
A Fresh Look at Optimizing Array Bound Checking

Rajiv Gupta
Philips Laboratories

North American Philips Corporation
345 Scarborough Road

Briarcliff Manor, NY 10510
E-mail: gupta@philabs.Philips.com

Abstract - This paper describes techniques for
optimizing range checks performed to detect array
bound violations. In addition to the elimination of
range check:s, the optimizations discussed in this
paper also reduce the overhead due to range
checks that cannot be eliminated by compile-time
analysis. The optimizations reduce the program
execution time and the object code size through
elimination of redundant checks, propagation of
checks out of loops, and combination of multiple
checks into a single check. A minimal control
flow graph (MCFG) is constructed using which
the minimal amount of data flow information
required for range check optimizations is com-
puted. The range check optimizations are per-
formed using the MCFG rather the CFG for the
entire program. This allows the global range
check optimizations to be performed efficiently
since the MCFG is significantly smaller than the
CFG. Any array bound violation that is detected
by a program with all range checks included, will
also be detel:ted by the program after range check
optimization and vice versa. Even though the
above optimizations may appear to be similar to
traditional code optimizations, similar reduction in
the number of range checks executed can not be
achieved by a traditional code optimizer. Experi-
mental results indicate that the number of range
checks performed in executing a program is greatly
reduced using the above techniques.

Keywords - Range Analysis, Flow Analysis,
Minimal Control Flow Graph, Constant Propaga-
tion, Induction Variable Elimination.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and it:% date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01990 ACM C-89791-364-7/90/0006/0272 $1.50

Proceedings of the ACM SIGPLAN’SO Conference on
Programming Language Design and Implementation.
White Plains, New York, June 20-22, 1990.

1. Introduction

To aid in the debugging of programs under
development, many compilers generate run-time
checks to detect dynamic errors due to array
bound violations. The overhead of these checks is
quite high resulting in inefficient code with high
execution times. Earlier investigations indicate
that execution times for programs can double if
run-time checks are performed[3]. This is true for
both optimized and unopthized code because trad-
itional optimizations are ineffective in reducing the
overhead due to array bound checks[3]. Most com-
pilers allow the programmer to control the genera-
tion of run-time checks through a switch to be
specified at compile-time. The programs are com-
piled with run-time checks only during the debug-
ging phase. When the software is being used in
production environment it does not include the
run-time checks. Thus, even if the software
appears to execute normally, it may be providing
incorrect results due the run-time errors. To ensure
high reliability, the run-time checks should not be
removed from the software. In this paper optimi-
zations that greatly reduce the run-time overhead
due to array bound checks are presented. Thus,
the security of correct execution can be achieved
at a small run-time cost.

The reduction of run-time overhead due to
range checks is treated as an optimization per-
formed through compile time analysis. The optim-
izations described in this paper reduce the run-
time overhead through elimination, propagation,
and combination of range checks. The elimination
of checks that can either be performed at
compile-time or are unnecessarily performed
repeatedly is carried out. This is analogous to the
traditional optimizations of constant folding and
common subexpression elimination. The propaga-
tion of range checks out of loops reduces the
number of times a check is executed at run-time.
This is analogous to the loop invariant code

212

motion optimization. A combination of multiple
checks into a single check is possible in certain
instances.

The range check optimizer, that performs the
optimizations, first constructs a cofitrol flow graph
(CFG) for the program. The statements in this
flow graph are the source level statements rather
than intermediate code statements. Preceding
each program statement range checks for all array
accesses in that statement are introduced. It is
assumed that the range check optimizer can dis-
tinguish between the original program statements
and the range checks, From this augmented CFG
a minimal control flow graph (MCFG) is con-
structed which consists only of the range check
expressions and those program statements that
define identifiers used in these expressions. After
the removal of irrelevant code, and subsequently
irrelevant basic blocks, a significantly smaller
MCFG results. The MCFG is used to perform the
range check optimizations and computing the use-
def data flow information required to perform
these optimizations. The size of the MCFG is
smaller and therefore the global range check
optimizations can be performed efficiently. Furth-
ermore, the use-def information computed to per-
form the range checks is only a subset of the data
flow information for the entire program.

