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ABSTRACT
Control Flow Integrity (CFI) is an effective technique to mitigate
threats such as code-injection and code-reuse attacks in programs
by protecting indirect transfers. For stripped binaries, a CFI policy
has to be made conservatively due to the lack of source code lev-
el semantics. Existing binary-only CFI solutions such as BinCFI
and CCFIR demonstrate the ability to protect stripped binaries, but
the policies they apply are too permissive, allowing sophisticated
code-reuse attacks. In this paper, we propose a new binary-only
CFI protection scheme called BinCC, which applies static binary
rewriting to provide finer-grained protection for x86 stripped ELF
binaries. Through code duplication and static analysis, we divide
the binary code into several mutually exclusive code continents. We
further classify each indirect transfer within a code continent as ei-
ther an Intra-Continent transfer or an Inter-Continent transfer, and
apply separate, strict CFI polices to constrain these transfers. To
evaluate BinCC, we introduce new metrics to estimate the average
amount of legitimate targets of each kind of indirect transfer as well
as the difficulty to leverage call preceded gadgets to generate ROP
exploits. Compared to the state of the art binary-only CFI, BinCFI,
the experimental results show that BinCC significantly reduces the
legitimate transfer targets by 81.34% and increases the difficulty for
adversaries to bypass CFI restriction to launch sophisticated ROP
attacks. Also, BinCC achieves a reasonable performance, around
14% of the space overhead decrease and only 4% runtime overhead
increase as compared to BinCFI.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Informa-
tion flow controls

General Terms
Security
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1. INTRODUCTION
ASLR [22] and DEP [2] have mitigated traditional threats to

computer programs. However, attackers are still able to launch at-
tacks through code reuse [4, 21] even if ASLR and DEP are en-
abled. Return Oriented Programming [20] (ROP) is one such code
reuse technique. Over time this technique has gained popularity
and presents a challenge to program safety. Several works [3, 6–8,
13, 19, 24] have proposed solutions to tackle these kinds of attacks
and they have all made improvement to some extent.

Control flow Integrity [1] plays an important role in combating
control flow hijack attacks. It forces the control flow transfers in
the program to follow the policy represented by the control flow
graph. The policy can be strict based on the source code as the
the control flow graph tend to be completed. However, for stripped
binaries, because of the lack of source code or debug information,
the CFI policy is coarse-grained. Although many advanced CFI
implementations such as CCFIR and BinCFI can prevent the vast
majority of control flow hijack threats, they may still be vulnerable
to sophisticated ROP attacks as illustrated in the works [5, 10].

In this paper, we extend one state of the art CFI solution, BinC-
FI, and propose a new binary-only CFI protection scheme, BinCC,
which provides finer-grained protection for stripped binaries. By
duplicating a little amount of code and performing static analy-
sis, we divide the binary code into several mutually exclusive code
continents, and classify each indirect transfer as either an Intra-
Continent transfer or an Inter-Continent transfer. We further apply
strict CFI polices to constrain these two kinds of transfers. Under
our policy, Intra-Continent transfers have determined targets with-
in the continent, and Inter-Continent transfers are only permitted
to reach specific types of targets across continents. As a result, we
significantly refine the legitimate transfer targets.

To evaluate our policy, we introduce new metrics to estimate the
average amount of legitimate targets of each kind of indirect trans-
fer as well as the difficulty to leverage call preceded gadgets to
generate exploit. As compared to BinCFI, the experimental results
show that BinCC makes great improvement on both these aspect-
s. BinCC reduces the legitimate transfer targets by 81.34% com-
pared to BinCFI. Especially, BinCC provides much finer-grained
protection for returns and degrades the average legitimate target-
s by 87%, thereby significantly increasing the difficulty to launch
sophisticated ROP attacks by leveraging call preceded gadgets. A-
part from that, BinCC has a reasonable performance, 4% higher
runtime overhead and 14% less space overhead than BinCFI.

In summary, BinCC has the following contributions:

• BinCC proposes code duplication and code continents con-
struction and thus classifying indirect transfers as either Intra-



Continent transfers or Inter-Continent transfers, allowing to
enforce a finer-grained CFI policy.

• BinCC can considerably refine the legitimate targets for a bi-
nary’s indirect transfers, especially for returns, as compared
to binary based CFI implementations, BinCFI and CCFIR.

• BinCC can not only eliminate common control flow hijack
threats, but also significantly increase the difficulty to launch
sophisticated ROP exploits, for instance, leveraged by call
preceded gadgets.

• BinCC has reasonable performance, around 14% less space
overhead and 4% higher runtime overhead as compared to
BinCFI.

We organize the remainder of paper as follows. We discuss back-
ground and related work at Section 2, and then present the concept
of code continent and our policy in Section 3. We describe code
continent construction in Section 4 and CFI enforcement in Sec-
tion 5. Section 6 presents our evaluation. Discussion is in Section
7 and conclusion is in Section 8.

2. BACKGROUND AND RELATED WORK
CFI related implementations can be generally classified into two

categories, namely, source code based and binary only based. Since
in practice a large number of binaries we face are closed source, we
lay more emphasis on binary only based solutions. Particularly, we
discuss more on two state of the art implementations CCFIR as well
as BinCFI and the possible attacks towards them.

2.1 Source Code Based CFI
Many CFI implementations [3,11,12,16,23] need source code to

enforce CFI policy. The works [11,23] mainly focus on the protec-
tion of virtual function calls. They leverage class hierarchy analysis
to identify legitimate targets and insert checking code to perform
method and vtable checks. Both solutions can provide fine-grained
protection to calls but little protection to returns. CFL [3] works
by performing a lock operation before each indirect transfer and a
corresponding unlock operation only at valid destinations. It shares
the similar insight with ours in terms of constraining returns from
relatively called functions, but it relies on source code, which is
not always available in practice, and additionally, it lacks modular
support. MCFI [15] is a CFI solution that supports separate com-
pilation. It uses several tables to store legitimate targets of indirect
transfers, and uses auxiliary type information to update their tar-
gets when modules are dynamically loaded. Instrumented code is
inserted before indirect branches and runtime checks are needed.

