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Abstract

This paper presents a general framework for deriving demand-
driven algorithms for interprocedural data flow analysis of
imperative programs. The goal of demand-driven analysis
is to reduce the time and/or space overhead of conventional
exhaustive analysis by avoiding the collection of information
that is not needed. In our framework, a demand for data flow
information is modeled as a set of data flow queries. The
derived demand-driven algorithms find responses to these
queries through a partial reversal of the respective data flow
analysis. Depending on whether minimizing time or space is
of primary concern, result caching may be incorporated in
the derived algorithm. Our framework is applicable to inter-
procedural data flow problems with a finite domain set. If
the problem’s flow functions are distributive, the derived de-
mand algorithms provide as precise information as the corre-
sponding exhaustive analysis. For problems with monotone
but non-distributive flow functions the provided data flow
solutions are only approximate. We demonstrate our ap-
proach using the example of interprocedural copy constant
propagation.

1 Introduction

Phrased in the traditional data flow framework [KU77], the
solution to a data flow problem is expressed as the fixed
point of a system of equations. Each equation expresses the
solution at one program point in terms of the solution at
immediately preceding (or succeeding) points. This formu-
lation results in an inherently exhaustive solution; that is,
to find the solution at one program point, the solution at all
points must be computed.

This paper presents an alternative approach to program
analysis that avoids the costly computation of exhaustive
solutions through the demand-driven retrieval of data flow
information. We describe a general framework for deriv-
ing demand-driven algorithms that is aimed at reducing the
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time and/or space consumption of conventional exhaustive
analyzers.

Demand-driven analysis reduces the analysis cost by pre-
venting the over-analysisof a program that occurs if parts of
the analysis effort are spent on the collection of superfluous
information. Optimizing and parallelizing compilers that ex-
haustively analyze a program with respect to each data flow
problem of interest are likely to over-analyze the program.
Typically, code transformations are applied only selectively
over the program and therefore require only a subset of the
exhaustive data flow solution. For example, some optimiza-
tions are applicable to only certain structures in a program,
such as loop optimizations. Even if optimizations are appli-
cable everywhere in the program, one may want to reduce
the overall optimization overhead by restricting their appli-
cation to only the most frequently executed regions of the
program (e.g., frequently called procedures or inner loops).

One strategy for reducing the analysis cost in these ap-
plications is to simply limit the exhaustive analysis to only
selected code regions. However, this strategy may prevent
the application of otherwise safe optimizations due to the
worst case assumptions that would have to be made at the
entry and exit points of a selected code region. For exam-
ple, data flow information that enters a selected code region
from outside the region is vital in determining the side effects
of procedure calls contained in that region. Similarly, data
flow from outside a loop may be needed to simplify and/or
determine the loop bounds or array subscripts in the loop.
These applications favor a demand-driven approach that al-
lows the reduction of the analysis cost while still providing
all necessary data flow information.

Another advantage of demand-driven analysis is its suit-
ability for servicing on-line data flow requests in software
tools. Interactive software tools that aid in debugging and
understanding of complex code require information to be
gathered about various aspects of a program. Typically, the
information requested by a user is not exhaustive but selec-
tive, i.e., data flow for only a selected area of the program
is needed. Moreover, the data flow problems to be solved
are not fixed before the software tool executes but can vary
depending on the user’s requests. For example, during de-
bugging a user may want to know where a certain value is
defined in the program, as well as other data flow informa-
tion that would help locate bugs. A demand-driven analysis
approach naturally provides the capabilities to service re-
quests whose nature and extent may vary depending on the
user and the program.

The utility of demand-driven analysis has previously been



demonstrated for a number of specific analysis problems
[CCF92, CHK92, CG93, SY93, SMHY93, Mas94]. Unlike
these applications, the objective of our approach is to ad-
dress demand-based analysis in a general way. We present a
lattice based framework for the derivation of demand-driven
algorithms for interprocedural data flow analysis. In this
framework, a demand for a specific subset of the exhaustive
solution is formulated as a set of queries. Queries may be
generated automatically (e.g., by the compiler) or manually
by the user (e.g., in a software tool). A query
qg=<yn>

raises the question as to whether a specific set of facts y is
part of the exhaustive solution at program point n». A re-
sponse (true or false) to the query ¢ is determined by prop-
agating ¢ from point n in reverse direction of the original
analysis until all points have been encountered that con-
tribute to the response for ¢. This query propagation is
modeled as a partial reversal of the original data flow analy-
sis. Specifically, by reversing the information flow associated
with program points, we derive a system of query propaga-
tion rules. The response to a query is found after a finite
number of applications of these rules. We present a generic
demand algorithm that implements the query propagation
and discuss two optimizations of the algorithm: (i) early-
termination to reduce the response time for a single query
and (ii) result caching to optimize the performance over a
sequence of queries. In the worst case, in which the amount
of information demanded is equal to the exhaustive solu-
tion, the asymptotic complexity of the demand algorithm
is no worse than the complexity of a standard iterative ex-
haustive algorithm.

The derivation of demand algorithms is based on a con-
ventional exhaustive interprocedural analysis framework.
Several formal frameworks for (exhaustive) interprocedural
analysis have been described [CCT77, Ros79, JM82, SP81,
KS92]. We use the framework by Sharir and Pnueli [SP81]
as the basis for our approach. We first follow the assump-
tions of the Sharir-Pnueli framework and consider programs
with parameterless (recursive) procedures and with a single
global address space. We then consider extensions to our
framework to allow non-procedure valued reference param-
eters and local variables. These extension are discussed for
the example of demand-driven copy constant propagation.

Our approach is applicable to monotone interprocedural
data flow problems with a finite domain set (finite set of
facts) and yields precise data flow solutions if all flow func-
tion are distributive. This finiteness restriction does not
apply if the program under analysis consists of only a sin-
gle procedure (the intraprocedural case). The distributivity
of the flow functions is needed to ensure that the derived
demand algorithms are as precise as their exhaustive coun-
terparts. Conceptually, our approach may also be applied
on problems with monotone but non-distributive flow func-
tions at the cost of reduced precision. We discuss the loss
of information that is caused by non-distributive flow func-
tions and show how our derived demand algorithms can still
be used to provide approximate but safe query responses for
non-distributive problems.

The class of distributive and finite data flow problems
that can be handled precisely includes, among others, the
interprocedural versions of the classical bitvector problems,
such as live variables and available expressions, as well as
common interprocedural problems, such as procedure side-
effect analysis [CK88]. We have chosen the example of in-

terprocedural copy constant propagation for illustrating the
demand-driven framework in this paper.

