
Alphuzz: Monte Carlo Search on
Seed-Mutation Tree for Coverage-Guided

Fuzzing
Yiru Zhao

zhaoyiru@whu.edu.cn
Key Laboratory of Aerospace

Information Security and Trusted
Computing, Ministry of Education,

School of Cyber Science and
Engineering, Wuhan University

Wuhan, China

Xiaoke Wang
xkernel@whu.edu.cn

Key Laboratory of Aerospace
Information Security and Trusted
Computing, Ministry of Education,

School of Cyber Science and
Engineering, Wuhan University

Wuhan, China

Lei Zhao∗
leizhao@whu.edu.cn

Key Laboratory of Aerospace
Information Security and Trusted
Computing, Ministry of Education,

School of Cyber Science and
Engineering, Wuhan University

Wuhan, China

Yueqiang Cheng
yueqiang.cheng@nio.io

Nio security
Mountain View, CA, USA

Heng Yin
heng@cs.ucr.edu

University of California, Riverside
Riverside, CA, USA

ABSTRACT

Coverage-based greybox fuzzing (CGF) has been approved to be
effective in finding security vulnerabilities. Seed scheduling, the
process of selecting an input as the seed from the seed pool for
the next fuzzing iteration, plays a central role in CGF. Although
numerous seed scheduling strategies have been proposed, most of
them treat these seeds independently and do not explicitly consider
the relationships among seeds.

In this study, we make a key observation that the relationships
among seeds are valuable for seed scheduling. We design and pro-
pose a “seed mutation tree” by investigating and leveraging the mu-
tation relationships among seeds. With the “seed mutation tree”, we
further model the seed scheduling problem as a Monte-Carlo Tree
Search (MCTS) problem. That is, we select the next seed for fuzzing
by walking this “seed mutation tree” through an optimal path,
based on the estimation of MCTS. We implement two prototypes,
Alphuzz on top of AFL and Alphuzz++ on top of AFL++. The eval-
uation results on three datasets (the UniFuzz dataset, the CGC bina-
ries, and 12 real-world binaries) show that Alphuzz andAlphuzz++
outperform state-of-the-art fuzzers with higher code coverage and
more discovered vulnerabilities. In particular, Alphuzz discovers 3
new vulnerabilities with CVEs.

∗Lei Zhao is the corresponding author. This work is partly supported by National
Natural Science Foundation of China under Grant No.62172305.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 5-9, 2022, Austin, Texas, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3564625.3564660

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Fuzzing, Seed scheduling strategy, Vulnerability detection

ACM Reference Format:

Yiru Zhao, Xiaoke Wang, Lei Zhao, Yueqiang Cheng, and Heng Yin. 2022.
Alphuzz: Monte Carlo Search on Seed-Mutation Tree for Coverage-Guided
Fuzzing. In Annual Computer Security Applications Conference (ACSAC
’22). ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3564625.
3564660

1 INTRODUCTION

Coverage-based greybox fuzzing (CGF) has been approved to be
very effective in finding security vulnerabilities in real-world ap-
plications and has been widely studied and used in both academia
and industry [6, 17, 24, 36, 46, 47]. In general, CGF starts with sev-
eral initial inputs (a.k.a. seed inputs). Then, CGF leverages a seed
scheduling strategy to select an input as the seed and generates
new inputs by randomly mutating the seed. With lightweight pro-
gram instrumentation, CGF executes a program with these newly
generated inputs and collects code coverage to further guide the
next cycle of seed scheduling. In this way, CGF makes progress
in discovering vulnerabilities through iterative seed scheduling,
mutation, and program state exploration.

Seed scheduling, the process of selecting a seed from the seed
pool for the next fuzzing iteration, plays a central role in CGF.
First, CGF utilizes a seed scheduling strategy to bridge the gap
between limited fuzzing effort and an ever-increasing number of
seeds. More importantly, seed scheduling determines the directions
of exploring program states. Specifically, CGF explores program
states by dynamic execution using the inputs mutated from seeds.
As mutations are often slight (e.g., bit-flip or byte-flip in AFL [47]),
the newly generated input often differs from the seed only in small
input regions. Consequently, the execution using the new input

534

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3564625.3564660
https://doi.org/10.1145/3564625.3564660
https://doi.org/10.1145/3564625.3564660

ACSAC ’22, December 5-9, 2022, Austin, Texas, USA Yiru Zhao et al.

could result in a transition to a path that is a neighbor of the path
corresponding to the seed. In other words, dynamic executions
using mutated inputs can be regarded as the process of exploring
the neighbor paths of the corresponding path of the seed. Therefore,
seed scheduling refers to the selection of an execution path for
exploring its neighbor paths, which determines the directions of
exploring program states.

Numerous seed scheduling strategies have been proposed. Gen-
erally speaking, these strategies aim to assign a score to each seed
based on certain criteria and then choose the seed with the highest
score for the next fuzzing iteration. For example, AFL [47] prefers
seeds with the smallest size and shortest execution time. AFLFast [6]
assigns more energy to the seed with low frequency. FairFuzz [24]
prefers to choose a seed that covers more rare branches. Eco-
Fuzz [46] favors newly generated seeds. These strategies treat these
seeds independently and do not explicitly consider the relationships
among the seeds.

In this paper, we make a key observation that the relationships
among seeds are valuable for seed scheduling, especially the seed
mutation relationship (e.g., “𝐴→ 𝐵” means Seed 𝐵 is mutated from
Seed𝐴). Furthermore, a tree structure can be formed for these seeds
by following their mutation relationships, which we refer to as the
“seedmutation tree”. Thenwemodel the seed scheduling problem as
a Monte-Carlo Tree Search (MCTS) problem. That is, we select the
next seed for fuzzing by walking this seed mutation tree through
an optimal path, based on the estimation of MCTS.

The main advantage of the “seed mutation tree” is that it benefits
the seed scheduling to balance between exploitation (i.e., repeatedly
exercising a high-potential seed and its neighbors) and exploration
(i.e., trying a rarely-exercised seed) for optimal performance. As
demonstrated above, seed scheduling refers to the selection of an
execution path for exploring its neighbor paths. With the relation-
ships among seeds, we can further organize paths corresponding
to every seed as a tree structure, which is denoted as execution
tree [10]. In this way, we can model the fuzzing process of exploring
program states as the growth of the execution tree. Based on this
observation, we can leverage the “seed mutation tree” to approxi-
mate the execution tree, in which each path corresponds to a seed.
For example, the mutation relationship (“𝐴→ 𝐵”) indicates that the
CGF covers a new path corresponding to 𝐵 by converting the result
of a conditional jump on the path of 𝐴. As an approximation to the
execution tree, the “seed mutation tree” enables the seed schedul-
ing to balance exploitation (the tree’s depth) and exploration (the
tree’s width), which indicates the fuzzing progress within a specific
direction and multiple directions, respectively.

Moreover, the construction of “seed mutation tree” is lightweight,
because mutation relationships are readily available in CGF and do
not require extra instrumentation and expensive computation.

A recent work AFL-HIER [44] also leverages a tree structure to
manage all the seeds and uses the UCB algorithm to perform seed
scheduling. Our approach differs from AFL-HIER in three aspects.
First, the insights are different. AFL-HIER defines different cover-
age sensitivity metrics and clusters seeds to reduce the impact of
similarity. The core of our approach is to construct a seed tree using
the mutation relationships, which is a lightweight and practical
approximation to the execution tree. Second, the tree structures are
different. In AFL-HIER, every internal node means a cluster of seeds
that have the same coarse-grained coverage measurement. Every

leaf node represents one seed. In our approach, every node in the
tree refers to one seed, and the edge represents the mutation rela-
tionship between seeds. Third, the performances of seed scheduling
are different. As AFL-HIER requires maintaining multiple coverage
metrics for clustering, it introduces overhead to seed scheduling
and finally results in a negative impact on the fuzzing throughput.
By contrast, seed scheduling on our seed tree is lightweight. As
throughput is a significant factor for the fuzzing performance, our
approach can outperform AFL-HIER.

We implement two prototypes of the MCTS-based seed sched-
uling, Alphuzz on top of AFL [47], and Alphuzz++ on top of
AFL++[15]. To demonstrate the effectiveness of our approach, we
conduct a comprehensive evaluation on three datasets, including
UniFuzz [25], CGC binaries [13], and 12 real-world binaries. We
compare the performance of Alphuzz with AFL-based techniques
AFL, AFLFast, FairFuzz, and EcoFuzz. For AFL++-based techniques,
we compare Alphuzz++ with AFL++ and AFL++-HIER. Evalua-
tion results show that Alphuzz and Alphuzz++ outperform other
baseline techniques in terms of code coverage and discover more
vulnerabilities. Specifically, Alphuzz achieves higher code cover-
age on UniFuzz than AFL, AFLFast, FairFuzz, and EcoFuzz on 14, 15,
14 and 16 out of 18 binaries, respectively. Alphuzz and Alphuzz++
discover more unique bugs and exploitable vulnerabilities than
others. For CGC binaries, Alphuzz discovers 87 vulnerabilities,
whereas AFL, AFLFast, EcoFuzz, and FairFuzz discover 83, 83, 73,
and 76 respectively. In addition, Alphuzz discovers 3 new CVEs on
12-real-world binaries dataset.

The contributions of this study are as follows:
• New insight. We make a key observation that the relationships
among seeds are valuable for seed scheduling. We investigate and
leverage the seed mutation relationships to construct a “seed mu-
tation tree”, which is an approximation of the execution tree for
the fuzzing progress and can further benefit the seed scheduling
to balance exploitation and exploration.
• New fuzzing technology. With the “seed mutation tree”, we
model the seed scheduling problem as a Monte-Carlo Tree Search
(MCTS) problem and propose an MCTS-based seed scheduling
strategy. This strategy strikes a balance between exploitation and
exploration, due to the nature of the MCTS algorithm.
• Open-source implementation. We implement two prototypes,
Alphuzz and Alphuzz++, and conduct comprehensive evalua-
tions to demonstrate their performance. Results show that Alphuzz
and Alphuzz++ outperform state-of-the-art fuzzers with more
code coverage and more vulnerabilities discovered. The source
code is available at https://github.com/zzyyrr/Alphuzz_overvi
ew.git.

