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Abstract - This paper describes techniques for 
optimizing range checks performed to detect array 
bound violations. In addition to the elimination of 
range check:s, the optimizations discussed in this 
paper also reduce the overhead due to range 
checks that cannot be eliminated by compile-time 
analysis. The optimizations reduce the program 
execution time and the object code size through 
elimination of redundant checks, propagation of 
checks out of loops, and combination of multiple 
checks into a single check. A minimal control 
flow graph (MCFG) is constructed using which 
the minimal amount of data flow information 
required for range check optimizations is com- 
puted. The range check optimizations are per- 
formed using the MCFG rather the CFG for the 
entire program. This allows the global range 
check optimizations to be performed efficiently 
since the MCFG is significantly smaller than the 
CFG. Any array bound violation that is detected 
by a program with all range checks included, will 
also be detel:ted by the program after range check 
optimization and vice versa. Even though the 
above optimizations may appear to be similar to 
traditional code optimizations, similar reduction in 
the number of range checks executed can not be 
achieved by a traditional code optimizer. Experi- 
mental results indicate that the number of range 
checks performed in executing a program is greatly 
reduced using the above techniques. 
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1. Introduction 

To aid in the debugging of programs under 
development, many compilers generate run-time 
checks to detect dynamic errors due to array 
bound violations. The overhead of these checks is 
quite high resulting in inefficient code with high 
execution times. Earlier investigations indicate 
that execution times for programs can double if 
run-time checks are performed[3]. This is true for 
both optimized and unopthized code because trad- 
itional optimizations are ineffective in reducing the 
overhead due to array bound checks[3]. Most com- 
pilers allow the programmer to control the genera- 
tion of run-time checks through a switch to be 
specified at compile-time. The programs are com- 
piled with run-time checks only during the debug- 
ging phase. When the software is being used in 
production environment it does not include the 
run-time checks. Thus, even if the software 
appears to execute normally, it may be providing 
incorrect results due the run-time errors. To ensure 
high reliability, the run-time checks should not be 
removed from the software. In this paper optimi- 
zations that greatly reduce the run-time overhead 
due to array bound checks are presented. Thus, 
the security of correct execution can be achieved 
at a small run-time cost. 

The reduction of run-time overhead due to 
range checks is treated as an optimization per- 
formed through compile time analysis. The optim- 
izations described in this paper reduce the run- 
time overhead through elimination, propagation, 
and combination of range checks. The elimination 
of checks that can either be performed at 
compile-time or are unnecessarily performed 
repeatedly is carried out. This is analogous to the 
traditional optimizations of constant folding and 
common subexpression elimination. The propaga- 
tion of range checks out of loops reduces the 
number of times a check is executed at run-time. 
This is analogous to the loop invariant code 
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motion optimization. A combination of multiple 
checks into a single check is possible in certain 
instances. 

The range check optimizer, that performs the 
optimizations, first constructs a cofitrol flow graph 
(CFG) for the program. The statements in this 
flow graph are the source level statements rather 
than intermediate code statements. Preceding 
each program statement range checks for all array 
accesses in that statement are introduced. It is 
assumed that the range check optimizer can dis- 
tinguish between the original program statements 
and the range checks, From this augmented CFG 
a minimal control flow graph (MCFG) is con- 
structed which consists only of the range check 
expressions and those program statements that 
define identifiers used in these expressions. After 
the removal of irrelevant code, and subsequently 
irrelevant basic blocks, a significantly smaller 
MCFG results. The MCFG is used to perform the 
range check optimizations and computing the use- 
def data flow information required to perform 
these optimizations. The size of the MCFG is 
smaller and therefore the global range check 
optimizations can be performed efficiently. Furth- 
ermore, the use-def information computed to per- 
form the range checks is only a subset of the data 
flow information for the entire program. 