CPI [12], RockJIT [16] also focus on control flow integrity. Rock-
JIT [16], an extension of MCFI [15], is able to prevent control flow
attacks caused by JITed code. It computes the program’s precise
CFG using the JIT compiler’s source code and updates the CFI pol-
icy when dynamic code is generated at runtime. The work [12] in-
troduces code pointer integrity and code pointer separation. It can
guarantee the program safety by selectively protecting code pointer
accesses, which are susceptible to control flow hijacking attacks.

2.2 Binary Only Based CFI
There are plenty of binary only based solutions [14,24,25] which

enforce control flow integrity. O-CFI [14] applies a coarse-grained
policy to constrain control flow transfers. The integrity checking
is performed by consulting a bounds lookup table which stores
the legitimate range for each indirect branch. It also uses code-
randomization which helps the CFI enforcement and also enables

call foo
...

foo{
...
test [esp], M_R
jnz error
ret

}

foo{
...
jmp ret_search

}

call foo
...

foo_stub:

bar_stub:
...

springboard

call eax
...
call [ebx]
...

ret_search:{
find tgt
movl tgt, %gs:40
jmp %gs:0x40

}

(a) (b)

addr_trans

Figure 1: Possible Attacks to CCFIR and BinCFI

the program to resist information disclosure attacks. SFI [24] is a
sandboxing technique that helps enforce control flow integrity. The
basic idea is to make untrusted modules execute in the same pro-
cess’ address space without allowing them to access each other’s
data and code. PittSFIled [13] and NaCl [25] are SFI-based imple-
mentation to secure native code and they restrict indirect transfers’
targets to meet specific alignment requirement.

Lockdown [17] applies fine-grained policies that protect bina-
ries. It uses shadow stacks to enforce integrity for returns. How-
ever, shadow stacks could introduce high runtime overhead as more
memory read and write operations are needed to maintain call/return
pairs. More importantly, shadow stacks need to be stored in safe
memory regions, which needs support from segmentation provid-
ed by hardware or isolation techniques like SFI. The safe regions
could be vulnerable to information leakage and thus controlled by
attackers to perform exploits. One real attack is shown in [9].

CCFIR [26] is a binary rewriting based CFI solution that targets
Windows x86 executables. It arranges the targets for indirect trans-
fers into a newly introduced section called a “springboard". The
targets are aligned in the springboard, and each indirect transfer is
instrumented to check whether the runtime target meets the correct
alignment. If so, the transfer will be performed through the corre-
sponding stub in the springboard, otherwise the target is regarded as
invalid. BinCFI [27] is another CFI work based on binary rewriting
and targets ELF binaries. BinCFI disassembles the binary, instru-
ments indirect transfers and puts the instrumented code into a newly
introduced code section. For each instruction, it maintains a map-
ping between the original location and the new location. Indirect
transfers are instrumented to jump to address translation routines,
which look for the targets of these transfers. If found, the routine
will execute the target at the new location. Also, BinCFI support-
s inter-module CFI policy by modifying the loader to behave as a
hub to transfer control among modules.

The CFI policy towards stripped binaries is coarse-grained as the
CFGs are imprecise. The permissive policy is still likely to be vi-
olated although it has the ability to mitigate the vast majority of
common control flow hijacks. Figure 1 shows the possible attack
models to CCFIR and BinCFI. The solid line indicates the execu-
tion flow at run time, while the dashed line indicates the possible
targets that could be leveraged in an attack. For CCFIR, as shown in
Figure 1(a), the target, residing in the springboard, is only required
to align against the constant M_R, so any call-site’s address would
be regarded as legitimate. Similarly, for BinCFI, a controlled re-
turn would be able to reach any call sites in the binary, as shown in
Figure 1(b). Those returns are left unprotected and give adversaries
chances to leverage call preceded gadgets to launch attacks. One
recent practical exploit has been shown [10].



3. BINARY CODE CONTINENT
We propose a finer-grained CFI policy that is able to significant-

ly refine the legitimate targets of indirect transfers. In general, we
achieve this by duplicating some necessary code and performing
static analysis to separate the binary into several mutually exclu-
sive code continents, and more importantly, assigning each indi-
rect transfer to be either an Intra-Continent transfer or an Inter-
Continent transfer. This enables us to enforce separate, strict pol-
icy to achieve finer-grained protection. In the following sections,
we first describe the concept of code continent through a sample
and then present our CFI policy.

3.1 Code Continent
Code continents are constructed from Super-CFGs of function-

s. A Super-CFG (Super Control Flow Graph) is constructed, for
a function, from its CFG (Control Flow Graph) by connecting all
direct call sites in the CFG to the entry point of the callee’s Super-
CFG and the end point of the callee’s Super-CFG is connected back
to the call site. This process is repeated recursively until all the di-
rect calls in the function are handled. A code continent is a direct-
ed graph that is constructed from merging functions’ Super-CFGs
based on their common edges. Therefore, code continents are mu-
tually exclusive.

We use Figure 2 to illustrate code continents that represent the
sample code. Suppose a binary originally contains the functions,
main, foo, bar, qux and start. start is the binary’s entry
point. The ordinals within graph nodes represent the corresponding
instructions in code. In Figure, CC1 represents the code continent
generated from the Super-CFG of main. foo’s Super-CFG, which
is constructed by 5, 6 and 7, is included because foo is direct-
ly called at 3. CC2 represents the code continent generated from
bar’s Super-CFG, which has only four nodes. As no direct call
site is present in bar, no callee’s Super-CFG needs to be added in.