2 MOTIVATION AND INSIGHT

In this section, we first illustrate our motivation by discussing the
limitations of existing seed scheduling strategies with an example
and then state our insight.

2.1 Motivating example

We use a piece of code in Figure 1 as an example to illustrate our
motivation. As shown in Figure 1, 𝑏𝑖 represents the basic block
in this code, and

〈
𝑏𝑖 , 𝑏 𝑗

〉
represents the branch from 𝑏𝑖 to 𝑏 𝑗 . In

column 3 to 7, 𝑡1 to 𝑡5 are test cases retained by CGF. The string

535

https://github.com/zzyyrr/Alphuzz_overview.git
https://github.com/zzyyrr/Alphuzz_overview.git

Alphuzz ACSAC ’22, December 5-9, 2022, Austin, Texas, USA

 code
test cases

t1 t2 t3 t4 t5
‘x’ ‘y’ ‘xaf’ ‘xc’ ‘ym’

 int func1 (input) {
b0 if (input[0] == ‘x’) ● ● ● ● ●

b1 func2(input); ● ● ●

b2 else if (input[0] == ‘y’) ● ●

b3 func3(input); ● ●

 }

 int func2 (input) {

b4 if (input[1] == ‘a’) ● ● ●

b5 if (input[2] == ‘f’) ●

b6 … ●

b7 else if (input[1] == ‘b’) ●

b8 …

b9 else if (input[1] == ‘c’) ● ●

b10 … ●

 }

 int func3 (input) {

b11 if (input[1] == ‘m’) ● ●

b12 if (input[2] == ‘n’) ●

b13 func4 (input);

b14 else exit (0); ●

 }

Figure 1: Motivating example.

below each test case is the content of the input file. For example,
the content of test case 𝑡1 is ′𝑥 ′. When executing with different test
cases, different basic blocks are covered. The solid circle indicates
that the test case covers the corresponding basic block.

In order to describe the seed scheduling process clearly, we
suppose that the CGF starts with two initial test cases, 𝑡1 and 𝑡2.
After several fuzzing iterations, CGF generates and retains three
new test cases. Test case 𝑡3 and 𝑡4 are generated via performing
mutations on test case 𝑡1. Similarly, test case 𝑡5 is derived from 𝑡2.

With these test cases in the seed pool, lots of seed scheduling
strategies are proposed to guide the direction of CGF. Figure 2
shows how existing seed scheduling strategies manage the test
cases in Figure 1. To better understand their principles, Figure 2 (a)
shows the execution tree according to Figure 1. Then we distinguish
the paths covered by test cases with different colors. For example,
the path in blue color is covered by test case 𝑡3.

As shown in Figure 2 (b), AFL [47], AFLFast [6], FairFuzz [24],
and EcoFuzz [46] propose different criteria for seed scheduling,
but they all treat the seeds independently and only consider the
individual features of seeds. AFL reserves the seed with the smallest
size and shortest execution time for every covered branch to test
as many inputs as possible in a limited time. Since the seed 𝑡3
covers the new branch ⟨𝑏4, 𝑏5⟩ and ⟨𝑏5, 𝑏6⟩, and 𝑡4 covers the new
branch ⟨𝑏4, 𝑏9⟩ and ⟨𝑏9, 𝑏10⟩, they are both considered interesting,
even though they both cover branch ⟨𝑏0, 𝑏1⟩ and ⟨𝑏1, 𝑏4⟩. AFLFast
prefers low-frequency paths which fuzzing spent less time and
effort exploring them than high-frequency paths. Thus, AFLFast
chooses the paths covered by newly generated seeds 𝑡3, 𝑡4, and 𝑡5.
FairFuzz calculates the times each branch has been covered and
selects the seed that covers more low-frequency branches. So, seeds
𝑡1, 𝑡3, and 𝑡4 are selected by FairFuzz. EcoFuzz gives the highest
priority to unfuzzed seeds. So EcoFuzz selects seeds 𝑡3, 𝑡4, and 𝑡5.

The seed scheduling strategies above are unaware of the relation-
ships among seeds. Seeds covering new branches are always given
high priority by the above seed selection strategies, regardless of

weather the seeds are concentrated in the same code region. For ex-
ample, seeds 𝑡3 and 𝑡4 lead fuzzing to constantly explore the region
of the func2. As a result, as long as new branches are consistently
covered in this area of code, fuzzing will focus on this code region,
and be difficult to jump out and explore other areas that may have
potential vulnerabilities.

AFL-HIER [44] defines many coverage metrics of different sensi-
tivities to cluster the similar seeds together. As shown in Figure 2
(c), AFL-HIER uses function coverage and edge coverage to cluster
the seeds together. For example, seeds 𝑡1, 𝑡3, and 𝑡4 are under the
same node 𝐹1,𝐹2 because they cover the same functions. When
performing seed scheduling, AFL-HIER starts from the nodes at
function coverage level, and calculates scores for nodes based on
their function-level rareness and their rewards. The rewards of
the cluster are the average rewards of all the seeds in this cluster.
However, elder seeds and newly generated seeds are clustered un-
der the same nodes. The rewards of newly generated seeds can
be weakened by the fuzzing effort spent on elder seeds. Therefore,
the individual feature of seeds is flattened, which brings a negative
impact on fuzzing deeper paths.

As discussed above, the seed scheduling strategy should consider
both the relationships among seeds and the individual features of
seeds. Therefore, we propose a new seed scheduling strategies
which satisfy these two requirements.

2.2 Our insight

In this paper, we consider the seed scheduling as selecting an opti-
mal path in order to explore its neighbor paths. As discussed above,
different paths in the execution tree lead fuzzing to explore different
directions. With the execution tree growing, some paths tend to
focus on the same region of the program, while some paths tend to
explore different regions. The paths covered by seeds with mutation
relationships share the same direction on the execution tree in the
beginning, and then separate in different directions. Therefore, we
can leverage the mutation relationships among seeds to construct
a “seed mutation tree”, which can be an approximation of the ex-
ecution tree. As shown in Figure 2 (d), the relationships among
different fuzzing directions are reserved in our “seed mutation tree”.
For example, 𝑡1, 𝑡3, and 𝑡4 are in the same sub-tree, because they all
covered basic block 𝑏0, 𝑏1 and 𝑏4.

In the meantime, the growth of the execution tree can also be
represented in “seed mutation tree”, where newly generated seeds
are always leaf nodes and elder seeds are usually internal nodes.
Thus, the hierarchy of nodes in the tree can show the effort fuzzing
spent on different paths, which is an important individual feature
in seed scheduling, but is flattened in AFL-HIER.

With “seed mutation tree”, the seed scheduling can be regarded
as a process of searching for an optimal seed in the tree. We further
model the seed scheduling as a Monte Carlo Tree Search (MCTS)
problem and propose an MCTS-based seed scheduling strategy. The
following sections give the details of our “seed mutation tree” and
MCTS-based seed scheduling strategy.

3 SEED MUTATION TREE

In this section, we first present the definition and the construction
of the “seed mutation tree”. Then, we discuss the challenges of
performing seed scheduling on it.

536

ACSAC ’22, December 5-9, 2022, Austin, Texas, USA Yiru Zhao et al.

F1F2 F1F3

root

t1 t3 t4 t2 t5

(c) Coverage-based seed tree (d) Seed mutation tree

Mutation
relationship

b0

b1

b4

b7

b9

b5

b6

b9

b10

b11

b12 b14

b2

b3

t1 t2 t3 t4 t5

AFLFast

EcoFuzz

FairFuzz

Newly generated & Highest reward

Rare branches

Low-frequency paths

AFL Smaller size & Less execution time

(b) Individual features for seed scheduling

root

t1 t2

t3 t4 t5

(a) Execution tree

AFL-HIER Alphuzz

b1

b4

b7

b9

b5

b6

b9

b2

b3

t1 t2
Initial seeds

root

t1 t2

root

t3 Mutation relationship

t1 t2

root

t3 t4

t1 t2

root

t3 t4 t5

Seed m
u

tation tree
E

xecu
tion tree b11

b14b12b10

b1

b4

b7

b9

b5

b6

b9

b2

b3

b11

b14b12b10

b1

b4

b7

b9

b5

b6

b9

b2

b3

b11

b14b12b10

b1

b4

b7

b9

b5

b6

b9

b2

b3

b11

b14b12b10

b0b0b0b0

Seed queue

Figure 2: Existing seed scheduling strategies.

3.1 Definition

We leverage the mutation relationships among seeds to construct
the “seed mutation tree”, which is defined as follows.

Definition 1. A “seed mutation tree” is a directed tree T = (V, E, 𝛼),
where:
• Each element v in the set of vertices V corresponds to a seed;
• Each element e in the set of edges E ⊆ V × V corresponds to

the mutation relationship between two vertices v and w.
• The labeling function 𝛼 : 𝐸 → Σ associates edges among seeds

in terms of their mutation relationships.

3.2 Tree construction

According to Definition 1, we construct a “seed mutation tree”
during the fuzzing process.

First, before the fuzzing iteration begins, we construct the initial
tree structure with the initial seeds and an auxiliary root node. The
auxiliary root node is the parent node of all the initial seeds for
there might be more than one initial seed. As shown in Figure 2 (d),
the root node, node 𝑡1 and node 𝑡2 form the initial tree structure.