Section 2 reviews Sharir and Pnueli’s interprocedural
framework. In Section 3 we derive a system of query prop-
agation rules from which we establish a generic demand al-
gorithm. We discuss optimizations of the generic algorithm
which include early termination and result caching in Sec-
tion 4. Section 5 demonstrates the demand algorithm using
the example of interprocedural copy constant propagation
and presents the extensions to include reference parameters
and local variables. We discuss related work in Section 6
and conclusions are given in Section 7.

2 Background

A program consisting of a set of (recursive) procedures is
represented as an interprocedural flow graph (IFG) G =
{G1,...,Gr} where G = (Ny, E) is a directed flow graph
representing procedure p. Nodes in N, represent the state-
ments in p and edges in £, represent the transfer of con-
trol among statements. T'wo distinguished nodes r, and e,
represent the unique entry and exit nodes of p. The set
E = U{E;]1 <1 < k} denotes the set of all edges in G,
N = U{N;|1 < i < k} denotes the set of all nodes in G and
pred(n) = {m|(m,n) € E;} and succ(n) = {m|(n, m) € E;}
denote the set of immediate predecessors and successors of
node n, respectively. We assume that |E| = O(|N|). Finally,
Necait € N denotes set of nodes representing procedure calls
(call sites) and for each node n € Ncan, call(n) denotes the
procedure called from n. An example of an IFG is shown in
Figure 1.

During the analysis, only valid interprocedural execution
paths should be considered. An execution path = is valid if
m returns after a procedure exit node e, to the matching
call site that most recently occurred in = prior to ep. For
a node n in an interprocedural flow graph G, ]P(rmam, n)
denotes the set of valid execution paths from the program
entry node Timain to node n. For example in Figure 1, the
path 1,2,3,4,6,7,10,11,4, 5 is a valid execution path, while
the path 1,2,3,4,6,7,10,11,9,11, 4, 5is not valid. Note that
interprocedural execution paths are not directly represented
in an IFG since it does not contain explicit edges between
call and procedure entry nodes or between procedure exit
nodes and return nodes.

Throughout this paper we assume that G is an interpro-
cedural flow graph representing some program P.

2.1 Interprocedural Analysis Framework

Data flow problems are solved by globally gathering informa-
tion from a domain set of program facts. This information
gathering process is modeled by a pair (L, F'), where:

- L is a complete lattice with a partial order C, a least el-
ement L (bottom), a greatest element T (top), and a meet
operator M (greatest lower bound) and a dual join operator
Ul (least upper bound). L has the decreasing chain property
(i.e., any decreasing chain z; J z, J ... is finite). The bot-
tom element L denotes “null information” and we assume
that the top element T denotes “undefined information” ®.

1If L does not already contain a top element with the meaning
“undefined information”, it can always be extended to include an
additional new top element.



procedure main main

declare a,b; 1

begin f1(XaXb)=(XaXp)
a=1,
read(b);

cal p; fa(XaXp)=(1,Xp)
end N

procedure p
begin
if (cond) then a=b
elseb:=1;
cal p; 5
endif;
end

(p(e,ll)(xa,xb):if Xp=1 then (1,1)
) else (L. 1)

procedure p

10(XaXp)=(Xp,Xp)

Figure 1: An IFG with the local flow functions for copy constant propagation.

-F C{f:Lw~ L}is a set of monotone functions over L
(ie, 2Cy = f(z)C f(y))

A local flow function f, € F is mapped to each node
n € N — N.ai to model the local data flow effect of exe-
cuting node n. A data flow analysis is called M-distributive
if all local flow functions are M-distributive (i.e, f(zMy) =

f(z) M f(y)).

The exhaustive solution to an (interprocedural) data flow

problem is  the meet-over-all-valid-paths  solution
mop : N — L:
mop(n) = [l oy - Far (L)

p=n1..nx €EIP(Tmain,n)

If the analysis is M-distributive then the mop solution can
be computed as the greatest fixed point of a system of data
flow equations [SP81]. Data flow equations are evaluated in
a two-phase approach. During the first phase the data flow
effect of each procedure is analyzed independent of its calling
context. The results of this phase are procedure summary
functions as defined in equation system 1. The summary
function @(,, .,y : L + L for procedure p maps data flow
facts from the entry node r, to the corresponding set of facts
that holds upon procedure exit.

Equation System 1

(b(rp’rp)(z) =z

fm ’ ¢(Tpvm)(l‘) Zf mQNcall

¢ Tp,N ($) = Z,meNca”’
(rp,n) meEpred(n) ¢(rq,eq) . (b(r;,,m)(l‘)

call(m)=¢

The actual calling context of called procedures is propagated
during the second phase based on the summary functions.
The solution to the data flow problem is defined as the great-
est fixed point of equation system 2, where z(n) describes
the data flow solution on entry of node n.

For finite lattices, Sharir and Pnueli propose an iterative
worklist-driven tabulation algorithm to solve the equation
systems 1 and 2. Their algorithm requires O(|L| x| N|) space
to tabulate equations from 1 and 2 and the time for O(C x

Equation System 2

l‘('rmain) =1
For each procedure p:

z(rp) = M z(m)

MmEN e and call(m)=p

For each procedure p and node n # ry:

fm(z(m)) if m&Ncau
z(n) T mepred(n) Brg ey (z(m)) it ;7(6]?””’
call(m)=q

height(L)x|L|x|N|) meet operations and /or applications of
local flow functions, where C is the maximal number of call
sites calling a single procedure and height(L) is the height
of lattice L (i.e., the length of the longest chain in L).

2.2 Example: Copy Constant Propagation

We illustrate our approach throughout this paper using the
example of copy constant propagation (CCP). CCP is a
distributive version of the (non-distributive) constant prop-
agation analysis with expression evaluation [Kil73]. A vari-
able is a copy constant if it is either assigned a constant
value or it is assigned a copy of another variable that is a
copy constant. Since no expressions are evaluated, CCP is
less expensive but may discover fewer constants than con-
stant propagation with expression evaluation. Recent stud-
ies on interprocedural constant propagation [GT93] indicate
that the discovery of constants based on copies may be as
effective in practice for the interprocedural propagation as
the more costly discovery of constants based on symbolic
evaluation.

A demand-driven algorithm for interprocedural copy con-
stant propagation limits the analysis effort to the discovery
of the interesting interprocedural constants. For example in
parallelization, the interesting interprocedural constants in-
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Figure 2: The component lattice for copy constant propa-
gation for a single program variable.

clude the values of variables or formal parameters that occur
in array subscript expressions or in loop bounds.

