8942-7742
https://doi.org/10.1145/3728928
https://doi.org/10.1145/3728928
https://orcid.org/0000-0002-4899-875X
https://orcid.org/0000-0002-8942-7742
https://doi.org/10.1145/3728928

ISSTA053:2 Lian Gao and Heng Yin

Existing works that focus on pointer analysis or indirect call target recovery indicate the challenge
of simultaneously attaining precision, soundness, and efficiency. Arity-based approaches such as
TypeArmor [41] and τCFI [30] treat all functions as potential targets and filter out false positive
function targets by checking the compatibility of parameters (e.g., number of parameters) between
the call sites and potential targets. They are sound and efficient but suffer low precision. Deep-
learning-based approaches such as Callee [47] leverages deep neural networks to learn patterns
concerning indirect calls to predict indirect call targets. Callee is promising in terms of precision
and efficiency, but it is unsound. There also exists a path-sampling-based approach BDA [46] that
leverages a path sampling algorithm to extract and combine the memory dependency among each
path to infer the points-to relations. It is more precise but unsound since the algorithm cannot
cover all paths.

Another line of work employs program-analysis-based approaches [7, 23, 24] that conduct sophis-
ticated static analysis (listed in Table 1). Value-set Analysis [7] (VSA) identifies potential values
stored at abstract locations (a-locs) to determine pointer targets. However, it is imprecise and
inefficient due to imprecise tracking of pointer arithmetic. BPA [23] and BinPointer [24] address
the limitations of VSA by employing a block memory model to avoid pointer arithmetic within the
block. However, some of their design decisions compromise precision. BinPointer enhances BPA
by tracking 0-based dereferences. However, its functionality remains constrained, as non-0-based
dereferences revert to block memory modeling. In general, BPA and BinPointer are sound but not
precise and efficient enough. More discussions can be found in §2.2.

Table 1. Comparison of Different Program-analysis-based Approaches

Algorithm Sensitivity Model of Aggregation Model of Memory Precision Soundness EfficiencyContext- Field-

VSA ✓ ✗ Inclusion-based A-loc
BPA ✗ ✗ Inclusion-based Block memory model
BinPointer ✓ ✓ Inclusion-based Block memory model
BinDSA (this paper) ✓ ✓ Unification-based A-loc w/ context-sensitive heap

Considering the difficulties in achieving precision, soundness, and efficiency simultaneously, we
propose to prioritize precision and efficiency rather than soundness since complete soundness is
not always required in security tasks. Precision is more crucial because it minimizes false positives
and significantly reduces the workload of subsequent analyses. To this end, we propose a soundy
[33] approach that sacrifices soundness only in limited situations (discussed in §7) to ensure high
precision.
Specifically, we propose a program-analysis-based approach with several enhancements. First,

we jointly recover data structure and points-to relations so that they can enhance each other. The
recovery of data structures contributes to a field-sensitive pointer analysis, thereby increasing
precision. Conversely, the points-to relations enable more complete type propagation during the
recovery of data structures. Second, we conduct context-sensitive analysis and model the heap
region to be context-sensitive (a.k.a., heap cloning) to further elevate precision. Moreover, we adopt
a unification-based algorithm (a.k.a., Steensgaard’s style [36]) to enhance efficiency. To mitigate
the inherent imprecision associated with unification-based algorithms, we adopt a conservative
strategy during the unification process. Specifically, we leverage the recovered type information
as a filter to systematically eliminate conflicts. While this approach sacrifices soundness to some
extent, it is necessary to ensure greater precision through conflict filtering.
To validate the feasibility of our approach, we implement a system prototype called BinDSA.

Our evaluation results show that BinDSA achieves an average precision improvement of 4.9% and

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:3

14.9% over BinPointer in global and heap object access evaluations, and a 25% improvement over
BPA in resolving indirect call targets, as reflected in profiling-based evaluation results. Additionally,
BinDSA successfully recovers over 90% of memory accesses and indirect call targets. Furthermore,
BinDSA demonstrates strong efficiency in both processing speed and memory usage. Specifically, it
requires only 26 minutes and 29GB of memory to analyze 403.gcc from the SPEC2006 benchmark
suite, whereas BPA takes approximately seven hours on a machine with 350GB of RAM. To
further illustrate its effectiveness, we conduct a case study on the CVE reachability problem,
demonstrating BinDSA ’s ability to identify unreachable vulnerable functions within software
programs. Additionally, we successfully apply BinDSA to detect use-after-free and double-free
vulnerabilities in the Juliet Test Suite [1].

Contributions. This paper makes the following contributions:

• We introduceBinDSA, a novel algorithm that combines field- and context-sensitive unification-
based pointer analysis (with heap cloning) and the data structure type recovery to tackle the
challenges of binary pointer analysis.

• We evaluate BinDSA on SPEC 2006 benchmarks and real-world programs and show that
it outperforms existing state-of-the-art solutions in both precision and efficiency without
sacrificing soundness significantly.

• We conduct case studies showcasing the effectiveness of BinDSA in CVE reachability analysis
and vulnerability detection.

2 Background and Related Work
In this section, we first introduce the points-to analysis for source code and discuss the challenges
of directly applying source code algorithms to binary code. Then we discuss the background and
related work of points-to analysis at the binary level.

2.1 Points-to Analysis on Source Code
There is a vast body of literature on points-to analysis for source code. In general, several key
dimensions significantly impact the performance of pointer analysis algorithms, including path-
sensitivity [17, 38], flow-sensitivity [18, 19, 43, 44], field-sensitivity [8, 25, 26, 32], and (calling)
context-sensitivity [20, 31, 39]. Additionally, the modeling of aggregates—encompassing Steens-
gaard’s unification-based approach [36], Andersen’s inclusion-based approach [6], and various
hybrid approaches [13, 35]—plays a crucial role.
In general, increasing the sensitivity of a points-to analysis improves its precision but also

significantly increases its computational cost. The choice between inclusion-based and unification-
based modeling similarly affects this trade-off. Andersen’s inclusion-based approach [6] maintains
distinct points-to sets for different variables, preserving precision but leading to higher complexity,
often cubic in the worst case. In contrast, Steensgaard’s unification-based approach [36] merges
points-to sets aggressively, making it highly scalable with nearly linear complexity at the cost of
over-approximation.
In this context, Data Structure Analysis (DSA) [25] offers an attractive compromise. It is a

unification-based points-to analysis algorithm that is field-sensitive and context-sensitive with full
heap cloning through acyclic call paths. DSA has demonstrated a commendable balance between
precision and efficiency. Evaluations have shown that DSA exhibits minimal precision loss compared
to Andersen’s algorithm, even when accounting for the loss of context sensitivity in strongly
connected components (SCCs) [25].
However, directly applying the DSA algorithm (or other source code algorithms) on lifted IRs

remains infeasible. A comprehensive survey conducted by Liu et al. [28] highlighted that the

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:4 Lian Gao and Heng Yin

absence of type information and the presence of errors in lifted IRs pose significant impediments
to conducting rigorous static analysis on lifted IRs. After a thorough investigation, we summarize
the challenges of applying source code algorithms to binary code as follows:

C1. No variable information. Source code pointer analysis relies on variable information,
which is absent in binary code. Incorrect identification of variables can result in either a loss of
precision or a violation of soundness.

C2. Lack of type information.

C2.1. Lack of distinction between pointers and values. A source code pointer analysis
typically focuses on pointers rather than values. In binary code, the absence of type information
makes it challenging to distinguish between pointers and values. This ambiguity arises, for example,
when an addition operation involves two registers, which can represent either the addition of two
numerical values or a base pointer plus an offset. It is crucial to determine which register serves as
the base pointer to clarify the points-to relationship.

C2.2. Absence of field information and the necessity for pointer arithmetic. High-level
IRs generated from source code will retain data structure field information, whereas binary code
requires pointer arithmetic to achieve field sensitivity. However, pointer arithmetic is challenging,
considering the complex data structures such as different kinds of arrays and embedded data
structures.

C3. Errors in lifted IRs. A correct pointer analysis relies on a series of accurate pre-analyses.
We observe that insufficient dead code elimination or incorrectly identifying additional function
parameters compared to source code will lead to incorrect placement of the phi node. These
errors can accumulate in subsequent analyses and significantly impact the precision of the pointer
analysis.

C4. Scalability. The analysis of lifted binary IRs requires tracking both pointers and potential
pointers, leading to a more complex graph with a greater number of nodes compared to source
code compiled IRs. This severely impacts the efficiency of analysis methods.

These challenges make pointer analysis on binary-lifted IRs extremely difficult. In §3.1, we will
explain how BinDSA tackles these challenges.

2.2 Points-to Analysis on Binaries
Existing works on points-to analysis of binaries also face the challenges mentioned above. Achieving
precision, soundness, and scalability simultaneously poses a significant challenge in this context.

Value-set Analysis [7] (VSA) records the possible values stored at each abstract location (a-locs)
to determine possible pointer targets. However, as noted in BPA [23] and BDA [46], the arithmetic
calculations on the strided intervals involve calculating the greatest common divisor (GCD), which
can result in a lot of false positive targets. This accumulated imprecision not only complicates
points-to relations but also affects execution time, making VSA impractical for large programs.