We divide the graph nodes contained in a code continent into
three categories: root nodes, border nodes and inner nodes. root
nodes represent entry points of indirect called functions, and they
are represented in grey in the Figure. For instance, 1 and 5 are root
nodes in CC1. border nodes are the indirect transfer instruction-
s whose targets cannot be identified while computing the Super-
CFG, and they are represented striped in the Figure, for example,
2, 4 and 6 are border nodes in CC1. The nodes that are neither
root nor border nodes are denoted as inner nodes, and they are
represented in white in the Figure. The instructions represented
by inner nodes are either non-control flow transfer instructions or
control flow transfers that have determined targets present inside
Super-CFGs, for example, 3 and 7.

By dividing the nodes, we are able to classify indirect transfers
into two categories, Intra-Continent transfers and Inter-Continent
transfers. Intra-Continent transfers are the indirect transfers origi-
nating from inner nodes, while Inter-Continent transfers originating
from border nodes. More importantly, we guarantee that each indi-
rect transfer is either an Intra-Continent or an Inter-Continent trans-
fer and thereby enforcing separate, strict policies. This is achieved
by performing code duplication before code continent construction.

We know that in general the functions in a binary fall into two
categories, Indirectly Called Functions (ICFs) and Directly Called
Functions (DCFs). There might be some functions that are called
in both ways, and by duplicating those functions, we can partition
the functions into two mutually exclusive sets by considering the
duplicated functions as ICFs, as shown in Figure 3. At an indirect
call site, we perform runtime dispatch to execute the duplicated
function when the original function is called. As such, a function
will be called only in a certain way, either indirectly or directly, and

because of this, a return will go back to a specific type of call site.
We thus can divide all the returns into two mutually exclusive sets:
direct returns, which only target direct call sites, as well as indirect
returns, which only target indirect call sites.

As in the sample code, ICFs are composed by main, foo, qux,
bar, while DCFs is composed by foo. Only foo is called in
both ways. Suppose the execution starts from start, originally,
the function foo is indirectly called at first time by 9 and directly
called at second time by 3, so the return 7 would go back to those
two call sites respectively. In BinCC, foo’ is a new function gen-
erated from duplicating foo and will be executed when foo is
indirectly called at 9. This makes 7 become an Intra-Continent
transfer and 7’ become an Inter-Continent transfer, which means
that 7, as a direct return, would only return to 3, while 7’, as an
indirect return, would return to 9, as shown by the two dot arrows.

ICFs ICFs

DCFs
DCFs

duplication

Figure 3: Indirectly Called Functions(ICFs) and Directly
Called Functions(DCFs). Functions are partitioned into two
mutually exclusive parts through duplicating the functions in
the intersection. Duplicated functions are considered as ICFs.

3.2 CFI Policy
We propose Intra-Continent Policy and Inter-Continent Policy

to constrain Intra-Continent and Inter-Continent indirect transfers
respectively.

Intra-Continent Policy.
This policy is to constrain the inner nodes representing indirect

transfers whose targets can be determined statically. Their targets
are always present inside their own code continent and are always
determined by the Super-CFGs that compose this continent. Within
a continent, there are only two kinds of indirect control flow trans-
fers we need to be concerned with, one being direct returns and the
other being indirect jumps associated with switch-case jump tables.
For each direct return, the legitimate targets are its corresponding
target call sites within the current code continent. For each indirect
jump, the legitimate targets are all the case branches in the corre-
sponding jump table. The case branches in a jump table can be
identified by static analysis, and we connect the indirect jump with
all its case branches when building Super-CFGs, which makes its
targets deterministic.

For the sample illustrated, there is one Intra-Continent indirect
transfer in those continents. It is the return at 7 in CC1. It is only
allowed to return back to the call site 3 (or say the instruction 4).

Inter-Continent Policy.
This policy is to constrain the border nodes, which are indirect

transfers whose targets cannot be statically determined from Super-
CFGs. Based on the transfer types, we apply the following policies.

i Indirect call nodes can only reach root nodes that represent the
entry points of ICFs.

ii Indirect return nodes can only go back to the border nodes that
represent indirect call sites.
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7'

ret

ret

icall

ret

icall

ret

main:
1: movl bar, %eax  
2: call *%eax      
3: call foo                             
4: ret                                

foo:
5: movl qux,%eax
6: call *%eax
7: ret              

bar:
8: movl foo, %ebx 
9: call *%ebx 
10: movl $1, %eax
11: ret 

foo': (duplicated from foo)
5': movl qux, %eax
6': call *%eax
7': ret              

start:
movl main,%eax
call *%eax
hlt

original functions duplicated function

qux:
12:movl $0,%eax
13:ret

6'

12

13

6
icall

ret

Figure 2: Code Continents Sample

iii Indirect jump nodes, whose targets cannot be resolved by static
analysis, can go to either root nodes or border nodes that repre-
sent call sites.

The policies are enforced based on the following insights. After
the functions are partitioned into two mutually exclusive sets, an
ICF can only be called by indirect call instructions (i), and due
to this, indirect returns from an ICF will only go back to indirect
call sites (ii). Indirect jumps normally have associations with jump
tables, where their targets can be determined by static analysis, but
there may be some indirect jumps whose targets cannot be known
statically. Their targets should be constants present in the binary,
and they can either be the entries of ICFs or call sites (iii).