Then, CGF selects a seed as the base of mutation according to the
seed scheduling strategy, and performs mutations on it to generate
new test cases. Next, newly generated test cases that cover new
paths are added to the “seed mutation tree” as the child of the
original seed. For example, CGF performs random mutations on
seed 𝑡1, and generates test case 𝑡3 and 𝑡4. They cover two new paths,
𝑡3 covers the blue path and 𝑡4 covers the green path, respectively.
We add the node 𝑡3 to the tree as the child node of 𝑡1 based on the
mutation relationship between them, and node 𝑡4 the same.

With CGF continuing to explore the targeted application, we
continue to add the seeds covering new paths as nodes to the tree
structure according to the mutation relationship between the seeds.

Some special mutations may operate on two seeds. For example,
the mutation of splice in AFL will splice a seed with a second seed
to generate a new input. In such cases, we only construct an edge
between the new node and the node corresponding to the first seed,
because the first seed is selected by the seed scheduling strategy,
whereas the second one is randomly selected for mutations.

3.3 Challenges of seed scheduling on the tree

The seed scheduling can be regarded as a process of searching for
an optimal seed in the “seed mutation tree”. However, performing
seed scheduling on the tree faces the following three challenges.

Challenge 1. The search space is large and ever-increasing. As new
seeds are constantly being added to the tree, it is time-consuming
and tedious to traverse every node in the tree to select the best seed.
Therefore, the “seed mutation tree” cannot be fully searched. Thus,
we need a heuristic algorithm to provide the current best decision.
Challenge 2. The core of the heuristic algorithm is to assign scores
to seeds. However, the score of the path covered by a seed may
decrease as fuzzing explores its adjacent paths more and more
thoroughly. Thus, it is essential yet challenging to update the scores
of all the seeds on the tree after every fuzzing iteration.
Challenge 3. It is difficult to balance exploration and exploitation.
With the impact of randomization character of fuzzing in nature,
the scores of seeds calculated after one fuzzing iteration are af-
fected by such uncertainties. Thus, how to balance exploration and
exploitation under these uncertain factors is challenging.

4 MONTE CARLO SEARCH ON THE

SEED-MUTATION TREE

To tackle the above challenges, we propose an MCTS-based seed
scheduling strategy. In this section, we first introduce the MCTS
algorithm. Then, we present the design of our MCTS-based seed
scheduling strategy.

4.1 Monte carlo tree search

MCTS [4, 7, 12, 22, 26] is an algorithm for taking optimal decisions
through sequentially built trees based on random sampling. The
process consists of four steps:

Selection. Using a specific tree policy, MCTS starts from the root
node 𝑅, recursively selects optimal child nodes until a leaf node 𝐿
is reached.

Expansion. If 𝐿 is not a terminal node, then MCTS creates one or
more child nodes. Further, it selects one node 𝐶 from these child
nodes. In this step, child nodes refer to any valid moves from the
state defined by 𝐿.

Simulation. The simulation is performed by randomly choosing
moves until a result or a predefined state is achieved.

Back propagation. This step back propagates from the new node
𝐶 to the root node 𝑅, and updates the simulation results.

Upper confidence bounds for trees. The main challenge in a
planning problem is to balance exploitation and exploration. For

537

Alphuzz ACSAC ’22, December 5-9, 2022, Austin, Texas, USA

t1 t2

root

t3 t4 t5

tm

tnt'm

t'n

tk

Anchor node

Variant node tj t'1 t'2

Figure 3: “Seed mutation tree” with variants.

this challenge, the Upper Confidence Bounds (UCB) algorithm [3]
is typically adopted in MCTS.

𝑈𝐶𝐵 = 𝑣𝑖 + 𝑘

√︄
𝑙𝑛𝑁

𝑛𝑖
(1)

The formula of UCB is shown in Formula 1, where 𝑣𝑖 is the
estimated value of the node, 𝑛𝑖 is the number of the times the node
has been visited, 𝑁 is the total number of times that its parent has
been visited, and 𝑘 is a tunable bias parameter.

The UCB formula balances the exploitation of known rewards
with the exploration of relatively unvisited nodes for optimal per-
formance. When applied in MCTS, the UCB formula is extended
to the tree search and named as the Upper Confidence Bounds for
Trees (UCT) [22]. That is, UCT is a special case for UCB in MCTS.

4.2 MCTS-based seed scheduling

Inspired by the MCTS algorithm, we propose an MCTS-based seed
scheduling strategy as illustrated in Algorithm 1.

Before fuzzing iteration begins, we construct the initial tree struc-
ture with initial seeds. Then, MCTS starts from the root node and,
at each level, selects the next node with the highest score until a leaf
node is reached. To calculate the scores of seeds, we leverage the
UCT algorithm with fuzzing rewards and fuzzing effort to balance
exploration and exploitation (section 4.4). Due to UCT algorithm
and random sampling, we can search the tree in an asymmetric fash-
ion in contrast to traditional tree search methods such as minimax.
Thus, we can reduce the impact of uncertainties.

Afterwards, fuzzing randomly mutates the selected seed while
monitoring the executions of newly generated inputs. we regard
these processes as the simulation of the selected seed. Since not
all newly generated inputs improve code coverage, we perform
simulation first, and only add inputs that increase code coverage
to the tree. Finally, we update the scores of the seeds after each
fuzzing iteration (section 4.5).

4.3 Tree construction and expansion

As fuzzing progresses, seeds are added to the tree according to the
mutation relationships. In our “seed mutation tree”, there are two
different roles for an internal node. First, it refers to a seed. Second,
it is also the root node of a sub-tree, from the perspective of the tree
structure. Therefore, an internal node can also be selected as a seed
even if it has multiple child nodes. However, the MCTS algorithm
always selects the leaf node.

More important, these two different roles indicate different fuzzing
scores. As a seed, it refers to the fuzzing score for selecting this seed.
As the root node of a sub-tree, it refers to the summary fuzzing
score for selecting every seed in the sub-tree. With the impact of

Algorithm 1:MCTS-based Seed Scheduling.
/* Initialization */

1 𝑇 ← Init_tree(initial seeds)
2 while not EndConditions() do

/* Selection */

3 𝑣 ← 𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒
4 while 𝑣 is not a leaf node do

5 𝑣 ← 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣′ ∈𝑣.𝑐ℎ𝑖𝑙𝑑

𝑄 (𝑣′)
𝑁 (𝑣′) + 𝑘

√︃
𝑙𝑛𝑁 (𝑣)
𝑁 (𝑣′)

6 end

/* Simulation */

7 {𝑆} ← 𝐹𝑢𝑧𝑧_𝑜𝑛𝑒 (𝑣 .𝑖𝑛𝑝𝑢𝑡)
/* Expansion */

8 for 𝑠 𝑖𝑛 {𝑆} do
9 𝑣 .add_child_node(𝑠)

10 end

/* Back propagation */

11 while v is not null do
12 𝑁 (𝑣) ← 𝑁 (𝑣) + 1
13 𝑄 (𝑣) ← 𝑄 (𝑣) + Δ𝑄 ({𝑆})
14 𝑣 ← 𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒
15 end

16 end

such two different roles, the calculations of fuzzing score for an
internal node will be also different.

To address this incompatibility, we update the “seed mutation
tree” by inserting a variant node for every internal node. The in-
ternal node refers to the root node of its sub-tree, and the variant
refers to the corresponding seed. In this way, the variant will be a
leaf node of the internal node. Regarding the fuzzing scores, the
internal node refers to the summary fuzzing scores for every seed
in the sub-tree. By contrast, the variant refers to the fuzzing score
for the corresponding seed.

Let us take the motivating example for illustration. As show in
Figure 3, 𝑡1 has two child nodes, 𝑡3 and 𝑡4. 𝑡2 has one child node 𝑡5.
To distinguish between an internal node itself and its sub-tree, we
construct two variants for both 𝑡1 and 𝑡2, which are denoted as 𝑡 ′1
and 𝑡 ′2, respectively.

With variants, the construction of the “seed mutation tree” re-
quires updating for internal nodes. Whenever a leaf node is gener-
ated from a node without a variant node, a variant of the parent
node will also be created. Then, both the leaf node and the variant
node will be inserted into the tree as the child nodes of the parent
node.

The design of variants addresses the problem of incompatibil-
ity between MCTS and “seed mutation tree”. By setting a variant
for every internal node, the variant node will be a leaf node for
the internal node. With this design, MCTS is able to search for a
promising node until a leaf node is reached.

4.4 Calculation of seed score

We leverage the UCT algorithm to calculate the score of a seed in
terms of fuzzing effort and rewards. We evaluate the fuzzing effort

538

ACSAC ’22, December 5-9, 2022, Austin, Texas, USA Yiru Zhao et al.

tm tn

root

tm

root

tj tkt'm

Seed_scorem > Seed_scoren
Max(Seed_scorem, Seed_scorej, Seed_scorek)
= Seed_scorek

tm

root

tk

Select tk as the seed

tm

root

tk

Seed score update

t'k tq

New seed

Seed scheduling process

(a) (b) (c) (d)

Variant node

Figure 4: MCTS-based seed scheduling process.

that cost by fuzzing the same seed rapidly and calculate the rewards
of a scheduled seed in terms of new code coverage traversed by
the mutations based on it. With these two factors, fuzzing effort
and fuzzing rewards, the calculation of 𝑠𝑒𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 is designed as
shown in Formula 2.

𝑠𝑒𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 =
𝑞𝑖

𝑛𝑖
+ 𝑘

√︄
𝑙𝑛𝑁𝑖

𝑛𝑖
(2)

In Formula 2, 𝑞𝑖𝑛𝑖 represents the rewards of this seed. The𝑘
√︃

𝑙𝑛𝑁𝑖

𝑛𝑖

represents the fuzzing effort spent on this seed.
In 𝑞𝑖

𝑛𝑖
,𝑛𝑖 refers to the number of times this node has been selected.

