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Abstract - Parallel programs are commonly written 
using barriers to synchronize parallel processes. Upon 
reaching a barrier, a processor must stall until all parti- 
cipating processors reach the barrier. A software imple- 
mentation of the barrier mechanism using shared vari- 
ables has two major drawbacks. Firstly, the execution 
of the barrier may be slow as it may not only require 
execution of several instructions and but also result in 
hot-spot accesses. Secondly, processors that are stalled 
waiting for other processors to reach the barrier are 
essentially idling and cannot do any useful work. In this 
paper, the notion of the fuzzy barrier is presented, 
that avoids the above drawbacks. The first problem is 
avoided by implementing the mechanism in hardware. 
The second problem is solved by extending the barrier 
concept to include a region of statements that can be 
executed by a processor while it awaits synchronization. 
The barrier regions are constructed by a compiler and 
consist of several instructions such that a processor is 
ready to synchronize upon reaching the first instruction 
in this region and must synchronize before exiting the 
region. When synchronization does occur, the processors 
could be executing at any point in their respective bar- 
rier regions. The larger the barrier region, the more 
likely it is that none of the processors will have to stall. 
Preliminary investigations show that barrier regions can 
be large and the use of program transformations can 
significantly increase their size. Examples of situations 
where such a mechanism can result in improved perfor- 
mance are presented. Results based on a software 
implementation of the fuzzy barrier on the Encore mul- 
tiprocessor indicate that the synchronization overhead 
can be greatly reduced using the mechanism. 

Keywords - multiprocessor systems, barrier synchroni- 
zation, parallelizing compilers. 
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1. Introduction 

In order to achieve efficient parallel execution of 
tightly synchronizing streams of instructions, the 
development of fast synchronization mechanisms is 
essential. A commonly used mechanism for synchroniz- 
ing the parallel execution of streams is the barrier[l]. 
An application that creates streams for exploiting fine- 
grained parallelism schedules the parallel execution of 
streams on processors. Upon reaching a barrier the pro- 
cessor must wait until all participating processors reach 
the barrier. Barriers may be automatically introduced 
by a parallelizing compiler[2] or may be introduced 
explicitly by the programmer[3]. Barriers can be easily 
implemented in software using one or more shared vari- 
ables. However, such implementations entail significant 
run-time overhead as they require execution of several 
instructions in each stream in order to achieve synchron- 
ization. The synchronization overhead increases 
linearly, or for the best possible software implementa- 
tion, logarithmically[4] with the number of processors 
synchronizing at the barrier. Furthermore, the tech- 
niques are known to cause hot-spot accesses[4]. A pro- 
cessor upon reaching a barrier is idle until other proces- 
sors also reach the barrier[l]; thus no useful work is done 
by the processor while waiting to synchronize at the 
barrier. In this paper the notion of the fuzzy barrier, a 
mechanism that reduces both the run-time overhead and 
the idling of processors, is introduced. 

In order to reduce the run-time overhead due to 
execution of additional instructions, barriers specified in 
instruction streams are detected by the hardware to 
ascertain when a processor is ready to synchronize. All 
participating processors are simultaneously informed of 
this event, and when all of the processors have reached 
the barrier, they simultaneously recognize that syn- 
chronization has taken place. This eliminates the run- 
time overhead caused by executing several instructions 
to achieve barrier synchronization. However, a single 
instruction is required to initialize a barrier. Once this 
has been done, the processors can repeatedly synchronize 
without executing any overhead instructions. Since the 

l A patent application for the fuzzy barrier has already been 
Bled. 
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cost of using a barrier mechanism is extremely low it can 
be used frequently, thus facilitating the exploitation of 
fine-grained parallelism. Ho&pot accesses are avoided 
as the mechanism does not rely upon shared memory to 
achieve synchronization. The above strategy applies 
only to situations in which the processes synchronizing 
at a barrier are simultaneously executing on different 
processors. Thus, the number of streams synchronizing 
at a barrier can at most equal the number of processors 
in the system. 

In order to reduce the idling time of processors at 
barriers, estimates of the time taken to execute different 
parts of a program are first used by the compiler to 
schedule approximately equal amounts of work on each 
processor between successive barrier synchronizations. 
However, even if the compiler distributes the computa- 
tion so that all processors execute identical code, they 
may not arrive at a barrier at the same time. The code 
being scheduled may contain conditional statements and 
different processors may follow different control paths 
and thus execute varying number of instructions. Furth- 
ermore, the times for memory accesses may vary for 
different processors. Due to a cache miss, a processor 
may fall behind in execution even if all processors are 
executing identical instructions. The barrier mechanism 
should be able to tolerate drift in the speed of execution 
of processors if idling at the barriers is to be reduced. 
The fuzzy barrier mechanism provides tolerance to this 
drift by specifying a range of instructions over which the 
synchronization is to take place rather than a specific 
point at which the processors must synchronize. Upon 
reaching the first instruction in this range, a processor is 
ready to synchronize. However, it can continue to exe- 
cute the remaining instructions in the region even if syn- 
chronization has not yet occurred. The mechanism, 
though implemented in hardware, relies upon the com- 
piler to discover this range of instructions. The proces- 
sors may be executing different instructions from the 
specified range of instructions at the time of synchroni- 
zation; hence the name fuzzy barrier. 