For the sample above, the root nodes are entry nodes of ICFs (1,
5, 5’, 8 and 12), the border nodes contain indirect call nodes (2,
6 and 9) and indirect return nodes (4, 11, 13 and 7’). In BinCC,
the indirect call nodes (2, 6 and 9) are permitted to call the ICFs
(1, 5, 5’, 8 and 12). The indirect returns (4, 11, 13 and 7’) are
allowed to return back to indirect call sites (2, 6 and 9).

4. CODE CONTINENT CONSTRUCTION
To construct code continents, we identify all the DCFs and ICFs

in the binary, and then perform control flow analysis to compute
the CFGs of those functions, which helps determine what functions
we need to duplicate and also to compute Super-CFGs. After the
code duplication, we finally construct the code continents based on
Super-CFGs. We now discuss these phases.

4.1 DCF Identification
Each DCF is called through a relative call. The function entry’s

address could be computed through the relative call instruction’s
address and operand value. Through this, we identify all the direct
call sites from the disassembly to obtain all the DCFs.

4.2 ICF Identification
ICF identification is based on the observation that the address of

an ICF stems from the constants in the binary. We search for any
constant that could be used to represent or to compute a function’s
address.

In binaries that contain relocation tables, the table entries, which
are constants, cover the addresses of ICFs. We check whether the
sum of the each constant with the code base address is present in the
code section. If so, this sum is resolved as the address of an ICF. In
binaries that contain no relocation tables, we scan the binary for the
constants and handle it differently for non-PIC and PIC modules.

For a non-PIC module, we use a integer-sized window (e.g., 4-
byte in 32-bit systems) to scan the constants within the data, .ro-
data, .init_array, exported symbol sections and any other sections
possibly containing integers representing valid code addresses. We
also collect constants used within the code section. By consulting
the disassembly, if the constant or the sum of the constant and the
code base is a valid code address and meets one valid instruction’s
boundary, we considered it as a constant function pointer candidate.

For a PIC module, functions can be reached by PC thunks. There-
fore, in addition to performing the same approach as for non-PIC
modules to collect constants, we identify all the PC thunks and see
whether they are used to have access to functions. If so, we consid-
er those functions as constant function pointer candidates.

Note that not all obtained candidates are function entry points.
Some constants are actually the addresses of case branches in a
switch-case jump table. Case branches are within a function and
cannot be function entries. Some candidates are actually the ad-
dresses of some return call sites but not function entry points. So
we remove these two kinds of constants from the candidates, and
the remaining are the final ICFs.

4.3 Control Flow Analysis
We perform static control flow analysis to compute the CFGs of

all the functions, which are composed of identified ICFs and DCFs.
Our analysis is launched in a conservative way. We try to identify
all possible targets for each indirect branch. The main difficulty is
resolving the possible targets of indirect jumps. In most common
cases, an indirect jump is used to dispatch execution from a jump
table, and all legitimate targets of this jump are the corresponding
case branches, which can be identified by the previously discovered
constants. Therefore, for an indirect jump, we check whether or not
it is associated with a jump table and connect it to the corresponding
case branches if so. As BinCFI is able to perform this, we reuse that
component to get the desired result to help construct CFGs.

4.4 Code Duplication
As discussed earlier, to enforce our policy, we duplicate ICF-

s that fall in the intersection of the ICFs and DCFs. However, in
some cases, due to compiler’s optimizations, some ICFs are like-
ly to have common returns with DCFs, and each of those returns
cannot be given a clear transfer type (either Intra or Inter), which
violates our CFI policy. To resolve this issue, if an ICF has common
returns with a DCF, as determined by referencing these two func-
tions’ CFGs, we also duplicate this ICF. The duplicated function
will become a new ICF in the binary.

After identifying the functions to be duplicated, we duplicate all



the instructions in their CFGs. All the duplicated code and the orig-
inal code are put into a new code section after being instrumented
with CFI policy (discussed at Section 5). The original code section
is marked non-executable and all existing data sections are kept un-
changed. The constants with duplicated instructions are unchanged
as well, so the values in the data sections are still accessed correctly.

Additionally, in the duplicated functions, we need to fix up the
operand values of relative calls and jumps. For relative calls, the
operands are adjusted to simulate the call instructions of the orig-
inal version of the function. Similarly, for relative jump instruc-
tions, the operands are adjusted to jump to the corresponding target
branches in the duplicated function.

4.5 Code Continent Construction
Code continents are constructed from the Super-CFGs of func-

tions. Algorithm 1 shows how we compute a function’s Super-
CFG. We search the function’s CFG for direct calls, and at a di-
rect call site we add the callee’s Super-CFG into the graph through
AddSuperCFG. This function introduces two new edges, one be-
ing from the the direct call site(i.e., node i) to the callee’s entry, and
the other being from the callee’s return to the direct call site.

Algorithm 1 SuperCFG(CFGfunc): Compute func ’s Super-
CFG based on its CFG
Input: CFGfunc : the CFG of the function func
Output: sg: the super-graph of func
1: sg ⇐ CFGfunc

2: for each i ∈ Nodes(CFGfunc) do
3: if i is a direct call to f then
4: sg = AddSuperCFG(sg, i, SuperCFG(f))
5: end if
6: end for
7: return sg

Algorithm 2 shows how we construct code continents and classi-
fy nodes in code continents. The algorithm takes all ICFs as input.
It computes Super-CFGs of each ICF and then merges these Super-
CFGs based on their common edges (e.g., the common callees),
which is achieved by MergeGraph. The algorithm finally pro-
duces the set of mutually exclusive code continents, with root n-
odes, border nodes and inner nodes classified in each code conti-
nent. From the algorithm we see that the nodes are classified based
on the types of nodes of Super-CFGs that compose a code continen-
t. The root nodes comes from the entry points of ICFs in the current
continent. The border nodes comes from the nodes representing in-
direct calls(icall), indirect returns(iret) and indirect jumps whose
targets are not statically determined(ijmpu). The inner nodes are
composed by the nodes representing non-control flow instructions
and control flow transfers whose targets are determined (e.g.,direct
calls, direct returns) in the current continent.