𝑞𝑖 represents the number of unique branches covered by the seed.
Specifically, most of the existing fuzzers leverage branch coverage
to guide the evolution. Therefore, for each seed, we collect the
branches covered by the seed as its branch set. For the internal node,
we collect the branches covered by this node and all its descendants
as its branch set. We then put these branch sets together and calculate
the number of unique branches for each child node. The number
of unique branches means the number of branches that are only
covered by the child node compared to other sibling nodes. Then,
we assign the number of unique branches to the value of 𝑞𝑖 .

In 𝑘

√︃
𝑙𝑛𝑁𝑖

𝑛𝑖
, 𝑛𝑖 refers to the number of times this node has been

selected. 𝑁𝑖 represents the number of times the parent of the node
has been scheduled. 𝑘 is a constant, which controls the balance
between exploration and exploitation. To investigate the impact of
different values of 𝑘 on seed scheduling, we conduct an experiment
which is shown in section 5.8.

The selection process of our seed scheduling strategy is shown
in Figure 4. As shown in Figure 4 (a), each fuzzing iteration starts
from the root node. Then, we calculate scores for every child node
of the root node. By comparing scores among sibling nodes, our
MCTS-based seed scheduling strategy will recursively select the
promising one with the highest score, until a leaf node is reached.
As shown in Figure 4 (b), we assign scores to 𝑡 ′𝑚 , 𝑡 𝑗 and 𝑡𝑘 . The
score of 𝑡𝑘 is the highest among these three child nodes. Therefore,
𝑡𝑘 becomes the currently selected node. Then, as shown in Figure 4
(c), 𝑡𝑘 is a leaf node, therefore the seed scheduling stops and selects
𝑡𝑘 as the base for the mutation stage of fuzzing.

4.5 Seed score update

After each round of seed scheduling, we calculate the rewards and
effort of this fuzzing iteration and update the scores of seeds.

Specifically, to update the rewards, as shown in the Figure 4 (d) ,
when a new node, 𝑡𝑞 for example, is added to a sub-tree, we update
the information of newly covered branches of 𝑡𝑞 from 𝑡𝑞 to all its
parent nodes 𝑡𝑘 and 𝑡𝑚 .

To update the fuzzing effort, the selected times of the selected
node and all its parent nodes are increased by one. That is to say,
the selected times of 𝑡𝑘 and 𝑡𝑚 are increased by 1. We update the
rewards and effort from the selected seed back to the root node. This
process goes in exactly the opposite direction to seed scheduling.
In this way, we are able to record the rewards and effort of this
time’s seed scheduling to guide the next iteration.

5 EVALUATION

We implement two prototypes, Alphuzz and Alphuzz++, on top
of AFL [47] and AFL++ [15], respectively. To demonstrate the effec-
tiveness of our approach, we conduct a comprehensive evaluation
by comparing our approach with the state-of-the-art fuzzing tech-
niques, with respect to code coverage and vulnerability detection.

5.1 Datasets

We leverage three datasets: the Cyber Grand Challenge (CGC)
dataset [13], UniFuzz [25], and 12 real-world binaries.

The CGC dataset [13] includes binaries from the CGC Qualifying
Event and the CGC Final Event, which are widely used in previ-
ous techniques [2, 44]. Every CGC binary is injected with one or
more memory corruption vulnerabilities. In our evaluation, we ex-
clude programs involving communication with multiple programs,
and programs on which AFL cannot work. In total, we use 188
CGC binaries for evaluation. As the original CGC binaries are cus-
tomized with specific syscalls, we leverage their compatible Linux
versions [31] for evaluation.

UniFuzz [25] is an open-source and pragmatic metrics-driven
platform for evaluating fuzzing techniques, which consists of 20
programs. Unfortunately, sqlite3 and ffmpeg failed to run correctly
due to frequent timeouts during our evaluation. Thus, we only
leverage 18 programs.

539

Alphuzz ACSAC ’22, December 5-9, 2022, Austin, Texas, USA

Table 1: Real-world binaries evaluated in our experiments.

Program Input cmd line Program Input cmd line

cjpeg bmp @@ infotocap text @@
exiv2 jpg @@ /dev/null mp3gain mp3 @@
nm elf -AD @@ objdump elf -d @@
pdfimages pdf @@ /dev/null pngfix png @@
readelf elf -a @@ size elf -At @@
tiff2pdf tiff @@ xmlwf xml @@

We then choose 12 real-world binaries based on the following
features: popularity, frequency of being tested, and diversity of
categories. As shown in Table 1, these 12 real-world binaries include
popular tools (e.g., nm, objdump), image processing libraries (e.g.,
libjpeg, libtiff), terminal processing libraries (e.g., ncurses), and
document processing libraries (e.g., xpdf), etc.

5.2 Baseline techniques

In recent years, many fuzzing techniques have been proposed to
improve the performance of fuzzing from different aspects, includ-
ing coverage sensitivity, mutation algorithms, input generation,
and execution monitoring [8, 18, 28, 30, 42, 45, 48]. As Alphuzz
proposes a new seed scheduling strategy, we only select fuzzing
techniques focusing on seed scheduling algorithms as baseline
techniques. Furthermore, we exclude fuzzing techniques requiring
the source code of the targeted binaries. For AFL-based fuzzing
techniques, we choose AFL [47], AFLFast [6], FairFuzz [24] and Eco-
Fuzz [46]. For AFL++-based fuzzing techniques, we choose AFL++
and AFL++-HIRE as baseline techniques.

5.3 Experiment setup

We run the experiments on a server configured with 40 CPU cores
of 2.50GHz E5-2670 v2, 125GB RAM, and running on the 64-bit
Ubuntu 16.04 LTS.

We fuzz each binary for 24 hours as done in previous studies [6,
24]. To alleviate the impact of the randomness in fuzzing, we run
each experiment for 10 rounds, and report the statistical results for
a more comprehensive evaluation.

All the experiments are based on the QEMU-mode in AFL (so
as to support binary-only targets) and configured with the same
initial seeds and instructions. The initial seeds for CGC binaries
come from the examples provided by the CGC challenges [13]. The
initial seeds for UniFuzz are provided by UniFuzz [25]. The initial
seeds for the 12 real-world binaries come from the default seed
examples provided by AFL.

5.4 Vulnerability detection

To measure the vulnerability detection capability of Alphuzz, we
analyse the experimental results on CGC and UniFuzz. As CGC
binaries are manually designed and embedded with known bugs,
we mainly evaluate the number of unique bugs. For UniFuzz, we
evaluate the number of unique bugs and the number of unique
exploitable vulnerabilities.

5.4.1 Unique bugs on CGC dataset. To summarize the evalua-
tion results of the 10-round experiments, we count the number of
times each bug is found in 10-round experiments. Then we count
the number of bugs in terms of the number of times the bug is found

Table 2: Numbers of discovered bugs on CGC.

Fuzzer = 10 ≥ 9 ≥ 8 ≥ 7 ≥ 6 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1

Alphuzz 70 72 72 73 75 75 80 83 87 87
AFL 69 69 69 70 71 75 78 83 83 83
AFLFast 67 67 70 71 73 77 79 79 81 83
EcoFuzz 66 66 66 67 68 68 68 68 73 73
FairFuzz 67 67 68 70 71 72 72 73 74 76

Alphuzz++ 72 73 75 75 77 80 80 85 88 88
AFL++ 70 72 75 75 75 76 79 83 83 84
AFL++-Hier 72 73 73 75 76 80 83 83 85 85

Table 3: Numbers of discovered unique bugs.

Binary AFL AFLFast EcoFuzz FairFuzz Alphuzz

cflow 3 4 2 3 4
exiv2 0 1 1 1 1
flvmeta 3 3 3 4 3
gdk 6 6 2 0 8
imginfo 0 1 0 0 1
infotocap 2 3 0 2 2
jhead 0 0 2 0 0
jq 0 0 0 0 0
lame 3 2 2 3 3
mp3gain 6 7 4 3 7
mp42aac 2 2 2 2 2
mujs 0 0 0 0 1
nm 0 0 0 0 0
objdump 3 3 2 1 4
pdftotext 1 1 0 1 8
tcpdump 0 0 0 0 0
tiffsplit 4 5 3 8 6
wav2swf 2 3 2 2 3
total 35 41 25 30 53

in 10-round experiments by each baseline technique. As shown in
Table 2, columns 2-11 list the number of bugs that are discovered
in 10 rounds by different metrics. For example, column 2 reports
the number of vulnerabilities that are discovered in every round.
Column 3 reports the number of vulnerabilities that are discovered
in at least 9 rounds, and so on.

From Table 2, we can observe that in nearly all these 10 metrics,
Alphuzz discovers more bugs than the other AFL-based fuzzing
techniques. For example, Alphuzz discovers 87 bugs through 10
rounds, with 4 more bugs than AFL and AFLFast, 11 more bugs
than FairFuzz, and 14 more bugs than EcoFuzz. By examining the
numbers of discovered bugs in Table 2, we observe that the perfor-
mance of AFL is almost the same as AFLFast on CGC binaries. On
the contrary, FairFuzz and EcoFuzz work worse than other fuzzing
techniques on CGC binaries.

For AFL++-based fuzzing techniques, in nearly all these 10 met-
rics, Alphuzz++ discoversmore bugs thanAFL++ andAFL++-HIER.
Alphuzz++ discovers 88 bugs through 10 rounds, with 4 more bugs
than AFL++ and 3 more bugs than AFL++-HIER.

We present the detailed results of all the vulnerabilities discov-
ered by these techniques in Appendix A.

5.4.2 Unique bugs on UniFuzz. We first calculate the number
of unique bugs discovered by each fuzzing technique. According to
UniFuzz [25], we leverage the report produced by ASAN [37] and
GDB [19] to de-duplicate bugs.

Table 3 shows the numbers of detected unique bugs by AFL-
based fuzzing techniques. We can observe that Alphuzz finds no
less unique bugs than other fuzzing techniques on 11 out of the

540

ACSAC ’22, December 5-9, 2022, Austin, Texas, USA Yiru Zhao et al.

Table 4: Number of discovered unique exploitable bugs.