A flexible barrier of the kind described has several 
advantages. If the processors in the system are pipe- 
lined, repeated synchronization is less likely to degrade 
the performance of the pipeline because the synchroniza- 
tion point is not exactly specified. Thus upon reaching a 
barrier, the processor may be able to issue instructions 
even if the synchronization has not taken place. Since 
there is almost no synchronization overhead, concurren- 
tizable loops requiring barrier synchronization can be 
efficiently executed on multiple processors even if the 
size of the loop body is relatively small. Application of 
transformations such as cycle shrinking[5] depend 
heavily upon use of barriers. Availability of an efficient 
barrier mechanism makes their application practical. A 
parallelizing compiler can employ such a mechanism to 
exploit instruction level parallelism using techniques 
similar to those used in VLIW machines[578]. 

In subsequent sections the semantics of the fuzzy 
barrier is described in detail. An example showing the 

compilation process to exploit such a mechanism is 
presented. Code reorganization techniques to increase 
the range of instructions over which synchronization is 
to occur are described. Potential ways in which the 
mechanism can be used to achieve higher speed-ups are 
presented. An implementation of the mechanism in a 
prototype multiprocessor system based upon RISC(S] 
processors is currently in progress. The issues of using 
the barrier mechanism in presence of interrupts and sub- 
routine calls are not addressed in this paper. 

2. Semantics of the Fuzzy Barrier 

Instruction streams are viewed as consisting of 
barrier regions and non-barrier regions. In Fig. 1 the 
shaded regions represent barrier regions and the 
unshaded regions are non-barrier regions. Streams with 
no barrier regions have no barrier synchronizations, 
while a shaded region extending across all or a subset of 
streams indicates a barrier and forces the processors to 
synchronize. The barrier regions for different streams 
may contain varying number of instructions. The func- 
tionality of the fuzzy barrier is briefly described as fol- 
lows: 

No processor can execute an instruction from its 
respective non-barrier region (UNSBADED2) fol- 
lowing the barrier region (SHADED) until all pro- 
cessors have executed the instructions in their 
respective non-barrier regions (UNSHADEDL) 
preceding the barrier region. 

i.e., V i UC can be executed iff V j Cry have been 
executed 

Pl PI PI1 

4: Ji2 - 
IRRRRGIC+l(MSRNXDl) 

REGION (SEMIED) 

Fig. 1. Fuzzy Barrier 

The semantics of the mechanism is described in 
detail below. 

Definition: A processor is considered to have exited a 
region (barrier or non-barrier) of a stream if it has com- 
pleted the execution of all the instructions in that 
region. It has entered a region if it has started the exe- 
cution of an instruction from that region. 

Definition: A processor is ready to synchronize if it 
has exited the non-barrier region preceding a barrier 
region. It should be noted that exiting this non-barrier 
region is not same as entering the barrier region for a 
pipelined machine, for a pipelined machine overlaps the 
execution of multiple instructions. Therefore, a processor 
may enter the barrier region before exiting the preceding 
non-barrier region. 

Condition for Synchronization: Processors have 



synchronized at a barrier if and only if they have all 
exited their respective non-barrier regions preceding the 
barrier region. 

Condition for Stalling: A processor can enter a non- 
barrier region following a barrier region if and only if 
synchronization has occurred. Thus, if the synchroniza- 
tion is yet to occur when the processor exits the barrier 
region, it is not allowed to enter the non-barrier region 
and must idle. In other words, the execution of the 
stream is stalled. 

From the above description it is clear that when 
the execution of a stream reaches the first instruction of 
a barrier region, it does not have to stop immediately 
but can continue to execute even if other streams 
haven’t reached their corresponding barrier regions. 
Similarly upon reaching the last instruction in a barrier 
region, the processor can continue even if other proces- 
sors have not reached the end of their corresponding 
barrier regions. If the barrier region for a stream con- 
sists of n instructions, then at the point of synchroniza- 
tion, the processor could have executed 0 to n instruc- 
tions from the barrier region. The tolerance of the 
mechanism to the variation in the rate at which each 
stream progresses is limited by the number of instruc- 
tions in the barrier regions. Thus, the larger the barrier 
regions, the less likely it is that the processors will stall. 

3. Branch Instructions in Barrier Regions 

The instructions that form a barrier region can 
contain unconditional as well as conditional branch 
instructions. Thus, any sequence of instructions that are 
consecutive along a control path in the program can 
form a barrier. Branches in the barrier region allow a 
barrier region to have multiple exits. Branches into a 
barrier region from non-barrier regions permit the bar- 
rier region to have multiple entry points. A processor 
enters the barrier when it executes an instruction from 
the barrier region and has crossed the barrier as soon as 
it executes the first instruction from a non-barrier 
region. The advantage of permitting branches in barrier 
code is that entire control structures, such as loops and 
if-statements, can be inciuded in a barrier region. Furth- 
ermore, the sequence of instructions forming the barrier 
may not be physically contiguous. Thus, for a loop 
whose iterations are separated by a barrier, the barrier 
region can contain code not only from the end of one 
iteration but also from the start of the subsequent itera- 
tion. As will be demonstrated through an example later 
in the paper, typically the barrier region corresponding 
to a barrier at the end of a loop body will, in fact, 
extend across consecutive iterations. 

