
A Demand-Driven Analyzer for

Data Flow Testing at the Integration Level t

Evelyn Duesterwald Rajiv Gupta Mary Lou Sofia

Department of Computer Science

University of Pittsburgh, Pittsburgh, PA

{duester,gupta,soffa} Qcs.pitt.edu

Abstract

Data jlow testing relies on static analysis for comput-
ing the clef-use pairs that serve as the test case require-
ments for a program. When testing large programs,
the individual procedures are first tested in isolation
during unit testing. Integration testing is performed
to specifically test the procedure interfaces. The pro-
cedures in a program are integrated and tested in sev-
eral steps. Since each integration step requires data
f70w analysis to determine the new test requirements,
the accumulated cost of repeatedly analyzing a program
can considerably contribute to the overhead of testtng.
Data jlow analysis is typically computed using an ex-
haustive approach or by using incremental data flow
updates. This paper presents a new and more eficient
approach to data flow integration testing that is based
on demand-driven analysis. We developed and imple-
mented a demand-driven analyzer and experimentally
compared its performance during integration testing
with the performance of (i) a traditional exhaustive
analyzer and (ii) an incremental analyzer. Our ex-
periments show that demand-driven analysis is faster
than exhaustive analysis by up to a factor of 25. The
demand-driven analyzer also outperforms the incre-
mental analyzer in 80% of the test programs by up
to a factor of 5.

1 Introduction

Since its development for optimizing compilers, static
data flow analysis has evolved as a primary compo-
nent in various software engineering tools, including
editors, debuggers and software testers. Many soft-
ware engineering applications utilize data flow infor-
mation only selectively in a program. For example,
applications such as debugging and software testing
often process a program in multiple sessions and each
session may utilize data flow information only at se-
lected portions of a program. However, while the uti-
lization of data flow information may be partial, the

tpartially supported by National ScienceFoundation Pres-
idential Young Investigator Award CCR-91 57371 and Grant

CCR-9402226 to the University of Pittsburgh.

15260

data flow computation is traditionally performed ex-
haustively eve; a program. In the ;r;ditional anal-
ysis approach, the computation of data flow at one
point requires data flow computations at all program
points. Computing such exhaustive solutions in ap-
plications that actually utilize only a part of the data
flow information necessarily results in the computa-
tion of information that is never used. This paper
proposes demand-driven analysis as a more efficient
analysis approach for data flow based software engi-
neering applications. To demonstrate the benefits of
demand-driven analysis, we consider its application in
data flow integration testing and show how the cost of
integration testing can be reduced through a demand-
driven analysis design.

Data flow testing uses coverage criteria [14, 5] to
select the sets of definition-use (clef-use) pairs in a pro-
gram that serve as the test case requirements. Def-use
pairs are determined by solving the data flow problem
of reaching definitions. The testing of large programs
usually takes place at several levels. The individual
program units are tested first in isolation during unit
testing. Then, their interfaces are tested during one
or more integration steps [8]. Each integration step re-
quires the computation of the clef-use pairs that cross
the most recently integrated procedure interfaces to
establish the new test requirements. Exhaustively re-
computing reaching definitions and clef-use pairs at
the beginning of each integration step is inefficient and
may easily result in overly high analysis times.

The problem of avoiding the costly re-computation
of exhaustive data flow solutions is not unique to in-
tegration testing. It arises in virtually all data flow
applications that deal with evolving software. Pre-
viously, incremental data jlow algorithms have been
proposed to address this problem [16, 13]. Incremen-
tal analysis avoids re-computation by performing the
appropriate updates of a previously computed solu-
tion. Incremental analysis techniques could also be
used in integration testing to extend the solution af-
ter each integration step with the newly established
reaching definitions. However, incremental analysis
requires the complete reaching definition solution to
be maintained between integration steps in addition
to the clef-use pairs. Moreover, the incremental up-
date of the exhaustive solution at each integration step

0270-5257/96 $5.0001996 IEEE 575
Proceedings of ICSE-18

may be costly since information is propagated from the
new interfaces throughout the program, including to
portions that may have no relevance for the current
integration step.

Another approach, and the one advocated in this
paper, uses demand-driven analysis. Demand-driven
analysis avoids the shortcomings of previous analy-
sis approaches. Exhaustive information propagation
is entirely avoided and replaced with a goal-oriented
search. We previously presented a general framework
for demand-driven analysis [4] and showed that the
demand-driven search can formally be modeled as the
functional reversal of an originally exhaustive analy-
sis. By its goal-oriented nature, the search can bypass
the code regions that are of no interest to the current
data flow demands. Importantly, unlike incremental
analysis, using a demand-driven analyzer for integra-
tion testing does not require the storage of reaching
definition solutions between integration steps.

This paper develops a new approach to data flow
testing at the integration level and demonstrates that
this approach can be efficiently implemented based on
demand-driven analysis. We present a demand-driven
analyzer to efficiently compute the newly established
data flow information at each integration step. We
implemented the demand-driven analyzer and exper-
imentally evaluated its performance in the context of
integration testing based on bottom-up integration.
We compared the accumulated analysis time of the
demand-driven analyzer during the integration pro-
cess with the accumulated analysis times of (i) an ex-
haustive analyzer and (ii) an analyzer based on incre-
mental updates. Our experiments show that demand-
driven analysis is significantly faster than exhaustive
analysis by a factor ranging from 2.6 to 25. The
demand-driven analyzer even outperforms the incre-
mental analyzer in eight out of ten programs by up to
a factor of 5.