There is one corner case that we need to consider. There might be
orphaned code pieces, which are not ever reached by static control
flow analysis, for instance, unresolved target branches for indirect
jumps or dead code. We need to restrict the indirect transfers in
such code pieces as they may be invoked at runtime. To achieve
this, we also generate a code continent, denoted as an orphaned
code continent, for each of them. An orphaned code continen-
t is composed by the Super-CFG of a orphaned code piece, and
the Super-CFG is constructed by applying Algorithm 1 by con-
sidering the instructions of the code piece as its "CFG"(which is
CFGfunc). Also, ibrnch of the Super-CFG(i.e.,sg.ibrnch), com-
posed by icall, iret and ijmpu, are border nodes, and inn of the
Super-CFG(i.e.,sg.inn) are inner nodes. Considering that an or-

phaned continent is not discovered as a function and thus cannot be
invoked by a call, we assign the entry of an orphaned continent as
a border node, instead of a root node.

Algorithm 2 ConstructCC(ICFs): Construct Code Continents
by taking ICFs as input
Input: all the ICFs: ICFs;
Output: all the code continents: CC
1: CC ⇐ φ;SG⇐ φ;SGdone ⇐ φ
2: for each icf ∈ ICFs do
3: sg = SuperCFG(CFGicf ); sg.ent = icf.entry
4: for each i ∈ Nodes(sg)− sg.ent do
5: if i is a icall or a ijmpu or a iret then
6: sg.ibrnch = sg.ibrnch ∪ {i}
7: else
8: sg.inn = sg.inn ∪ {i}
9: end if

10: end for
11: SG = SG ∪ {sg}
12: end for
13: for sg ∈ SG− SGdone do
14: cccur = sg;SGdone = SGdone ∪ {sg}
15: cccur.border = cccur.border ∪ {sg.ibrnch}
16: cccur.inner = cccur.inner ∪ {sg.inn}
17: cccur.root = cccur.root ∪ {sg.ent}
18: for sg′ ∈ SG− SGdone do
19: if HasCommonEdges(cccur, sg′) then
20: cccur =MergeGraph(cccur, sg

′)
21: cccur.border = cccur.border ∪ {sg′.ibrnch}
22: cccur.inner = cccur.inner ∪ {sg′.inn}
23: cccur.root = cccur.root ∪ {sg′.ent}
24: SGdone = SGdone ∪ {sg′}
25: end if
26: end for
27: CC = CC ∪ {cccur}
28: end for
29: return CC

5. CFI ENFORCEMENT
After code continent construction, we perform instrumentation

on different nodes in the continents to enforce our CFI policy. This
is implemented on top of BinCFI, so we briefly describe the basic
instrumentation structure BinCFI provides and then give details on
our enforcement.

5.1 Basic Infrastructure
BinCFI instruments the disassembly and inserts the instrument-

ed code into a new code section with making the original code sec-
tion non-executable. It uses address pairs of the form <orig_addr,
new_addr> to associate the new locations in the instrumented code
with their corresponding original locations. Specifically, BinCFI
generates address pairs for all indirect transfer targets and main-
tains them in two different address translation hash tables, one for
returns and the other for indirect jumps and calls. All address trans-
lation tables are read-only.

BinCFI instruments indirect calls/jumps and returns. For the
indirect jumps associated with jump tables, their operands are re-
placed by expressions of the form *(CE1+Ind)+CE2, whereCE1

and CE2 are constants, and CE1 indicates the jump table associ-
ated, and *(CE1+Ind) indicates all possible case branches. Also,
BinCFI introduces a new jump table based on every CE1, with
transformed case branches’ addresses inside. For the remaining in-



direct transfers, they are instrumented as shown in Figure 4. We
illustrate it by taking an indirect call as an example, the other in-
direct transfers are handled in the same way. Firstly the runtime
target(i.e.,%eax) is saved to a thread local variable(i.e.,%gs:0x40),
and then the control is transferred to a routine, addr_trans,
which performs checking and address translation.

call *%eax movl %eax, %gs:0x40
jmp addr_trans

Figure 4: BinCFI’s instrumentation for indirect transfers,
shown by taking an indirect call as an example. Left is the o-
riginal instruction and right shows the instrumentation.

Figure 5 shows how addr_trans works. In the routine, it
checks whether the transfer is against the CFI policy. If not, it
performs the address translation. As %gs:0x40 stores the address
that falls in the original code section, namely, orig_addr, BinCFI
consults the relevant address translation table for the correspond-
ing translated address, namely, new_addr. If found, it jumps to
new_addr. Otherwise, it calls the global lookup routine, which
helps address translation across different modules.

proc addr_trans:
check_cfi_policy(orig_addr) 
if invald: trigger_alert()
new_addr = find_trans_tgt(addr_trans_table, orig_addr)
if found: goto new_addr
else:  goto global_lookup_routine

Figure 5: Address Translation Routine in BinCFI.

The global lookup routine works by consulting the GTT (Global
Translation Table). For every loaded module, the GTT records the
relationship between the base address of the module and the ad-
dress of the module’s addr_trans. For the above example, the
global routine checks which module the address %gs:40 belongs to,
if no module is found in the GTT, an alert is triggered, and if found,
the control is transferred to that particular module’s addr_trans
routine which takes care of the address checking and translation
as mentioned above. The global lookup routine and the GTT are
added in the loader, and they will loaded at different memory ad-
dress every time. Also, the loader will update the GTT when a new
module is loaded during the runtime.

5.2 Our Instrumentation
We apply BinCFI’s infrastructure and make improvement over

BinCFI to enforce our CFI policy.