Markstein et a/[81 d eveloped compiler tech- 
niques for eliminating range checks and propagat- 
ing checks out of inner loops. The elimination 
algorithm presented in this paper is more general 
than the one proposed in [8]. This algorithm takes 
advantage of the monotonic nature of definitions. 
Repeated execution of a definition of the type 
i=i+l causes the value of i to increase monotoni- 
cally. Therefore there is no need to repeatedly 
examine whether i is greater than the lower bound 
of an array. A very high percentage of subscript 
variables are monotonic in nature and therefore 
range checking overhead can be significantly 
reduced by exploiting monotonicity. The propaga- 
tion algorithm presented is also more general than 
the one proposed in [8]. First, it takes advantage 
of monotonicity. Second, it performs code hoisting 
prior to propagation which moves checks out of 
loops that cannot be moved by the algorithm in 
[8]. The combination optimizations are not per- 
formed at all in [8]. Therefore, the techniques 
presented in this paper optimize more range checks 
than those developed by Markstein et a/[8]. 

Harrison also used compile time analysis to 
reduce the overhead due to range checks in his 
work[4]. Compile-time techniques of range propa- 

gation and range analysis are employed yielding 
bounds on the ranges of variables at various points 
in a program. The range information is used to 
eliminate redundant range checks on array sub- 
scripts. The techniques presented in this paper 
also reduce the overhead due to range checks 
through compile-time analysis. However, in con- 
trast to Harrison’s work the overhead reduction is 
not achieved only by elimination of range checks. 
The techniques presented in this paper reduce the 
run-time overhead due to range checks that can- 
not be eliminated by moving the checks out of 
loops so that they are executed less frequently and 
combining several checks into one. Harrison’s 
techniques will be less effective when applied to 
dynamic arrays since value range analysis will not 
be effective. The elimination and propagation 
techniques presented in this paper are equally 
effective for static and dynamic arrays. Harrison’s 
techniques require use-def and def-use information 
for the entire program while techniques in this 
paper require the computation of a subset of use- 
def information and no def-use information. The 
range check optimizations are performed much 
more efficiently using the MCFG than range 
analysis and range propagation. Consider the 
situation where the program contains a statement 
i = j + k and variable i is used in an array sub- 
script expression. In Harrison’s approach value 
range analysis for i would require range analysis 
for j and k. However, in the techniques presented 
in this paper only data flow information regarding 
i will be computed. 

Suzuki and Ishihata discuss the implementa- 
tion of a system that performs array bound checks 
on a program in[6]. The system creates logical 
assertions immediately before array element 
accesses that must be true for the program to be 
valid. These assertions are then proven, by a 
theorem prover, using techniques similar to induc- 
tive assertion methods. Such techniques are 
significantly more expensive than the techniques 
presented in this paper. Suzuki’s system has 
several limitations. As an example it cannot check 
the correctness of an array accesses in a loop if the 
correctness depends on some data whose value is 
set before the execution of the loop. The tech- 
niques presented in this paper are based upon flow 
analysis thus avoiding such limitations. The array 
accesses that cannot be verified by Suzuki’s system 
still require dynamic checking. The techniques 
presented in this paper will also reduce the over- 
head due to checks that cannot be eliminated. 
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Although the optimizations in this paper 
eliminate, propagate, and combine range checks, 
they do not degrade the reliability of the software. 
Any array bound violation that is detected by a 
program with all range checks included, will also 
be detected. by the program after range check 
optimization and vice veraa. It is assumed that 
the range check optimizer is implemented 
separately from the traditional code optimizer. 
An environment in which a debugger for optimized 
code(5] is to be provided, the integration of the 
range check: optimizer with the traditional code 
optimizer will make it possible to provide highly 
efficient cods? during debugging phases. 

In subsequent sections the construction of the 
minimal CJ’G and descriptions of various range 
check optimizations and their implementations are 
discussed. These techniques are not only highly 
efficient but also much more effective in optimizing 
range checks than traditional code optimizations. 
Finally some experimental results demonstrating 
the effectiveness of the range check optimizations 
are presented. 

Minimal Control Flow Graph 

For efiicient implementation of range check 
optimizations, the Minimal Control Flow Graph 
for a program is constructed from the CFG aug- 
mented with the range checks to be performed. 
The basic blocks of the CFG contain a sequence of 
source level statements rather than intermediate 
code statements. 