Section 2 presents the relevant background in data
flow analysis. Our approach to data flow integration
testing is presented in Section 3 and the demand-
driven analyzer used in this approach is described in
Section 4. Section 5 presents the experimental evalu-
ation and Section 6 discusses related work.

2 Data Flow Analysis

A program is represented by a set of control flow
graphs, as shown in Figure 1. The nodes in the graph
represent statements and edges represent the transfer
of control among statements. The nodes entry and
exit represent the unique entry and exit nodes of a
procedure. The sets prect(n) and succ(n) contain the
immediate predecessors and successors of a node n and
the set tail(p) contains the nodes that represent a call
to procedure p. To distinguish multiple occurrences
of the same variable, we use the node number as a
subscript, i.e., Zn denotes the reference of variable z
at node n.

We consider programs with C-style global and lo-
cal scoping and value parameter passing. Let Global
be the set of global variables, let s c cali(p) for some

procedure p and let al, a~ be the actual parame-
ters passed to the formal parameters ~1.,..., fkofp.
The mapping of variables from the calhng procedure
to variables in the procedure called at s is modeled by
the function:

bind,(v) = (Global rl {v}) U {filai = v}

To avoid imprecision, the calling context of proce-
dure calls must be considered for an execution path
to be valid. For example in Figure 1, the sequence
1,2,3,4,13,14,16,5 is a valid execution path while the
sequence 1,2,3,4,13,14,16,12 that invokes pToc9 from
procl but returns illegally to proc2 is not valid.
Throughout this paper, when referring to a path we
assume that the path is a valid execution path.

The clef-use pairs in a program are determined by
solving the data flow problem of reaching definitions.
In order to determine interprocedural reaching defi-
nitions in a program that consists of multiple proce-
dures, the variable bindings through parameter pass-
ing must be considered.

Definition 1 Let p and q be two procedures. A vari-
able v in procedure p is directly bound to variable
w in procedure q if there ezists a call site s E call(q)
in p and w G bind.(v). Variable v in p is indirectly
bound to variable w in q if there exists a sequence
of variables VI, vk, such that v = VI and w = vk
and vi is direct!y bound to t)i+l for 1 < i < k.

We say that variable v is bound to variable w if v
is either directly or indirectly bound to w. Consider
Figure 1. Variable x in procl is bound in proc3 to itself
since z is global and bound to the formal parameter
g via the call at node 4. Variable y is not bound to
any variable in proc9 since y is local and not passed
as a parameter. However, y is bound to the formal
parameter f in proc2 via the call at node 6.

To formally define the sets of reaching definitions
we use the notion of killing a definition.

Definition 2 A definition d of variable v is killed at
node n if node n contains the definition of a variable
w and v is bound to w at node n.

Definition 3 A path r is called a clef-clear path for
variable v, if ~ does not contain a node that kills a
definition of v.

We can now define interprocedural reaching defi-
nitions and the symmetric interprocedural reachable
uses in terms of clef-clear paths:

Definition 4 A definition d of variable v is a reach-
ing definition at node n if v is bound to some variable
w at n and there exists a clef-clear path for v from d
to node n.

Definition 5 A use u of variable v is a reachable
use at node n if there exists a variable w at node n
that is bound to v and there exists a clef-clear path for
v from node n to use u.

576

procedure procl
local y; /* x is global */

read(x,y);
if x=1 then call proc3(x);
y:=x+y;
call proc2(y);
write(x,y);

procl
1

entry

J.
2 read(x,y)

3 &
X=l

)
4’-

call proc3(x)

5 *

6 &
call proc2(y)

7 &
write(x,y)

8 J
exit

procedure proc2(f) procedure proc3(g)
if f=O then call proc3(f); if g=10 then x:=g+l;

9
proc2(f)

%

entry

10
f=o

11
call p “-

1

e
exit

fj=)m
Table 2: Call site variables

ca/l(proc2) = {6} cali(pr0c3) = {4, 11}

Pres~ Def~ Pres~ D ef~ Pres~l Def~l

true {Xls} true I {X15} true 1 {X15}

Table 3: Procedure sid

Procedure proc2 Procedure proc3

-oc2[nl n %-0C3[7JI ‘&oc9[n]
-,

‘rue I {m} 13 true {X15}

true {X1.5}

Es!!!Y I n P“ ~oc2[ra] 1 D;,

ie effect variables

Y c?

10 true {q~} 14

11 true {X15} 15 false {ml,}

12 true o 16 true 0

Figure 1: Example program and its control flow graphs.

We define RD(v, n, P) to be the set of definitions of
variable v that reach node n in program P. Similarly,
RU(V, n, P) is the set of uses of v that are reachable
at node n in P.

Definition 6 Let d be a definition of variable v and
let u be a use of variable w such that v is bound to w
at the use u. The pair (d, u) is a clef-use pair if d
reaches u, or equivalently, if u is a reachable use at d.

In a program that consists of multiple procedures,
clef-use pairs may cross procedure boundaries. To
determine whether a clef-use pair crosses procedure
boundaries we examine the clef-clear paths associated
with the pair. For a given clef-use pair (d, u) there may
be several distinct clef-clear paths from d to u. Some of
these paths may cross procedure boundaries while oth-
ers may be strictly intraprocedural paths. The pairs
that cross procedure boundaries are characterized as
follows.

Definition 7 A clef-use pair (d, u) crosses proce-
dure p on entry (on exit) if there exists a clef-clear
path from d to u that includes the entry (ezit) node n
of p such that d reaches node n and u is a reachable
use at node n.