Binary AFL AFLFast EcoFuzz FairFuzz Alphuzz

cflow 0 0 0 0 0
exiv2 0 1 1 1 1
flvmeta 1 1 1 1 1
gdk 4 3 2 0 3
imginfo 0 0 0 0 0
infotocap 0 0 0 0 0
jhead 0 0 2 0 0
jq 0 0 0 0 0
lame 2 1 1 1 2
mp3gain 1 1 0 0 1
mp42aac 0 0 0 0 0
mujs 0 0 0 0 0
nm 0 0 0 0 0
objdump 2 2 0 1 2
pdftotext 0 1 0 0 3
tcpdump 0 0 0 0 0
tiffsplit 1 1 1 1 1
wav2swf 2 3 2 2 3
total 13 14 10 6 17

Table 5: Number of discovered unique bug and exploitable

vulnerabilities found by AFL++-based techniques.

Binary

Unique bugs Exploitable bugs

AFL++ AFL++-HIER Alphuzz++ AFL++ AFL++-HIER Alphuzz++

cflow 3 5 5 1 1 1
exiv2 2 2 2 1 1 1
flvmeta 4 3 4 1 1 1
gdk 10 9 12 6 3 8
imginfo 0 1 1 0 0 0
infotocap 2 0 3 0 0 0
jhead 3 3 3 0 0 0
jq 0 0 0 0 0 0
lame 2 3 3 2 2 2
mp3gain 6 6 6 1 1 1
mp42aac 2 2 2 0 0 0
mujs 0 0 1 0 0 0
nm 0 0 0 0 0 0
objdump 2 3 3 2 1 2
pdftotext 2 8 4 2 2 3
tcpdump 0 0 1 0 0 0
tiffsplit 3 6 5 1 1 1
wav2swf 3 2 4 3 2 4

total 44 55 59 20 15 24

15 binaries. In total, Alphuzz finds 18, 12, 28, and 23 more unique
bugs than AFL, AFLFast, EcoFuzz, and FairFuzz, respectively.

Table 5 shows the numbers of detected unique bugs by AFL++-
based fuzzing techniques. We can observe that Alphuzz++ finds
no less unique bugs than AFL++ on 14 binaries, and no less unique
bugs than AFL++-HIER on 12 binaries. In total, Alphuzz++ finds
15 and 4 more bugs than AFL++ and AFL++-HIER, respectively.

5.4.3 Exploitable vulnerabilities on UniFuzz. Exploitability
reflects the severity of the vulnerability [25]. We leverage the GDB
Exploitable [16] to identify exploitable vulnerabilities. GDB Ex-
ploitable classifies crashes into four categories: EXPLOITABLE,
PROBABLY_EXPLOITABLE, PROBABLY_NOT_EXPLOITABLE, and
UNKNOWN. Table 4 and Table 5 show the number of crashes that
are classified as EXPLOITABLE and PROBABLY_EXPLOITABLE.
We can observe that Alphuzz finds 4, 3, 7, and 11 more exploitable
vulnerabilities than AFL, AFLFast, EcoFuzz, and FairFuzz, respec-
tively. Alphuzz++ finds 4 and 9 more exploitable vulnerabilities
than AFL++ and AFL++-HIER, respectively.

5.5 Code coverage

Code coverage is a critical metric for evaluating the performance
of a fuzzing technique [43]. Basically, the more code a fuzzing

Table 6: 𝑝 values of the code coverage on UniFuzz with

Alphuzz as the baseline.

Binary

Alphuzz AFL AFLFast EcoFuzz FairFuzz

AVG cov 𝑝 value 𝑝 value 𝑝 value 𝑝 value

cflow 4.859% 0.0209 0.0408 0.4795 0.0078
exiv2 15.728% 0.0047 0.0023 0.0511 0.0054
flvmeta 2.33 % >0.10000 0.0001 0.0867 >0.9999
gdk 9.05% <0.0001 0.0014 0.0014 0.0014
imginfo 8.324% 0.0002 0.0047 0.0082 0.0002
infotocap 5.267% 0.4221 0.3046 <0.0001 0.0027
jhead 1.477% >0.9999 0.0698 0.0031 0.0031
jq 8.34% 0.0435 0.8951 0.022 0.1898
lame 14.161% 0.4648 0.2387 0.1008 0.4692
mp3gain 3.891% 0.9887 0.4027 0.1342 0.1013
mp42aac 7.734% 0.0002 <0.0001 <0.0001 <0.0001
mujs 12.984% 0.3047 <0.0001 <0.0001 <0.0001
nm 6.064% 0.1172 0.0209 <0.0001 0.0217
objdump 11.654% 0.8978 0.3047 0.4699 0.4695
pdftotext 25.904% 0.6415 0.0024 0.3035 0.9126
tcpdump 22.204% 0.0009 <0.0001 <0.0001 <0.0001
tiffsplit 5.231% 0.072 0.3227 0.7811 0.0002
wav2swf 1.39% 0.3067 0.0086 >0.9999 0.3043

technique can cover, the more likely it is to find the hidden bugs.
According to previous studies [24, 35, 49], we use the bitmap main-
tained by AFL to measure the code coverage. Specifically, AFL maps
each branch transition into an entry of the bitmap via hashing. If
a branch transition is explored, the corresponding entry in the
bitmap will be filled and the size of the bitmap will increase. As
AFL provides real-time bitmap sizes, we can evaluate the increasing
code coverage over time during the fuzzing process.

We present the average bitmap size of the 10-round experi-
ments of AFL-based fuzzing techniques for every binary in UniFuzz
dataset. Figure 5 shows that Alphuzz can achieve higher or the
same bitmap size than other techniques on 14 out of 18 binaries. For
mujs, Alphuzz works worse than FairFuzz. For nm, Alphuzz works
worse than EcoFuzz, AFLFast, and AFL. For pdftotext, Alphuzz
works worse than AFLFast. For tiffsplite, Alphuzz works worse
than AFL and FairFuzz.

By comparing the performance of Alphuzz with every baseline
technique as shown in Figure 5, we can also observe that Alphuzz
outperforms AFL, AFLFast, EcoFuzz, and FairFuzz on 15, 15, 16, and
14 binaries, respectively.

Table 7 shows the averaged bitmap size of AFL++-based fuzzing
techniques. As shown in Table 7, Alphuzz++ achieves higher or the
same bitmap size than AFL++ on 14 out of 18 binaries, AFL++-HIER
on 15 out of 18 binaries.

5.6 Statistical Significance

To quantify whether there are significant differences between
Alphuzz and other techniques, we leverage the Mann-Whitney
U test to calculate the 𝑝 value [21, 33] using Alphuzz as the base-
line. According to Mann-Whitney U test [33], a 𝑝 value less than
0.05 indicates a significant difference between two fuzzers.

As shown in Table 6, column 2 shows the average code coverage
of Alphuzz. Columns 3-6 show the 𝑝 values calculated by taking the
code coverage of Alphuzz as the baseline. It indicates that Alphuzz
significantly outperforms the baseline fuzzer, if 𝑝 value is less than

541

Alphuzz ACSAC ’22, December 5-9, 2022, Austin, Texas, USA

0 4 8 12 16 20 24
4.6

4.7

4.8

4.9

cflow

0 4 8 12 16 20 24
13

14

15

16

exiv2

0 4 8 12 16 20 24
2.20

2.25

2.30

2.35

flvmeta

0 4 8 12 16 20 24
5

6

7

8

9

10

gdk-pixbuf-pixdata

0 4 8 12 16 20 24
5

6

7

8

9

imginfo

0 4 8 12 16 20 24
2

3

4

5

6

infotocap

0 4 8 12 16 20 24
1.45

1.46

1.47

1.48

jhead

0 4 8 12 16 20 24
7.5

8.0

8.5

jq

0 4 8 12 16 20 24
12

13

14

15

lame

0 4 8 12 16 20 24
3.4

3.6

3.8

4.0

mp3gain

0 4 8 12 16 20 24
5.5

6.0

6.5

7.0

7.5

8.0

mp42aac

0 4 8 12 16 20 24
8

10

12

14

mujs

0 4 8 12 16 20 24
5.0

5.5

6.0

6.5

7.0

nm

0 4 8 12 16 20 24
9

10

11

12

objdump

0 4 8 12 16 20 24
22

24

26

28

pdftotext

0 4 8 12 16 20 24
10

15

20

25

tcpdump

0 4 8 12 16 20 24
2

4

6

tiffsplit

0 4 8 12 16 20 24
1.20

1.25

1.30

1.35

1.40

wav2swf

0 4 8 12 16 20 24
0.0

0.5

1.0

1.5

2.0

just_for_puicture

AFL AFLFast EcoFuzz FairFuzz Alphuzz

Time(Hour)

A
ve

ra
ge

d
b

it
m

ap
si

ze

Figure 5: Average bitmap size for every binary of UniFuzz. Each graph represents a binary, with the abscissa representing the

time and the ordinate representing the size of the averaged bitmap size.

Table 7: Averaged bitmap size and 𝑝 values on UniFuzz with

Alphuzz++ as the baseline.

Binary

Alphuzz++ AFL++ AFL++-HIER

AVG cov AVG cov 𝑝 value AVG cov 𝑝 value

cflow 4.91% 4.69% 0.0008 4.37% <0.0001
exiv2 28.85% 24.23% 0.0008 25.00% 0.0635
flvmeta 2.15% 2.15% >0.9999 2.15% >0.9999
gdk 10.44% 10.19% 0.00476 9.26% 0.0016
imginfo 8.64% 8.65% 0.3155 8.70% 0.0476
infotocap 5.97% 5.78% 0.0079 2.64% <0.0001
jhead 1.39% 1.39% >0.9999 1.39% >0.9999
jq 8.51% 7.60% 0.0008 7.68% 0.0079
lame 14.57% 14.33% 0.0079 14.01% 0.0023
mp3gain 4.13% 3.78% 0.0008 3.90% 0.3810
mp42aac 7.37% 6.89% 0.0054 7.66% 0.5238
mujs 13.57% 13.55% 0.0412 13.45% <0.0001
nm 7.56% 7.27% 0.0079 7.56% 0.0016
objdump 15.28% 13.57% <0.0001 13.82% <0.0001
pdftotext 28.13% 28.22% 0.5004 28.45% 0.0031
tcpdump 30.41% 27.66% 0.0008 30.36% 0.6962
tiffsplit 6.20% 6.77% 0.0519 5.77% <0.0001
wav2swf 1.29% 1.29% >0.9999 0.87% <0.0008

0.05 and the code coverage of Alphuzz is higher than the baseline
fuzzer. We can observe that Alphuzz significantly outperforms
AFL, AFLFast, EcoFuzz, and FairFuzz on 7, 9, 8, and 10 binaries,
respectively.