Definition: Given a CFG G=(N,E), where N is the 
set of nodes corresponding to the basic blocks and 
E is the set of directed edges connecting the nodes. 
The corresponding MCFG G,-(N,,,,E,) consists of 
the following: 

(i) N,,,EN: A node “i belongs to iv,,, if it con- 
tains a range check or a definition for an 
identifier used in a range check. 

(ii) E,: A set of edges that preacrue the control 
flow of the original CFG. The control flow is 
preserved if for every directed path 
p-<n, ,ni ..n, > in G, there is a correspond- 

ing paih “p’ ii G, which is obtained by elim- 
inating all nodes ni p N,,, in p. 

J 

To construct the MCFG first all statements 
other than the range checks and those statements 
that define identifiers used in array subscript 
expressions are eliminated. Next all redundant 

(i) Elimination of Null Nodes 

(ii) Elimination of Loops 

ni 

nj A 

ni 

nj 

(iii) 

Jr + 
Elimination of Redundant Edges 

Fig. 1. Transformations for Constructing the MCFG 

nodes from this CFG are eliminated to obtain a 
smaller flow graph which is the MCFG. To elim- 
inate redundant nodes the transformations in Fig. 
1 are applied repeatedly. Transformation Z’dn,) 
eliminates an empty node n, and introduces edges 
that connect every predecessor of n, with every 
successor of n,. TAni) eliminates self loops to 

enable elimination of an empty node ni by Tr(ni). 
Transformation T.Jn,,n,) is used to eliminate a 
redundant edge from n, to n,. 

Claim: Application of transformations T,, T, and 
T, in any order, till no more transformations can 
be applied, yields a unique and valid MCFG. 

Proof: Each of the above transformation 
preeervea the control flow: 

(4 T,( n,): For each predecessor-successor pair 
(P,, sl) of n, this transformation replaces the 
path <p,,n,,s,> in the original flow graph by 
the path <pJ,sk> in the transformed flow 
graph. 

(ii) Tdn,): The paths containing n, prior to 
application of this transformation are of the 
form <pJ,n,+,st>, where pJ is a predecessor of 
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n ,, sk is a successor of n, and n,+ denotes one 
or more occurrences of fli. These paths are 
replaced by the path <p,,n,,sL> in the 
transformed flow graph. 

(iii) Tdn,,n,): This transformation eliminates 
redundant edges and therefore all paths 
present in the original flow graph are also 
present in the transformed flow graph. 

From the above discussion it is clear that each of 
the above transformations preserve the control 
flow. Consider any two nodes, say n, and n,, that 
belong to the MCFG. If there is a directed path 
from ni to nj in the original flow graph then there 
will also be such a path in the MCFG. Similarly if 
there is no path from n, to n, in the original flow 
graph there cannot be one in the MCFG. This is 
because when edges are added to the flow graph in 
transformation T, these edges connect nodes which 
already had a path between them. Furthermore, 
no edges are added by T, which connect nodes 
that do not have a path between them. The 
transformation T, removes redundant edges and 
therefore does not create or destroy any paths. 
The repeated application of these transformations 
preserves the control flow resulting in a valid 
MCFG. 

The MCFG is unique by definition. The 
nodes contained in the MCFG are the non-empty 
set of nodes which is unique. The set of edges in 
the MCFG is also unique. This is because if we 
consider the existence of two valid MCFG’s then 
there must be at least one execution path in one 
MCFG that is absent in the other MCFG. How- 
ever, this implies that one of the MCFG does not 
preserve the flow of control and therefore cannot 
be valid. Hence, the MCFG for a given CFG is 
unique. The order in which the transformations 
are applied does not effect the outcome. This is 
because candidates for T,, T, and T, remain can- 
didates, even if some other applications of the 
transformations are made first. [3 

The construction of the MCFG is illustrated 
in Fig. 2. The code corresponding to the range 
checks is preceded by ‘-‘. Fig. 2(ii) shows the 
same CFG after elimination of irrelevant state- 
ments. Application of transformations yields the 
MCFG shown in Fig. 2(iii). Node n, is eliminated 
by applying TXnJ. Following this nS is eliminated 
by applying Tl(nJ followed by T,(n$. Transforma- 
tion T, also eliminates n, and n,, This results in 
two edges from n6 to n8 one of which is eliminated 
using Tdn,n.& 