1 int BZ2_bzReadOpen(...) {

2 __ptr = (int *)malloc(0x13cc);

3 iVar2 = BZ2_bzDecompressInit(__ptr + 0x4e5, ...);

4 }

5 int BZ2_bzDecompressInit(int param_1, ...) {

6 *(param_1 + 0x24) = default_bzalloc;

7 }

Fig. 1. Example in 401.bzip2

BPA [23] and BinPointer [24] mitigate the
limitations of VSA by adopting a block memory
model, where a memory block is similar to a
variable in the program. BPA treats an entire
block as a single unit, meaning that memory
reads and writes through pointers to the block
at different offsets are not distinguished. This
approach assumes that the pointer arithmetic
will not cause a pointer reference another block.
To maintain soundness and uphold this assumption, BPA must conservatively divide the blocks,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:5

which compromises precision. Additionally, BPA is context-insensitive, meaning that a pointer’s
points-to relations are merged into a single representation without distinguishing between different
calling contexts, and blocks allocated at one allocation site are treated as one block. Moreover,
BPA does not differentiate between accesses to different offsets within the same block. BinPointer
improves upon BPA by adding the tracking of 0-based dereferences. However, it is still limited since
non-0-based dereferences will fall back to the block memory modeling. For example, in a simplified
401.bzip2 pseudocode snippet (shown in Figure 1), BinPointer fails to track a further dereference
of param_1 in BZ2_bzDecompressInit at Line 6 because its base is altered to 0x4e5 due to the
function call. Furthermore, since BPA and BinPointer are inclusion-based and is implemented in
Datalog [34], their memory consumption can be huge.
BDA [46] employs a path sampling algorithm to extract and combine the memory dependency

among each path to infer the points-to relations. It is more precise than VSA, BPA, and BinPointer,
but it is inherently unsound since it does not cover all execution paths. Osprey [45] relies on
the points-to relations extracted by BDA and other facts obtained from the binary to infer the
data structures probabilistically. Unlike traditional approaches that rely solely on memory access
patterns to identify structures, Osprey incorporates additional hints, such as object copying, points-
to relations, and unified access patterns, to improve inference accuracy.

3 Overview
3.1 Addressing the Challenges
To tackle the challenges mentioned in §2.1, we develop BinDSA, a tool designed for binary pointer
analysis. First, given the favorable trade-off of precision and scalability of DSA [25], we consider
extending DSA to binary pointer analysis and building BinDSA upon it to address C4. Second, we
jointly recover data structure type information and points-to relations, allowing them to mutually
enhance each other. In this section, we utilize a motivating example to illustrate this idea.

1 typedef struct {long a;...} stream;

2 int bar(stream* arg1)

3 { ...

4 x = arg1->c; //mov rcx,[rdi+0x40]

5 if (x == 0x0) {

6 _ptr2 = malloc(100); //call malloc

7 x = _ptr2; //lea rcx,[rax]

8 arg1->d(); //mov rdx,[rdi+0x50];call rdx

9 }

10 }

1 void foo(void)

2 { ...

3 y = func1; //lea rax,[func1];mov [rsp+0x58],rax

4 z.b = 0xfef3; //mov [rsp+0x8], rcx

5 _ptr1 = malloc(100); //call malloc

6 z.c = _ptr1; //mov [rsp+0x40], rax

7 z.d = func2; //lea rax,[func2];mov [rsp+0x50],rax

8 z.a = data1; //lea rax,[data1];mov [rsp],rax

9 bar(&z); //mov rdi, rsp; call bar

10 }

Fig. 2. A Motivating Example

On the one hand, the recovery of
data structure type information can
increase the precision of points-to
analysis. First, the recovery of data
structures alleviates challenge C2.2,
enabling a field-sensitive pointer
analysis. The example in Figure 2 il-
lustrate code snippets of two func-
tions foo and bar. The comments
on the right show the assembly code
for each line of the code. In function
bar, pointer arithmetic reveals the
structure of the object referenced by
a, as indicated by accesses to offsets
such as rdi+0x40 and rdi+0x50. No-
tably, DSA constructs a Data Struc-
ture Graph (DS Graph), where mem-
ory objects are represented by DS
Nodes, which explicitly model data
structures. This approach aligns with
our need to recover data structures from binaries. Inspired by DSA, BinDSA leverages the concept
of DS Graph to achieve this goal.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:6 Lian Gao and Heng Yin

Second, the recovery of data structures helps clarify variable boundaries, effectively addressing
challengeC1. Based on the pointer dereferences within function bar, we can infer that the minimum
size of the object referenced by a is 0x50. Consequently, the stack object z in function foo must
be at least 0x50 in size. The variables z.a, z.b, z.c, and z.d are all within this range. However,
discerning this in assembly is challenging as they are all accessed via rsp+offset. For instance,
Ghidra [4] treats these memory accesses as separate variables, sacrificing analysis soundness. In
contrast, BPA takes a conservative approach to stack partitioning. It adopts heuristics and only
considers the stack top and stack locations that are stored either in a register or a memory location
as block boundaries. As a result, BPA incorrectly merges variable y with z, reducing precision. This
imprecision affects the resolution of indirect call targets in function bar, causing BPA to incorrectly
identify both func1 and func2 as potential targets at line 8.

Third, when recovering type information, we place particular emphasis on distinguishing between
pointers and values to tackle challenge C2.1. Our goal is not to solve the entire type recovery
problem but rather to focus on aspects critical to points-to analysis. We also leverage recovered
data structure fields and their associated types to filter out incompatible candidates during merging,
effectively mitigating challengeC3. This filtering strategy is also applied when identifying potential
callee functions, further enhancing the precision of the call graph.

On the other hand, the points-to relations provide additional information to aid in the recovery
of data structures. During the unification process of the pointer analysis, objects that are pointed
by the same pointer are gathered together (such as _ptr1 and _ptr2 in Figure 2), thereby enriching
the available type information. This aligns with the points-to hint mentioned in Osprey [45]. Addi-
tionally, as previously discussed, BinDSA employs a filtering mechanism to eliminate incompatible
types during the merging process, thereby ensuring precision.

3.2 System Overview

Lifted
IRs

Disassembler
/Lifter

Local
Analysis

Bottom-up
Analysis

Top-down
Analysis

Local DS
Graphs

BU
Graphs

Points-to
Relations

Call
Graph

Fig. 3. Overview of BinDSA

The system overview of BinDSA is shown in Fig-
ure 3. BinDSA accepts a binary file as input and
proceeds to disassemble and lift it into Intermediate
Representations (IRs). Then it performs local analy-
sis on each of the functions to construct a local Data
Structure Graph (DS Graph). This step is described
in §4 and §5.2. Subsequently, a bottom-up analysis
is performed, where the DS Graph of each callee
function is copied and merged into its caller’s DS
Graph, producing Bottom-up Graphs (BU Graphs)
that summarize the total impact of invoking the caller function. During this process, indirect
function calls are resolved, allowing the construction of a complete call graph. The bottom-up
analysis will be further explained in §5.3. Finally, a top-down analysis is performed to refine the
points-to relations by propagating caller-side information down to its callees. The details of this
process are discussed in §5.4.

3.3 Assumptions
The effectiveness of BinDSA relies on the following assumptions:

• All paths are considered feasible. BinDSA assumes the feasibility of all paths within the
codebase, adopting a path-insensitive approach. Thereby, BinDSA ignores the conditions in
conditional instructions during analysis.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:7

• Binaries are correctly disassembled. This assumption involves the accurate identification of
code and data, as well as all instructions within the binary. Without this assumption, the
soundness of the analysis would be significantly compromised due to the loss of data flow.

• Proper handling of system and library calls is ensured. This assumption plays an important
role in capturing potential data flow that arises from interactions with external resources
and dependencies.

4 Data Structure Analysis
In this section, we present essential background and definitions related to Data Structure Analysis
(DSA) to support a clearer understanding of the design of BinDSA.

4.1 Data Structure Graph
The Data Structure Graph (DS graph) G is constructed during the analysis process to represent the
data structures and points-to relations. G F ⟨N ,E,Ev ,Ncall ⟩. Specifically,

• N is a set of DSNodes. Each DSNode n ∈ N contains multiple fields f . A pair ⟨n, f ⟩ is referred
to as a Cell, where n is a DSNode and f is one of its fields in the data structure.

• E is a set of edges in the graph that represent the points-to relations. It is a function that
maps the source cell to the dest cell, defined in Figure 4.

• Ev is a set of edges that originate from a register or a memory location var and point to the
target field ⟨n, f ⟩ referenced by var , provided var is a pointer-compatible type.

• Ncall represents the CallSite set. Ncall ∈ N . It contains multiple fields: r , f unc , a1,...,ak . r
stands for the return value, f unc is the invoked function, and a1,...,ak are the arguments. We
denote the various fields of a CallSite CS using CS[i], where i ranges from 0 to k + 1.

⟨Edдe ⟩ E F ⟨n1, f1 ⟩ → ⟨n2, f2 ⟩
⟨VarToCell ⟩ Ev F var → ⟨n, f ⟩
⟨TypeMap ⟩ T F n → τ

⟨GlobalV al ⟩ GV F ⟨n, f ⟩ → {c }
⟨F laдs ⟩ FL F n → S |H |G

Fig. 4. Graph Definitions

Other related features are described as follows and
defined in Figure 4.