Similarly, Table 7 shows the 𝑝 values calculated by taking the
code coverage of Alphuzz++ as the baseline. We can observe that
Alphuzz++ significantly outperforms AFL++ on 12 out of 18 bina-
ries, and outperforms AFL++-HIER on 9 out of 18 binaries.

5.7 Fuzzing throughput

Our seed scheduling strategy introduces both positive and negative
impacts on the fuzzing throughput. On one hand, the tree structure
can improve the fuzzing throughput in terms of time complexity.
The searching time complexity of a tree structure is 𝑂 (𝑙𝑜𝑔(𝑁)),
whereas baseline fuzzing techniques organize the seed inputs in a
queue, and the searching time complexity is 𝑂 (𝑁). On the other
hand, the implementation of our strategy requires collecting extra
information, which may bring negative impacts on fuzzing through-
put. To investigate the overhead of our strategy, we compare the
average number of executions per second by AFL++, Alphuzz++,
and AFL++-HIER on the UniFuzz dataset.

As shown in Figure 6, Alphuzz++’s throughput is no less than
AFL on 12 out of 18 programs. That is, Alphuzz++ has a competitive
throughput as AFL++. In addition, Alphuzz++ has higher execu-
tions per second than AFL++-HIER on 11 out of 18 programs. The
result verifies our analysis that AFL++-HIER requires maintaining
multiple coverage metrics, which reduces the fuzzing’s throughput.

5.8 Impact of the parameter k

The parameter 𝑘 in Formula 2 is a constant, which controls the
trade-off between exploration and exploitation. To investigate the
impact of different 𝑘 values on seed scheduling, we assign 𝑘 as
five different values 0, 0.014, 0.14, 1.4, and 14, respectively. Then,
we conduct experiments on two datasets, the CGC dataset and the
UniFuzz dataset.

Evaluation results show that the impact of 𝑘 varies a lot for dif-
ferent datasets. Specifically, as shown in Table 8, Alphuzz achieves
the highest code coverage with 𝑘 as 1.4 than other configurations

542

ACSAC ’22, December 5-9, 2022, Austin, Texas, USA Yiru Zhao et al.

0

50

100

150

200

250

E
xe

cu
tio

ns
 p

er
 se

co
nd Alphuzz++

AFL++-HIER
AFL++

Figure 6: Throughput comparison.

Table 8: The Averaged edge coverage on CGC and UniFuzz

with different values of the parameter 𝑘 .

Dataset

Value of 𝑘

0 0.014 0.14 1.4 14

CGC 2.59% 2.61% 2.65% 2.75% 2.58%
UniFuzz 8.38% 8.46% 8.38% 8.23% 8.22%

on the CGC dataset. However, on the UniFuzz dataset, Alphuzz
achieves the highest code coverage when 𝑘 is set to 0.014.

For in-depth analysis, we further examine the fuzzing processes
on different datasets. Our manual analysis shows that the binaries
in UniFuzz are larger in scale and more complex than CGC binaries.
Meanwhile, according to Formula 2, the value of 𝑠𝑒𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 for
a seed will decrease with the increasing number of selected times.
Thus, a smaller value of 𝑘 will contribute to exploitation, which
leads “seed mutation tree” to expand in the depth direction. There-
fore, we can infer that 𝑘 should be set as a smaller value with the
increasing scale and more complex program structure.

5.9 Vulnerability detection on real-world

binaries.

To assess whether Alphuzz can find vulnerabilities in real-world
programs, we run the fuzzing techniques on 12 real-world binaries
listed in Table 1. We collect the crashes discovered by each fuzzing
technique, and then leverage AddressSanitizer [41] and GDB to
distinguish redundant crashes and identify unique vulnerabilities.

Table 9 shows that these fuzzing techniques totally discover 12
vulnerabilities. Alphuzz discovers more vulnerabilities than other
baseline techniques. We report the 12 vulnerabilities to upstream
vendors. Among these vulnerabilities, 7 of them are confirmed by
the vendors with the CVE-ID, 4 of them are confirmed but without
a CVE-ID, and 1 of them has not been confirmed yet. Notably, we
discovered 3 new vulnerabilities and obtained 3NEWCVEs, which
are CVE-2021-25792, CVE-2021-25793, and CVE-2021-25794.

6 RELATEDWORK

Fuzzing. In this paper, we mainly focus on seed scheduling for
Coverage-based greybox fuzzing (CGF). Lots of fuzzing techniques
leverage additional program analysis to improve the performance of
fuzzing. Honggfuzz [40] and libfuzzer [36] introduce a data flow fea-
ture—the degree of matching of the operands of branch statements,
and prioritized the selection of seeds that more satisfies the branch
constraints. GreyOne [17] uses data flow analysis to determine the
relationship between input fields and constraint-related variables,

Table 9: Vulnerabilities discovered in real-world binaries.

Binary Vulnerabilities AFL AFLFast EcoFuzz FairFuzz Alphuzz

cjpeg
CVE-2018-11214 ! ! ! ! !

CVE-2018-11212 ! ! ! ! !

issue#5 % % % % !

infotocap CVE-2018-19211 % ! ! % !

CVE-2021-25794 % % % % !

mp3gain

CVE-2018-10778 ! ! ! ! !

CVE-2018-10777 ! ! ! ! !

CVE-2017-14406 % % % ! %

CVE-2018-10776 % % % % !

pdfimages
issue#42073 % % % % !

CVE-2021-25792 % % % % !

CVE-2021-25793 % ! % % !

Total 12 4 6 5 5 11

then schedules the input with the highest number of relevant key
fields. MEUZZ [9] leverages sanitizer to measure how likely bugs
can be triggered, and proposes an ML-based seed selection strategy
for hybrid fuzzing.

Besides the seed scheduling strategies, there are a lot of fuzzing
techniques focusing on different stages of fuzzing. HashFuzz [29]
leverages universal hashing to increase the diversity of input val-
ues on which the executions traverse the same branch. MOPT [28]
proposes a seed mutation strategy to determine the proper dis-
tribution for mutation operators. Entropy [5] develops a power
schedule strategy, which gives more energy to seeds revealing more
information about the program behaviors. NEUZZ [39] identifies
the significance of program smoothing and uses an incremental
learning technique to guide the mutation of fuzzing. Untracer [30]
removes unnecessary instrumentation in basic blocks that have
been explored to reduce the overhead of fuzzing.

Monte Carlo Tree Search. Monte Carlo Tree Search (MCTS) is a
promising online planning approach, which has achieved great suc-
cess in Go [38] and has had a profound impact on the field of artifi-
cial intelligence [14, 32]. The application field ofMCTS is very exten-
sive, such as active object recognition [34], wildlife monitoring[20],
environment exploration [11, 23], and planetary exploration [1].
MCTS has been proposed in many different forms [7], but currently,
the most common one is the Upper-Confidence Bounds Applied to
Trees (UCT) algorithm[22]. Therefore, we use the UCT algorithm
in our model.

MCTS also attracts the attention of researchers who focus on
fuzzing. AFL-HIER [44] proposes a multi-level coverage metric, and
leverages the UCT algorithm to perform seed selection. Legion [27]
leverages MCTS to maintain a balance between concolic execution
and fuzzing, and improves the performance of hybrid fuzzing.

7 CONCLUSION

In this study, we make a key observation that the mutation rela-
tionships among seeds are valuable for seed scheduling. To investi-
gate the seed mutation relationships, we design a “seed mutation
tree” and further propose an MCTS-based seed scheduling strat-
egy by modeling the seed scheduling problem as a Monte-Carlo
Tree Search (MCTS) problem. Evaluation shows that our approach
outperforms other seed scheduling strategies with higher code
coverage and more discovered vulnerabilities.

543

Alphuzz ACSAC ’22, December 5-9, 2022, Austin, Texas, USA

REFERENCES

[1] Akash Arora, Robert Fitch, and Salah Sukkarieh. 2017. An approach to au-
tonomous science by modeling geological knowledge in a Bayesian framework.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2017, Vancouver, BC, Canada, September 24-28, 2017. IEEE, 3803–3810.

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In NDSS, Vol. 19. 1–15.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[4] Hendrik Baier andMichael Kaisers. 2020. Guiding Multiplayer MCTS by Focusing
on Yourself. In IEEE Conference on Games, CoG 2020, Osaka, Japan, August 24-27,
2020. 550–557.

[5] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. 2020. Boosting Fuzzer
Efficiency: An Information Theoretic Perspective. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 678–689.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-
based greybox fuzzing asmarkov chain. IEEE Transactions on Software Engineering
45, 5 (2017), 489–506.

[7] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.

[8] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA. 711–725.

[9] Yaohui Chen, Mansour Ahmadi, Reza Mirzazade Farkhani, Boyu Wang, and
Long Lu. 2020. MEUZZ: Smart Seed Scheduling for Hybrid Fuzzing. CoRR
abs/2002.08568 (2020).

[10] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: a
platform for in-vivo multi-path analysis of software systems. In Proceedings of the
16th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2011, Newport Beach, CA, USA, March 5-11, 2011,
Rajiv Gupta and Todd C. Mowry (Eds.). ACM, 265–278.