‘8 -- 
l 

check 1+1; 
-_ check 1; I 

(i) Augmented CFG 

“1 Read i; 
l-l 

“6 h7 

(ii) 

n1 

(iii) MCFG 

Fig. 2. An Example Minimal Control Flow Graph 
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Q Pl 

Pl A3 Sl ........ sn 

p1 ........ pn 

&” Sl 

Pig. 3. Elimination of Null Nodes 

The purpose of removing empty nodes is to 
reduce the size of the flow graph so that the range 
check optinnizations can be performed more 
efficiently. IHowever, removal of certain empty 
nodes may ncrease the number of edges in the 
flow graph. This will increase the amount of com- 
putation performed during the range check optimi- 
zation phase. The increase in the number of edges 
is caused by transformation T,(n,) which connects 
every predecessor of ni with every successor, of n,. 
The increase in the number of edges can be 
avoided by restricting the application of transfor- 
mation TXn.i) to only those nodes which have 
either a single predecessor or a single successor (see 
Fig. 3). It should be noted that if this approach is 
taken then all empty nodes will not be removed 
from the CPG. 

After the MCFG is constructed use&f infor- 
mation for only the range checks is computed. If a 
definition included in the MCFG is not used by 
any of the range checks it is eliminated. This may 
result in adc’iitiona1 empty nodes which can also be 
eliminated using the transformations in Fig. 1. The 
size of the MCFG is further reduced by applying 
the transformations in Fig. 4. In some instances a 
node s; that contains nothing but range checks 
can be eliminated and its checks moved to its 
predecessor or successor. The transformation 
Tdn,)‘shown in Fig. 4 moves checks into the prede- 
cessor node of s;. Similarly Tdni) moves checks to 
a successor node. Self loops are removed using 
Tini) and this may create additional opportunities 
for applying Toni). The transformations T, T, 

(ii) 
/A 7 
v 

7 

0 
TSo “i cj c’ 

cj 
(iii) 

J 

“i c.i n. 
J cj 

7 il’ 0 
Tgo 

Pig. 4. Additional Transformations 

and T, also preserve the control flow. The above 
transformations not only reduce the size of the 
flow graph but also cause the checks to propagate. 
The application of transformation Tin,) followed 
by the application of Tdn,)(or Tdn,)) propagates 
the checks belonging to )2; out of a loop. 

In the example in Fig.P(iii) nodes n6 and ns 
are combined using Tdn.J. The resulting MCFG is 
shown in Fig. 5(i). After these nodes are combined 
the check I’-- check 1” appears twice in n6 and will 
be eliminated through local analysis. It should be 
noted that elimination of this check would have 
required global analysis if the original CFG were 
used instead of the MCFG. The experimental 
results show that the size of the MCFG is half 
that of the CFG in most cases. After the MCFG 
has been constructed range check optimizations 
are applied. These optimizations are described in 
subsequent sections. The range checks present in 
the optimized MCFG will be performed at run- 
time. The original CFG is modified to include the 
range checks present in the optimized MCFG. This 
CFG should be used by the compiler for code gen- 
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(i> nl Read i; 

4 

(ii) 

n9 -- check i; 

Fig. 5. (i) MCFG; (ii) CFG with Range Checks 

eration. The CFG with range checks correspond- 
ing to the MCFG in Fig. 5(i) is shown in Fig. 5(ii). 

3. Range Check Optimizationz 

If an array subscript is a constant the range 
check is performed at compile-time. In this paper, 
additional optimizations, that are not as direct 
and require analysis are discussed. The upper and 
lower bounds of an array a are referred to as 
MAX(a) and MIN(a) respectively. The lower and 
upper bound checks are treated separately as 
sometimes it is possible to optimize one and not 
the other. 