Markstein et a/[81 d eveloped compiler tech-
niques for eliminating range checks and propagat-
ing checks out of inner loops. The elimination
algorithm presented in this paper is more general
than the one proposed in [8]. This algorithm takes
advantage of the monotonic nature of definitions.
Repeated execution of a definition of the type
i=i+l causes the value of i to increase monotoni-
cally. Therefore there is no need to repeatedly
examine whether i is greater than the lower bound
of an array. A very high percentage of subscript
variables are monotonic in nature and therefore
range checking overhead can be significantly
reduced by exploiting monotonicity. The propaga-
tion algorithm presented is also more general than
the one proposed in [8]. First, it takes advantage
of monotonicity. Second, it performs code hoisting
prior to propagation which moves checks out of
loops that cannot be moved by the algorithm in
[8]. The combination optimizations are not per-
formed at all in [8]. Therefore, the techniques
presented in this paper optimize more range checks
than those developed by Markstein et a/[8].

Harrison also used compile time analysis to
reduce the overhead due to range checks in his
work[4]. Compile-time techniques of range propa-

gation and range analysis are employed yielding
bounds on the ranges of variables at various points
in a program. The range information is used to
eliminate redundant range checks on array sub-
scripts. The techniques presented in this paper
also reduce the overhead due to range checks
through compile-time analysis. However, in con-
trast to Harrison’s work the overhead reduction is
not achieved only by elimination of range checks.
The techniques presented in this paper reduce the
run-time overhead due to range checks that can-
not be eliminated by moving the checks out of
loops so that they are executed less frequently and
combining several checks into one. Harrison’s
techniques will be less effective when applied to
dynamic arrays since value range analysis will not
be effective. The elimination and propagation
techniques presented in this paper are equally
effective for static and dynamic arrays. Harrison’s
techniques require use-def and def-use information
for the entire program while techniques in this
paper require the computation of a subset of use-
def information and no def-use information. The
range check optimizations are performed much
more efficiently using the MCFG than range
analysis and range propagation. Consider the
situation where the program contains a statement
i = j + k and variable i is used in an array sub-
script expression. In Harrison’s approach value
range analysis for i would require range analysis
for j and k. However, in the techniques presented
in this paper only data flow information regarding
i will be computed.

Suzuki and Ishihata discuss the implementa-
tion of a system that performs array bound checks
on a program in[6]. The system creates logical
assertions immediately before array element
accesses that must be true for the program to be
valid. These assertions are then proven, by a
theorem prover, using techniques similar to induc-
tive assertion methods. Such techniques are
significantly more expensive than the techniques
presented in this paper. Suzuki’s system has
several limitations. As an example it cannot check
the correctness of an array accesses in a loop if the
correctness depends on some data whose value is
set before the execution of the loop. The tech-
niques presented in this paper are based upon flow
analysis thus avoiding such limitations. The array
accesses that cannot be verified by Suzuki’s system
still require dynamic checking. The techniques
presented in this paper will also reduce the over-
head due to checks that cannot be eliminated.

273

Although the optimizations in this paper
eliminate, propagate, and combine range checks,
they do not degrade the reliability of the software.
Any array bound violation that is detected by a
program with all range checks included, will also
be detected. by the program after range check
optimization and vice veraa. It is assumed that
the range check optimizer is implemented
separately from the traditional code optimizer.
An environment in which a debugger for optimized
code(5] is to be provided, the integration of the
range check: optimizer with the traditional code
optimizer will make it possible to provide highly
efficient cods? during debugging phases.

In subsequent sections the construction of the
minimal CJ’G and descriptions of various range
check optimizations and their implementations are
discussed. These techniques are not only highly
efficient but also much more effective in optimizing
range checks than traditional code optimizations.
Finally some experimental results demonstrating
the effectiveness of the range check optimizations
are presented.

Minimal Control Flow Graph

For efiicient implementation of range check
optimizations, the Minimal Control Flow Graph
for a program is constructed from the CFG aug-
mented with the range checks to be performed.
The basic blocks of the CFG contain a sequence of
source level statements rather than intermediate
code statements.