We say a clef-use pair crosses a procedure p if the
pair crosses p on entry and/or on exit. For example, in

Figure 1 the pair (x15, ZG) crosses proc3 on exit. The
pair (~z, z5) crosses proc3 on entry and on exit. In
contrast, the pair (YZ,YS) does not cross proc9 since
y is local to procl and not passed as a parameter.
Also, the pair (YS,y7) does not cross proc2. Although
y is passed to proc2 as a parameter and Y5, therefore,
reaches the entry node of proc2, the use y5 is not a
reachable use inside proc2 1.

Definition 8 A clef-use pair (d, u) for a variable v is
an interprocedural pair if there exists a procedure
p such that the pair crosses p.

Definition 9 A clef-use pair (d, u) for a variable v is
an intraprocedural pair if either v is a locai variable
or there exists a clef-clear path from d to u that is
entirely contained in the same procedure.

Note that a pair with multiple clef-clear paths may
be both intra- and interprocedural. Table 1 m Fig-
ure 1 shows the complete set of clef-use pairs for the
program. The first column shows the intraprocedural
pairs and the second column shows the interprocedu-
ral pairs. For example, the pair (Z2, X5) is both an

1For ~~ to be ~ reachable use in proc2 there wo~d have ‘0

be a variable v in proc2 that is bound to y in PTOC1. Such a

variable v does not exist unless y is global (v = y) or f is a

reference parameter (v = j).

577

intraprocedural pair due to the clef-clear path (2,3,5)
and an interprocedural pair since the pair crosses
proc3. The pair (g5, y7) for the local variable y is not
an interprocedural pair since the pair does not cross
Proc2. Hence, (YS,VT) is an intraprocedural pair.

3 Integration Testing

In data flow testing, after the clef-use pairs in a pro-
gram have been computed, test cases are generated
manually or automatically to exercise clef-use pairs ac-
cording to a selected coverage criterion [14, 5]. For
example, the ail- clefs criterion requires that for each
definition a path to at least one reachable use is exer-
cised in some test case.

The objective of integration testing is to organize
the overall testing effort by explicitly separating the
testing of the code within a procedure from the testing
of the procedure interfaces. To achieve this separation,
data flow testing is divided into several phases, an ini-
tial unit testing phase and several integration testing
steps.

Unit Testing
During unit testing each procedure is tested in iso-
lation based on only the intraprocedural clef-use pairs
within the procedure. When testing an individual pro-
cedure p without considering its actual calling context
in the program, certain assumptions must be made
concerning the interfaces to other procedures. Tem-
porary definitions are inserted to provide initial val-
ues for each formal parameter and each global variable
that is used in procedure p. Furthermore, if p contains
procedure calls, worst case assumptions must be made
about the possible side effects of the called proce-
dures. Thus, it is assumed that no clef-clear paths ex-
ists through a called procedure g for variables that are
addressable in q. As the integration proceeds, tempo-
rary definitions are removed and actual clef-clear paths
through called procedure are identified and tested.

Consider the example in Figure 1. During unit test-
ing, two temporary definitions fin and gin are added
for the formal parameters f in proc2 and g in proc3,
respectively. Each call site is assumed to redefine
the value of the global variable z. Table 1 shows
the intraprocedural clef-use pairs that result in each
procedure. In addition the temporary clef-use pairs
(fin, flol,(fi~, fll), (gi~, glA) and (gin, gls) are consid-
ered during unit testing.

Integration Steps
After the individual units have been tested, the inter-
actions among procedures are tested separately during
procedure integration. The integration takes place in
several integration steps. During each step, one or
more procedures are selected for integration accord-
ing to an integration strategy, such as bottom-up or
top-down integration [11]. Testing at each integration
step involves only clef-use pairs that cross one of the
currently integrated procedures.

We assume for simplicity that during each step a
single procedure q is integrated with one of its call-

Algorithm ComputeCross (p, q)
Input: p, q: proc. in a program P prior to integration;
Output: the set Cross(p, q)
1.

2.
3.
4.
5.

6.

7.
8.
9.
10.
11.
12.
13.
14.

Cross := 0;
let P’ be the program after integrating q;
for each call site s in p where s ~ call(g) do

for each variable v such that bind, (tJ) # @ do
compute Def = RD(v, s, P);

compute Use = u RU(W, entryq, P’);

wcband, (v)

add {(d, u) I d G Dej, u c Use} to C’ros~
endfor
for each variable v E Giobal do

compute Def = RD(v, exitq, P);
compute Use = RU(V, s, P’);
add {(d, u) I d ~ Dej, u c Use} to Cros~

endfor;
endfor;

Figure 2: Algorithm Compute Cross.

ing procedures p. To integrate procedure q with p the
temporary definitions for formal and global variables
in procedure q are removed and every call site in pro-
cedure p that calls q is considered. The clef-use pairs
tested during the integration step are the interproce-
dural pairs that are established by the integration of
g with p. These newly established pairs are captured
in the set Cross (p, q) defined as follows:

Definition 10 Let p and q be two procedures, such
that p calls q. The set Cross (p, q) of cross pairs
consists of the interprocedural pairs (d, u) that cross
q such that there exists a calt site s c call(q) in p and
either d reaches s or u is a reachable use at s.