Extensions to Address Translation Tables.
To achieve our enforcement, we make two extensions to address

translation tables. Firstly, we introduce new table entries for the
newly introduced indirect transfer targets due to the code duplica-
tion, which are duplicated functions and the return call sites within
them. Secondly, we modify the relevant table entries of the func-
tions that have been duplicated, so that if the original function is
called at runtime the corresponding new function will actually be
executed.

We take foo in the code of Figure 2 as an example to show
such an extension. Figure 6(a) shows how BinCFI records the ad-
dress pair for foo, while Figure 6(b) shows the extension made by
BinCC. Two new targets for indirect transfers, the function entry
<5’, 5’>, the call site <6’, 6’>, are added into the table. 5_new
is changed to 5’, so foo’ will be actually executed when foo is
indirectly called at runtime.

5 5_new
5

5 '

(a) (b)

6 '

Figure 6: Address translation table extension for foo. Indirect
transfer targets are represented by ordinals, of which 5_new is
the corresponding translated address of foo in BinCFI.

Although new indirect transfer targets are introduced through the
code duplication, it has not brought challenges to our protection in
practice. The number of newly added targets is small as only a little
proportion of functions need to be duplicated (shown at Section
6.1). Apart from that, the new transfers are constrained in the same
way and the experimental results show that they have no impact on
our protection.

Intra-Continent Policy Enforcement.
This policy is to constrain the inner nodes that represent indirect

transfers within a code continent: direct returns and indirect jumps
related to jump tables. Their targets are determined and can be
obtained from the Super-CFGs that compose the code continent.

To constrain direct returns, we prepare each of them a separate
address translation hash table to store its legitimate targets. For
each direct return, the targets are the call sites which this direc-
t return is connected with in the Super-CFGs. We get those call
sites and put them into the corresponding address translation table.
Apart from that, we instrument each direct return as shown in Fig-
ure 7. The start and size, embedded in two prefetchnta
instructions, indicate where to find the corresponding address trans-
lation table. We use another thread local variable %gs:0x50 to store
the first prefethnta instruction’s address, _addr. The trans-
lation routine addr_trans_dret uses %gs:0x50 at runtime to
access start and size for locating the right table, and then per-
form the same operations as addr_trans as shown Figure 5.

_addr:  ret               _addr: prefetchnta start
prefetchnta size
movl _addr, %gs:0x50
movl %(esp), %gs:0x40
jmp addr_trans_dret

Figure 7: BinCC’s instrumentation for direct returns. Left is
the original instruction and right shows the instrumentation.

For the indirect jumps related to jump-tables, we can use a sim-
ilar structure. However, as mentioned above, BinCFI has instru-
mented this kind of indirect jumps by restricting them to only go to
their corresponding case branches, so we retain its instrumentation.

Inter-Continent Policy Enforcement.
Intra-Continent policy constrains indirect transfers whose targets

could be statically determined. In this part, we constrain the rest of
the indirect transfers in the binary, which correspond to the border
nodes of continents. We enforce the Inter-Continent policy as de-
scribed in Section 3.2 on these nodes. The same instrumentation as
described in Figure 4 is performed, except that each kind of trans-
fer is given its own address translation table and address translation
routine to conduct address checking and translation.

We make an extra effort to handle one kind of border nodes, the
indirect jumps that reside in PLT entries. They are used for dy-
namic symbol resolution. For such an indirect jump, only two le-
gitimate targets should be allowed, one being the next instruction’s
address, the initialization value before the symbol being resolved,



which is statically determined, and the other being the symbol’s
resolved address, which is determined at runtime. We can further
restrain such a runtime target, since the loader can intercept the
symbol resolution process and retrieve the resolved address. To
this end, we arrange all the targets of these indirect jumps into one
address translation table and put it into a newly introduced read-
only data section. Also, we modify the loader to be able to change
the property of the data section to writable, update the correspond-
ing table entry with the resolved address after symbol resolution,
and change the property back. The change is restricted within this
new data section, so there is no impact on other read-only address
translation tables.

In addition, we lay consideration on the indirect returns in the
orphaned continents, denoted as orphaned returns. As we cannot
identify the invoker of orphaned continents by static analysis, we
allow their targets to be any call sites.

C++ Exceptions.
Another problem we need to pay attention to is C++ exceptions.

In C++ programs, the necessary information for exception handling
is stored in the .eh_frame section. When the exception triggered,
the system would use current execution context to perform stack
unwinding to identify the corresponding catch branch. We intro-
duce new code through code duplication and there is no exception
metadata about this code in the .eh_frame, so if a duplicated func-
tion contains C++ exceptions logic and actually triggers the excep-
tion, no exception handler could be found through stack unwind
and the program would thus run incorrectly. To avoid this prob-
lem, we do not duplicate the functions containing C++ exceptions
logic, and treat the returns from such functions similar to orphaned
returns, allowing their targets to be any call site.

6. EVALUATION
We evaluated BinCC by testing SPEC CPU 2006 benchmark

programs, which are compiled with GCC version 4.6.1 and -O2
optimization level. The evaluation was performed on a Ubuntu-
11.10 32-bit virtual machine with one processor, 1.0GB Memory
and a 20G Hard Disk.