• Type map T maps a node to its type.
• Global valueGV records the global symbol set that
a Cell ⟨n, f ⟩ represents.

• Flags FL denotes the set of flags associated with n,
e.g., the location of the DSNode: stack (denoted by
S), the heap (denoted by H), or the global memory
(denoted by G).

4.2 Algorithm of DSA
Table 2. Primitive operations in DSA

Name Operation

makeNode Creates a new, empty node n for the
input registervar , Ev (var)B ⟨n, 0⟩.

mergeCells Merges the first input Cell to the sec-
ond Cell by merging the type infor-
mation, flags, globals and outgoing
edges of the two nodes, and moving
the incoming edges to the resulting
node. Then, the first Cell is deleted.

Local Analysis. The local analysis phase builds a
local DS Graph for each function without the infor-
mation of its callees and callers. It creates empty
nodes for pointer-compatible virtual registers and
for globals by calling makeNode (describe in Table 2).
Then it performs a linear scan to process each

instruction of the function to construct the graph.
Figure 5 shows the local graph of function bar. A
blue ellipse represents a variable, a rounded rectan-
gle represents a DSNode with cells for its fields, and
a sharp-cornered rectangle represents an Ncall with
cells for its fields. The number on the edge corre-
sponds to the line of code in bar where the edge is created.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:8 Lian Gao and Heng Yin

⑧⑦

bar
②

arg1

 T=ptr(stream)

a b c d

 x

_ptr2

T=ptr

r unk

Call

T=ptr T=ptr

MergeCells
E
Ev

FL=H

④

④

⑥

⑥

⑧

Fig. 5. Local Graph for bar in DSA

For example, to handle the malloc instruction at Line 6 ,
makeNode is called and the heap flagH is added to the heap object.
Load instruction X = ∗Y is handled by calling mergeCells(Ev (X),
E(Ev (Y))), merging the Cell of X to the Cell Ev (Y) points to.
mergeCells is an important operation in unification-based
points-to algorithms and we describe it in Table 2. For exam-
ple, the load instruction x = arд1 → c at Line 4 is handled in
this way, where the outgoing edge of Cell c in arд1 has been
merged with the Cell of Ev (x). Function calls at Line 8 result
in a new call node being added to the DS graph and f unc field
in call node (currently unknown and marked as unk) will merge
with arд1 → d .
Bottom-up Analysis. The bottom-up algorithm resolves callees at each call site by cloning the
callee’s graph into the caller’s graph and merging the actual and formal parameter DS nodes, along
with the return nodes. Through cloning, the context-sensitivity and heap cloning are ensured.

To comprehensively explore the call graph in a bottom-up fashion, DSA runs a revised Tarjan’s
linear-time algorithm [40] to identify and traverse Strongly Connected Components (SCCs) in
the call graph in postorder. It gives up the context sensitivity within the SCCs. Additionally, it
incorporates several engineering design choices to make the context-sensitive algorithm scalable.
Detailed algorithms can be found in the DSA [24] paper.
In the example, arд1 and Cells connected to it are copied and merged with actual argument

Cells in function foo. Therefore, the indirect call at Line 8 in function bar can be resolved since
arд1 → d is going to be merged with &z → d .
Top-downAnalysis. The top-down phase, akin to the bottom-up analysis, propagates each caller’s
information to its callees, to recover any missed points-to relations. Note that the call graph has
already been fully recovered after the bottom-up phase. Consequently, the top-down phase processes
it by visiting the strongly connected components (SCCs) in reverse postorder.

5 BinDSA Algorithm
In this section, we describe the core algorithm of BinDSA, focusing on the unique features.

5.1 Definitions

⟨AddressSpace⟩ aspace F ram |r eд |temp |constant
⟨Varnode⟩ var F ⟨aspace, c, c ⟩
⟨Const⟩ c F {0, 1, 2, 3, ... }
⟨Types⟩ τ F val |ptr (τ) |τstruct |τf unc |⊤
⟨StructTypes⟩ τstruct F {c1 : τ1, c2 : τ2, ... }
⟨FuncTypes⟩ τf unc F (τ1, τ2, ...) → τn

Fig. 6. Varnode and Type Definitions

Since BinDSA operates on lifted IRs
(e.g., Ghidra IR) of binaries rather than
source code, we redefine the relevant
syntax accordingly. We also describe
four unique definitions in this section.

Varnode and Types. Figure 6
shows the definitions of Varnode in
Ghidra IR and the types we defined in
our algorithm. Varnode var is the high-
level IR variable, which is a generalization of either a register or a memory location. It is formally
represented as a triple consisting of an address space, an offset within the space, and a size, which
can be denoted as var [0], var [1], and var [2], respectively. The address space, denoted as aspace
(i.e., var [0]), includes the RAM space ram which represents the memory accessible through the
main data bus, the general purpose registers space reд, virtually limitless temporary register space
known as temp, and a designated area for constants, denoted as constant . Note that when the

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:9

aspace is constant , the offset in the triple (i.e., var [1]) represents the concrete constant value the
Varnode represents.

Our algorithm encompasses various types, including basic values (such as int, double, and char)
denoted asval , pointers of type ptr (τ)where τ represents another type, data struct types (including
array) denoted as τstruct , function types denoted as τf unc , and ⊤ that represents a variable being
“any” type. Note that even though Ghidra recovered the type information, we do not depend on it.
Instead, we opt to infer our own type information during the analysis.

proдram Fstmt∗
stmt FSTORE var1, var2 | BRANCH var

| RETURN var |var B expr

| CBRANCH var1, var2
| var CALL var1, ...

expr Fvar | 3Uvar | 3B var1, var2
| 3cmp var1, var2 |LOAD var
| MULTIEQUAL var1, var2, ...

3U FINT_NEGATE | BOOL_NEGATE | ...
3B FINT_ADD | INT_SUB | INT_MULT | INT_DIV | ...

3cmp FINT_NOTEQUAL | INT_EQUAL | ...

Fig. 7. The major Ghidra IR Syntax

IR. Figure 7 presents the major syntax of
Ghidra high-level IR. Specifically, the STORE op-
eration is responsible for storing the value repre-
sented by var2 into the memory location pointed
to byvar1. The CBRANCH operation evaluatesvar1
as a condition and redirects the program flow to
the location indicated by var2. However, since
our analysis is path-insensitive, this operation is
not explicitly handled in BinDSA. The CALL op-
eration initiates a function call to the address
specified by var1, accepting zero or more pa-
rameters and yielding zero or one return value.
The LOAD operation retrieves data from the mem-
ory location specified by var . Additionally, the
MULTIEQUAL operation serves as a phi-node in Single Static Assignment (SSA) form [12], combining
expressions var1,var2, ... originating from different paths.

Extra DSGraph Features.Additionally, we define the following unique features associated with
the DS Graph to assist the analysis of binary programs, with corresponding definitions provided in
Figure 8.

• ConstVal records the constant value a Cell ⟨n, f ⟩ represents.
• Stride records the inferred stride of a DSNode n if it is an array.
• VarRelation captures the arithmetic relationship of two Varnodes var and varbase . Specifi-
cally, if Ev (var) and Ev (varbase) belong to the same DSNode and the distance of their field
offsets is c (which means Ev (var)[1] − Ev (varbase)[1] = c).

• StackObjs represents the stack objects recorded for each function. ⟨n, f ⟩ is the Cell on the
stack at offset c .

5.2 Local Analysis

⟨ConstV al ⟩ CV F ⟨n, f ⟩ → {c }
⟨Str ide ⟩ ST F n → {c }
⟨VarRelation ⟩ VR F var → ⟨varbase , c ⟩
⟨StackObjs ⟩ SO F c → ⟨n, f ⟩

Fig. 8. Unique Definitions

The local analysis in BinDSA has two main goals: con-
structing the DS graph for each function (as outlined
in §4.1) and recovering type information. We start by
introducing the AnalyzeStmt function (Algorithm 1), fo-
cusing on the differences between BinDSA and DSA in
statement handling, followed by our type recovery strat-
egy and an illustrative example. Note that a key distinction of our approach from the original DSA
algorithm is the added requirement to handle pointer arithmetic and type recovery.

Pointer arithmetics. In BinDSA, the key approach to handling pointer arithmetic is to track
the VarRelation between two Varnodes during arithmetic operations (e.g., INT_ADD and INT_SUB)
and compute the corresponding Cells for these Varnodes when required, as illustrated in Figure 9.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:10 Lian Gao and Heng Yin

The INT_ADD and INT_SUB statements can represent the operation between two values or a
pointer and a value. Additionally, the INT_ADD statement can represent adding a value and a pointer.
Therefore, in ptrArith function, in the case where bothvar1 andvar2 are values and their concrete
values are known, we set the concrete value stored in var accordingly. When var1 or var2 is a
pointer, the pointer arithmetic can only be computed if the other variable can be resolved to a
constant. In this case, we will set the VarRelations VR between var1 and var2 with the field offset
distance specified by the constant value. Note that other arithmetic operations such as INT_MULT
are only handled when the concrete values for both var1 and var2 are known.