3.1. Local Elimination 

If the same check appears more than once in 
a basic block, and the use-def information indi- 
cates that same definitions are used in these 
checks, all but one of the checks is eliminated. In 
the example of Fig. B(iii) after basic blocks ng and 
ng are combined the check ‘I-- check 1” appears 
twice in the same basic block. Thus, one of these is 
eliminated. 

3.2. Global Elimination 

Global elimination of range checks is carried 
out, through global flow analysis. At a given point 
in the program the checks that have been per- 
formed previously and are still valid are con- 
sidered to be live. By propagating live checks 
other checks may be eliminated. Analysis similar 
to that for available expressions is carried out, by 
formulating the problem as a forward data flow 
equation[l]. The algorithm for this optimization is 
shown below. The checks killed by a basic block 
are computed differently from available expres- 
sions since a check may not, be killed if an 
identifier used in the expression is redefined by a 
monotonic definition. 

Definition: A definition of an identifier kills a 
range check if the range check uses that identifier 
except in the following situations: 

(i) Monotonically Increasing: A check lb<i is not, 
killed by a definition of the form ici+c, 
itc +i, and ice%, where constant c takes 
values 1,2,3,4 ,...; and 

(ii) Monotonically Decreasing: A check isub is 
not killed by definitions of the form ici-c, 
it -c+i, and i-i/c. 

Algorithm for Global Elimination: 

Step 1: Compute the following sets for all basic 
blocks: 
CXlLL[B] - set of checks performed outside B 
that are killed by definitions inside B. 
C-GEN[B] - set, of checks that reach the end of 
the basic block B. A check performed in a basic 
block reaches the end if the definitions between 
the point at which the check is performed and the 
end of the basic block do not, kill the check. 

Step 2: Compute sets CJN and C-OUT, where 
CJN is the set, of checks live at the entry of the 
basic block and C-OUT is the set of checks live 
upon exit, of the basic block by solving the follow- 
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ing: 

CJV[B1]-+, where B, is the initial basic block. 
CJh[B]- n CLOUT[P], where Pred(B) is the 

PfPd(B) 

set of bas.ic blocks that are predecessors of B. 
~,CC~T[B]=(C_IN[B]-C_KILL[B])UC_GEN[B] 

Step 3: Eliminate redundant checks. A check ci in 
basic block B is redundant if there is another 
check cj'C_1;N[B] such that c, performs the same 
check as ci and it is not killed by a definition 
before it reaches the check ci. 

-- MlN(a) 5 i, i 5 MAX(a) 
Sl: a,[i] t 
S2: i.1 X then 

-- MIN(a) < i, i < MAX(a) 
S3: a[i] t a[i] + 1 endif 

S4: i t i + 1; 
-- MlN(a) 5 i, i 5 MAX(a) 
S5: a$] + 

Before Elimination 

-- Ml’N(a) 2 i, i 2 MAX(a) 
Sl: a$] c 
S2: il X then 

S3: a[i] + a[i] + 1 endif 
S4: i t i + 1; 

i5; l$w4 
. E. t 

After Global Elimination 

In the above example a range check per- 
formed for t’he execution of statement Sl is valid 
during the execution of statement S3. Thus, no 
range check needs to be performed before to exe- 
cuting S3. After S4 increments i, the check 
i 5 MAX(a) is killed while the check MIN( a) 5 i is 
still alive. Thus, the latter check is not made dur- 
ing the execution of S5. Monotonicity property is 
useful because a large percentage of definitions are 
monotonic. 

3.3. Propagation of Checks Out of Loops 

The goal of propagation is to reduce the 
number of times the checks are executed by mov- 
ing them out of loops. As mentioned earlier some 
amount of propagation is carried out during the 
construction of the MCFG. In this section an 
algorithm to propagate additional range checks 
out of a loop is presented. The innermost loops are 

processed first and the outermost loops are pro- 
cessed last. Thus, a range check may be pro- 
pagated across multiple nesting levels. This optim- 
ization is illustrated by the example shown below. 
As shown, to move a check involving the for loop 

check must be variable outside a loop, the 
modified. 