The destination of a branch instruction in the bar- 
rier region should either be an instruction in the same 
barrier region or an instruction in a non-barrier region. 
If the destination is within the barrier region, the proces- 
sor remains in the barrier region. On the other hand if 
the destination is in a non-barrier region, the processor 
exits the barrier region. The compiler should not gen- 

erate code where control can be transferred directly from 
one barrier to another. Such branches can result in 
improper synchronization and deadlocks if the hardware 
cannot distinguish among different barriers. Consider the 
example in Fig. 2, where there are two barriers at which 
the processors must synchronize, and consider a branch 
instruction that transfers control of processor P, directly 
from barrier, to barrier, If this branch is taken, P, will 
cross both the barriers by synchronizing with P, only 
once when P, reaches barrier,. Also P, will be 
deadlocked at barrier, waiting for a synchronization 
that will never take place. It should be noted that the 
above problem will not arise in an implementation which 
explicitly specifies unique identifiers for barriers in the 
code. 

Fig. 2. Invalid Branch 

4. Compiler Support 

In this section the compilation process for con- 
structing barrier and non-barrier regions is demon- 
strated using the Poisson solver[3] (Fig. 3(a)). The code 
shown in Fig. 3(b) is the non-deterministic parallel ver- 
sion of the algorithm. The example also demonstrates 
that code reordering can increase the size of the barrier 
region significantly. 

The iterations of the inner loops of the Poisson 
solver can be executed in parallel. Thus, M2 processors 
can be used to execute a single iteration of the outer- 
most loop. A processor ready to begin a new iteration of 
the outer loop has to be informed when all work from 
the previous iteration has been completed. This can be 
achieved by introducing a barrier at the end of each 
iteration. The code executed by each of the M2 proces- 
sors is shown in Fig. 3(b). Storage related dependences 
among the parallel iterations due to loop variables are 
eliminated by creating private copies of i, j and k for 
each subtaek. 

/’ Boundary conditions are held in rows/columns 0 and M+l l / 
int P[M+lJ[M+lJ; 

for (k=l; k<=lO*M; k++) do seq 
for h-1: i<=M: i++l do ear 

fo; (j-1; j<&; j$+) do par 
Plilljl - (P(ij[j+l] + P(i][j-l] + P[i+l/[j] + P[i-l](j])/4; 

Fig. $(a). Poisson Solver 

Processor P, ~ where 15 1,m <M: 

Private i,j,k; 
i=l; j-m; 
ro;(k-1; k<=lO*M; ki+) 

’ ~$I,- Wllj+ll + Plillj-11 + P[i+l][jl + P[i-l][jl)/4; 
1 
I 

Fig. 3(b). Per Processor Tasks 
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The barrier region is constructed by examining 
instructions along the control flow path on which the 
barrier lies. The instructions preceding and following a 
barrier are candidates for inclusion in the barrier region. 
For the above example, since the barrier is at the end of 
a loop, these instructions include the instructions from 
two consecutive loop iterations. Our goal is to include 
as many instructions as possible in the barrier region. 

In order to construct the barrier and non-barrier 
regions the instructions that must be in the non-barrier 
regions are identified. These instructions are referred to 
as the marked instructions. All instructions starting 
with the first marked instruction and ending at the last 
marked instruction are included in the non-barrier 
region. The remaining instructions form the barrier 
region. The marked instructions are those instructions 
which either access a value computed by another proces- 
sor or compute a value that will be accessed by another 
processor. In order to ensure that a processor accesses a 
value after it has been computed by another processor, 
barrier synchronization is introduced. In the example 
presented, a barrier at the end of each iteration of the 
outer loop enforces loop carried dependences which are 
the data dependences among different iterations of a 
loop. Thus, by analyzing the loop carried dependences, 
the instructions that must be included in the non-barrier 
region can be identified. 

The instructions that read/write array P are 
involved in the loop carried dependences and thus must 
be included in the non-barrier region, because the values 
computed by the processors during an iteration of the 
outer loop must be available during the next iteration. 
The intermediate code[lO] for the Poisson solver is 
shown in Fig. 4(a). Instructions I,, Ip I, and I, are the 
four marked instructions that read/write elements of the 
array. Thus, the non-barrier region extends from I,, the 
first instruction, to I, the last instruction that modifies 
the array. The remaining instructions are included in 
the barrier region. The code shown in Fig. 4(a) contains 
a fuzzy barrier that ensures that a processor does not 
execute any instruction from the non-barrier region dur- 
ing iteration k+l until all processors have completed the 
execution of their respective non-barrier regions during 
iteration k 

As mentioned earlier, it is preferable if the non- 
barrier regions are small and barrier regions are large. 
Code teordering(ll,l2] can be performed to move instruc- 
tions, other than the marked instructions, from the non- 
barrier region to the barrier region. The process of code 
reordering requires examining the dependences among 
the instructions to determine if they can be reordered 
and finding a suitable ordering. In the example, the 
instructions that compute the addresses of the array ele- 
ments can be executed before any of the array elements 
are actually accessed and can be moved out of the non- 
barrier region. This leaves only a small number of 
instructions in the non-barrier region as shown in Fig. 
4(b). 