Consider the integration of proc2 with procl in Fig-
ure 1 at the call at node 6 and assume that proc9 has
not yet been integrated. The clef-use pairs that cross
proc2 via the call at node 6 are Goss (procl,proc2) =

{(~2, ~7), (Y5, flo), (?45,fll)}.
A pair in Cross (p, q) may cross several call sites.

However, a clef-use pair will not be considered for test-
ing unless there exists a clef-clear path that crosses
only procedures that have already been integrated. If
a clef-use pair has multiple clef-clear paths that each
cross different procedures then the pair may be con-
sidered for testing during multiple integration steps.

Consider again the integration of proc2 with procl

)
in Figure 1. The pairs (y5, g14) and (Y5, g15 cross call
sites of proc2 and proc3. However, not unt i both pro-
cedures proc2 and proc3 are integrated can it be de-
termined that there exists a clef-clear path from 95 to
glA crossing both proc2 and proc3 via the call sites at
nodes 6 and 11. Hence, the two pairs are not consid-
ered for testing until both procedures proc2 and proc3
have been intem-ated.~–

The computation of Cross (p, q) is described in al-
gorithm Compute Cross shown in Figure 2.
Cross (p, q) is computed by considering one

The set
call site

578

Js 6 call(q at a time. For each such call site s cross
pairs are etermined in two steps.

Cross-on-entry: Firstj the pairs that cross proce-
dure q on entry are determmed (lines 6-8) by matching
the definitions that reach the call site s with the uses
that are reachable at the entry of procedure q. To
include the clef-use pairs that cross the called proce-
dure both on entry and on exit, the reachable uses
are computed in the program with procedure q being
integrated.

Cross-on-exit: Next, the pairs that cross proce-
dure q on exit are determined (lines 11-13). These
pairs result by matching the definitions that reach the
exit of procedure g with the uses that are reachable
from the call site in p. Reaching definitions are com-
puted prior to the integration of procedure q to ex-
clude the pairs that cross q both on entry and on exit
and avoid their repeated computation.

Consider again the integration of proc2 with procl
at node 6 in Figure 1 assuming that proc3 has not yet
been integrated. The following sets are computed to
determined the cross-on-entry pairs:
Pairs for variable C:

RD(z, 6, P) = {z2} and HI(z, 9, P’) = {m}
Pairs for variable y:

ED(Y, 6, P) = {YE.} and RU(~, 9, ~’) = {~lo, ~11}.

\
The set Cross procl, proc$’) results as {(~z, z?),
(Y5, flo)> (Y5, !11 }. There are no Cross-on-exit Pairs
prior to the integration of procedure proc3.

The efficiency of Comput eCross depends primarily
on the algorithm that is used to compute the data flow
sets RD and R U. We show in the following section that
a fast computation of these sets is possible through
demand-driven analysis.

4 Def-Use Pairs on Demand

This section presents the demand-driven algorithm
for computing the set RD(w, n, P) of interprocedural
reaching definitions. A corresponding algorithm for
the symmetric problem of computing reachable uses
follows in a straightforward way.

In traditional reaching definition analysis, defini-
tions are exhaustively propagated from their genera-
tion points to all the points that they reach. Demand-
driven analysis avoids exhaustive computations by
reversing the original analysis process. Exhaustive
forward propagation is replaced with a goal-oriented
backward search. The search is triggered by a query
for the definitions that reach a selected node and
terminates as soon as all nodes that contain a rele-
vant definition have been found. A query is a triple
?RD(v, n, P) and represents a request for the compu-
tation of the set RD(v, n, P). We use c to denote the
empty query. The resolution of a query is fully de-
scribed by the two propagation rules shown in Figure
3 (i). A propagation rule describes how a query at a
node n is translated into an equivalent union of zero
or more new queries at predecessor nodes of n. Asso-
ciated with each propagation rule is an action to guide
the collection of definitions.

Algorithm Cornpute-RD (v, n, P)
Input: v: a variable, n: a node in a program P
Output: the set RD(v, n, P)
1. worldist := (v, n);
2. while worldist is not empty do
3. remove a tuple (0, n) from worldist;
4. if n = entryP for some proc. p
5. then apply Rule 1 (with action);
6. else apply Rule 2 (with action);
7. for each new query RD(v, m, P) do
8. add the tuple (v, m) to worklist;
9. endwldle
10. return the set of collected definitions;

Figure 4: Algorithm Compute-RD (v, n, P).

Rule 1: Procedure entry ?RD(v, entryg, P)): If v
is not local to q then the query is translated into a
union of new queries, one at each call site s c call(g).
If v is local or q is the main program, the query 1s
translated into ~. The action associated with this rule
is empty since no definition sites are encountered.

Rule 2: Non-entry node ?RD(v, n, P)): The query
is translated into a union of new queries, one at each
predecessor m c pred(rt). To determine the new query
we define the following variables at each node m:

Pres~ =
{

true if v is not re-defined at m

false otherwise

Def~ = set of clefs. of v that may be generated
at m and that reach the exit of m

If Pres$ = true (i.e., v is preserved at m), then the
query propagates to predecessors m. If Pres~ = false
(i.e., v is re-defined at m) the propagation terminates
at m and the new query for m is c. The action is to
collect any definitions of v that are generated.

For a node m that does not contain a procedure
call, the variables Pres~ and Def# are determined by
a local inspection of node m. Determining the two
variables if m represents a call to a procedure q re-
quires knowledge about the side effects of invoking q.
If variable v is not global, the call cannot have any
side effects on the reaching definitions for v. Hence,
Pres~ = true and Defl = 0. Otherwise, we perform
analysis to compute the side effects of procedure invo-
cation. The side effect analysis is described in detail
in the next section.