[11] Micah Corah and Nathan Michael. 2017. Efficient Online Multi-robot Exploration
via Distributed Sequential Greedy Assignment.. In Robotics: Science and Systems,
Vol. 13.

[12] Aleksander Czechowski and Frans A. Oliehoek. 2020. Decentralized MCTS via
Learned Teammate Models. CoRR abs/2003.08727 (2020).

[13] DARPA. 2017. Cyber Grand Challenge Challenge Repository.
http://www.lungetech.com/cgc-corpus/.

[14] Simon Demediuk, Marco Tamassia, Xiaodong Li, and William L. Raffe. 2019.
Challenging AI: Evaluating the Effect of MCTS-Driven Dynamic Difficulty Ad-
justment on Player Enjoyment. In Proceedings of the Australasian Computer
Science Week Multiconference, ACSW 2019, Sydney, NSW, Australia, January 29-31,
2019. 43:1–43:7.

[15] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association.

[16] Jonathan Foote. 2018. The exploitable GDB plugin. https://github.com/jfoote/ex
ploitable.

[17] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, DongWu, and
Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, Boston, MA.

[18] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path Sensitive Fuzzing. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. 679–696.

[19] GDB. 2019. GDB: The GNU Project Debugger. https://www.gnu.org/software/g
db/.

[20] Benjamin Hefferan, Oliver M Cliff, and Robert Fitch. 2016. Adversarial patrolling
with reactive point processes. In Proceedings of the ARAA Australasian Conference
on Robotics and Automation (ARAA, 2016). 39–46.

[21] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. 2123–2138.

[22] Levente Kocsis, Csaba Szepesvári, and Jan Willemson. 2006. Improved monte-
carlo search. Univ. Tartu, Estonia, Tech. Rep 1 (2006).

[23] Mikko Lauri and Risto Ritala. 2016. Planning for robotic exploration based on
forward simulation. Robotics and Autonomous Systems 83 (2016), 15–31.

[24] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 475–485.

[25] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen,
Chenyang Lyu, Chunming Wu, Raheem Beyah, Peng Cheng, Kangjie Lu, and
Ting Wang. 2020. UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform
for Evaluating Fuzzers. CoRR abs/2010.01785 (2020).

[26] An-Jen Liu, Ti-Rong Wu, I-Chen Wu, Hung Guei, and Ting-Han Wei. 2020.
Strength Adjustment and Assessment for MCTS-Based Programs [Research Fron-
tier]. IEEE Comput. Intell. Mag. 15, 3 (2020), 60–73.

[27] Dongge Liu, Gidon Ernst, Toby Murray, and Benjamin I. P. Rubinstein. 2020.
Legion: Best-First Concolic Testing. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. Association for Computing
Machinery, New York, NY, USA, 54–65.

[28] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized mutation scheduling for fuzzers. In 28th
USENIX Security Symposium (USENIX Security 19). 1949–1966.

[29] Hector D. Menendez and David Clark. 2021. Hashing Fuzzing: Introducing Input
Diversity to Improve Crash Detection. IEEE Transactions on Software Engineering
(2021), 1–1.

[30] Stefan Nagy and Matthew Hicks. 2019. Full-Speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-Guided Tracing. In 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. 787–802.

[31] Trail of Bits. 2016. DARPA Challenges Sets for Linux, Windows, and macOS.
Accessed on September 10th 2020. https://github.com/trailofbits/cb-multios.

[32] Abdessamed Ouessai, Mohammed Salem, and Antonio Miguel Mora. 2020. Para-
metric action pre-selection for MCTS in real-time strategy games. In Proceedings
of the VI Congreso de la Sociedad Española para las Ciencias del Videojuego, On-line,
October 7-8, 2020. 104–115.

[33] p value. 2022. p value. https://en.wikipedia.org/wiki/P-value.
[34] Timothy Patten, Wolfram Martens, and Robert Fitch. 2018. Monte Carlo planning

for active object classification. Autonomous Robots 42, 2 (2018), 391–421.
[35] Mohit Rajpal, William Blum, and Rishabh Singh. 2017. Not all bytes are equal:

Neural byte sieve for fuzzing. CoRR abs/1711.04596 (2017).
[36] Kostya Serebryany. 2015. libFuzzer–a library for coverage-guided fuzz testing.

LLVM project (2015).
[37] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. 2017. Addresssanitizer. https://github.com/google/sanitizers/wiki.
[38] Eren Sezener and Peter Dayan. 2020. Static and Dynamic Values of Computation

in MCTS. CoRR abs/2002.04335 (2020). https://arxiv.org/abs/2002.04335
[39] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman

Jana. 2019. NEUZZ: Efficient Fuzzing with Neural Program Smoothing. In 2019
IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019. 803–817.

[40] Robert Swiecki. 2017. Honggfuzz: A general-purpose, easy-to-use fuzzer with
interesting analysis options. URl: https://github. com/google/honggfuzz (visited on
06/21/2017) (2017).

[41] The Clang Team. 2017. Addresssanitizer.
http://clang.llvm.org/docs/AddressSanitizer.html.

[42] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017. 579–594.

[43] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song. 2019. Be
Sensitive and Collaborative: Analyzing Impact of Coverage Metrics in Greybox
Fuzzing. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses, RAID 2019, Chaoyang District, Beijing, China, September 23-25, 2019.

[44] Jinghan Wang, Chengyu Song, and Heng Yin. 2021. Reinforcement Learning-
based Hierarchical Seed Scheduling for Greybox Fuzzing. In 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February 21-25,
2021. The Internet Society.

[45] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
New Operating Primitives to Improve Fuzzing Performance. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017. 2313–2328.

[46] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou.
2020. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the
Adversarial Multi-Armed Bandit. In 29th USENIX Security Symposium (USENIX
Security 20).

[47] M. Zalewski. 2017. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.
[48] Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu, and Erxue Min. 2018. PTfuzz:

Guided Fuzzing With Processor Trace Feedback. IEEE Access 6 (2018), 37302–
37313.

[49] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hardest Problems My
Way: Probabilistic Path Prioritization for Hybrid Fuzzing. In 26th Annual Network
and Distributed System Security Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019. The Internet Society.

544

https://github.com/jfoote/exploitable
https://github.com/jfoote/exploitable
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://en.wikipedia.org/wiki/P-value
https://github.com/google/sanitizers/wiki
https://arxiv.org/abs/2002.04335

ACSAC ’22, December 5-9, 2022, Austin, Texas, USA Yiru Zhao et al.

A EXPERIMENTAL RESULTS ON CGC

DATASET

Table 10 presents the details of vulnerabilities that are discovered by
AFL-based fuzzing techniques for at least once across the 10-rounds
experiments. We mark the binaries of which the vulnerabilities
are detected only by Alphuzz. A total of 91 vulnerabilities are dis-
covered, of which 67 are discovered by all the fuzzing techniques.
Alphuzz misses 4 of them. By contrast, AFL, AFLFast and EcoFuzz
miss 8, 8 and 18 of vulnerabilities ever discovered. We can observe
that Alphuzz discovers 6 unique vulnerabilities (CROMU_00061,

CROMU_00064, KPRCA_00017, KPRCA_00019, KPRCA_00049, and
KPRCA_00087) that are never discovered by other fuzzing tech-
niques.

Table 11 presents the details of vulnerabilities that are discov-
ered by AFL++-based fuzzing techniques for at least once across
the 10-rounds experiments. We mark the binaries of which the
vulnerabilities are detected only by Alphuzz++. We can observe
that Alphuzz++ discovers 5 unique vulnerabilities (CROMU_00061,
KPRCA_00017, KPRCA_00019, KPRCA_00049, and KPRCA_00087)
that are never discovered by other fuzzing techniques.

545

Alphuzz ACSAC ’22, December 5-9, 2022, Austin, Texas, USA

Table 10: Detailed Vulnerabilities discovered by AFL-based fuzzing techniques.

CGC programs Alphuzz AFL AFLFast EcoFuzz FairFuzz CGC programs Alphuzz AFL AFLFast EcoFuzz FairFuzz