/* Let M = 2; int P[3][3]; declaration of the array 
Let P be the base address of the array l / 

Non-barrier: 
. . . . . . 

Barrier: 
i==l 
j=m 
k-1 

Ll: Tl=j+l 
T2=12’i 
T3=T2+P 
T4 =4*Tl 
Tb=T3+T4 /’ Tb <- address of P[i][j+l] l / 
T6=j- 1 
T7=12*i 
Ts=T71+P 
TQ=l*T6 
TlO=TS+TQ /* TIO <- address of P[i][j-11 l / 

..---.~.-.-~-.-~~~*~~~*.~.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Non-barrier: 
11: :I$ = /TI]l+ [TlO] /’ Tll = P[i][j+l] + P[i][j-11 */ 

T13 = 12 l T12 
T14=T13+P 
Tlb = 4 l j 

12: 
T16 = T14 + Tlb 
:I?: = T-1: + [Tl6] 

/‘T16 <- address of P(i+l][j] */ 
/’ T17 - Tll + P[i+l][jl l / 

TlQ - 12 l T18 
TZD==TlQ+P 
T21=4*j 
m-T2O+T21 
g = z fiT22] 

/’ T22 <- address of P i-l][j] */ 
13: /’ T23 = T17 + P[i-l][j l / I 

T%=12*l 
T%=T%+p 
T27-=4*j 

14: 
gr T22: T27 /’ p8.c address*of P[i][j] l / 

/ pbllll = T24 / 

Barrier: 
k=k+l 
if k<&iJ go to Ll 

--------------------------------------------------------------------------------- 
Non-barrier: 

. . . . . . 

Fig. d(a). Barrier Region 

Given a piece of code that forms the non-barrier 
region, code reordering to move instructions to the bar- 
rier region can be carried out as follows. First a directed 
acyclic graph (DAG)[lO] representing the data depen- 
dences for the code in the non-barrier region is built. 
Since a DAG represents the dependences among the 
intermediate code statements, it can be used to find 
another legal ordering of instructions that results in 
smaller non-barrier regions. First we consider for 
scheduling only the instructions from the non-barrier 
region that are not marked (i.e., instructions other than 
I,, 1, I, and I, in the example). All instructions 
scheduled during this phase are essentially moved into 
the barrier region preceding the non-barrier region. 
Next, the scheduling of instructions is carried out in 
manner that tries to schedule the marked instructions as 
early as possible. This process continues until all marked 
instructions have been scheduled. In the example, in 
addition to instructions I,, I, I, and I, only one more 
instruction is scheduled during this phase. The instruc- 
tions scheduled during this phase form the non-barrier 
region. After the last non-barrier instruction has been 
scheduled, the final phase generates an ordering for the 
remaining instructions. These instructions are included 
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in the barrier region following the non-barrier region and 
hence are moved out of the non-barrier region. In the 
example presented, there are no instructions left to be 
scheduled during this phase. 

Non-barrier: 
. . . . . 

Barrier: 
i=I 
j=m 
k=l 

Ll: Tl=j+l 
T2=12*i 
T3=T2+P 
T4 = 4 * Tl 
TS=T3+T4 /’ T5 <- address of P[i][j+l] l / 
T6=j- 1 
T7=12*i 
T8=T7+P 
TO = 4 * TB 
Tlo=T8+TO /* TlO <- address of P[i][j-l] */ 
T12=i+l 
T13 = 12 * T12 
T14 =T13 +P 
T15=4*j- 
T16 = T14 + T16 /* T16 <- address of P[i+l][j] ‘/ 
T18=i- 1 
TlB = 12 l T18 
T20 =TlO +P 
T21=4*j 
m=Txl+T21 /* T22 <- address of P[i-l][j] */ 
T2.5 = 12 l i 
T26=T!X+P 
T27=4*j 
T28=T26+T27 /* ‘I28 <- address of P[i][j] */ 

Non-barrier: 
11: Tll = [T5] + TlO 
12: I I T17 =Tll + T16 

/* Tll = P[i][j+l] + P i [j-l] 
/* T17 = Tll + P i+l 

I 
II j] l / 

/* T23 = T17 + P i-l][j] l / 
/* P[i]]j] = T24 l / 

________________________________________----------------------------------------- 
Barrier: 

k=k+l 
if k<&Xl go to Ll 

Non-barrier: 
. . . . . 

Fig. 4(b). Barrier Region After Code Reordering 

Since the barrier region in Fig. 4(b) is large, a pro 
cessor can execute the majority of instructions from the 
next iteration even if synchronization at the end of the 
current iteration has not yet taken place. In the exam- 
ple presented, the reordering was performed at inter- 
mediate code level as this is more effective than reorder- 
ing machine code. After machine code has been gen- 
erated, the opportunities for reordering are restricted 
due to dependences introduced from register or other 
resource usages. 