Definition: Given a CFG G=(N,E), where N is the
set of nodes corresponding to the basic blocks and
E is the set of directed edges connecting the nodes.
The corresponding MCFG G,-(N,,,,E,) consists of
the following:

(i) N,,,EN: A node “i belongs to iv,,, if it con-
tains a range check or a definition for an
identifier used in a range check.

(ii) E,: A set of edges that preacrue the control
flow of the original CFG. The control flow is
preserved if for every directed path
p-<n, ,ni ..n, > in G, there is a correspond-

ing paih “p’ ii G, which is obtained by elim-
inating all nodes ni p N,,, in p.

J

To construct the MCFG first all statements
other than the range checks and those statements
that define identifiers used in array subscript
expressions are eliminated. Next all redundant

(i) Elimination of Null Nodes

(ii) Elimination of Loops

ni

nj A

ni

nj

(iii)

Jr +
Elimination of Redundant Edges

Fig. 1. Transformations for Constructing the MCFG

nodes from this CFG are eliminated to obtain a
smaller flow graph which is the MCFG. To elim-
inate redundant nodes the transformations in Fig.
1 are applied repeatedly. Transformation Z’dn,)
eliminates an empty node n, and introduces edges
that connect every predecessor of n, with every
successor of n,. TAni) eliminates self loops to

enable elimination of an empty node ni by Tr(ni).
Transformation T.Jn,,n,) is used to eliminate a
redundant edge from n, to n,.

Claim: Application of transformations T,, T, and
T, in any order, till no more transformations can
be applied, yields a unique and valid MCFG.

Proof: Each of the above transformation
preeervea the control flow:

(4 T,(n,): For each predecessor-successor pair
(P,, sl) of n, this transformation replaces the
path <p,,n,,s,> in the original flow graph by
the path <pJ,sk> in the transformed flow
graph.

(ii) Tdn,): The paths containing n, prior to
application of this transformation are of the
form <pJ,n,+,st>, where pJ is a predecessor of

274

n ,, sk is a successor of n, and n,+ denotes one
or more occurrences of fli. These paths are
replaced by the path <p,,n,,sL> in the
transformed flow graph.

(iii) Tdn,,n,): This transformation eliminates
redundant edges and therefore all paths
present in the original flow graph are also
present in the transformed flow graph.

From the above discussion it is clear that each of
the above transformations preserve the control
flow. Consider any two nodes, say n, and n,, that
belong to the MCFG. If there is a directed path
from ni to nj in the original flow graph then there
will also be such a path in the MCFG. Similarly if
there is no path from n, to n, in the original flow
graph there cannot be one in the MCFG. This is
because when edges are added to the flow graph in
transformation T, these edges connect nodes which
already had a path between them. Furthermore,
no edges are added by T, which connect nodes
that do not have a path between them. The
transformation T, removes redundant edges and
therefore does not create or destroy any paths.
The repeated application of these transformations
preserves the control flow resulting in a valid
MCFG.

The MCFG is unique by definition. The
nodes contained in the MCFG are the non-empty
set of nodes which is unique. The set of edges in
the MCFG is also unique. This is because if we
consider the existence of two valid MCFG’s then
there must be at least one execution path in one
MCFG that is absent in the other MCFG. How-
ever, this implies that one of the MCFG does not
preserve the flow of control and therefore cannot
be valid. Hence, the MCFG for a given CFG is
unique. The order in which the transformations
are applied does not effect the outcome. This is
because candidates for T,, T, and T, remain can-
didates, even if some other applications of the
transformations are made first. [3

The construction of the MCFG is illustrated
in Fig. 2. The code corresponding to the range
checks is preceded by ‘-‘. Fig. 2(ii) shows the
same CFG after elimination of irrelevant state-
ments. Application of transformations yields the
MCFG shown in Fig. 2(iii). Node n, is eliminated
by applying TXnJ. Following this nS is eliminated
by applying Tl(nJ followed by T,(n$. Transforma-
tion T, also eliminates n, and n,, This results in
two edges from n6 to n8 one of which is eliminated
using Tdn,n.&