Algorithm 1 Analyze Statement
procedure AnalyzeStmt(stmt s)

switch s do
case var B INT_ADD var1, var2 (and other

arithmetic):
ptrArith(var , var1, var2, op)

casevar BMULTIEQUALvar1,var2, ...,varn :
inferStride(getCell(var), getCell(var1),

getCell(var2)), if n = 2
if ST(getCell(var)[0]) = ⊥ then

mergeCell(getCell(var), getCell(vari)),
i ∈ 1, ..., n

default : same as DSA
end procedure

The last three lines in ptrArith are for identify-
ing stack objects. We check whethervar1 represents
the stack top (e.g., RSP in x86_64 programs). If so,
the Cell pointed to by the Cell of var is on the stack
at offset var2[1], and we store it in SO . This infor-
mation is used in §5.3 to determine stack object size.
VarRelations VR is used to compute the Cells

through the getCell function. Specifically, if the
existing Ev contains the edge starting from var , it
directly outputs the Ev (var). If a Varnode relation-
ship exists between the Varnode var and another
Varnode varbase , it implies the correct Cell for var
based on its association with varbase . Otherwise,
the makeNode function is invoked to generate an
empty node for var . Soundness is sacrificed since
the relation between the new node and existing nodes is lost.

ptrArith(Varnode var , Varnode var1, Varnode var2,
3B op)
if CV(getCell(var1)) and CV(getCell(var2)) exist

CV(getCell(var)) B var1[2] op var2[2]
elif op = INT_ADD or op = INT_SUB
if CV(getCell(var2)) exist and T(getCell(var1)) ,

val
const B CV(getCell(var2))
VR(var) B ⟨var1, 0 op const ⟩

if CV(getCell(var1)) exist and T(getCell(var2)) ,
val

const B CV(getCell(var1))
VR(var) B ⟨var2, const ⟩

if var1 is stackTop and var2[0] = constant
SO(var2[1]) B E(getCell(var))
FL(E(getCell(var))) B S

getCell(Varnode var)
if var in Ev : return Ev (var)
if var in VR:

⟨varbase , of f set ⟩ B VR(var)
⟨nbase , fbase ⟩ B getCell(varbase)
Ev (var) B ⟨nbase , fbase + of f set ⟩
return Ev (var)

return makeNode(var)

inferStride(Cell ⟨n, f ⟩, Cell ⟨n1, f1 ⟩, Cell ⟨n2, f2 ⟩)
if ⟨n, f ⟩ is loop variant

if T(n1) = T(n1) = val
ST(n) B abs(CV(⟨n1, f1 ⟩) − CV(⟨n2, f2 ⟩))
CV(⟨n, f ⟩)) B min(CV(⟨n1, f1 ⟩), CV(⟨n2, f2 ⟩))

else if n1 = n2
ST(n) B abs(f1 − f2))
copy and destroy the larger Cell

Fig. 9. Handling Pointer Arithmetics

Arrays. The pointer arithmetic is more complex in arrays. We introduce inferStride in BinDSA
to assist in the handling of arrays by inferring the size of each element in the array. This func-
tion is only invoked in MULTIEQUAL statement, as arrays are typically accessed in loops, and the
MULTIEQUAL statement is used to handle loop variants. It first determines whether the involved
Cell is a loop variant by using heuristics, specifically checking if it is located inside a loop body
and performing self-increment or self-decrement operations. Note that embedded arrays are not
handled in our approach. Therefore, we also exclude any DSNode that has directly accessed fields

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:11

other than fi , i ∈ 1, ...,n here. A loop variant can be a value or a pointer. In the former case,
the possible stride is inferred using the constant values every input cell stores, and CV(n) is the
minimum among these constant values. In the latter case, the possible stride is inferred using the
field values. Next, we copy the Cell with a larger field to the smaller one and destroy the larger
Cell. After inferring the stride s , note that all accesses to field f are transformed to accessing f
mod s . Additionally, adding a value that has stride s to a pointer results in the pointer also having
a stride of s . We omit these details in the algorithm.
Other statements. Most of the statements are handled in the same way as DSA. And in

MULTIEQUAL statement, we first attempt to infer the stride. If no stride can be inferred, each
input Varnode Cell is merged with the output Varnode Cell. Besides, we do not perform collapse
that is defined in DSA since it significantly sacrifices precision.

Type recovery. Data structure fields can be recovered through DS Graph, so here we focus on
how BinDSA distinguishes between pointers and values:

• In makeNode, we check if a Varnode is a constant with a value within the program’s valid
address range; if true, the node is categorized as a pointer.

• In AnalyzeStmt, pointer type Varnodes are determined when handling pointer arithmetic for
INT_ADD and INT_SUB statements. Varnodes involved in other arithmetic operations (e.g.,
INT_MULT) are identified as values. Besides, dereferenced Varnodes are marked as pointers.

isCompatible(⟨n1, f1 ⟩, ⟨n2, f2 ⟩)
if (T(n2)=val and T(n1)=ptr) or (T(n1)=val and

T(n2)=ptr): return False
∀ Cell

〈
n1, fj

〉
in n1:

if
〈
n2, fj + f2 − f1

〉
exists:

t1 B T(E(n1, fj)[0]), t2 B T(E(n2, fj + f2 − f1)[0])
if (t2=val and t1=ptr) or (t1=val and t2=ptr):

return False
return True

Fig. 10. Type compatibility check

Type Compatibility. isCompatible in Fig-
ure 10 is newly introduced in BinDSA which
checks the type compatibility of two Cells. In
mergeCells, we only merge the two Cells when
they are compatible to ensure precision. If the
Cells are not compatible, the merge process is
halted. For instance, when merging дetCell(var)
and дetCell(vari) in a MULTIEQUAL operation, if
var and vari are incompatible, the points-to rela-
tions of vari will not be propagated to var . While this approach may result in a loss of soundness,
it helps maintain precision in the majority of cases, as it could prevent errors from propagating
further in subsequent analysis.

isCompatible is based on the principle that value types should be incompatible with pointer
types. So if one of n1 and n2 is a pointer while the other is a value, the function directly returns
False. Subsequently, if both of them are pointers, we continue to check the type compatibility
of the outgoing edges of each Cell. We refrain from further verifying the type compatibility of
outgoing edges at the next level, considering efficiency and the presence of void * type.

barfoo
arg1

 T=ptr({0:, 40:ptr, 50:ptr})

field_0 field_40 field_50

_ptr1

 x

T=ptr,FL=S
GV=bar

T=ptr,
FL=S T=ptr,FL=S

GV=data1

T=val,FL=S
CV=0xfef3

 &z

T=ptr,FL=S
GV=func2

 z.d

 z.b

 z.c

_ptr2

T=ptr

Call

r f a1

r unk

Call

T=ptr

T=ptr

MergeCells
E
Ev

FL=H

Fig. 11. Local DS Graph for foo and bar

Example. Figure 11 shows the lo-
cal DS Graph for the function foo
and bar defined in Figure 2. Note
that the stack objects related to z
in function foo are still identified as
separate variables during the local
analysis phase. In bar, it can be de-
duced that arg1 is of pointer type,
pointing to a data structure of type
{0 :, 0x40 : ptr , 0x50 : ptr }. Specif-
ically, the type of data at offset 0 is
unknown, while at offset 0x40, it is

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:12 Lian Gao and Heng Yin

resolveCallee(Graph Gcallee , Graph Gcaller , CallSite
CS)

if not isCalleeCompatible(CS , Gcallee) : return
Gcopied B make a copy of graph Gcallee
Add nodes and edges of Gcopied to Gcaller
∀ DSNode n ∈ Gcopied :

∀ global д ∈ GV(n):
merge n with the node containing д in Gcaller

mergeCells(CS [0], return Cell of Gcallee)
for 1 ≤ i ≤ min(NumArgs(Gcallee), NumArgs(CS)):

⟨na, fa ⟩ B CS [i + 1]〈
nf , ff

〉
B ith arg Cell of Gcallee

if ⟨na, fa ⟩ represents stackTop + of f set :
joinStkObj(SO of Gcaller , of f set , sizeOf(nf))

mergeCells(⟨na, fa ⟩,
〈
nf , ff

〉
)

isCalleeCompatible(CallSite CS , Graph Gcallee)
if arity not compatible:

return False
if the return Cell ⟨n, f ⟩ of Gcallee exists and CS [0]

exists and not isCompatible(⟨n, f ⟩, CS [0]):
return False

for 1 ≤ i ≤ min(NumArgs(Gcallee), NumArgs(CS)):
if not isCompatible(i th arg Cell ofGcallee ,CS [i+1]):

return False
return True

joinStkObj(StackObjs SO , Const of f set , Const size)
Cell ⟨n, f ⟩ B SO (of f set)
for of f set < i < of f set + size :

if ⟨ni , fi ⟩ B SO (i) exists:
mergeCells(⟨ni , fi ⟩, ⟨n, f − of f set + i ⟩)

Fig. 12. Operations used in Bottom-Up Analysis Algorithm

of type ptr , as it mirrors the type of the DSNode referenced by _ptr2. At offset 0x50, the type is
also ptr , as it serves as a function pointer in the CALL statement.