In addition to reordering at the intermediate code 
level, statement level transformations may be useful in 
increasing the size of the barrier region. The example 
shown in Fig. 5 illustrates the use of loop distribu- 
tion[l3] to increase the size of the barrier region. Loop 
distribution is a transformation that takes a loop with 
several statements and divides it into multiple loops, 
each of which contains only a subset of statements from 
the loop body. For example the loop in Fig. 5(a) has two 
statements S, and S, Application of loop distribution 
results in two loops with S, and S, as their respective 

loop bodies (see Fig. 5(c)). In this example, the barrier 
synchronization is required between consecutive itera- 
tions of the outer loop, because the values computed by 
S, during iteration i of the outer loop are needed during 
the execution of S, in iteration i+l and the processor 
using the value may not be same as the processor com- 
puting the value. Since the outer loop must be sequen- 
tialized to enforce the dependences due to statement S,, 
the execution of statement S, can be performed as part 
of the barrier region. If loop distribution is not applied, 
the barrier region includes a single execution of state- 
ment S, (Fig. 5(b)), which is the last execution of S, by a 
processor in an iteration of the outer loop. On the other 
hand if loop distribution is applied, the barrier region 
consists of an entire loop that includes all executions of 
the statement S, as shown in Fig. 5(c). 

for (i=l; i<N; i++) do seq 
for (j=l; j<=M; j++) do par 

{ 
Sl: a j.i = a j+l, i-l] + 2; 

1 
II I S2: b j.i = b j,i] + c[j,i]; 

(a) Original Code 

Task , where 0 5 p 5 S-l: 

for (ih; i<N, i-l-+ { 
foril==pprM/S t+ 1; j<min(M,(p+l)*rM/S$ j++) { 

1 ; ; 
Sl; 
__-_--- 
] S2; ] barrier region 
-_-_--- 

1 
(b) Without Loop Distribution 

Task+ mhere 0 5 p 5 s-1: 
for (i=l; i<N; i++) { 

for (j=p’ rM/S]+l; j<=min(M,(p+l)* [M/S& j++) ~1; 
/* start of barrier region ‘f 
for (j=p* rM/Shl; j<=min(M,(p+l)* [M/SD; j++) ~2; 

I 
/’ end of barrier region */ 

I 

(c) After Loop Distribution 

Fig. 5. Enlarging Barrier Regions 

In the example presented above, a significant 
amount of source level code was included in the barrier 
region. At source level a programmer may be able to 
construct barrier regions while coding an application. 
This indicates it may be possible for both the compiler 
and the programmers to exploit the semantics of the 
fuzzy barrier. Commercial multiprocessor systems, such 
as Encore[l4] and Sequent[lS], support the barrier 
mechanism as part of their parallel programming library 
which is available to application programmers. By sup- 
porting the fuzzy barrier in software, the performance of 
the multiprocessor system may be further enhanced. 

5. Multiple Barriers 

All of the processors in the system are not forced 
to synchronize every time a barrier is used. Disjoint sub- 
sets of processors can independently synchronize among 
themselves. A mask is provided in each processor for 
specifying particular processors participating in a bar- 
rier synchronization, If it is known at compile-time that 



the streams would definitely be created and interact in a 
precisely predictable fashion, the synchronizations can 
be achieved using a single barrier. The masks for each of 
the processors can be set to either synchronize with or 
ignore other streams. But if the streams are created 
dynamically or are conditionally created, their existence 
is not known until run-time. In this situation multiple 
barriers are used. Logically distinct barriers are 
assigned to different subsets of streams that do not know 
of each others existence. In addition to the mask a tag is 
provided to indicate the identity of a barrier. Two pr@ 
cessors can only synchronize at a barrier if their tags 
match. Both the mask and the tag are set by the pro- 
cessors under software control. Barriers are allocated 
when the streams are created. The creation of the first 
stream does not require allocation of a barrier as there is 
no other stream with which it can synchronize. Subse- 
quently, creation of every stream requires allocation of 
at most one barrier which may be used by the newly 
created stream to synchronize with its parent. Thus, in 
a N processor system which allows creation of at most 
N streams, a maximum of N-l barriers is needed. 
Different subsets of streams must synchronize using logi- 
cally different barriers. In other words, the processors 
must know the identity of a barrier to achieve correct 
synchronization. 

Consider the example shown in Fig. 6 where the 
barriers are essentially being used to merge streams. 
Different subsets of processors synchronize at different 
barriers. Note that processor P, engages in barriers B, 
and B, processor P, engages in barriers B, and B, and 
finally P, engages in barrier B, Processor P, upon 
reaching barrier B, may incorrectly synchronize with 
processor P, when P, reaches barrier B, if the barriers 
are not given different identities. From this example it 
is clear that in a N processor system which allows crea- 
tion of at most N streams, a maximum of N-1 barriers 
is needed. The streams that need to synchronize repeat- 
edly can reuse the barrier shared by them. Disjoint sub- 
sets of a group of streams that share the same barrier 
can synchronize by manipulating their masks. 