Based on the availability of the variables Pres~ and
Def~ we can use a simple worklist algorithm for the
demand-driven evaluation of a query as outlined in
Figure 4. Algorithm Compute.RD proceeds by itera-
tively applying the propagation rules to a worklist of
maintained queries until no more new queries can be
generated. At this point all requested reaching defi-
nitions have been encountered and the evaluation ter-
minates. Since each variable can be queried at most

579

(Rule 1) Procedure Entry Node:

h
if v is local to p

?R&D(w, s, P) if v is not local and v c birzd~(w)
\

{Action: none)?RD(v, entrgP, P) =

(Rule 2)

(SEcdl(p))

Non-Entry Node:

u{ ?RD(v, m, P) if Pres~ = true
?RD(v, n, P) ~

E otherwise \
{Action: collect Def~}

Side Effect

naepred(n) ‘
,

(i)

Variables:

P: [ezi~] = true

P: [n] =
P; [m] A Pres~

~c.!.~.) I ‘~[ml A p~[entr%] if m c .aii(r)

if m is not a call

D; [ezitP] = 0

(D; [m] U Def& if m is not a call and P; [m] = true

otherwise

(ii)

rules (i) and side effect variable definition (ii).

once at each node, the worst case number of gener-
ated queries during each execution of Compute_RD
is D x N, where N is the number of nodes and D
is the number of definitions of the variables in the
largest address space of any one rocedure in the an-

ralyzed program. Assuming that pred(n)] is bounded
by a small constant, the processing of each generated
query requires the inspection of at most c nodes, where
c = maz{ Icali(q)l I q is a procedure in P }. Hence,
the overall worst case running time is O(c x D x N).

4.1 Computing Side Effect Variables

We consider now the computation of the side effect
variables Pres v

L
and Def~v for a call site s. We fol-

low the two p ase approach to interprocedural data
flow analysis that accurately accounts for the calling

/
context of each procedure 19, 2, 8]. During the first
phase the side effects of possibly recursive) proce-
dures are analyzed independent of their calling con-
texts. The second phase determines the effect of a call
by appropriately adjusting the side effect information
to the context of the call. Unlike previous approaches
that compute side effects exhaus~ively
dures [2, 8], we compute the side effect

for ~11proce-
variables in a

demand-driven fashion as they are needed during the
query evaluation.

Phase 1: The side effect of a procedure q on a global
variable v is computed in a boolean variable PQW[n]

and a set D; [n] for each node n in q as defined in Fig-
ure 3 (ii), where A and V denote boolean conjunction
and disjunction, respectively. P; [n] is set to true (pre-
served) if there exists a clef-clear path for v from n to
the exit of q. Otherwise, P; [n] is false. D: [n] is the
set of definitions that reach the procedure exit along
some path starting at n.

Phase 2: The procedure side effects are fully de-
scribed by the values on procedure entry: P; [entryq]

and D; [entryq]. Using these values we determine the
side effects for a global variable v at a call site s
with s G call(q) as Pres~ = Pgv [entryq] and De~v =

D: [entryq].

Note that Pres~ can be directly set to true and
De f~w to O,without having to evaluate side effect equa-
tions, if it is known that neither q nor a procedure
directly or indirectly called by q contains a textual
reference to v.

Figure 1 shows the side effect variables for the

580

global variable x in Tables 2 and 3. For instance,
the entry Pres$ = P&C3[entryPrOC3 = 13] = true ex-

presses that the value of x may be preserved through-
out the execution of procedure proc3 and Deft =
D~rOC9[entryPrOc3 = 13] = {$15} is the set of defini-
tions of x that reach the exit of procedure proc3.

The solution of the equations P; and D; is the
least fixed point based on the initial values P: [n] =

false and D; [n] = 0. When the values for P~[en@q]

and D; [entryg] are requested a worklist is initialized
with the triple (ZI, exitg, q) to trigger the computation.
During each step a triple (v, n, P) is removed from
the worklist, the corresponding equations P; [n] and
D; [n] are evaluated and if their values have changed,
the triple for each dependent equation that may be
affected by the change is added to the worklist. Each
invocation of the worklist algorithm results in only a
partial evaluation of the equation system. The value
of each of the O(D x N) equations can change at most
once and each change can result in the inspection of at
most c other nodes. Thus, assuming that the equation
values are maintained between k subsequent side effect
variable requests, the accumulated worst case running
time for the k requests is O(max(k, c x D x N)).

Example: We illustrate the query evaluation for
the program in Figure 1 with the query ?IZD(Z, 5, P)
which requests the definitions of variable x that reach
node 5. When the query is propagated across the call
proc3(z) at node 4, the side effect variables Pres$ and
Deff are computed. Pres~ = P&C3[13] = true in-
dicates that the query is preserved. Hence the new
query ?RD(z, 4, P) is enerated and the definition
Def~ = D~rOC3[13] = ~Z15} is collected. Next, the
query ?RD(z, 4, P) is propagated through node 3 re-
sulting in the new query ?RD(x, 3, P). Since node 2
contains definition X2, applying rule 2 yields e as the
new query and causes the collect ion of definition z z.
As no new queries have been generated, the search ter-
minates with the set of reaching definitions {X2, z 15}.