5.3 Bottom-Up Analysis
Our bottom-up analysis is similar to that of DSA. To achieve context sensitivity, the algorithm
copies the callee’s BU graph into the caller’s BU graph and then merges the copied formal argu-
ments/return Cells with the corresponding actual arguments/return Cells, as shown in black text
in resolveCallee in Figure 12. Nevertheless, there are two distinct logical steps in our algorithm
compared to DSA, as colored red in Figure 12.

foo
 & z

 T=ptr({0:ptr, 8:val, 40:ptr, 50:ptr})

field_0 field_8 field_40 field_50

_ptr1

r unk

Call

T=ptr,FL=S
T=ptr,FL=S
GV=func2

MergeCells
E
Ev

FL=H
T=val,FL=S
CV=0xfef3

T=ptr,FL=S
GV=data1

Fig. 13. BU Graph for foo

First, we will check the compatibility between
the Gcallee and CS before merging the callee into
the caller. The isCalleeCompatible operation in
Figure 12 shows how the compatibility is checked.
We first consider the arity compatibility similar to
TypeArmor [41]: indirect call sites with a maximum
of “max” arguments cannot target functions requir-
ing more than “max” arguments. Additionally, call
sites expecting a return value cannot jump to func-
tions that do not provide one. Then we check the
type compatibility between formal and actual argu-
ments/returns by calling isCompatible defined in
Figure 10.

Second, we will combine the objects on the stack according to the size information obtained from
callees. Specifically, if the ith argument Cell is a stack pointer at stackTop+o f f set , joinStkObjwill
be called with SO ofGcaller , o f f set , and sizeOf(nf) as arguments. sizeOf(nf) is the size information
inferred according to the Cells’ field offsets in nf . If the size is larger than the existing stack object
at o f f set , we need to combine the next stack object at offset i with the stack object at offset o f f set ,
until i is larger than o f f set+sizeOf(nf). Global variables are handled similarly. We rely on the
global variables recovered according to heuristics first and then join the adjacent variables as
necessary. The specific operation is omitted here.

Example. Figure 13 shows the BU Graph for function foo during the bottom-up analysis. The
function bar has been cloned into foo and the formal parameters have been merged with the actual

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:13

parameters. In this process, the variables related to z are combined based on the size information
recovered in bar. Local variables in bar are not cloned, but the heap object has been cloned into foo
(since it is related to arg1) and then merged with the heap object allocated in foo when merging
a1 with arg1. The unresolved indirect call site is also cloned to foo. The target of this call site is
resolved to func2when the field at offset 0x50 of arg1 and the field at offset 0x50 of a1 are merged.
Once resolved, the algorithm will proceed to merge func2 into foo. We adopt this algorithm from
DSA [25].

5.4 Top-Down Analysis
In this phase, we adhere to the same algorithm introduced in DSA, which merges each function’s
graph into that of its callees. This process eliminates incomplete information due to incoming
arguments. Since the call graph has already been recovered during the bottom-up phase, this
process can be performed directly. Same as DSA, it is performed by visiting SCCs of the call graph
in reverse postorder. In the same example, the DSNode related to &z in foo will be copied into bar.

6 Evaluation
In this section, we start by describing the experimental setup. Then we assess the performance
of BinDSA by measuring its precision and recall in recovering memory access targets. Next, we
evaluate the application of BinDSA in indirect-call target recovery by examining the average
indirect-call target (AICT) metric and the profiling-based precision and recall. Additionally, we
evaluate the efficiency of BinDSA according to the execution time and memory consumption.
Lastly, we demonstrate two case studies of BinDSA: one focused on CVE reachability analysis and
the other on vulnerability detection.

6.1 Experimental Setup
The experiments are conducted on a server equipped with a Ryzen 3900X CPU running at 3.80 GHz
with 12 cores, accompanied by 64 GB of memory and a 500 GB SSD. It is installed with GCC-9.2,
Clang-13.0, and Java-11.0. Our analysis algorithms are implemented utilizing the APIs of Ghidra
version 11.0.1.

6.1.1 Dataset. Weuse the same dataset as the prior studies [23, 24, 47] and construct the SPEC2006’s
C benchmarks that contain indirect calls, along with five security-critical applications: thttpd-2.29,
memcached-1.5.4, lighttpd-1.4.48, exim-4.89, and nginx-1.10. These binaries are compiled by GCC-
9.2 with optimization level -O2. For testing SVF [37], we compile the source code using clang
version 13.0 and then provide the resulting intermediate representations (IRs) to SVF for processing.

6.1.2 Baselines. We compare our work with BinPointer [24] regarding pointer analysis results,
and compare our indirect call recovery results with several state-of-the-art binary level solutions
including BPA [23], BinPointer [24], and Callee [47]. We directly adopt their results from their
papers since BPA and BinPointer are not open-sourced, while Callee is a deep-learning-based
approach and a doc2vec model is missing in its repository. We also include a source code points-to-
analysis framework SVF [37]. Specifically, we execute the sparse flow-sensitive pointer analysis
algorithm [9, 10] in SVF.

6.2 Precision and Soundness
We first analyze the precision and soundness of the pointer analysis performed by BinDSA. In
this experiment, we mainly compare with BinPointer [24] since it is much more precise than BPA
and VSA according to their evaluation. Besides, we evaluate the same programs in SPEC2006 as
BinPointer. Given the difficulty in obtaining ground truth for points-to relations, we adopt a similar

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:14 Lian Gao and Heng Yin

evaluation approach as previous studies [24], leveraging profiling outcomes collected by Intel’s Pin
[29]. Moreover, we compare the collected runtime memory traces of benchmark programs with the
memory access targets recovered by BinDSA to compute the precision and recall metrics.

Table 3. Profiling-based Precision of BinPointer

and BinDSA

Profiling-based Precision (%)

Stack Global HeapProgram

BinP BinD BinP BinD BinP BinD

mcf 100.0 100.0 85.7 88.9 n/a n/a
lbm 99.5 100.0 100.0 100.0 n/a n/a
lib-quantum 100.0 100.0 100.0 100.0 6.9 10.1

bzip2 93.2 96.3 51.7 85.3 21.8 69.5

sjeng 97.5 92.7 55.6 61.0 n/a n/a
milc 99.4 99.0 88.9 94.5 23.7 22.6
hmmer 99.9 99.7 76.4 90.1 11.5 26.1

h264ref 97.3 98.1 65.5 42.3 40.8 50.8

Average 98.3 98.2 77.9 82.8 20.9 35.8

In order to compare them effectively, we follow
the same approach as BinPointer to dynamically con-
vert the memory access in runtime memory traces
to an abstract location in the heap, stack, and global
regions. Same as BinPointer, for an instruction i that
accesses memory address a, we convert it to the
form (i,b,o). Specifically, i is the memory access in-
struction, b is a block in heap, stack, or global, and
o is the offset. Blocks in the heap are differentiated
by allocation site. During the profiling, we record
the allocation site, allocated address, and the size
of the block to convert a into b and o. Blocks in the
stack are represented by their stack frame (named
according to the function name) and their offsets on
the stack frame. We first map the accessed memory
address a to the corresponding stack frame and offset by maintaining a call stack. Then the accessed
offsets on the stack frame can be converted to b and o according to block partitions of the stack
frame generated by BinDSA. Moreover, blocks in the global region are represented by the global
memory addresses. Similar to stack objects, we leverage the partition generated by BinDSA to
decide the b and o of an accessed address a. More implementation details of the Pin tool plugin can
be found in the BinPointer [24] paper.

We then obtain the set of (i,b,o) triplets from the DSGraph generated after the top-down phase
to compare with the profiling results. Specifically, during the local analysis phase, we record all
the instructions that access a cell and the blocks that a DSNode represents. This information is
propagated during the merging. After the top-down phase, we go over the Cells that are accessed
by an instruction to print out the block information and the offset o can be calculated according to
the field offset of a Cell.

Table 4. Profiling-based Recall of

BinDSA

Recall (%)

Program Stack Global Heap

mcf 97.1 100.0 n/a
lbm 100.0 98.5 n/a
lib-quantum 97.4 100.0 100.0
bzip2 95.8 100.0 98.0
sjeng 96.6 96.3 n/a
milc 97.7 99.8 68.9
hmmer 99.6 84.2 96.7
h264ref 98.3 83.4 98.0
Average 97.8 95.3 92.3

Then we calculate the precision and recall using the same metric
as BinPointer. Note that our analysis is performed on high-level
IR, thus some of the memory access instructions (especially the
accesses to the stack) have been optimized out. Therefore, we only
consider the instructions that are available on both the profiling
results and the results of BinDSA. Additionally, as also mentioned
in BinPointer, the profiling-based memory accesses are a subset of
the ground truth. Therefore, in this experiment, the precision is
underestimated, and the recall is overestimated.