CROMU_00004 ✓ ✓ ✓ ✓ ✓ CROMU_00006 ✓ ✓ ✓ ✓ ✓

CROMU_00009 ✓ ✓ ✓ ✓ ✓ CROMU_00014 ✓ ✓ ✓ ✓ ✓

CROMU_00015 ✓ ✓ ✓ ✓ ✓ CROMU_00016 ✓ ✓ ✓ ✓ ✓

CROMU_00018 ✓ ✓ ✓ ✓ ✓ CROMU_00021 ✓ ✓ ✓ ✓ ✓

CROMU_00023 ✓ ✓ ✓ ✓ ✓ CROMU_00025 ✓ ✓ ✓ ✓ ✓

CROMU_00026 ✓ ✓ ✓ CROMU_00027 ✓ ✓ ✓ ✓ ✓

CROMU_00031 ✓ ✓ ✓ ✓ ✓ CROMU_00034 ✓ ✓ ✓ ✓ ✓

CROMU_00035 ✓ ✓ ✓ ✓ ✓ CROMU_00036 ✓ ✓ ✓ ✓ ✓

CROMU_00038 ✓ ✓ ✓ ✓ ✓ CROMU_00039 ✓ ✓ ✓ ✓ ✓

CROMU_00040 ✓ ✓ ✓ ✓ ✓ CROMU_00042 ✓ ✓ ✓ ✓ ✓

CROMU_00044 ✓ ✓ ✓ ✓ ✓ CROMU_00046 ✓ ✓ ✓ ✓ ✓

CROMU_00048 ✓ ✓ ✓ CROMU_00055 ✓ ✓ ✓ ✓ ✓

CROMU_00057 ✓ ✓ ✓ ✓ ✓ CROMU_00058 ✓ ✓ ✓ ✓ ✓

CROMU_00061 ✓ CROMU_00064 ✓

CROMU_00066 ✓ ✓ ✓ ✓ CROMU_00072 ✓ ✓ ✓ ✓ ✓

CROMU_00076 ✓ ✓ ✓ ✓ CROMU_00077 ✓ ✓ ✓ ✓ ✓

CROMU_00078 ✓ ✓ ✓ ✓ ✓ CROMU_00079 ✓ ✓ ✓ ✓

CROMU_00082 ✓ ✓ ✓ ✓ ✓ CROMU_00094 ✓ ✓ ✓ ✓ ✓

CROMU_00095 ✓ ✓ ✓ ✓ ✓ CROMU_00096 ✓ ✓ ✓ ✓ ✓

CROMU_00097 ✓ CROMU_00098 ✓ ✓ ✓ ✓

KPRCA_00010 ✓ ✓ ✓ ✓ ✓ KPRCA_00011 ✓ ✓ ✓ ✓ ✓

KPRCA_00012 ✓ ✓ ✓ ✓ ✓ KPRCA_00014 ✓ ✓ ✓ ✓ ✓

KPRCA_00017 ✓ KPRCA_00019 ✓

KPRCA_00020 ✓ ✓ ✓ ✓ ✓ KPRCA_00021 ✓ ✓ ✓ ✓ ✓

KPRCA_00022 ✓ ✓ ✓ ✓ ✓ KPRCA_00028 ✓ ✓ ✓ ✓ ✓

KPRCA_00032 ✓ ✓ ✓ ✓ ✓ KPRCA_00033 ✓ ✓ ✓ ✓ ✓

KPRCA_00035 ✓ ✓ ✓ ✓ ✓ KPRCA_00036 ✓ ✓ ✓ ✓ ✓

KPRCA_00038 ✓ ✓ ✓ ✓ ✓ KPRCA_00043 ✓ ✓ ✓ ✓ ✓

KPRCA_00047 ✓ ✓ ✓ ✓ ✓ KPRCA_00049 ✓

KPRCA_00050 ✓ ✓ ✓ ✓ ✓ KPRCA_00051 ✓ ✓ ✓ ✓ ✓

KPRCA_00052 ✓ ✓ KPRCA_00065 ✓ ✓ ✓ ✓ ✓

KPRCA_00068 ✓ ✓ KPRCA_00069 ✓ ✓

KPRCA_00081 ✓ ✓ ✓ KPRCA_00087 ✓

KPRCA_00094 ✓ ✓ ✓ KPRCA_00102 ✓ ✓ ✓ ✓

KPRCA_00110 ✓ ✓ ✓ ✓ ✓ NRFIN_00009 ✓ ✓ ✓ ✓ ✓

NRFIN_00014 ✓ ✓ ✓ ✓ ✓ NRFIN_00015 ✓ ✓ ✓ ✓ ✓

NRFIN_00016 ✓ ✓ ✓ ✓ NRFIN_00018 ✓ ✓ ✓ ✓ ✓

NRFIN_00021 ✓ ✓ ✓ ✓ ✓ NRFIN_00022 ✓ ✓

NRFIN_00023 ✓ ✓ ✓ ✓ ✓ NRFIN_00024 ✓ ✓ ✓ ✓ ✓

NRFIN_00026 ✓ ✓ ✓ ✓ ✓ NRFIN_00035 ✓ ✓ ✓ ✓ ✓

NRFIN_00038 ✓ ✓ ✓ ✓ ✓ NRFIN_00039 ✓ ✓ ✓ ✓ ✓

NRFIN_00040 ✓ ✓ ✓ ✓ ✓ NRFIN_00041 ✓ ✓ ✓ ✓ ✓

NRFIN_00042 ✓ ✓ ✓ ✓ ✓ NRFIN_00049 ✓ ✓ ✓ ✓

NRFIN_00052 ✓ ✓ ✓ ✓ ✓ NRFIN_00054 ✓ ✓ ✓ ✓

NRFIN_00061 ✓ ✓ ✓ ✓ NRFIN_00064 ✓ ✓ ✓ ✓

YAN01_00007 ✓ ✓ ✓ ✓ ✓ YAN01_00012 ✓ ✓ ✓ ✓ ✓

In Total 87 83 83 73 76

546

ACSAC ’22, December 5-9, 2022, Austin, Texas, USA Yiru Zhao et al.

Table 11: Detailed Vulnerabilities discovered by AFL++-based fuzzing techniques.

CGC programs Alphuzz++ AFL++ AFL++-HIER CGC programs Alphuzz++ AFL++ AFL++-HIER

CROMU_00004 ✓ ✓ ✓ CROMU_00006 ✓ ✓ ✓
CROMU_00009 ✓ ✓ ✓ CROMU_00014 ✓ ✓ ✓
CROMU_00015 ✓ ✓ ✓ CROMU_00016 ✓ ✓ ✓
CROMU_00018 ✓ ✓ ✓ CROMU_00021 ✓ ✓ ✓
CROMU_00023 ✓ ✓ ✓ CROMU_00025 ✓ ✓ ✓
CROMU_00026 ✓ ✓ ✓ CROMU_00027 ✓ ✓ ✓
CROMU_00031 ✓ ✓ ✓ CROMU_00034 ✓ ✓ ✓
CROMU_00035 ✓ ✓ ✓ CROMU_00036 ✓ ✓ ✓
CROMU_00038 ✓ ✓ ✓ CROMU_00039 ✓ ✓ ✓
CROMU_00040 ✓ ✓ ✓ CROMU_00042 ✓ ✓ ✓
CROMU_00044 ✓ ✓ ✓ CROMU_00046 ✓ ✓ ✓
CROMU_00048 ✓ ✓ ✓ CROMU_00055 ✓ ✓ ✓
CROMU_00057 ✓ ✓ ✓ CROMU_00058 ✓ ✓ ✓
CROMU_00061 ✓ CROMU_00064 ✓ ✓ ✓
CROMU_00066 ✓ ✓ ✓ CROMU_00072 ✓ ✓ ✓
CROMU_00076 ✓ ✓ ✓ CROMU_00077 ✓ ✓ ✓
CROMU_00078 ✓ ✓ ✓ CROMU_00079 ✓ ✓ ✓
CROMU_00082 ✓ ✓ ✓ CROMU_00094 ✓ ✓ ✓
CROMU_00095 ✓ ✓ ✓ CROMU_00096 ✓ ✓ ✓
CROMU_00097 ✓ CROMU_00098 ✓ ✓ ✓
KPRCA_00010 ✓ ✓ ✓ KPRCA_00011 ✓ ✓ ✓
KPRCA_00012 ✓ ✓ ✓ KPRCA_00014 ✓ ✓ ✓
KPRCA_00017 ✓ KPRCA_00019 ✓
KPRCA_00020 ✓ ✓ ✓ KPRCA_00021 ✓ ✓ ✓
KPRCA_00022 ✓ ✓ ✓ KPRCA_00028 ✓ ✓ ✓
KPRCA_00032 ✓ ✓ ✓ KPRCA_00033 ✓ ✓ ✓
KPRCA_00035 ✓ ✓ ✓ KPRCA_00036 ✓ ✓ ✓
KPRCA_00038 ✓ ✓ ✓ KPRCA_00043 ✓ ✓ ✓
KPRCA_00047 ✓ ✓ ✓ KPRCA_00049 ✓
KPRCA_00050 ✓ ✓ ✓ KPRCA_00051 ✓ ✓ ✓
KPRCA_00052 ✓ ✓ KPRCA_00065 ✓ ✓ ✓
KPRCA_00068 ✓ KPRCA_00069 ✓ ✓
KPRCA_00081 ✓ ✓ ✓ KPRCA_00087 ✓
KPRCA_00094 ✓ ✓ ✓ KPRCA_00102 ✓ ✓ ✓
KPRCA_00110 ✓ ✓ ✓ NRFIN_00009 ✓ ✓ ✓
NRFIN_00014 ✓ ✓ ✓ NRFIN_00015 ✓ ✓ ✓
NRFIN_00016 ✓ ✓ ✓ NRFIN_00018 ✓ ✓ ✓
NRFIN_00021 ✓ ✓ ✓ NRFIN_00022 ✓
NRFIN_00023 ✓ ✓ ✓ NRFIN_00024 ✓ ✓ ✓
NRFIN_00026 ✓ ✓ ✓ NRFIN_00035 ✓ ✓ ✓
NRFIN_00038 ✓ ✓ ✓ NRFIN_00039 ✓ ✓ ✓
NRFIN_00040 ✓ ✓ ✓ NRFIN_00041 ✓ ✓ ✓
NRFIN_00042 ✓ ✓ ✓ NRFIN_00049 ✓ ✓ ✓
NRFIN_00052 ✓ ✓ ✓ NRFIN_00054 ✓ ✓
NRFIN_00061 ✓ ✓ ✓ NRFIN_00064 ✓ ✓ ✓
YAN01_00007 ✓ ✓ ✓ YAN01_00012 ✓ ✓ ✓

In Total 88 84 85

547

	Abstract
	1 Introduction
	2 Motivation and insight
	2.1 Motivating example
	2.2 Our insight

	3 Seed Mutation Tree
	3.1 Definition
	3.2 Tree construction
	3.3 Challenges of seed scheduling on the tree

	4 Monte Carlo Search on the Seed-mutation Tree
	4.1 Monte carlo tree search
	4.2 MCTS-based seed scheduling
	4.3 Tree construction and expansion
	4.4 Calculation of seed score
	4.5 Seed score update

	5 Evaluation
	5.1 Datasets
	5.2 Baseline techniques
	5.3 Experiment setup
	5.4 Vulnerability detection
	5.5 Code coverage
	5.6 Statistical Significance
	5.7 Fuzzing throughput
	5.8 Impact of the parameter k
	5.9 Vulnerability detection on real-world binaries.

	6 Related work
	7 Conclusion
	References
	A Experimental results on CGC dataset