Determining that a variable v is a copy constant requires
the simultaneous analysis of all programs variables. CCP is
not a partitionable [Zad84] analysis that would permit the
separate analysis of each variable as, for example, is possible
in live variable analysis. The CCP lattice for a program
with k variables is the product L*, where the component
lattice L is defined as shown in Figure 2. Thus, each lattice
element ¢ € L* is a k-tuple with one component (z), € L
for each variable v. The meet operator M and the dual join
operator U are defined pointwise according to the partial
order depicted in Figure 2. Of particular interest are the
base elementsin L*. A base element is a tuple z indicating
that a single variable v has some constant value ¢ and that
all other variables are not constant: (z), = c and (z)w = L
for w # v. We use the simplified notation [v=c]€ L* for such
a base element z. For readability, we also write [v=c,w=c]
for the join of base elements:[v=c] U [w=c]. Furthermore,
we also use T and L for the top and bottom element of the
product lattice L*.

We define the distributive flow functions f in CCP point-
wise for each component corresponding to one of & variables,
ie, f(z1,...,zx) = (f(z1, ..., 36)1,..., f(z1,...,zk)k). The
component f(z1,...,zk)w of a local flow function f with re-
spect to variable w is defined in Table 1 for various types
of assignments. The local flow function for a conditional
expression is simply the identity function.

oo n |t T Tmelon component 7T
vi=e f"(z)w = { :ccw i]ct;eju;l;;e
i L T
"lr)e:;l(tv())r f"(z)w = { :EJ; i)ft;e?u;;;e

Table 1: The local flow functions in CCP, where u, v and w
are variables, ¢ is a constant and ¢ is an expression.

In Figure 1, the local flow function associated with each
node is shown below the node. Each lattice element is a pair
(za, zs), where the first and second component denote lattice
values for variables a and b, respectively. The execution
effect of procedure calls (nodes 4 and 9) is modeled by the
summary function ¢ 11) as defined in equation system 1.
The full definition of ¢(¢,11) is shown only at node 4.

3 Propagating Data Flow Queries

A data flow query ¢ raises the question as to whether a
specific set of facts y € L is a safe approzimation of the

exhaustive solution at a selected program node n. A lattice
element y is a safe approximation of the solution z(n) if y
is lower in the lattice than z(n).

Definition 1 (Data flow query) Lety € L andn € N.
A data flow query q is of the form ¢ =< y,n > and denotes
the truth value of the term: y C z(n).

For the program in Figure 1, consider the question as
to whether variable a is a copy constant after returning
from the call to procedure p from main, i.e., on entry of
node 5. The least lattice element that expresses that a has
some arbitrary but fixed constant value ¢ is the element
(a=c, b=1) = [a=c] (i-e., variable b may assume any value).
Thus, the question corresponds to the query ¢ =<[a=c],5 >.

We now consider the problem of determining the answer
(true or false) for a query g without exhaustively evaluat-
ing the equation systems 1 and 2. Informally, the answer
to g=<y,n> is obtained by propagating ¢ from node n in
reverse direction of the original analysis until all nodes have
been encountered that contribute to the answer for q. We
model this propagation process as a partial reversal of the
original data flow analysis.

To illustrate the reversal of the analysis we examine the
following cases in the propagation of ¢ =< y, n >.

Case (i) (Node » = Tyyain): no further propagation of ¢
is possible and ¢ evaluates to trueif and only if y = L.

Case (ii) (Node n = ry, for some procedure p): g raises the
question as to whether y holds on entry of every invocation
of p. It follows that ¢ can be translated into the boolean
conjunction of queries < y, m > for every call site m calling
procedure p.

Case (iii) (Node n is some arbitrary non-entry node): For
simplicity, assume for now that » has a single predecessor
m. Equation system 2 shows that y T z(n) if and only
if y C h(z(m)), where h is either a local flow function or
a summary function. By the monotonicity of k, the term
y C h(z(m)) directly evaluates to true if y C k(L) and
to false if y Z h(T). Otherwise ¢ translates into a new
query ¢’ =< z,m > for node m. The lattice element z to
be queried on entry of node m should be the least element
(i.e., smallest set of facts) such that z E z(m) implies y C
h(z(m)). To find the appropriate query element z for the
new query ¢’ we apply the reverse function h” [HL92].

Definition 2 (Reverse function) Given a complete lat-
tice L and a monotone function h : L — L, the reverse

function h” : L — L is defined as:
R(y)=T1{z € L: yCh(z)}

The reverse function A" maps y to the smallest element z
such that y C h(z). Note, that if no such element exists
h"(y) = T (undefined).

If the function Ak is M-distributive then the following rela-
tionship holds between function k and its reverse h” [Cou81,

HL92]:
yEh(z) <= W (y)Cz (GC)

The above relationship uniquely determines the reverse func-
tion and defines a Galois connection [Bir84] between h and
its reverse h”. Note, that the M-distributivity is necessary
for establishing this relationship. For the remainder of this
section we consider only distributive flow function and show
how the resulting relationship between flow functions and



their reverse functions can be exploited during the query
propagation.

First consider the following properties of the function
reversal. It can easily be shown that the M-distributivity
of h implies the U-distributivity of the reverse function A":
h"(zUy) = A" (z)Uh"(y). Lemma 1 states relevant properties
with respect to the composition, the meet and the join of
functions.

Lemma 1 Let g and h be two M-distributive functions.
(i) (g-h)" = h"-g"
(ii) (g h)” = ¢g" UA"

Proof: straightforward and omitted for brevity (see also

[HL92]).

Table 2 shows the definition of the reverse flow functions
in CCP. For all flow functions f,;(T) = T and f,(Ll) =
1. By the U-distributivity of the reverse functions, it is
sufficient to define f,; for the base elements in the lattice

Lk,

node n reverse flow function f, ([w=c])
if w=v, c=c’
vi=c' i ([w=c]) T if w=v, c#c’

[w=c] otherwise

vi=u fJ(['wZCD{ i R Ao

otherwise

v:=t,

read(v)

fnr(['wzc]){ [.wlc] thl‘:)e;zise

Table 2: The reverse local flow functions in CCP.

The reverse function value f,; ([w=c]) denotes the least lat-
tice element, if any exists, that must hold on entry of node
n in order for variable w to have the constant value c on
exit of n. If f7([v=c]) = L, the trivial value L is sufficient
on entry of node n (i.e., v always has value ¢ on exit). The
value f,([v=c]) = T indicates that there exists no entry
value which would cause v to have the value ¢ on exit.

The following propagation rules result immediately from
the definition of the exhaustive equation system 2 in a M-
distributive data flow framework and the properties of the
reverse functions. The operator A denotes the boolean AND
operator.

Query Propagation (distributive functions)
true ify=_1

< Y, Tmain > < .
¥, Tmain { false  otherwise

<yrp> /\ <y m>

MEN¢qir, call(m)=p

false if hy"(y)=T
<y,n> /\ true if hyy"(y)=1
mepred(n) | < hm"(y),m > otherwise
where h,, = Fm ?f m ¢ Neau
B(rpep) i M E Nean, calllm) =p

The propagation rules require the application of reverse
functions. If node m is not a call site the reverse function

fm can be determined by locally inspecting the (distributive)
flow function f,,. Otherwise, if node m calls a procedure p
we need to determine the reverse summary function ¢(Tr,,,e,,)~
We first assume in the next section that all necessary reverse
summary functions are available and then discuss their de-
termination in detail in the following section.