Table 3 presents the profiling-based precision of BinPointer and
BinDSA. n/a in the table indicates there are no memory references
for that memory block type. As shown, the precision of BinDSA is
4.9% and 14.9% higher than BinPointer for global and heap accesses.
This improvement can be attributed, in part, to the expanded field-
tracking capabilities inherent to BinDSA compared to BinPointer. BinPointer only tracks 0-based
dereferences so it falls back to block memorymodeling and loses the field sensitivity for non-0-based
dereferences (e.g., the example in Figure 1). One additional reason behind the efficacy of BinDSA
lies in its implementation of heap cloning. For example, the precision of BinPointer is lower than

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:15

Table 5. AICT Evaluation Results

Programs

BinDSA SVF BPA BinPointer Callee

#iCallsites Solved AICT AICT #iCallsites AICT AICT #iCallsites AICT

401.bzip2 20 20 1.0 1.0 20 2.0 - 22 1.4
458.sjeng 1 1 7.0 7.0 1 7.0 - 3 7.0
433.milc 4 4 1.0 2.0 4 2.0 - 6 2.0
482.sphinx3 0 0 - - 7 0.7 - 10 5.6
456.hmmer 10 10 3.3 2.6 10 2.8 - 12 7.2
464.h264ref 352 352 2.04 3.1 352 26.4 22.8 354 20.9
445.gobmk 44 44 86.1 503.3 44 1297.2 - 46 672.4
400.perlbench 140 114 20.8 89.7 110 363.7 - 117 354.0
403.gcc 362 345 111.2 34.5 450 427.8 - 44 338.0
nginx 210 143 8.7 176.2 331 525.1 465.2 220 383.0
lighttpd 77 48 17.6 3.5 109 33.9 - 56 31.7
exim 82 82 5.0 5.3 106 30.6 - 78 22.4
memcached 69 69 1.2 1.0 72 1.4 - 50 11.3

BinDSA in hmmer on heap object since there is a wrapper function for malloc in the program,
resulting in numerous heap objects sharing the same allocation site. It is noteworthy that our
evaluation metric for heap access precision does not distinguish between heap objects originating
from distinct calling contexts. However, the observed enhancements in precision facilitated by
BinDSA can be attributed to its heap cloning approach.
Table 4 presents the profiling-based recall of BinDSA. BinDSA reaches a recall rate of 97.8%,

95.3%, and 92.3% for stack, global, and heap accesses on average. Note that we omit the recall of
BinPointer in this table as it maintains soundness. Several instances of unsoundness arise due to
the failure to track pointer arithmetic or the inaccurate identification of block boundaries, leading
to the loss of points-to relationships. Nevertheless, a holistic evaluation of both precision and recall
reveals that BinDSA significantly improves precision while maintaining a satisfactory level of
soundness.

6.3 Indirect-Call Targets Recovery
6.3.1 AICT Comparison. We utilize the traditional metric AICT (average indirect-call targets)
for measuring the precision of our recovered call graph and comparing it with the state-of-the-
art solutions. The results are shown in Table 5. Since we directly adopt the numbers of existing
approaches from their paper, the programs we built are different and the total number of indirect call
sites is slightly different. So we listed both the number of indirect call sites (denoted as iCallsites)
and the AICT results in the table. Note that the #iCallsites are the same between BinDSA and
SVF. It is also the same between BPA and BinPointer since they come from the same authors. The
482.sphinx3 program we built has no indirect call site, therefore we are unable to provide results
for it. BinPointer only reports their results for 464.h264ref and nginx, thus data of other programs
is unavailable. We also listed the number of solved indirect call sites of BinDSA which reflect the
recall. The AICT we present for BinDSA is based only on the solved indirect call sites.

As shown, BinDSA has a significantly lower AICT compared to the existing approaches in most
of the programs. For instance, it has a lower AICT than BPA on 401.bzip2 since it is field-sensitive.
It is significantly more precise than BPA and BinPointer on 433.milc, 464.h264ref, and 445.gobmk
because it is context-sensitive. Our heap cloning strategy is found effective on nginx because
nginx encapsulates heap allocation into specific functions and heaps are allocated by calling these
functions, which means heap objects cannot be differentiated solely by the allocation site. Moreover,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:16 Lian Gao and Heng Yin

our algorithm successfully filters out the incompatible type mergings in nginx that are caused by
errors in the lifted IR. Besides, our strategy of filtering out incompatible callees also contributes to
the lower AICT of our results.

0 10 20 30 40 ≥50
Number of Targets

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

bzip2
milc
h264ref
thttpd
sjeng
lighttpd
nginx
gcc
hmmer
exim
perlbench
gobmk
memcached

Fig. 14. Number of Targets Discovered by SVF

Regarding recall, BinDSA has recovered all
the indirect call sites within all of the programs
except for 400.perlbench, 403.gcc, nginx, and
lighttpd. It is because the precision-focused de-
sign choices in BinDSA can sometimes com-
promise soundness. Many of the unsound cases
are caused by failing to track the pointer arith-
metic, which results in the loss of points-to rela-
tionships. BinDSA resolves fewer indirect call
sites on nginx due to its conservative merging
strategy and certain data structures in nginx
incorporate a void * field designed to point to
various types of data structures.

We also present the CDF distribution of in-
direct call sites based on the number of tar-
gets discovered by SVF in Figure 14, to examine
the prevalence of complex indirect calls in the
dataset. As shown, approximately 30% to 70% of indirect call sites in nginx, gcc, perlbench, and
gobmk exhibit greater complexity, potentially invoking over 50 targets. After further analysis, we
find that the recall of BinDSA in handling complex indirect call sites with over 50 potential targets
is 100% for gobmk, 33% for nginx, 54% for gcc, and 87% for perlbench. A common scenario involves
function pointers being stored in an array and invoked within a loop. BinDSA is equipped to handle
this case effectively. However, there are cases in nginx where a single void * pointer references
different data structures, each containing function pointers that may be invoked, resembling virtual
calls in C++. These cases cannot be handled properly by BinDSA when the type-filtering strategy
prevents merging, leading to a loss of recall.

Table 6. Profiling-based Precision and Recall

Programs

BinDSA BPA

Precision Recall Precision Recall

401.bzip2 1.00 1.00 0.30 1.00
458.sjeng 0.86 1.00 0.86 1.00
433.milc 1.00 1.00 1.00 1.00
456.hmmer 0.91 1.00 0.91 1.00
464.h264ref 0.65 1.00 0.03 1.00
445.gobmk 0.56 0.95 0.25 1.00
400.perlbench 0.53 0.86 0.35 1.00
403.gcc 0.46 0.67 0.33 1.00
Average 0.75 0.93 0.50 1.00

6.3.2 Profiling-based Precision and Recall. The
profiling-based evaluation involves gathering the
real targets of indirect calls across a range of test
cases. These identified targets are then considered
as a reference to estimate the precision and recall of
BinDSA. We adopt the same evaluation approach
and metrics as BPA [23] when conducting this ex-
periment. Specifically, we utilize the existing refer-
ence dataset in the SPEC CPU2006 benchmarks as
the test cases and leverage the Pin tool to record
the indirect targets at the runtime. Since these tar-
gets are a subset of the ground truth, the precision
calculated based on it is lower than the real preci-
sion and the recall calculated is higher than the real
recall, as also mentioned in BPA [23]. Note that we
omit the 482.sphinx3 program since the program we built has no indirect call site.
As shown in Table 6, BinDSA achieves equal or higher precision than BPA across all cases.

Besides, BinDSA reaches a 0.93 recall on average. It resolves all indirect call sites according to

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:17

Table 7. Execution Time and Memory Consumption

Program

BinDSA BPA BinPointer

Execution Time Memory Execution Time Memory Execution Time Memory

401.bzip2 20s 0.2G 8s - - -
458.sjeng 46s 0.2G 131s - - -
433.milc 50s 0.3G 33s - - -
482.sphinx3 - - 36s - - -
456.hmmer 62s 0.4G 79s 0.6G 510s 1.8G
464.h264ref 193s 0.6G 379s 3.6G 23020s 8.8G
445.gobmk 785s 1.5G 1933s 28G - -
400.perlbench 3289s 4.8G 4006s 57G - -
403.gcc 1865s 24.9G 27619s 352G - -
nginx 140s 2.9G 1723s 23G 7692s 41G
lighttpd 90s 0.9G - - - -
exim 844s 3.6G - - - -
memcached 30s 0.7G - - - -

Table 5 but only reaches 0.95 recall on 445.gobmk in this experiment since it missed several targets
at a call site. The average F1 score of BinDSA is 0.83, which is 24% higher than BPA’s F1 score of
0.67.

6.4 Runtime and Memory Efficiency
The execution time and memory consumption results are presented in Table 7. We list all the
reported numbers from the BPA and BinPointer paper. As shown, BinDSA exhibits notably reduced
execution time and memory usage compared to BPA and BinPointer, especially for larger programs
such as 403.gcc. Comparing the programs with reported results available both from BinDSA and
BPA, BinDSA’s average execution time is 5 times smaller than BPA, and memory consumption
is 13 times smaller than BPA. This demonstrates that the unification-based aggregation strategy
and the type filtering technique adopted in BinDSA have significantly improved the runtime and
memory efficiency of points-to analysis.

6.5 Case Study
6.5.1 CVE Reachability. We further conduct a case study on CVE reachability, showcasing the
practical application of BinDSA. CVE reachability analysis allows security researchers to assess
the potential impact of identified vulnerabilities within software systems so that they can prioritize
their patching efforts effectively. It’s worth noting that we prefer conducting this analysis on
binaries, even when the library is open-source. This preference arises due to inherent limitations of
source code level analysis, such as potential modifications by vendors and the presence of various
configuration options influencing the produced binary. Therefore, relying solely on source code
analysis may not always be reliable.