for icmin to max do 
-- MIN(a) 5 i, i < MAX(a) 
-- MIN( a) 5 j, j 2 MAX(a) 
-- MIN(a) 5 k, k 5 MAX(a) 
a/i] + a/j] + a[k] 
j+j+l 

end for 

Before Propagation 

__ if min 5 max then 
MIN(a) 5 min, max 5 MAX(a) 

-- MIN(a) 2 j 
-- MIN(a) 5 k, k 5 MAX(a) 
for icmin to max do 

-- j I MAX(a) 
a[i] t a[j] + a[k] 
j&j+1 

end for 

After Propagation 

In the above example the check MIN(a)<j is 
moved out of the loop because the value of j 
increases monotonically. The algorithm by Mark- 
stein et a/[81 does not take advantage of monotoni- 
city. The algorithm that takes a single loop and 
moves the checks out of the loop is presented next. 
The checks propagated in Step 2 of this algorithm 
will not be propagated by the algorithm used by 
Markstein et al [8]. 

Algorithm for Propagation: 

This algorithm first performs code hoisting to 
propagate checks to those basic blocks that dom- 
inate the loop exit. Next checks belonging to the 
basic blocks dominating the loop exit are con- 
sidered for propagation out of the loop. The 
checks that can be propagated are identified and 
propagated by this algorithm. 

Step 1: Determine the blocks from which checks 
can be propagated out of loops. Checks from a 
block b are considered for propagation if b dom- 
inates all loop e&s, i.e., every path from the entry 
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node to all loop ezits passes through b. In the loop 
shown next the shaded blocks satisfy this criterion. 

Step 2: Code hoisting - Propagate checks from 
nodes that do not dominate all loop exits to nodes 
that dominate all loop exits as follows: 

Let ND - be the set of nodes that do not dominate 
all loop exits, 

C(n) - set of checks performed in n, and 
P - set of nodes such that for each node ncP, 
succ(n)nND#t$ and n is the unique predecessor 
of nodes in succ(n), where succ(n) is the succes- 
sor set of n. 

loop I 
Propagate a check e into block n from 

blocks in WCC(~) if 
et n C(s) 

J~SVCC(I) 
where ntP, and e uses the same definitions 
in each block that belongs to succ(n). 

) until no more checks can be propagated 

In the loop shown above the checks common 
to nodes nz and ng may be moved to n1 in this 
step. 

Step 3: A check e from a block that satisfied the 
criterion in step 1 is moved out of the loop if: 

(i) Check e uses only definitions from outside 
the loop body (i.e., e is a loop invariant). 
This is determined from the use-def informa- 
tion computed prior to applying the optimi- 
zations; or 

(ii) Check e is of the type lb <i and all 
definitions of i inside the loop are of the form 
ici+c, icc+i, or icifc, where constant c 
takes values 1,2,3,4,..; or 

(iii) Check e is of the type isub and all 
definitions of i inside the loop are of the form 

ici-c, it -c+i, or i+-i/c, where constant 
c takes values 1,2,3,4...; or 

(iv) Check e is of the form 
II --lbsi op c, i op c<ub”, where i is the for 
loop variable, opt (+,-,/,*}, and c is a con- 
stant. The check is modified to 
11 --if min 2 max then 
lb<min op c, max op c<ub”, where min and 
maz are the minimum and maximum values 
taken by the for loop variable. 

3.4. Combination of Range Checks 

The combination optimizations are local 
optimizations that combine multiple checks into a 
single check. Range checks on a variables V, and 
v,, due to their use as array subscripts for ele- 
ments of the same array, are combined if the only 
definition of v1 that reaches the check is of the 
form v,cv, op c, where opr {+,-,/,*} and c is a 
constant. The range checks for the same array and 
different arrays can also be combined as long as 
their subscript expressions are also related in a 
similar manner as the above optimization. The 
following example demonstrates this optimization. 
Since j is obtained by incrementing i the checks 
Cl and C2 are combined using the first optimiza- 
tion. The resulting check is combined with with 
C3 using the second optimization. 

j+i+l 
Cl -- MIN(a) 2 i, i 5 MAX(a) 
C2 -- MIN(a) 5 j, j 5 MAX(a) 
C3 -- MIN(b) 5 i, i 5 MAX(b) 
a[i] c a[j] + b[i] 