4.2 Reference Parameters and Aliases

Two variables x and y are aliases in a procedure q if x
and y may refer to the same location during some invo-
cation of q. Alias pairs maybe introduced by reference
parameter passing. For example, if the same actual
parameter is psssed to two formal parameters fl and
fz, then (fl, fz) is an ali~ pair in the called procedure.
Ignoring aliasing during the analysw may lead to un-
safe query res onses; some of the clef-use pairs may

rbe missed. In 4] we discussed analysis refinements for
safely handling aliasing in constant pro agation using

fseparately computed alias information 3]. We can use
the same approach for safely refining the propagation
rules from Figure 3 to handle reference parameters.
According to these refinements Pres~ is set to true if
v or any alias of v is preserved during the execution
of n. Analogously, the set De fn” is determined by col-
lecting the definitions not only for v but also for any
alias of v. Further details can be found in [4].

Table 4: Test suite

program lines N P calls pairs steps

queens 89 150141 41 119 4
1 i , I I !

cat 240 I 377 I 5 4 165 4

calendar 352 731 10 14 236 9

getopt 395 739 5 6 268 4

linpack 564 686 12 30 1160 14

patch 753 1316 14 13 599 12

gzip 1387 3024 38 123 1461 68

grep 1488 2906 32 72 1048 47

sort 1528 3554 35 145 1570 80

dc 1576 3298 67 230 1958 153

4.3 Caching

The query evaluation of algorithm Cornpute.RD can
result in at most D x N requests for side effect vari-
ables. Thus, the overall running time including the
time for computing side effects is O(c x D x N) and
O(D x N) space is needed to store the queries and side
effect variables.

The response time to a sequence of k queries can
be improved by storing intermediate query results in
a cache memory for fast reuse in future query evalua-
tions. The cache memory is inspected prior to gener-
ating a new query and the new query is generated only
if no previous results for the query are stored in the
cache. Entries are added to the cache after each termi-
nated query evaluation such that a definition that was
collected at a node n is added to the cache entry at
all reachable visited nodes. Caching does not incresse
the asymptotic cost of the algorithm. The worst case
time complexity for k < D x N queries using caching
is O(c x D x N) and the space requirements remain
O(D x N). Importantly, the worst case complexity
is no worse than for a standard exhaustive algorithm
for interprocedural reaching definitions based on the
Sharir/Pnueli framework [19].

5 Experiments

We implemented the demand-driven algorithm pre-
sented in the previous section in the context of
bottom-up integration testing. The procedures in a
program are integrated in depth-first (bottom-up) or-
der of the program’s call graph. The call graph con-
tains one node for each procedure and there is an edge
[q, p) if procedure q calls procedure p. During each
mtegratlon step one edge (q, p) in the call graph is
processed and the new clef-use pairs are determined
as described by algorithm Compute Cross from Figure
2. To evaluate the performance of the demand-driven
analyzer during the integration we also implemented
two other analyzer versions: an exhaustive analyzer
and an incremental analyzer. The different analyzer
types vary in the way they compute the data flow sets

581

that are accessed in Compute Cross:

● The (caching) demand-driven analyzer
The demand-driven analyzers for both interprocedural
reaching definitions and reachable uses are based on
the algorithm presented in Section 4. Two versions
of’ each analyzer were implemented: a caching and a
non-caching version.

. The exhaustive analyzer
The exhaustive interprocedural reaching definition
analysis is based on a standard iterative fixed point
algorithm of Sharir and Pnueli’s functional approach
to interprocedural analysis [19]. The exhaustive an-
alyzer, that is implemented based on bitvectors, re-
computes the reaching definitions in the program from
scratch at the beginning of each integration step.
However, we optimized the computation by perform-
ing exhaustive analysis only over the procedures that
are affect ed by the current integration step. If the call
edge (q, p) is currently being integrated, only proce-
dures that are connected to q or p in the call graph
along previously integrated edges are affected and in-
cluded in the exhaustive re-analysis of the current
step.

● The incremental analyzer
We also implemented an incremental version of the ex-
haustive analyzer using bitvectors. The incremental
analyzer maintains the complete exhaustive solution
between subsequent integration steps. The number of
established reaching definitions and clef-use pairs in-
creases as the integration proceeds. Thus, the reaching
definition solution that was valid at a previous integra-
tion step may be incomplete for the current step but
does not contain any false reaching definitions. Hence,
the incremental update problem is particularly simple
and requires no deletions. The previous solution can
be extended by simply using it as the initial value to
re-start the fixed point iteration for the current inte-
gration step.

We conducted two sets of experiments to evaluate the
performance of the three analyzer types when used
for data flow integration testing. The performance of
each analyzer was measured on a Sparcstation 5 for a
test suite of C programs, shown in Table 4. Except
for program queens, the programs are core routines of
Unix utility sources ranging from 89 to 1576 code lines.
Table 4 shows the number of nodes N, the number of
procedures P., the number of calls, the total number
of clef-use pairs and the number of integration steps
for each program. All reported analysis times are cpu
times in seconds.

5.1 Experiment I

In the first set of experiments we compared the per-
formance of the demand-driven analyzer (without and
with caching) with the performance of the exhaustive
analyzer. We measured the analysis times during the
integration and determined for each test program the
accumulated analysis times shown in Table 5, where:

I Table 5: Analvsis times (in seconds)\

Tprogram e= T~d T;:che T;
ancr

queens 0.17 0.06 0.09 0.08

cat 0.52 0.20 0.22 0.29

calendar 0.78 0.20 0.21 0.32

getopt 3.80 0.98 0.99 1.43

linpack 3.95 0.49 0.57 1.25, I 1 I

patch 17.01 5.76 5.27 3.51

gzip 96.87 15.53 23.88 14.85

grep 57.86 5.50 4.69 6.44

sort 193.76 9.22 7.58 15.00

dc 66.48 2.58 2.17 13.38

Tez = ace. time of exhaustive analysis.