6.1 Code Duplication Evaluation
One key operation to our CFI policy enforcement is code dupli-

cation. We evaluate the quantity of code we need to duplicate.

program |ICFs| |DCFs| #total #dupl per %
lbm 5 41 45 1 2.22
gcc 6803 3287 9846 431 4.38
perlbench 2263 950 3185 83 2.61
libquantum 6 104 109 1 0.92
omnetpp 1362 727 1976 306 15.49
sjeng 142 147 287 2 0.70
gobmk 2126 731 2851 209 7.33
bzip2 55 76 130 1 0.77
milc 45 238 282 1 0.35
hmmer 249 349 597 1 0.17
povray 2011 1069 3037 136 4.48
sphinx 16 298 313 1 0.32
h264ref 133 473 598 16 2.68
astar 9 103 109 3 2.75
mcf 5 44 48 1 2.08
namd 54 76 129 1 0.78
soplex 636 487 1062 113 10.64
average 3539 1692 5637 183 3.42

Table 1: Duplicated Functions Statistics

Table 1 shows the number of ICFs and DCFs, the total number
of all the functions and duplicated functions for each tested bench-
mark program. As some ICFs share returns with DCFs, we du-
plicate these ICFs. This is the reason why #dupl is different from
|ICFs| + |DCFs| - #total in some samples. The result shows only a
little amount of functions, nearly 3.4% of all the binary’s functions,
need to be duplicated so as to achieve a fine grained protection.
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Figure 8: Percentage of Duplicated Instructions

From the table, we see C++ programs such as omnetpp and so-
plex generally need more functions to duplicate than C programs.
In these C++ programs, the vast majority of the duplicated func-
tions are C++ virtual functions. The function pointers are in vta-
bles and identified as ICFs. They could be also directly called, for
instance, by the functions from the same class hierarchy, so they
need to be duplicated according to our solution.

Figure 8 shows that the percentage of instructions we need to
duplicate for each sample. Overall, we only need to duplicate less
than 7.0% of the binary’s instructions on average.

6.2 Indirect Transfer Targets Metrics
BinCFI introduces the AIR(Average Indirect target Reduction)

to evaluate the quality of protection. The definition is as follows.

AIR =
1

N

N∑
j=1

(1− |Tj |
S

)

In this definition, Tj stands for the legitimate target set for the in-
direct transfer ij . S stands for the binary’s code size. For BinCC,
the code size S, the number of indirect transfersN , and some legit-
imate target sets |Tj | can be increased due to the code duplication.
We take these into consideration to calculate the AIR and it turn-
s out that BinCC achieves a higher AIR, 99.54% as compared to
BinCFI, 98.86%.

This metric is not balanced because in a binary S is far higher
than |Tj |, even coarse-grained CFI solutions can also achieve high
AIR, which does not necessarily mean a high quality of protection.
We propose a new metric, RAIR (Relative AIR), defined as follows,
and use it to demonstrate the extent to which BinCC refines the
legitimate targets compared to BinCFI.

RAIR =
1

N

N∑
j=1

(1− |Tj |
|T ′j |

)

In the definition, T ′j represents the legitimate targets of indirect
transfer ij by BinCFI, and Tj represents the ij’s legitimate target-
s by BinCC. Figure 9 shows the statistics about this metric. On
average, BinCC reduced indirect transfers targets by 81.34% from
BinCFI.

As compared to BinCFI, BinCC refines legitimate targets for
each kind of indirect transfer. To evaluate such an improvement,
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Figure 9: RAIR for Tested Samples

we use the formula defined bellow to estimate the average number
of legitimate targets for each kind of indirect transfer.

AV G =
1

N

N∑
j=0

|Tj |

Suppose ij is an indirect transfer of a specific kind and Tj is the
legitimate target set for ij in a CFI enforced binary, and N repre-
sents how many indirect transfers of this kind exists in the binary.
We calculate this metric for three kinds of indirect transfers and
illustrate the percentage reduction of legitimate targets, given by
AV GBinCFI−AV GBinCC

AV GBinCFI
, for all the three types of indirect transfers

in Figure 10, 11 and 12.
In Figure 10 we see that on average BinCC reduced the legiti-

mate targets for an indirect call by around 40% compared to BinC-
FI. According to BinCFI implementation, all the possible constant
code pointers are potential targets of indirect calls. However, some
of those constants are actually addresses of call sites and jump-
table’s case entries, which are not function entries. In our imple-
mentation, we remove them from the target set.
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Figure 10: Percentage Reduction of legitimate targets for an
indirect call

For indirect jumps, there could be many indirect jumps that re-
side in the PLT section, and these jumps have certain targets within
the current module. BinCC takes them into account and thus re-
duces the legitimate targets by 35% on average compared to BinC-
FI, as shown in Figure 11.

Figure 12 shows that BinCC reduces legitimate targets for a
return by 87% on average compared to BinCFI, this is because
BinCC significantly refines the targets for direct returns by enforc-
ing a much more strict policy on them as compared to BinCFI. We
see gcc achieved the largest improvement. There are more direct
returns than indirect returns in this binary, and each direct return
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Figure 11: Percentage Reduction of legitimate targets for an
indirect jump
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Figure 12: Percentage Reduction of legitimate targets for a re-
turn

only has far less legitimate targets on average than each indirect
return. All these factors contribute to the improvement.

6.3 ROP Attacks Evaluation
Because of new security mechanisms such as ASLR and DEP,

ROP has gained much more popularity among attackers as a tech-
nique for launching exploits. CFI implementations such as CC-
FIR and BinCFI significantly mitigate ROP attacks, since the vast
majority of ROP gadgets are instruction-misaligned and no longer
feasible for generating exploit. However, the work [5, 10] recently
showed that in some cases it is still possible for attackers to lever-
age call preceded ROP gadgets to build ROP chains and thus bypass
the protection from BinCFI and CCFIR.

To evaluate the ability of BinCC in preventing ROP attacks, we
introduce GS (Gadget Survivability) to represent the difficulty for
attackers to leverage call preceded gadgets while establishing ROP
chains for exploits under CFI protection. We define this metric as
follows.