Our analysis is on the Windows version of Zoom [5] (v5.9.7.3931), scrutinizing three vulnerabili-
ties previously identified in the work of SigmaDiff [16], namely CVE-2020-13790, CVE-2021-38291,
and CVE-2020-22037. Specifically, we first locate the vulnerable function of the CVE. Since the
vulnerabilities reside in third-party libraries, the vulnerable functions are located within either
turbojpeg.dll or avcodec-58.dll. Next, we run BinDSA on the two programs to generate the
call graph, identifying API functions that will eventually call the vulnerable function. Then we
check the reachability of these API functions in the other executables of Zoom in a similar manner.
We continue this process iteratively until a main executable of Zoom is reached.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:18 Lian Gao and Heng Yin

1 longlong alloc_small(longlong *param_1, ...) {

2 ...

3 puVar4 = (undefined8 *)jpeg_get_small(param_1,...); // calls malloc

4 ...

5 puVar8 = puVar4 + 0x18;

6 ...

7 return puVar8;

8 }

9 void * jinit_read_ppm(longlong param_1) {

10 ppcVar1 = (***(param_1 + 8))(param_1,1,0x58); // calls alloc_small

11 *ppcVar1 = start_input_ppm; // assign vulnerable function

12 ppcVar1[2] = finish_input_ppm;

13 return ppcVar1;

14 }

15 void * tjLoadImage(...) {

16 ...

17 local_58 = (code **)jinit_read_ppm((longlong)local_68);

18 ...

19 (**local_58)(...); // calls vulnerable function

20 ...

21 }

Fig. 15. Pseudocode of related functions

Our analysis finds that among the
three vulnerabilities related to the Win-
dows version of Zoom, only CVE-2020-
22037 is reachable, while CVE-2020-13790
and CVE-2021-38291 are found to be not
reachable. The call path leading from
the API function to the vulnerable func-
tion of CVE-2020-22037 is straightforward,
without any indirect calls involved. Ad-
ditionally, for CVE-2021-38291, situated
within an API function, it is easily dis-
cernible that it remains uncalled by the
main executables. Thus, the primary fo-
cus is on illustrating the call path of CVE-
2020-13790 in Zoom, as depicted in Fig-
ure 16. This vulnerability resides within
the start_input_ppm function in turbojpeg.dll. It is indirectly invoked by the API function
tjLoadImage, as denoted by the dashed arrow. However, neither of the Zoom programs invokes
this API function. Hence, this vulnerability is deemed unreachable.

Zoom
Programs

tjLoadImage start_input_ppm

tjDecompressToYUV

tjInitDecompress

 ...

turbojpeg.dll

Fig. 16. Call paths of CVE-2020-13790 in

Zoom

However, pinpointing the precise resolution of this in-
direct call within tjLoadImage is challenging. Figure 15
provides the pseudocode outlining the functions related
to resolving this indirect call. alloc_small is a function
that allocates small memory objects for the library and
it is responsible for managing memory resources effi-
ciently. We extract and simplify the logic of memory allo-
cation in this function. At line 3, it calls jpeg_get_small,
which internally calls the malloc function to allocate
a heap object and returns the pointer to it. In the end,
alloc_small returns the pointer to the allocated heap
object plus an offset. The jinit_read_ppm function calls
the alloc_small function indirectly (at line 10) and the function pointer of start_input_ppm is
assigned to a field of the allocated heap object (at line 11). This pointer is invoked at line 19 in
tjLoadImage which eventually calls the vulnerable function. Since jpeg_get_small encapsulates
the malloc function, differentiating heap objects solely by allocation site is not precise enough
and BinDSA enables heap cloning to handle this. Besides, the dereferences based on puVar8 are
non-0-based dereferences, thus BinPointer would lose its field sensitivity in this example.

Table 8. Vulnerability Detection

Program

BinDSA BAI CC

FPR FNR FPR FNR FPR FNR

CWE415 0.02 0.23 0.02 0.02 0.01 0.57
CWE416 0 0 0 0 0 0.73

6.5.2 Vulnerability Detection. Next, we perform a case study
to evaluate the effectiveness of BinDSA in detecting two
common CWE vulnerabilities: use-after-free (CWE-416) and
double-free (CWE-415). For this purpose, we utilize the Juliet
Test Suite [1] and benchmark our results against two popular
binary-level vulnerability scanners: BinAbsInspector [2] and
CWE Checker [3].

BinAbsInspector implements a variant of value-set analysis
on Ghidra IR to scan vulnerabilities in binaries and it leverages Z3 solver to solve path constraints.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:19

CWE Checker, on the other hand, utilizes simple heuristics and abstract interpretation-based data-
flow analysis to identify potential vulnerabilities. In BinDSA, we enhance the bottom-up analysis
stage by merging callees of a function in the order of their corresponding callsites, to improve
accuracy while preserving the efficiency of the analysis. This enables us to effectively identify
whether a pointer is subject to double-free or use-after-free issues.

Despite the absence of path sensitivity in our approach, the results (shown in Table 8) demonstrate
that BinDSA performs on par with BinAbsInspector (denoted as BAI in Table 8) in terms of false
positive rate (FPR) and false negative rate (FNR). Moreover, BinDSA has significantly lower FNR
compared to CWE Checker (denoted as CC in Table 8), as the data-flow analysis in CWE Checker
may lose the points-to relationship during analysis. Notably, one of the key advantages of our
approach is its efficiency. BinDSA is approximately 2.5 times faster than BinAbsInspector, offering
a substantial improvement in analysis speed.

7 Discussion and Limitations
Loss of Soundness. The unsoundness inherent in our approach can be attributed primarily to three
key factors. First, our methodology is limited in its ability to track pointer arithmetic operations. In
our current framework, we only consider pointer arithmetic involving constant numerical values
and handle simple cases of array access. Consequently, BinDSA overlooks scenarios where arrays
are manipulated using variable or undetermined indices. Unlike BinPointer, which can revert to the
block memory model when faced with failed pointer arithmetic, our approach is unification-based.
If we fall back to the block model, the algorithm will merge all untracked fields together and
inevitably compromise precision to a significant extent. Therefore, a trade-off must be made.

Second, the conflict-type filtering strategy we take could compromise the soundness. While this
strategy effectively filters out erroneous merges resulting from mistakes in the lifting process and
accurately excludes incorrect indirect callees, it also runs the risk of overlooking correct merges.
For instance, situations may arise where two objects of incompatible types are both referenced
by a void * pointer. In such cases, the filtering strategy might erroneously discard these merges,
potentially leading to incomplete analysis outcomes.
Third, the current variable boundary is estimated by first identifying the base pointer and

then inferring the data structure size based on memory access patterns from the base pointer.
However, the size can be underestimated, causing a single variable to be split into multiple variables.
Additionally, due to optimization, the base pointer is not always the start of a variable. These issues
compromise soundness. We will systematically consider and solve these problems in future work.

Loss of Precision. The choice of the DSA algorithm [25], which employs a unification-based
approach to points-to analysis, could sacrifice precision due to its inherent flow-insensitivity and
the lack of context-sensitivity within Strongly Connected Components (SCCs). This limitation
may lead to over-approximation and merging unrelated pointer variables, thereby reducing the
granularity of the analysis and potentially impacting its effectiveness in scenarios requiring fine-
grained pointer tracking.

For example, the effectiveness of BinDSA is limited in analyzing C++ virtual tables and multiple
inheritance structures. Even though we added support for C++ libraries in order to work with the
Juliet Test Suite in the case study, these programs are much simpler than real-world C++ programs.
In C++, it is common for a single pointer to reference objects of two different classes, which can
result in incorrect merging of their corresponding virtual tables during analysis. As a potential
direction for future work, we plan to investigate hybrid approaches that combine the benefits
of Steensgaard’s algorithm with Andersen’s, aiming to balance efficiency with precision while
maximizing the recovery of type information.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:20 Lian Gao and Heng Yin

8 Conclusion
In this paper, we propose BinDSA, a novel model designed for binary pointer analysis. BinDSA
proposes to emphasize precision and efficiency, enabling the reverse engineering of a substantial
number of programs with enhanced accuracy and speed. It jointly recovers data structure and
pointers-to relations so that they can enhance each other. Its construction involves three distinct
stages: local analysis, bottom-up analysis, and top-down analysis. These stages are aimed at estab-
lishing interprocedural points-to relations while concurrently utilizing the retrieved data structure
types information to enhance the precision of the points-to analysis. Extensive experimental eval-
uations have been taken to compare BinDSA with state-of-the-art solutions such as BPA and
BinPointer. The results demonstrate that BinDSA outperforms these models significantly in terms
of both precision and efficiency. These findings underscore the effectiveness and practical utility of
BinDSA in facilitating binary pointer analysis tasks.

9 DATA AVAILABILITY
Our code and data will be available at https://github.com/bitsecurerlab/BinDSA.

Acknowledgment
The authors would like to thank the anonymous reviewers for their insightful feedback and
constructive suggestions. This work was supported by NSF under grants No. 1719175 and No.
2133487.