Pl(S0) 

A 
Pl(SI SJ) 

P1(S3 (S4) 

3 

P3( ) 

4 

4ts41 

P3 

PJ 

Fig. 6. Multiple Barriers 

In the above example it was assumed that the 
streams were being created dynamically or are condi- 
tionally created. For the same set of streams, if it was 
known at compile-time that the streams would definitely 

be created and interact precisely in the manner specified 
in Fig. 6, the synchronizations can be achieved using a 
single barrier. By forcing all processors to synchronize 
each time any two processors need to synchronize, a 
correct schedule that uses a single barrier can be gen- 
erated. However, the disadvantage of such an approach 
is that redundant synchronizations are introduced in the 
streams. Having multiple barriers eliminates redundant 
synchronizations and enables decisions regarding crea- 
tion and destruction of streams to be dynamic. Although 
static schedules have the advantages of simplicity and 
low run-time overhead, they lack the capability to 
spawn a variable number of instruction streams based 
upon run-time information such as the amount of com- 
putation to be performed and the availability of proces- 
sors. A dynamic schedule can do a better job in alloca- 
tion of resources based upon the run-time information. 

6. Implementation 

The fuzzy barrier mechanism is being imple- 
mented in a multiprocessor system that uses RISC pro- 
cessors. In this section the implementation is described 
briefly (for detailed description see [lS] ). In order to dis- 
tinguish between instructions from non-barrier and 
barrier regions, a single bit in each instruction is used. 
The bit is one if the instruction is from a barrier region 
and zero otherwise. If there are no instructions that can 
be included in the barrier region, a null operation is 
introduced to create a barrier region. An alternative and 
less expensive approach is to use special instructions 
that when executed, indicate an entry or exit from a 
barrier region. If special instructions are used to mark 
the boundaries of a barrier region then the null opera- 
tion is no tonger needed to represent a null barrier 
region. 

In a non-pipelined machine a processor enters a 
region at the same time it exits the preceding region. 
Thus, determining whether a processor is in a barrier 
region or a non-barrier region can be done simply by 
examining the current instruction. In a pipelined 
machine, exiting the non-barrier region and entering the 
barrier region are not equivalent. A processor will typi- 
cally enter the barrier region before exiting the non- 
barrier region because multiple instructions are being 
executed simultaneously. Thus, checking whether syn- 
chronization has occurred or not requires information 
about all the instructions in the pipeline. 

It is assumed that all processors use a common 
clock and are reset simultaneously. The hardware 
detects when a processor enters a barrier region, and a 
signal indicating that the processor is ready to synchron- 
ize is broadcast to ali other processors. When a proces- 
sor is ready to synchronize and has received similar sig- 
nals from the participating processors, it knows that 
synchronization has taken place. Since the signals are 
being broadcast and monitored by each processor 
independently, all processors simultaneously discover the 
occurrence of synchronization. If a processor reaches the 
end of the barrier region and tries to execute a non- 
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barrier instruction before synchronization has not taken 
place, the processor is stalled. 

Each processor contains an identical copy of the 
fuzzy barrier hardware. This consists of a state machine 
that determines the status of the barrier for the proces- 
sor, an internal register that contains the current tag 
and mask for the processor, and some combinational 
logic which determines whether the processor’s tag 
matches the tags of processors with which it wishes to 
synchronize. A processor’s state machine can be in one 
of the following states: (i) the processor is executing 
instructions from a non-barrier region; (ii) the processor 
is in the barrier region and has not synchronized; (iii) 
the processor is in the barrier region and has synchron- 
ized; and (iv) synchronization has not taken place and 
the processor is stalled as it has completed the execution 
of instructions from the barrier region. No explicit reset 
is required as the state machine returns to the start 
state when a processor is ready to synchronize again. 

In an n processor system, the mask for each prc- 
cessor consists of n-l bits, one bit corresponding to 
each of the other processors. By setting the mask bits, a 
processor specifies the processors with which it wishes to 
synchronize. The tag identifies the current barrier for 
the processor, and two processors can synchronize only if 
their tags match. A system with an m bit tag supports 
2” -1 logical barriers, where a combination of all zeros is 
used to indicate that the processor is not participating 
in barrier synchronization. The internal register con- 
taining the tag and the mask is set under software con- 
trol. The mask and tag for a processor are determined 
by the compiler for static scheduling and by the run- 
time system for a dynamic schedule. All of the proces- 
sors in the system are not forced to synchronize. Disjoint 
subsets of processors can be made to independently syn- 
chronize among themselves by setting the masks 
appropriately, without one subset interfering with the 
other. 

Although the fuzzy barrier can be implemented in 
a system with any number of processors, the number of 
interconnections among the processors increases with the 
number of processors. Each processor must broadcast 
its tag to the other processors in the system. The exten- 
sibility of the mechanism is further restricted by the fact 
that all of the processors share the same clock. 

7. Other Applications of the Fuzzy Barrier 

In this section, situations in which barrier syn- 
chronization can be used are presented. Possible advan- 
tages of using a fuzzy barrier extending across several 
instructions in each of these cases are discussed. 