Tdd = ace. time of demand-driven analysis with-
out caching

T;;che = ace. time of demand-driven analysis with
caching

We calculated the speedups: S1 = Tes/ Tdd and S2 =
TeZ/ T~:che of the demand-driven analyzer (without
caching and with caching) over the exhaustive ana-
lyzer. Figure 5 (i) and (ii) display the two speedups S1
and S2. The demand-driven analyzer without caching
is significantly faster than the exhaustive analyzer by
a factor ranging from 2.6 to 25.7. As shown in Figure 5
(ii), adding caching resulted in similar speedups rang-
ing from 2.3 up to 30. Compared to the non-caching
version, caching increased the speedup for the 5 larger
programs, but did not pay off for the 5 shorter pro-
grams since the number of cache hits was too small to
compensate for the overhead of allocating and main-
taining the cache. In larger programs where an indi-
vidual query is more expensive, the savings from cache
hits quickly outweigh the cache overhead.

Figure 5 (i) and 5 (ii) show that the speedups of the
demand-driven analyzer tend to grow with increasing
program size (in terms of code lines).

5.2 Experiment II

We conducted a second set of experiments to com-
pare the performance of the demand-driven analyzer
with the performance of an incremental analyzer. We
ran the integration system using the incremental an-
alyzer and measured the accumulated analysis time
T The results are shown in Table 5. Figures 6
({~~nd 6 (ii) display the speedups: S3 = ~nC,/ Tdd
and S. I ~nCr/ T~~cheof the demand-driven analyzer
(without and with caching) over the incremental ana-
lyzer. Except for two programs (patch and gzip) the
demand-driven analyzer without caching is faster than
the incremental analyzer up to a factor of 5.18. The
demand-driven analyzer without caching has an addi-
tional advantage over the incremental analyzer in that
no storage of information other than the clef-use pairs

582

300 —1 queens 283

cat 26

250 calendar 39

getopt 387

200

~1::
mpac

pate
150

grip

-5?”’
100

[

8 sort

?

:; JIU 114 . c
1 i I I I

(i) S1 = Tez/ Tdd

30.0

25.0

20.0

15.0

10.0

[

5.0
F 11~

calendar

getopt

mpac

pate

%p

!#
&?$YW% “

. sort2>

I

c

00 UBII Ill
1 I I I I

(ii) S2 = J&/ T;:’he

Figure 5: Speedups: demand-driven over exhaustive.

is required between integration steps. In contrast, the
incremental analyzer maintains the complete reach-
ing definition solution in addition to the clef-use pairs
throughout the integration.

As in experiment I, adding caching did not signifi-
cantly impact on the speedups. Compared to the non-
caching version caching improved the speedups for the
five larger programs and results in a slight slowdown
for the five shorter programs. As shown in Figure
6 (ii), the caching demand-driven analyzer achieved
speedups over the incremental analyzer in all but one
program (patch) up to a factor of 6.16.

We examined the programs patch and gzip and
found that they have a high percentage of global vari-
ables. Queries for global variables may require much
longer propagation paths than queries for locals, which
explains why demand-driven analysis does not per-
form as well.

6.0 —1 - queens 1.33

cat 1.45

5.0 — calendar 1.6

getopt 1.45

4.0 repack 2.55

patch 0.61
3.0 —

gzip 0.65

2.0
~

sort 1.

1.0

11111 d : ‘:

% c 5.

0.0 IU
I , I I 1

(i) 5’3 = finw/ Tdd

6.0 —1 %_ queens 1.14

cat 1.31

5.0 — calendw 1.52

getopt 1.44

4.0 repack 2.19

patch 0.66
3.0 —

gzip 1.04

2.0
gre~fv

sort 1.97

1.0
@

ylll[I I : d 16

C6.
,“.
h

0.0 h

(ii) S, = T~neTl T%he

Figure 6: Speedups: demand-driven over incremental.

6 Related Work

The demand-driven algorithm presented in this paper
is a specialized and optimized instance of our formal
framework for demand-driven interprocedural analy-

I
sis 4]. Other general frameworks for demand-driven
ana ysis were presented by Reps, Horwitz and Sagiv
[15, 10, 17]. Their recent approach [10, 17] trans-
forms a data flow problem into a special kind of graph-
reachability problem. The graph for the reachability y
problem, the exploded supergraph, is obtained as an ex-
pansion of a program’s control flow graph. The major
difference between their approach and our work is the
necessity to construct for each data flow problem an
exploded supergraph, whose size can be substantial.
During experimentation with the graph-reachability
analyzer for copy constant propagation, the analyzer
ran out of virtual memory for some C programs of
about 1,300 lines [18]. Although their two-phase vari-
ation of the initial graph-reachability algorithm [17]
resulted in a more compacted version of the exploded

583

supergraphs for copy constant propagation, the size
of the graph remains the same in problems such as
reaching definitions or reachable uses.

A framework for partial data flow analysis by Gupta
and Sofia [7] yields search algorithms that are similar
to our demand-driven algorithm, but are limited to
intraprocedural analysis. Def-use pairs also play an
important role in program slicing [21]. Interprocedu-
ral clef-use pairs are implicitly determined as part of an
interprocedural program slice [21, 9]. However, previ-
ous precise interprocedural algorithms [9] are not suit-
able for computing interprocedural clef-use pairs since
their computation is not explicit but interleaved with
the slice construction.