‘8 --
l

check 1+1;
-_ check 1; I

(i) Augmented CFG

“1 Read i;
l-l

“6 h7

(ii)

n1

(iii) MCFG

Fig. 2. An Example Minimal Control Flow Graph

275

Q Pl

Pl A3 Sl sn

p1 pn

&” Sl

Pig. 3. Elimination of Null Nodes

The purpose of removing empty nodes is to
reduce the size of the flow graph so that the range
check optinnizations can be performed more
efficiently. IHowever, removal of certain empty
nodes may ncrease the number of edges in the
flow graph. This will increase the amount of com-
putation performed during the range check optimi-
zation phase. The increase in the number of edges
is caused by transformation T,(n,) which connects
every predecessor of ni with every successor, of n,.
The increase in the number of edges can be
avoided by restricting the application of transfor-
mation TXn.i) to only those nodes which have
either a single predecessor or a single successor (see
Fig. 3). It should be noted that if this approach is
taken then all empty nodes will not be removed
from the CPG.

After the MCFG is constructed use&f infor-
mation for only the range checks is computed. If a
definition included in the MCFG is not used by
any of the range checks it is eliminated. This may
result in adc’iitiona1 empty nodes which can also be
eliminated using the transformations in Fig. 1. The
size of the MCFG is further reduced by applying
the transformations in Fig. 4. In some instances a
node s; that contains nothing but range checks
can be eliminated and its checks moved to its
predecessor or successor. The transformation
Tdn,)‘shown in Fig. 4 moves checks into the prede-
cessor node of s;. Similarly Tdni) moves checks to
a successor node. Self loops are removed using
Tini) and this may create additional opportunities
for applying Toni). The transformations T, T,

(ii)
/A 7
v

7

0
TSo “i cj c’

cj
(iii)

J

“i c.i n.
J cj

7 il’ 0
Tgo

Pig. 4. Additional Transformations

and T, also preserve the control flow. The above
transformations not only reduce the size of the
flow graph but also cause the checks to propagate.
The application of transformation Tin,) followed
by the application of Tdn,)(or Tdn,)) propagates
the checks belonging to)2; out of a loop.

In the example in Fig.P(iii) nodes n6 and ns
are combined using Tdn.J. The resulting MCFG is
shown in Fig. 5(i). After these nodes are combined
the check I’-- check 1” appears twice in n6 and will
be eliminated through local analysis. It should be
noted that elimination of this check would have
required global analysis if the original CFG were
used instead of the MCFG. The experimental
results show that the size of the MCFG is half
that of the CFG in most cases. After the MCFG
has been constructed range check optimizations
are applied. These optimizations are described in
subsequent sections. The range checks present in
the optimized MCFG will be performed at run-
time. The original CFG is modified to include the
range checks present in the optimized MCFG. This
CFG should be used by the compiler for code gen-

276

(i> nl Read i;

4

(ii)

n9 -- check i;

Fig. 5. (i) MCFG; (ii) CFG with Range Checks

eration. The CFG with range checks correspond-
ing to the MCFG in Fig. 5(i) is shown in Fig. 5(ii).

3. Range Check Optimizationz

If an array subscript is a constant the range
check is performed at compile-time. In this paper,
additional optimizations, that are not as direct
and require analysis are discussed. The upper and
lower bounds of an array a are referred to as
MAX(a) and MIN(a) respectively. The lower and
upper bound checks are treated separately as
sometimes it is possible to optimize one and not
the other.

3.1. Local Elimination

If the same check appears more than once in
a basic block, and the use-def information indi-
cates that same definitions are used in these
checks, all but one of the checks is eliminated. In
the example of Fig. B(iii) after basic blocks ng and
ng are combined the check ‘I-- check 1” appears
twice in the same basic block. Thus, one of these is
eliminated.

3.2. Global Elimination

Global elimination of range checks is carried
out, through global flow analysis. At a given point
in the program the checks that have been per-
formed previously and are still valid are con-
sidered to be live. By propagating live checks
other checks may be eliminated. Analysis similar
to that for available expressions is carried out, by
formulating the problem as a forward data flow
equation[l]. The algorithm for this optimization is
shown below. The checks killed by a basic block
are computed differently from available expres-
sions since a check may not, be killed if an
identifier used in the expression is redefined by a
monotonic definition.