GS =
1

|R|

|R|∑
i=0

|Ci|
|C|

Suppose in a CFI enforced binary a return instruction was ful-
ly controlled by attackers, how likely this return could be used to
reach a call preceded gadget in this binary.

In the definition, Ci represents the legitimate target set for a re-
turn instruction ri under CFI enforcement, R represents the set
composed by all the returns, and C represents the set composed by
all the call preceded gadgets. For the return ri, it could reach the
|Ci| number of call preceded gadgets. So the probability that it was
controlled and could return to a call preceded gadget is 1

|R| ∗
|Ci|
|C| .



After taking all the returns into consideration, the average proba-
bility is

∑|R|
i=0

1
|R| ∗

|Ci|
|C| , or, 1

|R|
∑|R|

i=0
|Ci|
|C| .

For BinCFI, from the formula, for each ri, |Ci| equals |C|, so
this metric value is 100%. This is consistent with the fact that the
hijacked return could reach any call preceded gadget within the
binary they protect.

However, for BinCC, this probability is much smaller, as both
direct returns and indirect returns are restricted to have far less le-
gitimate targets. Specifically, if the return was an indirect return, it
would be allowed to reach any indirect call sites. If the return was
a direct return, it would only be allowed to reach gadgets starting at
specific direct call sites. We calculate the probability under BinCC
as well as BinCFI for all tested samples, and present the statistics in
Table 2. From the table, we see that BinCC considerably degrad-
ed the probability to leverage call preceded ROP gadgets for ROP
attacks, only around 0.70%, with comparison to 100% for BinCFI.

program BinCC BinCFI
lbm 2.554% 100%
gcc 0.321% 100%
perlbench 0.530% 100%
libquantum 0.210% 100%
omnetpp 1.145% 100%
sjeng 0.299% 100%
gobmk 1.138% 100%
bzip2 0.474% 100%
povray 0.573% 100%
milc 0.283% 100%
hmmer 0.569% 100%
sphinx3 0.444% 100%
h264ref 0.420% 100%
astar 0.387% 100%
mcf 0.355% 100%
namd 1.237% 100%
soplex 1.017% 100%
average 0.701% 100%

Table 2: Gadget Survivability for BinCC and BinCFI

6.4 Performance
We evaluated both space and runtime overhead. For space over-

head, we compared the increase of address translation tables be-
tween BinCC and BinCFI, and also evaluated code size increase
and total file size increase compared to the original file. For runtime
overhead, we ran binaries enforced by BinCC as well as BinCFI
and finally made comparisons.

6.4.1 Space Overhead
As we use a similar infrastructure to BinCFI to manipulate bi-

naries, the reason for file size increase is as the same as that for
BinCFI, due to the new code section for instrumentation and new
read-only data sections for address translation hash tables. The new
code size increase 1.4 times the original code size, while the fig-
ure for BinCFI is around 1.2. We introduce four kinds of tables
for storing targets of indirect calls, indirect jumps, indirect returns
and direct returns, while BinCFI uses two kinds for storing indirect
calls/jmps and returns. The total introduced tables size decrease
around 20% of the figure for BinCFI. Overall, the space overhead
is around 125% of the original binary size, 14% lower than the
figure for BinCFI. The reduction of tables size contributes to the
improvement of space overhead as compared to BinCFI. Accord-
ing to BinCFI’s implementation, the hash table size is a power of 2
and is relevant to the number of legitimate targets, so the table size
decreases greatly as we refine the legitimate transfer targets size.

6.4.2 Runtime Overhead
We compared the runtime overhead of the programs enforced by

BinCC and BinCFI in Figure 13. In our test environment, the re-
sults showed that BinCFI increased around 18% percent, while our
solution increased around 22% percent, 4% higher than BinCFI.
The reason why our overhead is a bit higher than BinCFI is be-
cause we add extra instructions to help instrumentation for direct
returns, and perform separate address checking and translating. We
believe the overhead is reasonable and acceptable while comparing
to the finer-grained protection provided to stripped binaries.
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Figure 13: Runtime Overhead for Tested Samples

7. DISCUSSION
Although our solution has made considerable improvements for

restricting indirect control flow transfers, the policy for indirec-
t calls still need improvement compared to returns. In our solution,
the protected binaries are still vulnerable to attacks altering indirect
call targets. Indirect call targets are permitted to reach any ICF, and
it would be considered as valid that if the target of an indirect call is
modified to another ICF in the binary. However, other binary only
CFI solutions face the same problem. Existing solutions [11, 18]
make improvement in protecting specific indirect call targets such
as C++ virtual functions. It is not hard for BinCC to combine them
to achieve more strict protection. We leave this as our future work.

Dynamic code such as JIT code could not be identified simply
through static analysis without source code, so our solution can not
handle this code. This is also a common open issue with other
current binary only CFI solutions. We leave it as our future work.

8. CONCLUSION
Existing binary-only CFI solutions apply relaxed CFI policies

due to the lack of source code or debug symbols. Although they
can mitigate common control flow hijack threats, it is still possible
for adversaries to launch sophisticated attacks, for instance, ROP
attacks launched by leveraging call preceded gadgets.

In this paper, we propose a new binary only CFI protection scheme
BinCC, which provides finer-grained protection for x86 stripped
ELF binaries. Through code duplication and static analysis, we di-
vide the code into mutually exclusive code continents. We further
classify indirect transfers in each code continent to be either Intra-
Continent transfers or Inter-Continent transfers, and apply strict C-
FI polices to constrain these transfers. To evaluate BinCC, we in-
troduce new metrics to estimate the average amount of legitimate
targets of each kind of indirect transfer as well as the difficulty to
leverage call preceded gadgets to generate exploits, and make com-
parisons with BinCFI. The experiments show that BinCC makes
great improvement on both aspects with a reasonable overhead.
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