Incremental data flow analysis [16, 13] addresses the
problem of updating an existing exhaustive solution
in response to program changes. Thus, in contrast to
demand-driven analysis, incremental analysis requires
the computation and maintenance of an exhaustive
solution. As pointed out earlier, the incremental up-
date problem that arises during integration testing is
particularly simple. To handle more general types of
program changes the incremental algorithms in [16, 13]
perform additions, deletions and structural updates of
;he solution.

Data flow testing at the integration level was pre-
viously discussed by Harrold and %ffa [81. The au-
thors ~resented an ;nterprocedural data %w analysis
to compute clef-use pairs (exhaustively) over the com-
plete program.

Another related field is regression testing. The
analysis task in regression testing is to determine the
test requirements for a modified program to ensure
that no errors are introduced into previously tested
code. Selective regression testing [12? 20, 6, 1] at-
tempts to re-test only those clef-use pairs that are af-
fected by the modification.

Note that the integration of a procedure could be
viewed as a program modification. However, unlike
general program edits that give rise to regression test-
ing, the integration of a procedure does not invalidate
previous tests. On the contrary, it is precisely the in-
tent of integration testing to test procedure interfaces
in isolation while assuming that the code within each
procedure has already been satisfactorily tested.

References

[1]

[2]

[3]

[4]

H. Agrawal, J. Horgan, E. Krauser, and S. London.
Incremental regression testing. In Conf. on Software
Maintenance, pages 348-357, Sept. ’93.

D. Callahan. The program summary graph and flow-
sensitive interprocedural data flow analysis. In SIG-
PLAN ’88 Conf. on Programming Design and Imple-
mentation, pages 47–56, June ’88.

K. Cooper. Analyzing aliases of reference formal pa-

rameters. In I.Zth ACM Syrnp. on Principles of Pro-
gramming Languages, pages 281–290, ’85.

E. Duesterwald, R. Gupta, and M.L. Sofia. Demand-

driven computation of interproceduraJ data flow. In
22nd ACM Sgrnp. on Principles on Programming
Languages, pages 37-48, Jan. ’95.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

P.G. Franld and E.J. Weyuker. An applicable family

of data flow testing criteria. IEEE Transactions on
Software Engineering, SE-14 (1 O):1483-1498, Oct. ’88.

R. Gupta, M.J. Harrold, and M.L. Soffa. An approach

to regression testing using slicing. In Cont. on Soft-
ware Maintenance, pages 299–308, Nov. ’92.

R. Gupta and M.L. Sofia. A framework for partial

data flow analysis. In Int. Conf. on Software Mainte-
nance, pages 4–13, Sept. ’94.

M.J. Harrold and M.L. Soffa. Interprocedural data

flow testing. In %d Testing, Analysis and Verification
Symp., pages 158-167, Dec. ’89.

S. Horwitz, T. Reps, and D. Birddey. Interprocedural

slicing using dependence graphs. ACM T~ansactions
on Programming Languages and Systems, 12(1):26–
61, 1990.

S. Horwitz, T. Reps, and M. Sagiv. Demand inter-

procedural dataflow ansJysis. In 3rd ACM SIGSOFT
Symp. on the Foundations of Software Engineering,

Oct. ’95.

G.J. Myers. Software reliabdity: principles and prac-
tices. Wiley-Interscience, New York, ’76.

T. J. Ostrand and E.J. Weyuker. Using dataflow

analysis for regression testing. In 6th Annual Pa-
cific Northwest Software Quality Conf., pages 233–

247, Sept. ’88.

L. Pollock and M.L. Soffa. An increments version of

iterative data flow analysis. IEEE Trans. on Software

Engineering, 15(12):1537-1549, Dec. ’89.

S, Rapps and E. Weyuker. Selecting software test

data using data flow information. IEEE Trans. on
Software Engineering, 11(4):367-375, Apr. ’85.

T. Reps. Solving demand versions of interprocedu-

rsJ analysis problems. In 5th Int. Conf. on Compiler
Construction, pages 389-403. Springer Verlag, LNCS
786, Apr. ’94.

B.G. Ryder and M.C. Paull. Incremental data flow

analysis algorithms. ACM Trans. Programming Lan-
guages and Systems, 1o(1):I-5O, ’88.

M. Sagiv, T. Reps, and S. Horwitz. Precise inter-

procedural dataflow anaJysis with applications to con-
st ant propagation. In FA SE 95: Colloquim on Formal
Approaches in Software Engineering, pages 651–665.
Springer Verlag, LNCS 915, May ’95.

M. Sagiv, T. Reps, and S. Horwitz. Precise interproce-

dural dataflow analysis with applications to constant
propagation. Technical Report TR-1284, Computer
Science Department, University of Wisconsin, Madl-
son, WI., Aug. ’95.

M. Sharir and A. Pnueli. Two approaches to interpro-

cedural data flow analysis. In S. Muchnick and N. D.
Jones, editors, Program Flow Analysis: Theory and
Apphcatioras, pages 189–234. Prentice-Hall, ’81.

A.M. Taha, S.M. Thebut, and S.S. Liu. An approach

to software fault localization and revalidation based
on incremental data flow analysis. In COMPSA C’89,
pages 527–534, Sept. ’89.

M. Weiser. Program slicing. IEEE Trans. on Sofiware

Engineering, SE-10(4):352-357, Jul. ’84.

584