References
[1] 2017. Juliet C/C++ 1.3. https://samate.nist.gov/SARD/test-suites/112/. (2017).
[2] 2024. BinAbsInspector. https://github.com/KeenSecurityLab/BinAbsInspector/. (2024).
[3] 2024. cwe_checker. https://github.com/fkie-cad/cwe_checker/. (2024).
[4] 2024. Ghidra. https://ghidra-sre.org/. (2024).
[5] 2024. Zoom. https://zoom.us/. (2024).
[6] Lars Ole Andersen. 1994. Program analysis and specialization for the C programming language. (1994).
[7] Gogul Balakrishnan and Thomas Reps. 2010. Wysinwyx: What you see is not what you execute. ACM Transactions on

Programming Languages and Systems (TOPLAS) 32, 6 (2010), 1–84.
[8] George Balatsouras and Yannis Smaragdakis. 2016. Structure-sensitive points-to analysis for C and C++. In Static

Analysis: 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings 23. Springer, 84–104.
[9] Mohamad Barbar and Yulei Sui. 2021. Compacting points-to sets through object clustering. Proceedings of the ACM on

Programming Languages 5, OOPSLA (2021), 1–27.
[10] Mohamad Barbar, Yulei Sui, and Shiping Chen. 2021. Object versioning for flow-sensitive pointer analysis. In 2021

IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE, 222–235.
[11] Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang. 2021. {SelectiveTaint}: Efficient Data Flow Tracking With Static

Binary Rewriting. In 30th USENIX Security Symposium (USENIX Security 21). 1665–1682.
[12] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1991. Efficiently computing

static single assignment form and the control dependence graph. ACM Transactions on Programming Languages and
Systems (TOPLAS) 13, 4 (1991), 451–490.

[13] Manuvir Das. 2000. Unification-based pointer analysis with directional assignments. Acm Sigplan Notices 35, 5 (2000),
35–46.

[14] Yue Duan, Xuezixiang Li, JinghanWang, and Heng Yin. 2020. Deepbindiff: Learning program-wide code representations
for binary diffing. In Network and distributed system security symposium.

[15] Zenan Feng, Zhenyu Wang, Weiyu Dong, and Rui Chang. 2018. Bintaint: a static taint analysis method for binary
vulnerability mining. In 2018 International Conference on Cloud Computing, Big Data and Blockchain (ICCBB). IEEE,
1–8.

[16] Lian Gao, Yu Qu, Sheng Yu, Yue Duan, and Heng Yin. 2024. SigmaDiff: Semantics-Aware Deep Graph Matching for
Pseudocode Diffing. In Network and Distributed System Security Symposium, February 2024 (NDSS’24).

[17] Tobias Gutzmann, Jonas Lundberg, and Welf Lowe. 2007. Towards path-sensitive points-to analysis. In Seventh IEEE
International Working Conference on Source Code Analysis and Manipulation (SCAM 2007). IEEE, 59–68.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

https://samate.nist.gov/SARD/test-suites/112/
https://github.com/KeenSecurityLab/BinAbsInspector/
https://github.com/fkie-cad/cwe_checker/
https://ghidra-sre.org/
https://zoom.us/

BinDSA: Efficient, Precise Binary-Level Pointer Analysis with Context-Sensitive Heap Reconstruction ISSTA053:21

[18] Ben Hardekopf and Calvin Lin. 2009. Semi-sparse flow-sensitive pointer analysis. ACM SIGPLAN Notices 44, 1 (2009),
226–238.

[19] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions of lines of code. In International
Symposium on Code Generation and Optimization (CGO 2011). IEEE, 289–298.

[20] Nevin Heintze and Olivier Tardieu. 2001. Ultra-fast aliasing analysis using CLA: A million lines of C code in a second.
ACM SIGPLAN Notices 36, 5 (2001), 254–263.

[21] Suman Jana, Yuan Jochen Kang, Samuel Roth, and Baishakhi Ray. 2016. Automatically detecting error handling bugs
using error specifications. In 25th USENIX Security Symposium (USENIX Security 16). 345–362.

[22] Yuan Kang, Baishakhi Ray, and Suman Jana. 2016. Apex: Automated inference of error specifications for c apis. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. 472–482.

[23] Sun Hyoung Kim, Cong Sun, Dongrui Zeng, and Gang Tan. 2021. Refining Indirect Call Targets at the Binary Level.. In
NDSS.

[24] Sun Hyoung Kim, Dongrui Zeng, Cong Sun, and Gang Tan. 2022. Binpointer: towards precise, sound, and scalable
binary-level pointer analysis. In Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction.
169–180.

[25] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making context-sensitive points-to analysis with heap
cloning practical for the real world. ACM SIGPLAN Notices 42, 6 (2007), 278–289.

[26] Yuxiang Lei and Yulei Sui. 2019. Fast and precise handling of positive weight cycles for field-sensitive pointer analysis.
In Static Analysis: 26th International Symposium, SAS 2019, Porto, Portugal, October 8–11, 2019, Proceedings 26. Springer,
27–47.

[27] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei Zou. 2018. αdiff: cross-version
binary code similarity detection with dnn. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. 667–678.

[28] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, and Yuyan Bao. 2022. Sok: Demystifying binary lifters through the lens of
downstream applications. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 1100–1119.

[29] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. 2005. Pin: building customized program analysis tools with dynamic instrumentation.
Acm sigplan notices 40, 6 (2005), 190–200.

[30] Paul Muntean, Matthias Fischer, Gang Tan, Zhiqiang Lin, Jens Grossklags, and Claudia Eckert. 2018. cfi: Type-assisted
control flow integrity for x86-64 binaries. In International Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 423–444.

[31] Erik M Nystrom, Hong-Seok Kim, and Wen-Mei W Hwu. 2004. Bottom-up and top-down context-sensitive summary-
based pointer analysis. In Static Analysis: 11th International Symposium, SAS 2004, Verona, Italy, August 26-28, 2004.
Proceedings 11. Springer, 165–180.

[32] David J Pearce, Paul HJ Kelly, and Chris Hankin. 2007. Efficient field-sensitive pointer analysis of C. ACM Transactions
on Programming Languages and Systems (TOPLAS) 30, 1 (2007), 4–es.

[33] Desirable Perhaps. 2015. Soundness is not even necessary for most modern analysis applications, however, as many.
Commun. ACM 58, 2 (2015).

[34] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On fast large-scale program analysis in
datalog. In Proceedings of the 25th International Conference on Compiler Construction. 196–206.

[35] Marc Shapiro and Susan Horwitz. 1997. Fast and accurate flow-insensitive points-to analysis. In Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 1–14.

[36] Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 32–41.

[37] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th
international conference on compiler construction. 265–266.

[38] Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. 2011. SPAS: Scalable path-sensitive pointer analysis on full-sparse
SSA. In Programming Languages and Systems: 9th Asian Symposium, APLAS 2011, Kenting, Taiwan, December 5-7, 2011.
Proceedings 9. Springer, 155–171.

[39] Yulei Sui, Sen Ye, Jingling Xue, and Jie Zhang. 2014. Making context-sensitive inclusion-based pointer analysis practical
for compilers using parameterised summarisation. Software: Practice and Experience 44, 12 (2014), 1485–1510.

[40] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal on computing 1, 2 (1972), 146–160.
[41] Victor Van Der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten

Holz, Elias Athanasopoulos, and Cristiano Giuffrida. 2016. A tough call: Mitigating advanced code-reuse attacks at the
binary level. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 934–953.

[42] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018. Precise and scalable detection of
double-fetch bugs in OS kernels. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 661–678.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

ISSTA053:22 Lian Gao and Heng Yin

[43] Sen Ye, Yulei Sui, and Jingling Xue. 2014. Region-based selective flow-sensitive pointer analysis. In International Static
Analysis Symposium. Springer, 319–336.

[44] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. 2010. Level by level: making flow-and
context-sensitive pointer analysis scalable for millions of lines of code. In Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization. 218–229.

[45] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee, Yonghwi Kwon, Yousra Aafer, and Xiangyu Zhang.
2021. Osprey: Recovery of variable and data structure via probabilistic analysis for stripped binary. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 813–832.

[46] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang. 2019. BDA: practical depen-
dence analysis for binary executables by unbiased whole-program path sampling and per-path abstract interpretation.
Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–31.

[47] Wenyu Zhu, Zhiyao Feng, Zihan Zhang, Jianjun Chen, Zhijian Ou, Min Yang, and Chao Zhang. 2023. Callee: Recovering
call graphs for binaries with transfer and contrastive learning. In 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2357–2374.

Received 2025-02-26; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA053. Publication date: July 2025.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Points-to Analysis on Source Code
	2.2 Points-to Analysis on Binaries

	3 Overview
	3.1 Addressing the Challenges
	3.2 System Overview
	3.3 Assumptions

	4 Data Structure Analysis
	4.1 Data Structure Graph
	4.2 Algorithm of DSA

	5 BinDSA Algorithm
	5.1 Definitions
	5.2 Local Analysis
	5.3 Bottom-Up Analysis
	5.4 Top-Down Analysis

	6 Evaluation
	6.1 Experimental Setup
	6.2 Precision and Soundness
	6.3 Indirect-Call Targets Recovery
	6.4 Runtime and Memory Efficiency
	6.5 Case Study

	7 Discussion and Limitations
	8 Conclusion
	9 DATA AVAILABILITY
	References