Definition: A definition of an identifier kills a
range check if the range check uses that identifier
except in the following situations:

(i) Monotonically Increasing: A check lb<i is not,
killed by a definition of the form ici+c,
itc +i, and ice%, where constant c takes
values 1,2,3,4 ,...; and

(ii) Monotonically Decreasing: A check isub is
not killed by definitions of the form ici-c,
it -c+i, and i-i/c.

Algorithm for Global Elimination:

Step 1: Compute the following sets for all basic
blocks:
CXlLL[B] - set of checks performed outside B
that are killed by definitions inside B.
C-GEN[B] - set, of checks that reach the end of
the basic block B. A check performed in a basic
block reaches the end if the definitions between
the point at which the check is performed and the
end of the basic block do not, kill the check.

Step 2: Compute sets CJN and C-OUT, where
CJN is the set, of checks live at the entry of the
basic block and C-OUT is the set of checks live
upon exit, of the basic block by solving the follow-

277

ing:

CJV[B1]-+, where B, is the initial basic block.
CJh[B]- n CLOUT[P], where Pred(B) is the

PfPd(B)

set of bas.ic blocks that are predecessors of B.
~,CC~T[B]=(C_IN[B]-C_KILL[B])UC_GEN[B]

Step 3: Eliminate redundant checks. A check ci in
basic block B is redundant if there is another
check cj'C_1;N[B] such that c, performs the same
check as ci and it is not killed by a definition
before it reaches the check ci.

-- MlN(a) 5 i, i 5 MAX(a)
Sl: a,[i] t
S2: i.1 X then

-- MIN(a) < i, i < MAX(a)
S3: a[i] t a[i] + 1 endif

S4: i t i + 1;
-- MlN(a) 5 i, i 5 MAX(a)
S5: a$] +

Before Elimination

-- Ml’N(a) 2 i, i 2 MAX(a)
Sl: a$] c
S2: il X then

S3: a[i] + a[i] + 1 endif
S4: i t i + 1;

i5; l$w4
. E. t

After Global Elimination

In the above example a range check per-
formed for t’he execution of statement Sl is valid
during the execution of statement S3. Thus, no
range check needs to be performed before to exe-
cuting S3. After S4 increments i, the check
i 5 MAX(a) is killed while the check MIN(a) 5 i is
still alive. Thus, the latter check is not made dur-
ing the execution of S5. Monotonicity property is
useful because a large percentage of definitions are
monotonic.

3.3. Propagation of Checks Out of Loops

The goal of propagation is to reduce the
number of times the checks are executed by mov-
ing them out of loops. As mentioned earlier some
amount of propagation is carried out during the
construction of the MCFG. In this section an
algorithm to propagate additional range checks
out of a loop is presented. The innermost loops are

processed first and the outermost loops are pro-
cessed last. Thus, a range check may be pro-
pagated across multiple nesting levels. This optim-
ization is illustrated by the example shown below.
As shown, to move a check involving the for loop

check must be variable outside a loop, the
modified.

for icmin to max do
-- MIN(a) 5 i, i < MAX(a)
-- MIN(a) 5 j, j 2 MAX(a)
-- MIN(a) 5 k, k 5 MAX(a)
a/i] + a/j] + a[k]
j+j+l

end for

Before Propagation

__ if min 5 max then
MIN(a) 5 min, max 5 MAX(a)

-- MIN(a) 2 j
-- MIN(a) 5 k, k 5 MAX(a)
for icmin to max do

-- j I MAX(a)
a[i] t a[j] + a[k]
j&j+1

end for

After Propagation

In the above example the check MIN(a)<j is
moved out of the loop because the value of j
increases monotonically. The algorithm by Mark-
stein et a/[81 does not take advantage of monotoni-
city. The algorithm that takes a single loop and
moves the checks out of the loop is presented next.
The checks propagated in Step 2 of this algorithm
will not be propagated by the algorithm used by
Markstein et al [8].