3.1 Query Algorithm

The demand algorithm Query that implements the query
propagation rules is shown in Figure 3. Query takes as in-
put a query ¢ and returns the answer for ¢ after a finite
number of applications of the propagation rules. Query uses
a worklist initialized with the input query ¢. The answer
to ¢ is equivalent to the boolean conjunction of the answers
to the queries currently in the worklist. During each step a
query is removed from the worklist and translated according
to the appropriate propagation rule associated with the node
under inspection. The query resulting from this translation
is merged with the previous query at the node and added
to the worklist unless the previous query has not changed
(lines 7-8 and 15-16). The algorithm terminates with the
answer true if the worklist is exhausted and all queries have
evaluated to true. Otherwise, false is returned.

Query(y,n)
1. for each m € N do query[m] « L
2. query[n] «— y; worklist— {n};
3. while worklist # 0 do
4. remove a node m from worklist;
5. case m = rq for some procedure g:
6. for each m' € Ny s.t. call(m’) = ¢ do
7. query[m'] «— query[m’] U query[m];
8. if query[m'] changed then add m’' to worklist;
9. endfor;
10. otherwise:
11. for each m’ € pred(m) do
f,;/(query[m]) if m‘ € Ncall
12. new — d)(rqyeq)(query[m]) if m‘eNcallv
call(m')=q
13. if (new = T) then return( false )
14. else if (new J 1) then
15. query[m'] «— query[m’] U new;
16. if query[m'] changed then add m’ to worklist;
17. endif;
18. endfor;

19. endwhile;
20. return(irue);

Figure 3: Generic demand algorithm Query. Query(y,n)
returns the response true or false to the query ¢ =< y,n >.

To determine the complexity of the query algorithm we
count the number of times a join operation or a reverse
function application is performed. A join/reverse function
application is performed at a node n in lines 7, 12 and 15
only if the query at a successor of n was changed (or at the
entry node of a procedure p if n is a call site of p) which can
happen only O(height(L)) times. Hence, algorithm Query
requires in the worst case O(height(L)x |N|) join operations
and/or reverse function applications.

If the program under analysis comnsists of only a single
procedure (the intraprocedural case), Query provides a com-
plete procedure for demand-driven data flow analysis. For
the interprocedural case, we require an efficient procedure to
compute the reverse summary functions, as discussed next.



Computed”(p,y)

1. if M[ep,y] = y then /* result previously computed */
2. return(M/[rp, y]);
3 worklist — {(ep,y)}; Mlep,y] = y;
4. while worklist # 0 do
5. remove a pair (n,z) from worklist and let z — M|n, z];
6. case n € N¢yy and call(n) = g:
7. if M[eq,z] = z then
8. for each m € pred(n) do
9. Propagate(m,z, M[rq, z]);
10. else /* trigger computation of qb(rrqyeq)(z) */
11. Mlegq, 2] «— = and add (eq, z) to worklist;
12. case n = rq for some proc. g:
/* Propagate z to call sites if needed */
13. for each m € N4 such that
call(m) = q and M[m, '] = = for some z’ do

14. for each m’ € pred(m) do Propagate(m’,z’, 2);
15. otherwise:

/* n is not a call site and not an entry node */
16. for each m € pred(n) do Propagate(m, z, f,7(2));

17. endwhile;
18. return(M(rp, y]);

Propagate(n,y, new) /* propagate new to M[n,y] */
1. Min,y] — M[n,y] U new;
2. if M[n,y] changed then add (n,y) to worklist; endif;

Figure 4: Computed”(p,y) returns the reverse summary
function value qb(rrpyep)(y) for a procedure p and y € L.

3.2 Reverse Summary Functions

This section discusses an algorithm to compute individ-
ual reverse summary function values in order to extend al-
gorithm Query to the interprocedural case. An obvious and
inefficient way to compute reverse summary functions is to
first determine all original summary functions by evaluating
equation system 1 and then reverse each function. We de-
scribe in this section a more efficient method to directly com-
pute the reverse functions. Our algorithm mirrors the oper-
ations performed in Sharir and Pnueli’s worklist algorithm
for evaluating equation system 1, except that we compute
reverse summary function values and the direction in which
table entries are computed is reversed. Assuming that the
asymptotic cost of meet and local flow function application
is the same for join and reverse flow function application,
our algorithm has the same worst case complexity as Sharir
and Pnueli’s algorithm for the original summary functions.
As in Sharir and Pnueli’s algorithm the tabulation strategy
requires the lattice L to be finite.

We first derive an inductive definition of the reverse sum-
mary functions from equation system 1. By reversing the
order in which summary function are constructed and by
applying Lemma 1 we obtain the following definition of the
reverse summary function ¢(Trp,ep) for each procedure p:

Equation System 3

¢ZEP75P)(y) =Y

fr:z ° ¢(m,ep)(y) Zf mQNcall
¢Zn,e )(y): r r Zf meNcall;
P meEsucc(n) ¢(rq,eq) . ¢(m,ep)(y) call(m):q

Figure 4 shows an iterative worklist algorithm Compute¢”
that, if invoked with a pair (p, y), returns the value qﬁ(rrpyep)(y)
after a partial evaluation of the equation system 3. Individ-
ual function values are stored in a table M : N x L — L such

that M[n,y] = ¢(,, . )(y). The table is initialized with 1 and
its contents are assumed to persist between subsequent calls
to procedure Computed”. Thus, results of previous calls are
reused and the table is incrementally computed during a se-
quence of calls. After calling Computeg” with a pair (p,y)
a worklist is initialized with the pair (ep,y). The contents
of the worklist indicate the table entries whose values have
changed but the new values have not yet been propagated.
During each step a pair is removed from the worklist, its
new value is determined and all other entries whose values
might have changed as a result are added to the worklist.

We next analyze the cost of &k calls to Computed”. Stor-
ing the table M requires space for |N| x | L| lattice elements.
To analyze the time complexity we count the number of
join operations (in procedure Propagate) and reverse flow
function applications (at the call to Propagate in line 16).
The loop in lines 4-17 1s executed O(height(L) x |L| x |N|)
times, which is the maximal number of times the lattice
value of a table entry can be raised, i.e., the maximal num-
ber of additions to the worklist. In the worst case, the cur-
rently inspected node n is a procedure entry node. Pro-
cessing a procedure entry node rg results in calls to Prop-
agate for each predecessor of a call site of procedure g.
Thus, the k calls to Computed” require in the worst case
O(C x height(L) x |L| x |N|) join and/or reverse function
applications, where C' is the maximal number of call sites
calling a single procedure.