Before Combination 

jti+l 

-- maximum(MIN(a), MIN(b)) < i, 
i 5 minimum(MAX(a>l, MAX(b)) 

a[i] c a[j] + b[i] 

After Combination 

3.5. Interprocedural Optimiaations 

The techniques described above are applied 
to a single procedure. It is also possible to per- 
form interprocedural range check optimizations. 
Interprocedural propagation can be performed by 
moving checks from the start of a procedure to 
each of the call sites. In other words the checks 
are propagated from a called procedure to the 
caller. In the example shown below the checks 
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MIN(a)<i and isMAX are eliminated after they 
are moved ,3,t the call site because i and j are con- 
stants at the call site. Interprocedural constant 
propagation would also have resulted in elimina- 
tion of these checks if i and j are constants at 
every call site of procedure printarray. Interpro- 
cedural propagation is applicable to non-recursive 
procedures. It should not be applied to recursive 
and mutually recursive procedures. 

procedure printarray(a: vector; i,j: int; var k: int) 
var 1: int; ? 
begin 
-- MIN(:L) 5 i, j 5 MAX(a) 
for I+i to j do print(a[l]); 
k +- (i -!- j) div 2; 
-- MIN(:L) < k, k 5 MAX(a) 
print(a[lc]); 

end 

begin 

printarray(a, 1, 5, k); 
-- MIN(a) 5 k, k 5 MAX(a) 
a]k] + a[k] + 1; 

Before Interprocedural Optimization 

procedurt! printarray(a: vector; i,j: int; var k: int) 
var 1: int; 
begin 
for 14 to j do print(a[l]) 
k e (i + j) div 2; 
-- MIN(rt) 5 k, k 5 MAX(a) 
print(a[:C]); 

end 

begin 

-- MIN(a) 5 1, 5 5 MAX(a) 
printarr:ty(a, 1, 5, k) 
-- MIN(a) < k, k 5 MAX(a) 
a[k] - a[k] + 1; 

After Irrterprocedural Propagation 

Interprocedural elimination of checks can be 
achieved by propagating live checks across pro- 
cedure calls, The checks on value of k are live at 
the end of the procedure printarray. By propagating 

this information to the caller the checks on k are 
eliminated in the example shown. However, if there 
had been other execution paths to the checks for k 
in the caller this may not have been possible. 

procedure printarray(a: vector; i,j: int; var k: int) 
var 1: int; 
begin 
for lci to j do print(a[l]) 
k + (i + j) div 2; 
-- MIN(a) 2 k, k < MAX(a) 
print(a[k]); 

end 

begin 

printarray(a, 1, 5, k) 
a[k] c a[k] + 1; 

end 

After Interprocedural Elimination 

4. Ordering the Optimizations 

The order in which the optimizations are 
applied is important. The local, global, and inter- 
procedural elimination of range checks should be 
performed prior to propagation of checks. This is 
because redundant checks will not be considered as 
candidates for propagation. Following intrapro- 
cedural propagation, the checks that have moved 
to the top of procedures, are propagated across 
procedure boundaries. This creates new opportun- 
ities for elimination. Thus local and global elimi- 
nation are repeated again. The combination of 
checks is carried out last because it may not be 
possible to eliminate checks after they have been 
modified by combination. Range check optimiza- 
tion does not degrade the reliability of the 
software because any array bound violation that is 
detected by a program with all range checks 
included, will also be detected by the program 
after range check optimization. 