Algorithm for Propagation:

This algorithm first performs code hoisting to
propagate checks to those basic blocks that dom-
inate the loop exit. Next checks belonging to the
basic blocks dominating the loop exit are con-
sidered for propagation out of the loop. The
checks that can be propagated are identified and
propagated by this algorithm.

Step 1: Determine the blocks from which checks
can be propagated out of loops. Checks from a
block b are considered for propagation if b dom-
inates all loop e&s, i.e., every path from the entry

278

node to all loop ezits passes through b. In the loop
shown next the shaded blocks satisfy this criterion.

Step 2: Code hoisting - Propagate checks from
nodes that do not dominate all loop exits to nodes
that dominate all loop exits as follows:

Let ND - be the set of nodes that do not dominate
all loop exits,

C(n) - set of checks performed in n, and
P - set of nodes such that for each node ncP,
succ(n)nND#t$ and n is the unique predecessor
of nodes in succ(n), where succ(n) is the succes-
sor set of n.

loop I
Propagate a check e into block n from

blocks in WCC(~) if
et n C(s)

J~SVCC(I)
where ntP, and e uses the same definitions
in each block that belongs to succ(n).

) until no more checks can be propagated

In the loop shown above the checks common
to nodes nz and ng may be moved to n1 in this
step.

Step 3: A check e from a block that satisfied the
criterion in step 1 is moved out of the loop if:

(i) Check e uses only definitions from outside
the loop body (i.e., e is a loop invariant).
This is determined from the use-def informa-
tion computed prior to applying the optimi-
zations; or

(ii) Check e is of the type lb <i and all
definitions of i inside the loop are of the form
ici+c, icc+i, or icifc, where constant c
takes values 1,2,3,4,..; or

(iii) Check e is of the type isub and all
definitions of i inside the loop are of the form

ici-c, it -c+i, or i+-i/c, where constant
c takes values 1,2,3,4...; or

(iv) Check e is of the form
II --lbsi op c, i op c<ub”, where i is the for
loop variable, opt (+,-,/,*}, and c is a con-
stant. The check is modified to
11 --if min 2 max then
lb<min op c, max op c<ub”, where min and
maz are the minimum and maximum values
taken by the for loop variable.

3.4. Combination of Range Checks

The combination optimizations are local
optimizations that combine multiple checks into a
single check. Range checks on a variables V, and
v,, due to their use as array subscripts for ele-
ments of the same array, are combined if the only
definition of v1 that reaches the check is of the
form v,cv, op c, where opr {+,-,/,*} and c is a
constant. The range checks for the same array and
different arrays can also be combined as long as
their subscript expressions are also related in a
similar manner as the above optimization. The
following example demonstrates this optimization.
Since j is obtained by incrementing i the checks
Cl and C2 are combined using the first optimiza-
tion. The resulting check is combined with with
C3 using the second optimization.

j+i+l
Cl -- MIN(a) 2 i, i 5 MAX(a)
C2 -- MIN(a) 5 j, j 5 MAX(a)
C3 -- MIN(b) 5 i, i 5 MAX(b)
a[i] c a[j] + b[i]

Before Combination

jti+l

-- maximum(MIN(a), MIN(b)) < i,
i 5 minimum(MAX(a>l, MAX(b))

a[i] c a[j] + b[i]

After Combination

3.5. Interprocedural Optimiaations

The techniques described above are applied
to a single procedure. It is also possible to per-
form interprocedural range check optimizations.
Interprocedural propagation can be performed by
moving checks from the start of a procedure to
each of the call sites. In other words the checks
are propagated from a called procedure to the
caller. In the example shown below the checks

279

MIN(a)<i and isMAX are eliminated after they
are moved ,3,t the call site because i and j are con-
stants at the call site. Interprocedural constant
propagation would also have resulted in elimina-
tion of these checks if i and j are constants at
every call site of procedure printarray. Interpro-
cedural propagation is applicable to non-recursive
procedures. It should not be applied to recursive
and mutually recursive procedures.