Assuming that each access to a reverse summary func-
tion in procedure Query is replaced by an appropriate call
to Computeg”, the total cost of algorithm Queryis O(C x
height(L) x |L| x |N|) join and reverse local flow function
applications plus the space to store O(|N| x |L|) lattice ele-
ments.

3.3 Queries in non-distributive Frameworks

The distributivity of the original analysis framework is nec-
essary to ensure that queries are decidable, that is, to ensure
that the query propagation rules from the previous section
yield as precise information as the original exhaustive analy-
sis does. We consider in this section the kind of approxima-
tion that is obtainable if the query propagation rules are ap-
plied to evaluate queries in the presence of non-distributive
flow functions.

If all flow functions in a data flow framework are M-
distributive then a data flow query < y,n» > evaluates to
true if and only if element y is part of the solution at node
n, i.e., if and only if y C z[r]. If the original analysis frame-
work is monotone but not M-distributive then information
may be lost during the query propagating process. Specifi-
cally, if a flow function % is monotone but not distributive,
then the relation between kh and its reverse h" is weaker
than in the distributive case; only the following implication
holds (see in contrast the Galois connection (GC)):

yEh(z) = RW(y L=

As a result of this weaker relationship queries are only semi-
decidable in the presence of non-distributive flow functions.
Conceptually, the derived query algorithm may also be ap-
plied to data flow problems with non-distributive functions.
In the presence of non-distributivity, the above implication
ensures that if a query ¢ =< y, n > evaluates to false then
y Z z[n]. However, nothing can be said if ¢ evaluates to
true. If appropriate worst assumptions are made for true



responses, the query algorithm still provides approximate
information in the presence of non-distributive flow func-
tions.

4 Optimized Query Evaluation

This section discusses two ways to improve the performance
of the query evaluation. The choice of optimization depends
on whether a fast response to (i) a single query or to (ii) a
sequence of queries is of primary interest.

To optimize the response time for a single query, the
query evaluation includes early termination. Recall that the
answer to the input query is the boolean conjunction of the
answers to the queries currently in the worklist. Thus, the
evaluation can directly terminate as soon as one query eval-
uates to false, independent of the remaining contents of the
worklist. Early termination is included in algorithm Query
in Figure 3.

To process a sequence of k queries requires k invocations
of Query, which may result in the repeated evaluation of the
same intermediate queries. Repeated query evaluation can
be avoided by maintaining a result cache. We outline a sim-
ple extension of algorithm Query to include result caching.
A global cache is maintained that contains for each node
n and lattice element y an entry cache[n,y] denoting the
previous result, if any, of evaluating the query < y,n >.
Before a newly generated query ¢ is added to the worklist,
the cache is first consulted. The query ¢ is added to the
worklist only if the answer for ¢ is not found in the cache.
Entries are added to the cache after each terminated query
evaluation. Recall that a false answer at some node n im-
plies a false answer for all previously generated queries at
nodes that are reachable from n along some valid execution
path. Thus, the cache can be updated in a single pass over
the nodes that have been visited during the current invoca-
tion of Query. First, each visited node n that is reachable
from a node that evaluated to false is processed and the
cache is updated to cache[n,query[n]] = false. Note, that
at this point the entries cache[n, z] for query[n] C z could
also be set to false. For the remaining visited nodes n, where
< query[n],n > evaluated to true, the cache is updated to
cache[n, query[n]] = true. Again, the entries cache[n, z] for
z C query[n] could also be set to true.

The inclusion of result caching has the effect of incre-
mentally building the complete (exhaustive) data flow so-
lution during a sequence of calls to Query. Result caching
does not increase the asymptotic time or space complexity
of algorithm Query. Storing the cache requires O(|N| x |L|)
space and updating the cache requires less than doubling
the amount of work performed during the query evaluation.
Moreover, the asymptotic worst case complexity of &k invo-
cations of Query with result caching is the same for any
number k, where 1 < k < |L| x |N| and |L| x |N| is the
number of distinct queries.

5 Copy Constant Propagation

This section illustrates our approach for the problem of in-
terprocedural copy constant propagation. Using this exam-
ple we show how the query algorithm can be extended to
handle programs with formal reference parameters and lo-
cal variables. The difficulty introduced with formal reference
parameters is the potential of aliasing. Ignoring aliasing

hode n refined local flow function f,(z),
where £ = (z1,...,7k)

c fw=v
b — _ ) zwNc if wealias(v,n),
vi=c |fu(2)w = w£ v

Tw otherwise

Ty Zf w =
v — _ ) zwNzy if wealias(v,n),
vi=u |fu(2)w = w £ v

Tw otherwise
read(v), _ L if w € alias(v, n)
v:=t Fa(@)w = { z, otherwise

Table 3: Local flow functions in CCP refined based on may-
alias information.

node n [refined reverse local flow function f,;

1L ifw=vw
andc=c'
vi=c |fi([w=c]) = T if wealias(v, n)
andc # ¢’
[w=c] otherwise
[u=c] ifw=v
— v 1y ) [w=c, u=c] if wealias(v,n),
viu |f(w=d) = i ue
[w=c] otherwise

T if wealias(v,n)
v:=t

read(v), .7 ([w=c]) :{

[w=c] otherwise

Table 4: Reverse local flow functions in CCP refined based
on may-alias information.

during the analysis may lead to unsafe (i.e., invalid) query
responses. We show how alias information can be incorpo-
rated to ensure safe answers to queries.

For simplicity, we assume programs with flat scoping.
The address space Addr(p) of a procedure p is defined as:
Addr(p) = Global U Local(p) U Formal(p), where Global is
the set of global variables in the program, Local(p) is the
set of variables local to p and Formal(p) is the set of formal
parameters of p.

Two variables z and y are aliasesin a procedure p if z
and y may refer to the same location during some invocation
of p. Reference parameters may introduce aliases through
the binding mechanism between actual and formal parame-
ters. The determination of precise alias information is NP-
complete [Mye81]. Therefore, we assume that approximate
alias information is provided for each procedure p in form of
a summary relation alias(p) as described in [Coo85]. A pair
(z,y) € alias(p) if z is aliased to y in some invocation of p
(may-aliases). We use alias(z,p) = {y | (z,y) € alias(p)}
to denote the set of may aliases of z in p and alias(z,n) =
alias(z, p) if node n is contained in p.