7.1. Variable Length Streams 

The advantage of allowing conditional and uncon- 
ditional branches is the possible inclusion of if- 
statements in barrier regions. As a result, the time 
spent in barrier regions can vary from one instruction 
stream to another. If a single instruction barrier region 
is used, all processors that execute the lesser number of 

instructions have to wait. If the entire statement is part 
of the barrier region then there are situations where the 
variation in the number of instructions will not result in 
a stall. This is demonstrated by the example in Fig. 7. If 
a single instruction barrier is introduced at the end of 
the loop, the processor that takes the path along S, 
which involves less work, must wait for the other proces- 
sor before it can continue execution (Fig. 7(b)(i)). On the 
other hand if the entire if-statement is part of the bar- 
rier then even if the two processors take different paths 
they may not have to stall (Fig. 7(b)(ii)). 

for (i-l; i<=N; i+t) do seq 
for (j-1; j<lz; j-f+) do par 

1 
Sl; 
if coed then S2 else S3; 

1 

Tark ‘: 
for ii,;‘; i<=N; i++) { 

i if cond then S2 else s3; i barrier region 
..l...~....--...~........... 

1 

Fig. 7(a). Parallel Loop with if-statements 

(i) (ii) 

Fig. 7(b). If Statements in Barrier Regions 

7.2. Lexically Forward Dependences in Loops 

Consider the schedules for processors containing 
dependences of the type shown in Fig. 8. These depen- 
dences point forward in the program source and are 
called lezically forward dependences(l71. Assuming that 
all processors proceed at the same rate, these depen- 
dences are satisfied by the time they are needed. 
Although the dependences are not likely to cause any 
delay, in an architecture where processors execute asyn- 
chronously, a barrier synchronization is required to 
guarantee these dependences. 

The example in Fig. 9 demonstrates the use of a 
barrier to enforce lexically forward dependences. In this 
example the iterations of the inner loop can be executed 
in parallel and are distributed among four processors. 
Further assume that the outer loop has been unrolled 
once to create the tasks shown for each processor. Upon 
examining the schedules for the processors, dependences 
between statements Sj,, and Sj+,,l+, that belong to the 
corresponding iterations of the loop for processor 1 and 
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f+l are found. The outer loop contains loop carried 
data dependences; therefore a second barrier is intro- 
duced at the end of the loop to enforce these depen- 
dences. 

The intermediate code after code reordering for 
the example presented is shown in Fig. 10. Upon exa- 
mining this code, it can be seen that the barrier regions 
for the loop contain a substantial number of instructions 
and hence the code is tolerant of significant drift in exe- 
cution of different streams. The code contains two dis- 
tinct barrier regions, one of which extends across loop 
iterations and the other is entirely included in a single 
iteration. 

Fig. 8. Lezically Forward Dependences 

for (j=l; j<l& j++) do seq 
for (id; i<& it+) do par { 

Sj ;: a[j][i] - a[j-l][i-l] + i l j; 
1 ’ 

Task T,, where 1 < 1 2 1: 
Private i; 
i-l; 
for (j=l; j<l& j+-2) do seq 

1: 
S. : alj][i+alj-#-I] + i’j; 
b:‘krier; /’ due to lexically forward dependences l / 
s. : a[j+l][i]-a[j]~l] + i*(j+l); 
b:%r; /’ due to loop carried depeodences ‘/ 

1 

- lexically forward dependenccs 
----+ loop carried dependences 

Fig. 9. Enforcing Lezically Forward Dependence8 

/’ Let int l (10][4]; be the the declaration of 
the array and “a” be its base address l / 

Non-barrier: 
e...... 

Barrier due to loop carried dependences: 
i-i 
j-1 

Ll: Tl =i- 1 
T2=j-1 
T3=1a*T2 
TI=T3+a 
TS-4*+1 
Tb -T4 +TS /’ T6 <- address of a[j-l]li-l] l / 
T7-i*j 
T8-16*j 
TO-T8+a 
TlO=l’i 
Tll =TO +TlO /’ Tll <- address of a[#] l / 

Non-barrier: 
T12 - IT61 +T7 
IT111 = T12 

/* T12 - a[j-ll[i-11 + i*j l / 
/* a[j][i] - T12 l / 

Barrier due to lexically forward dependeoces: 
T13-i- 1 
T14 = 16 * j 
TlS=T14+s 
Tl6 =4*Tt3 
T17 - T15 + T16 /’ T17 <- address of a[j)\i-11 l / 
T18-j +l 
TlO - i * T18 /‘T19 = i*(j+l) */ 
T2Oj+l 
T21=16*‘IYO 
T22=T21+a 
T23=4*i 
T24=Tzz+T23 /* T24 <- address of alj+l][i] l / 

----__----__-----_----------.-------------------*------ 
Non-barrier: 

T% = (T17] + T10 
[T24] - T2s 

/’ T26 = a[j][i-l] + i*(j+l) l / 
/’ a[j+ll(il - T2S l / 

Barrier due to loop carried dependences: 
j=j+2 
if j<10 w to Ll 

-_ -__-____-___________----------------------------- 
Non-barrier: 

Fig. 10 

7.3. Static Scheduling of Psrallel Loops 

The schedule for execution of a parallel loop can 
be statically specified at compile-time if the number of 
loop iterations and the number of available processors 
are known at compile-time. It is not possible to distri- 
bute the iterations of a loop equally among the proces- 
sors if the number of iterations is not divisible by the 
number of processors available. For example, if there are 
only three processors available to execute the code seg- 
ment in Fig. 11(a), one of the processors would have to 
execute two iterations of the inner loop. As a result the 
other two processors may have to be kept idle for 
periods of time. 