procedure printarray(a: vector; i,j: int; var k: int)
var 1: int; ?
begin
-- MIN(:L) 5 i, j 5 MAX(a)
for I+i to j do print(a[l]);
k +- (i -!- j) div 2;
-- MIN(:L) < k, k 5 MAX(a)
print(a[lc]);

end

begin

printarray(a, 1, 5, k);
-- MIN(a) 5 k, k 5 MAX(a)
a]k] + a[k] + 1;

Before Interprocedural Optimization

procedurt! printarray(a: vector; i,j: int; var k: int)
var 1: int;
begin
for 14 to j do print(a[l])
k e (i + j) div 2;
-- MIN(rt) 5 k, k 5 MAX(a)
print(a[:C]);

end

begin

-- MIN(a) 5 1, 5 5 MAX(a)
printarr:ty(a, 1, 5, k)
-- MIN(a) < k, k 5 MAX(a)
a[k] - a[k] + 1;

After Irrterprocedural Propagation

Interprocedural elimination of checks can be
achieved by propagating live checks across pro-
cedure calls, The checks on value of k are live at
the end of the procedure printarray. By propagating

this information to the caller the checks on k are
eliminated in the example shown. However, if there
had been other execution paths to the checks for k
in the caller this may not have been possible.

procedure printarray(a: vector; i,j: int; var k: int)
var 1: int;
begin
for lci to j do print(a[l])
k + (i + j) div 2;
-- MIN(a) 2 k, k < MAX(a)
print(a[k]);

end

begin

printarray(a, 1, 5, k)
a[k] c a[k] + 1;

end

After Interprocedural Elimination

4. Ordering the Optimizations

The order in which the optimizations are
applied is important. The local, global, and inter-
procedural elimination of range checks should be
performed prior to propagation of checks. This is
because redundant checks will not be considered as
candidates for propagation. Following intrapro-
cedural propagation, the checks that have moved
to the top of procedures, are propagated across
procedure boundaries. This creates new opportun-
ities for elimination. Thus local and global elimi-
nation are repeated again. The combination of
checks is carried out last because it may not be
possible to eliminate checks after they have been
modified by combination. Range check optimiza-
tion does not degrade the reliability of the
software because any array bound violation that is
detected by a program with all range checks
included, will also be detected by the program
after range check optimization.

5. Traditional Code Optimizations vs Range
Check Optimizations

The results of range check optimizations can
be influenced by other code optimizations. This
interaction should be taken into account if the
range check optinliz;l tions are being implemented
as part of a traditional code optimizer. Constant
propagation[7,2] may enable certain range checks
to be performed at compile-time. Copy propaga-

280

tion and induction variable elimination may result
in removal of checks. If a program performs range
checks on variables 21; and “j and variable “j is
computed by vjtvi or Vjtv;+l, using COPY propa-
gation or induction variable elimination the check
on vj can be eliminated.

while (condt) loop
i+i+4;

T1=not(iWN(a)<-j<==MX(a));
if Tl then error;

41 + 4;
Td=not(MIN(a)<=j<=MAX(a));
if Td then error;

ahI +i+4;

endwhile;

while (condt) loop
iti+4;

-- MIN(a)<=j, j<==(a))

41 c 4;
-- MIN(a)<-j, j<==MAX(a))

41 +-i+4;
endwhile;

Before Range Check Optimization

-- MIN(a)<-j, j<-MAX(a))
while (condt) loop

i+i+4;

41 - 4;
a[j] c i + 4;

endwhile;
Before Code Optimization

After Range Check Optimization

T=not(MIN(a)<=j<=MAX(a));
while (condt) loop

i+i+4;
if T1 then error;

41 +- 4;
if T2 then error;
a[j] c i + 4;

endwhile;

After Code Optimization

Although traditional optimizations may help
in range check optimization they are not a substi-
tute for the latter. This observation is also sup-
ported by the experimental results obtained by
Chow[3]. The combination of range checks will
not be carried out by a traditional code optimizer.
Propagation of checks out of for loops and elimi-
nation and propagation of checks that rely on the
observation that the value of the subscript vari-
able monotonically increases or decreases in a loop
are also not performed by a traditional code
optimizer. The example shown above illustrates a
situation where one might expect a traditional
optimizer to perform well. The two range checks
are identical as well as loop invariant. A tradi-
tional code optimizer will neither combine the
checks nor move them out of the loop. This is
because it cannot distinguish between range checks
and rest of the code. However, if range check
elimination and propagation are used one check is
eliminated and the other is moved out of the loop
thus requiring a check to be executed once at run-
time.