The computation of the alias(p) sets can be expressed
as a distributive data flow problem with a finite domain set
over a program’s call graph [Coo85]. Thus, we can employ
the demand-driven analysis concepts from the previous sec-
tion in order to compute only the relevant alias pairs in
procedures that are actually analyzed. However, to avoid
confusion in discussing the refinements in this section we
make no assumption on how the alias information is com-
puted but assume that sets alias(p) are available to the CCP



algorithm for each procedure p. Using these alias sets we re-
fine the local flow functions from Section 2 to safely account
for the potential of aliasing. More precise refinements are
possible if, in addition to may alias information, must alias
information is available. The refined local flow functions and
the corresponding refined reverse flow function are shown in
Table 3 and Table 4, respectively.

The equation system 3 for the determination of reverse
summary functions is refined to express the name binding
mechanisms of reference parameters at call sites. We de-
fine a binding function b, for each call site s that maps a
lattice element z from the calling procedure to the corre-
sponding element b:(z) in the called procedure according to
the parameter passing at s. We will also need to consider
the reverse binding b7 ' to translate a lattice element from a
called procedure to the corresponding element in the calling
procedure. Let s be a call site in a procedure p that passes
the actual parameters (api,...ap;) to the formal parame-
ters (fp1,...fp;) in the called procedure g. Furthermore,
let v € Addr(p) and w € Addr(q):

bollo=c) = U {lu=c))
where U = ({v} N Global) U {fp;i | ap; = v}
[w=c] i weGlobal

l[api=c] if w=fp;
1 otherwise

b7 ([w=c]) =

The functions b, and bs_1 are Ll-distributive and bS(T) =
oY (T)=T.

Equation system 4 shows the refined definition of reverse
summary functions. The equations in 4 are defined for base
elements [v=c], where v € Addr(p). If v ¢ Addr(p) then
¢(rp,ep)([1):c]) = ['U:C]'

Equation System 4
(b(ep,ep)([’u:C]) = ['U:C]

for each procedure p
fﬂrl : ¢(rm,ep)([1):c])
me e Ncall
(b~ 6{rg.eq) * bm)([v=C]))
tf mENcaur, call(m) =q

¢E‘n,ep)([luzc]) =

mEsucc(n)

Finally, we refine the query propagation rules using the bind-
ing functions. The refinement is shown for queries with re-
spect to the base elements in a procedure p, where
n € Np-Neau and v€ Addr(p). For an arbitrary set of base
elements B, the query < res b,n > is equivalent to the con-

Jjunction /\ <bmn>.
beB

Refined query propagation in CCP
< ['U = C], Tmain > < false

< [v=c],rp > = /\ < [bt(v)=c],m >

meNcar,
call(m)=p

< [v=c,n> <

false if fm([v=c])=T
/\ true if fm([v=c])=1L
m € pred(n), < fm([v=c]),m > otherwise

m & Near
false if h([v=c])=T
A /\ true if hm([v=c])=L
m € pred(n), < hm([v=c]),m > otherwise

m € Near,
calllm) = p

where hyy,([v=c]) = (b;! “Plrgeq)  Om)( L [u=c])

u€alias(v,m)

5.1 CCP Query Algorithm

Figure 5 shows algorithm IsCCP to respond to a query of
the form “Is variable v a copy constant at node n?”. If »
is a copy constant at n then IsCCP returns the constant
value ¢ of v. Otherwise IsCCP returns false. Note, that
this query format is more general than previously discussed.
More specific queries of the form “Is v a copy constant at »
with value ¢?” can always be answered using the response
of IsCCP.

Algorithm IsCCP is an instance of the generic algorithm
Query from Section 3, except that IsCCP also includes the
refinements for reference parameters. To handle the more
general query format, the specification of a constant value ¢
is simply dropped; a base element [v=c] simplifies to [v] and
a query < [v],n > raises the question as to whether variable
v has some arbitrary but fixed constant value at node n. A
query < [v],n > evaluates to true at a node n if node n
assigns any constant c¢ to variable v, in which case the value
¢ is remembered. If all generated queries evaluate to true
the join over the remembered constant values is examined.
If this join yields a constant ¢, then ¢ is returned. Otherwise
the response is false.

The corresponding instance of the generic procedure
Computed” |, shown in Figure 6, partially evaluates the equa-
tion system 4. By the distributivity of the reverse summary
functions, it is sufficient to maintain table entries only for
base elements resulting in MazAddrx N entries, where Maz-
Addr is the size of the maximal address space in any pro-
cedure. Each entry may contain a set of base elements and
is therefore of size MaxAddr. To keep track of the actual
constant values encountered, the table M includes an extra
field M [p, v].val for each procedure p and each variable v.

We now consider the cost of procedures IsCCP and
Computed” not including the cost of computing the alias in-
formation. During an invocation of IsCCP a total of
O(MazAddr x |N|) queries may be generated resulting in
O(MazAddr x |N|) join and reverse function applications
in procedure IsCCP. The fixed point computation of table
entries in procedure Compute¢” requires in the worst case
O(MazAddr® x |N|) table entry updates. As in the general
case, each table update may trigger up to C join and/or
reverse function applications, where C is the maximal num-
ber of call sites calling a single procedure. Assuming join
and reverse function applications are performed pointwise,
each join or function application requires O(M az Addr) time
resulting in the total time of O(C x MaxzAddr® x |N|).



IsCCP(v,n)

1. for each m € N do query[m] « 0;
2. query[n] « [v] ; worklist — {n}; val = L;
3. while worklist # 0 do
4. remove a node m from worklist;
5. let p be such that m € Np;
6. case m = rq for some proc. g:
7. for each m’ € N4y s.t. call(m') = g do
8. query[m'] « query[m’l U bt (query[m]);
9. if query[m’] changed then add m’ to worklist;
10. endfor;
11. otherwise:
12. for each m' € pred(m) do
f,:;/ (que"’y[m]) if m,chall
13. new « b;ﬁ(Computeqbr(q, bt (z),val), if m"€Ncau,
where z = alias(query[m], p) call(m’)=q
14. if new = L and m’ € N_.q;; then val «— valUec,
where c is the constant assigned at m’;
15. if new = T or val = T then return( false )
16. else if new 1 L then
17. /% query still unresolved */
18. query[m'] « query[m’] U new;
19. if query[m’] changed then add m’ to worklist;
20. endif;
21. endfor;

22. endwhile;
23. if val < T then return(val) else return(false);

Figure 5: Demand algorithm for CCP. IsCCP(v, n) returns
the constant c if variable v is a copy constant at node n with
value ¢, otherwise it returns false.