The idling times of processors can be potentially 
reduced in the following manner. As demonstrated in 
Fig. 11(b), instead of scheduling the extra iteration on 
the same processor every time, the processors can take 
turns in executing the extra iteration. The result of such 
scheduling strategy is that over multiple iterations of 
the outer loop, the processors do equal amount of work. 
Once the work has been equally divided among the pro 
cessors, an attempt to reorder code to create large bar- 
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rier regions can be made. In the best possible case, bar- 
rier regions large enough to potentially eliminate idling 
may be found (Fig. 11(c)). In order to achieve the above 
effect, not only must the inner loop unrolled completely 
but the outer loop must be unrolled as well. The outer 
loop is unrolled until the total number of loop iterations 
available becomes divisible by the number of processors. 
In the example presented unrolling the outer loop twice 
results in 12 iterations which is divisible by three, the 
number of processors. It should be noted that if the bar- 
rier mechanism was not flexible in nature, the compiler 
would have to decide how much code should be moved 
across the barrier in each of the streams. However, in 
this example all it had to do was to try and include as 
many instructions as possible in the barrier region. 

for (j-l; j<lO; j++) do seq 
for (ill; i<b; ii+) do par 

t 
loop body; 

1 

tb) (4 

Fig. 11. Static Scheduling 

7.4. Run-time Scheduling of Loop Iterations 

In situations where the number of loop iterations 
and/or the number of processors available are not 
known at compile-time, compiler assisted run-time 
scheduling techniques can be used. Consider the code 
segment in Fig. 12. The number of iterations in the inner 
loop is not known at compile-time. Thus one must wait 
until run-time to schedule these iterations among the 
available processors. Several self-scheduling techniques 
have been developed to distribute the iterations at run- 
time(l81. Guided Self Scheduling (GSS) is one technique 
that attempts to distribute the work among the proces- 
sors so that they complete execution at about the same 
time[l9]. This is desirable as it will reduce the idling of 
processors at the barrier that must be introduced 
between iterations of the outer loop. 

Idling of processors can also be reduced using the 
fuzzy barrier. At run-time the iterations can be distri- 
buted among the available processors. Next, depending 
upon the iteration being executed, the processor can 
choose to execute a version of the loop body compiled 
with or without a barrier. The successive iterations of 
the outer loop must be separated by a barrier for correct 

execution. To achieve this, the first iteration of the inner 
loop that a processor executes should start with a bar- 
rier, the last iteration should be followed by a barrier 
and the intervening iterations should have no barriers at 
all. If the processor is allocated only a single iteration, 
the loop body should be compiled such that it is both 
preceded and followed by a barrier region. The four ver- 
sions of the loop are shown in Fig. 12. Compiling multi- 
ple versions of code and selecting the appropriate one at 
run-time is a common practice in parallelizing com- 
pilers[20]. 

for (i-l; i<N, i++) do seg 
for (j=l; j<M; j-t-t) do par 
{ 

loop body; 
1 

Task where l<p<s: 

for $i-1; i<N; i++) 
for (j-p; i<M; H-S) { 

if j is (first and (not last)) iteration { oersionl } 
else if j is ((not first) and last) iteration { aersiona} 
else if j is notffirst or last) iteration 

else if j is (first and last) 
{ versions } 

iteration 

1 

{ ocrvion4} 

Fig. 12. Run-time Scheduling of Parallel Loops 

8. Preliminary Results 

Commercial muitiprocessor systems, such as 
Encore[l4] and Sequent[lS], support the barrier mechan- 
ism as part of their parallel programming library which 
is available to application programmers. By supporting 
the fuzzy barrier in software, the performance of the sys- 
tem can be further enhanced. A software implementation 
of the fuzzy barrier on a four processor Encore Multimax 
has been carried out. For nested loops, similar to those 
in Fig. 9, the cost of synchronizing four processors was 
reduced from 10,OOO~sec to 3OOpsec as the size of the 
barrier region was increased from zero instructions to 
half of the total instructions in the loop body. The cost 
of barrier synchronization is mainly due to context saves 
and restores for the tasks that must be stalled. As the 
size of the barrier region increases, the likelihood of a 
processor stalling decreases. Therefore, the expensive 
context saves and restores may be avoided. At source 
level a programmer may be able to construct barrier 
regions while coding an application. Thus, it is possible 
for both the compiler and the programmers to exploit 
the semantics of the fuzzy barrier. 

9. Current Status and Future Work 

The fuzzy barrier mechanism is being imple- 
mented in a prototype system using RISC processors. It 
will be used for executing code in VLIW mode as well as 
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code generated by concurrentization of loops. Currently 
the possibilities of allowing procedure calls from barrier 
regions are being investigated. This is important 
because allowing parallel procedure calls can 
significantly increase the amount of parallelism. The 
issue of interrupts and traps in a barrier region is also 
being investigated. Traps are useful as they are often 
used in RISC based systems to implement floating point 
operations. 
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