5. Traditional Code Optimizations vs Range 
Check Optimizations 

The results of range check optimizations can 
be influenced by other code optimizations. This 
interaction should be taken into account if the 
range check optinliz;l tions are being implemented 
as part of a traditional code optimizer. Constant 
propagation[7,2] may enable certain range checks 
to be performed at compile-time. Copy propaga- 

280 



tion and induction variable elimination may result 
in removal of checks. If a program performs range 
checks on variables 21; and “j and variable “j is 
computed by vjtvi or Vjtv;+l, using COPY propa- 
gation or induction variable elimination the check 
on vj can be eliminated. 

while (condt) loop 
i+i+4; 

T1=not(iWN(a)<-j<==MX(a)); 
if Tl then error; 

41 + 4; 
Td=not(MIN(a)<=j<=MAX(a)); 
if Td then error; 

ahI +i+4; 

endwhile; 

while (condt) loop 
iti+4; 

-- MIN(a)<=j, j<==(a)) 

41 c 4; 
-- MIN(a)<-j, j<==MAX(a)) 

41 +-i+4; 
endwhile; 

Before Range Check Optimization 

-- MIN(a)<-j, j<-MAX(a)) 
while (condt) loop 

i+i+4; 

41 - 4; 
a[j] c i + 4; 

endwhile; 
Before Code Optimization 

After Range Check Optimization 

T=not(MIN(a)<=j<=MAX(a)); 
while (condt) loop 

i+i+4; 
if T1 then error; 

41 +- 4; 
if T2 then error; 
a[j] c i + 4; 

endwhile; 

After Code Optimization 

Although traditional optimizations may help 
in range check optimization they are not a substi- 
tute for the latter. This observation is also sup- 
ported by the experimental results obtained by 
Chow[3]. The combination of range checks will 
not be carried out by a traditional code optimizer. 
Propagation of checks out of for loops and elimi- 
nation and propagation of checks that rely on the 
observation that the value of the subscript vari- 
able monotonically increases or decreases in a loop 
are also not performed by a traditional code 
optimizer. The example shown above illustrates a 
situation where one might expect a traditional 
optimizer to perform well. The two range checks 
are identical as well as loop invariant. A tradi- 
tional code optimizer will neither combine the 
checks nor move them out of the loop. This is 
because it cannot distinguish between range checks 
and rest of the code. However, if range check 
elimination and propagation are used one check is 
eliminated and the other is moved out of the loop 
thus requiring a check to be executed once at run- 
time. 

6. Experimental Results 

The results of applying intraprocedural range 
check optimizations to a small set of programs are 
shown in the Table below. The execution times of 
the programs without range check optimizations 
(NOPT), after elimination (ELIM), after elimina- 
tion and propagation (PROP), and finally after 
elimination, propagation, and combination 
(COMB) are shown. These times are normalized 
with respect to the program execution time 
without range checks. As can be seen from the 
results the overhead due to range checks is drasti- 
cally reduced. Around 25% reduction in code size 
also resulted after range check optimization. As 
shown in section 2 the size of the MCFG is half 
that of the CFG in most cases. Thus the optimiza- 
tions can be performed efficiently using the MCFG. 
The percentage of monotonic definitions is high 
and therefore greater degree of optimization is 
achieved by taking advantage of monotonicity. 

NOPT EIJM PROP COMB 

FFT 2.00 1.60 1.31 1.26 

MATMUL 1.87 1.45 1.00 1 .oo 

PERM 2.33 1.33 1.22 1.22 

QUEEN 1.78 1.70 1.51 1.51 

QUICK 3.25 1.98 1.46 1.46 

TOWERS 2.40 1.40 1.40 l.;lO 

The number of node,< in the MCFG relative 
to the number of the node> ~II the original CFG for 
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some programs is shown below (SIZE). The size of 
the MCFG is half that of the CFG in most cases. 
The percentage of definitions of variables used in 
subscript e:cpressions that were found to be mono- 
tonic (MDEFS) are shown below. The programs 
with 100% monotonic definitions only used for loop 
variables in their subscript expressions. The non- 
monotonic definitions were mostly initializations 
which are often constants and therefore can be 
checked at compile-time. 

In this paper optimizations for reducing the 
number of range checks that have to be performed 
to detect array bound violations were presented. 
These optimizations are performed efficiently using 
a smaller MCFG. Only partial use-def information 
is computed. Furthermore, the use of monotonicity 
makes the algorithms presented in this paper more 
effective than previous algorithms. The elimina- 
tion and propagation optimizations are also 
effective in optimizing range checks for dynamic 
arrays. Substantial reduction in run-time over- 
head resul;s after the range check optimizations 
are applied. 
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