5.2 CCP Example

We illustrate algorithm I/sCCP for copy constant propaga-
tion using the program example in Figure 7. The pro-
gram consists of three procedures main, p and ¢, where
Global = {z}, Local(main) = {y}, Formal(p) = {f} and
Formal(q) = {g, h}. The may-alias relations are: alias(p) =
{(z, f)} and alias(q) = {(z, ), (z,9), (y,9), (g, h)}. The re-
verse local flow functions are shown next to each node in
the IFG. The table in Figure 7 shows the reverse summary
functions. In addition to the reverse summary function en-
tries for the base elements in each procedure (rows for ¢(T779)
and ¢5(T10712)) the table also shows intermediate entries (last

two rows) collected during the computation of the summary
functions. We consider the evaluation of the following query
examples:

Query 1: ?IsCCP(h,10) ( “Is the formal & of procedure ¢
a copy constant on entry of each invocation of ¢”?):

Initially, worklist = {10} and query[10] = [h]. Query[10] is
propagated to queries for the corresponding actual parame-
ters at call sites resulting in: query[5] = [z] and query[8] =
[f]- Processing query[8] causes the propagation of [f] to
node 7 and in turn to actual parameters at the call site at
node 4, i.e., query[4] = [z]. Assume query[5] is processed
next. The global z is passed to formal f of procedure p at
node 4. Therefore, the reverse summary function (;5(779) is
inspected for the two arguments [z=c] and [f=c]. The new
query element resulting for node 4 is determined as query[4]
= 57 (0 ([r=c)) U 01 ([f=c))) = b7 ([r=c.f=c) =
[z=c], which is simplified to [z]. Applying the reverse func-
tion yields f,([z]) = L, i.e., the query at node 4 evaluates
to true and 1 1is remembered as the actual constant assigned.

Computed” (p,y, val)

1. worklist — 0; res — 1;

2. let y =[v1,...,vg], where v; € Addr(p);

3. for each v;, where 1 <: < k do

4. if M[ep,v;] = L then add (ep,vi) to worklist;

5. Mlep, vi] = [v;]; endif;

6. while worklist # 0 do

7. remove a pair (n, w) from worklist;

8. let p’ be the proc. containing n;

9. let [wy,...,w;] = M[n,w];

10. case n € N¢gy and call(n) = g:

11. for each w;, where 1 <: < 7 do

12. if w; € Global or w; is an actual param. at n then

13. for each z € b, ([w;]) do

14. if M[eq,z] = [z] then

15. for each m € pred(n) do

16. PTopagate(m,w,bgl(M['rq,z]));

17. if M[rq,z] = L then

18. M{[p',w]wal — M[p', w].val U Mg, z].val;

19. else Mleq, z] — [2]; add (eq, z) to worklist; endif;

20. endfor;

21. else /* skip call site if u not passed */

22. for each m € pred(n) do Propagate(m,w, [w;]);

23. endfor;

24. case n = rq for some procedure g:

25. for each m € N_4; such that

26. call(m) = q and b;' ([w]) € M[m, 2] for some z do
/¥ if entry M[rq, w] was requested earlier */

27. let p”’ be the proc. containing m;

28. for each m' € pred(m) do

29. Propagate(m’, z, bt (M[n,w]);

30. if M[rq,w] = L then

31. Mp", z]wal «— M[p", z].val U M[q,w].val;

32. otherwise:

33. for each m € pred(n) do

34. Propagate(m,w, f,7,(M[n,w]);

35. if f7(M[n,w]) = L then

36. Mp', w].wal «— M[p',w].val U c, where

37. ¢ is the const. assigned at m;

38. endwhile;

39. for each v;, where 1 <: < k do

40. res «— res U M[rp, vi];val «— val U M[p,v;].val; endfor;
41. return(res);

Propagate(n, v, new) /* propagate new to M[n,v] */
1. Mn,v] — M|[n,v] Unew;
2. if M[n,v] changed then add (n,v) to worklist; endif;

Figure 6: Algorithm Computed™ (p, y, val) in CCP returning
the value (;5(%6?)('3/) for a procedure p and y € L.

Since the worklist is exhausted, the overall response is 1,
indicating that the formal h of procedure ¢ always has the
value 1 on entry of procedure gq.

Query 2: ?IsCCP(z,6) ( “Is variable z a copy constant
after the call to procedure ¢ at node 6”7):

Initially, worklist = {6} and gquery[6] = [z]. Processing
query[6] results in: query[5] = b;* (6{10,12)([z=c] U [h=c]))
= b7 ([z=c,9=c]) = [z=c,y=c] which is simplified to [z, y].
We consider the propagation of the query elements [z] and
[y] separately. Since y is local to main, [y] directly prop-
agates through nodes 4 and 3. At node 2: f;([y]) = L
and the value 0 is remembered as the actual constant as-
signed. As for Query 1, propagating the query element [z]
from query[5] will eventually lead to the evaluation true at
node 4 with 1 being the actual constant assigned. Since



procedure main procedure p(f)

declare local y; global x; begin
begin call q(f,f);
read(y); end
x:=1;
call p(x);
call q(y,x);
end
procedure p(f)

fi([x=c])=[x=c]
fi(ly=c])=ly=c]

f3([x=c])=[x=c]
fa(ly=c])=1

fi([x=c])=_1
f&(ly=cl)=[y=c]

fr([x=c])=[x=c]
fi([f=c])=[f=c]

fa([x=c])=[x=c]
fa([f=c])=[f=c]

procedure q(g,h)
begin

h:=g;
end

procedure q(g,h)
fio([x=c])=[x=C]

10[ ey | fig(lo=c))=[0=d

fio([h=c])=[h=C]

fL([x=c])=[x=c,g=c]
11([g=c])=[g=c]
f1a([h=c])=[g=c]

f1a([x=c])=[x=C]
f2([g=c])=[g=c]
f1a([h=c])=[h=]

Wheg

| Reverse summary function values |

Proc. p argument Proc. ¢ argument
function [z=] f=c] || function [z=c] g=c] | [h=C]
H(Tx=cl)=[x= ¢(T7,9) [z=c,f=c] | [f=¢ ¢(T10,12) [z=c,9=¢] | [9=¢ g=c]
o By | lr=ed = [ U=l || sy | l=eg= [ To=c] | [s=t]
(T9,9) [z=c] [f=(] (12,12) [z=c] ly=c] | [h=c]

Figure 7: Example for CCP

the two constant values encountered differ, the response of
IsCCP is false.

Note, the response false is safe but imprecise. A closer
inspection of the code reveals that z is actually a copy con-
stant at node 6 with value 0. The imprecision is due to the
loss of information in the alias summary sets. The alias set
for a procedure is obtained by merging together the alias
configurations for all invocations. Avoiding this kind of in-
accuracies would require a separate analysis (i.e., separate
reverse summary function) for each different alias configu-
ration that may hold at a procedure. However, the cost of
this approach is prohibitive, as it may require an exponential
number of different reverse summary functions.

6 Related Work

A number of variations of the notion of demand-driven anal-
ysis and the notion of a partial backward propagation of
information have separately appeared in the literature.