6. Experimental Results

The results of applying intraprocedural range
check optimizations to a small set of programs are
shown in the Table below. The execution times of
the programs without range check optimizations
(NOPT), after elimination (ELIM), after elimina-
tion and propagation (PROP), and finally after
elimination, propagation, and combination
(COMB) are shown. These times are normalized
with respect to the program execution time
without range checks. As can be seen from the
results the overhead due to range checks is drasti-
cally reduced. Around 25% reduction in code size
also resulted after range check optimization. As
shown in section 2 the size of the MCFG is half
that of the CFG in most cases. Thus the optimiza-
tions can be performed efficiently using the MCFG.
The percentage of monotonic definitions is high
and therefore greater degree of optimization is
achieved by taking advantage of monotonicity.

NOPT EIJM PROP COMB

FFT 2.00 1.60 1.31 1.26

MATMUL 1.87 1.45 1.00 1 .oo

PERM 2.33 1.33 1.22 1.22

QUEEN 1.78 1.70 1.51 1.51

QUICK 3.25 1.98 1.46 1.46

TOWERS 2.40 1.40 1.40 l.;lO

The number of node,< in the MCFG relative
to the number of the node> ~II the original CFG for

281

some programs is shown below (SIZE). The size of
the MCFG is half that of the CFG in most cases.
The percentage of definitions of variables used in
subscript e:cpressions that were found to be mono-
tonic (MDEFS) are shown below. The programs
with 100% monotonic definitions only used for loop
variables in their subscript expressions. The non-
monotonic definitions were mostly initializations
which are often constants and therefore can be
checked at compile-time.

In this paper optimizations for reducing the
number of range checks that have to be performed
to detect array bound violations were presented.
These optimizations are performed efficiently using
a smaller MCFG. Only partial use-def information
is computed. Furthermore, the use of monotonicity
makes the algorithms presented in this paper more
effective than previous algorithms. The elimina-
tion and propagation optimizations are also
effective in optimizing range checks for dynamic
arrays. Substantial reduction in run-time over-
head resul;s after the range check optimizations
are applied.

Acknowle’dgements - I am grateful to Mary Lou
Soffa and the referees for their suggestions in
improving this paper.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman, Com-
pilers: Principles, Techniques, and Tools,
Addison-Wesley, 1988.

2. D. Callahan, K.D. Cooper, K. Kennedy, and
L. Torczon, “Interprocedural Constant Pro-
pagation,” Proceedings 14th ACM Symposium
on P:&ciples of Programming Languages, pp.
152-161, 1986.

3. F. Chow, “A Portable Machine-independent
Global Optimizer - Design and Measure-
ment 3,” Ph.D. Thesis, Technical Report 83-
254, Computer Sytems Lab, Stanford Univer-

sity, Dec., 1983.

4. W. Harrison, “Compiler Analysis of the
Value Ranges for Variables,” IEEE Transac-
tions on Software Engineering, vol. 3, no. 3,
pp. 243-250, 1977.

5. J. Hennessy, “Symbolic Debugging of Optim-
ized Code,” Trans. on Programming
Languages and Systems, vol. 4, no. 3, pp.
323-344, July, 1982.

6. N. Suzuki and K. Ishihata, ‘LImplementation
of Array Bound Checker,” Proceedings 4th
ACM Symposium on Principles oj Program-
ming Languages, pp. 132-143, 1977.

7. M.N. Wegman and F.K. Zadeck, “Constant
Propagation with Conditional Branches,”
Proceedings 12th ACM Symposium on Princi-
ples of Programming Languages, pp. 152-161,
1984.

8. V. Markstein, J. Cocke, and P. Markstein,
“Optimization of Range Checking,” Proceed-
ings of SIGPLAN’82 Symposium on Compiler
Construction, 1982.

282