The concepts of deriving data flow information by back-
ward propagation of assertions was described using opera-
tional semantics by Cousot [Cou81] and later developed and
implemented in a debugging system for higher-order func-
tions [Bou93]. The analysis for discovering linked conditions
in programs described in [SMHY93] is also based on back-
ward propagation of assertions starting from test sites in
conditionals.

An important component of our demand-driven approach
is the tabulation algorithm Compute¢” that implements the
lazy evaluation of only relevant (i.e., needed) equation val-

10

ues. The algorithm is essentially a reversed version of Sharir
and Pnueli’s tabulation algorithm [SP81] to compute the
original (unreversed) summary functions. A similar lazy
fixed point computation of only the relevant equations was
also described in the chaotic iteration algorithms [CCT77]
and the minimal function graphs for applicative programs
[IM73].

Reverse flow functions, which we apply in the query prop-
agation rules, have previously been discussed in [HL92] to
demonstrate that an abstract interpretation may be per-
formed in either a forward or a backward direction. The
relationship between forward and backward directions of an
analysis was also discussed by Cousot [Cou81].

Recently, two approaches to demand-driven interproce-
dural analysis were presented by Reps [Rep94] and Reps et
al. [RSH94]. In the first approach [Rep94], a limited class of
data flow problems, the locally separable problems, are en-
coded as logic programs. Demand algorithms are then ob-
tained by utilizing fast logic program evaluation techniques
developed in the logic-programming and deductive-database
communities. In a more recent work by Reps et al. [RSH94]
the first approach is generalized to a larger class of problems.
In this second approach a data flow problem is transformed
into a specialized graph-reachability problem. The graph
for the reachability problem, the exploded super-graph,is ob-
tained as an expansion of a program’s control flow graph by
including an explicit graphical representation of each node’s
flow function. As in our approach, Reps et al. base their
approach on a variant of Sharir and Pnueli’s interprocedural
analysis framework. Similar to our algorithm Computeg”, a
caching tabulation algorithm is used to compute the solu-



tion over the graph that. However, the graph-reachability
algorithm imposes more restrictions on the problems that
can be handled than our approach. Specifically, the graph-
reachability approach is applicable to problems where the
lattice is a powerset over a finite domain set and where all
flow functions are distributive. Although we require distri-
butive functions to ensure precise data flow solutions, our
algorithms still provide approximate information in the pres-
ence of non-distributive functions. Our approach is less re-
strictive on the lattice structure in that it is applicable to
any finite lattice. The restriction to a finite lattice does
not even apply if our approach is used for intraprocedural
analysis.

The utility of demand-driven analysis algorithm has also
been demonstrated in a number of demand-driven algorithms
developed for specific analysis problems, including the fol-
lowing problems. Babich et al. [BJ78] presented a demand
algorithm for intraprocedural live variable analysis based on
attribute grammars. Strom and Yellin [SY93] presented a
demand based analysis for typestate checking. The authors
experimentally demonstrate that their goal-oriented (and
demand-driven) backward analysis is more efficient than the
original forward analysis for typestate checking that eagerly
collects all available information that may or may not be of
relevance. Question propagation, a phase in the algorithm
for global value numbering [RWZ88] performs a demand-
based backward search in order to locate redundant expres-
sions. This backward search, like our query algorithm, per-
forms the analysis from the points of interest (i.e., the points
where an expression is suspected to be redundant) and it
also uses early termination to end the search. In procedure
cloning [CHK92], procedure clones are created during the
analysis on demand whenever it is found that an additional
clone will lead to more accurate information. Cytron and
Gershbein [CG93] described an algorithm for the incremen-
tal incorporation of alias information into SSA form. The
actual optimization problem to be performed on the SSA
form triggers the expansion of the SSA form to include only
the necessary alias-information. Similar ideas have also been
implemented in the demand-based expansion algorithm of
factored def-def chains [CCF92].

Other related work addresses the goal of reducing the
cost of data flow analysis by avoiding the computation of
irrelevant intermediate results. Several sparse analysis tech-
niques have been presented to reduce the number of data
flow equations by either manipulating the underlying graph-
ical program representation, such as the analyses based on
the global value graph [RT82], static single assignment form
[RWZ88, WZ85], the sparse evaluation graph [CCF90], the
dependence graph [JP93] or by direct manipulation of the
equation system through partitioning algorithms [DGS94].
Slotwise analysis [DRZ92] also falls into this class of sparse
technique but is limited to bitvector data flow problems.
Sparse analysis approaches to reduce the amount of data
flow evaluations are complementary to our demand-driven
analysis algorithms in that the evaluation of data flow equa-
tions is avoided independent of the specific information de-
manded; that is, the evaluation of those equations is avoided
that are irrelevant with respect to even the exhaustive so-
lutions. An interesting combination of the two approaches
would be to use, for example, a reduced equation system
according to [DGS94] or a sparse evaluation graph as in
[CCF90], as the basis for propagating data flow queries.

Incremental data flow analysis [Ros81, Zad84, RP88, PS89]

has also addressed the avoidance of exhaustive solution re-

computations. However, unlike demand-driven analysis, in-
cremental analysis assumes that an exhaustive solution has
previously been computed and is concerned with avoiding
exhaustive re-computations in response to program changes.

7 Conclusions

This paper described a new demand-driven approach to in-
terprocedural data flow analysis that avoids the costly com-
putation of exhaustive data flow solutions. A general frame-
work for the derivation of demand algorithms covering the
class of interprocedural data flow problems with a finite
domain set was presented. In a data flow problem with
distributive flow functions, the derived algorithms provide
as precise information as the corresponding exhaustive al-
gorithm. In the presence of non-distributive flow functions,
the derived algorithms still provide approximate solutions.
We are currently exploring the utility of approximate query
responses for non-distributive problems in practice. Par-
ticularly efficient demand algorithms result for the classical
bitvector problems. For example in live variable analysis,
queries about individual variables are resolved in linear time
and space if the analysis is intraprocedural or if the analysis
is interprocedural and the programs are alias-free.

The goal of demand-driven program analysis is the re-
duction of both the time and space cost of solving data flow
problems. When discussing result caching we implicitly as-
sumed that reducing the analysis time is of primary inter-
est. However, as programs grow larger, space may become
as valuable a resource as analysis time, in particular, if re-
sults for a large number of different data flow problems are
to be collected. Clearly, result caching should be avoided if
the space consumption is the primary concern. Since result
caching is optional in our query algorithm, it can be adjusted
easily to the needs of the current application. The option
of result caching permits the computation of the complete
solution with an asymptotic worst case complexity that is
no worse than the cost of a standard exhaustive algorithm.
To fully evaluate the benefits of the achievable time and
space reductions we are currently developing a prototype
implementation of a demand-based query algorithm for in-
terprocedural copy constant propagation.
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