
The Fuzzy Barrier: A Mechanism for High Speed

Synchronization of Processors*

Rajiv Gupta
Philips Laboratories

North American Philips Corporation
345 Scarborough Road

Briarcliff Manor, NY 10510

Abstract - Parallel programs are commonly written
using barriers to synchronize parallel processes. Upon
reaching a barrier, a processor must stall until all parti-
cipating processors reach the barrier. A software imple-
mentation of the barrier mechanism using shared vari-
ables has two major drawbacks. Firstly, the execution
of the barrier may be slow as it may not only require
execution of several instructions and but also result in
hot-spot accesses. Secondly, processors that are stalled
waiting for other processors to reach the barrier are
essentially idling and cannot do any useful work. In this
paper, the notion of the fuzzy barrier is presented,
that avoids the above drawbacks. The first problem is
avoided by implementing the mechanism in hardware.
The second problem is solved by extending the barrier
concept to include a region of statements that can be
executed by a processor while it awaits synchronization.
The barrier regions are constructed by a compiler and
consist of several instructions such that a processor is
ready to synchronize upon reaching the first instruction
in this region and must synchronize before exiting the
region. When synchronization does occur, the processors
could be executing at any point in their respective bar-
rier regions. The larger the barrier region, the more
likely it is that none of the processors will have to stall.
Preliminary investigations show that barrier regions can
be large and the use of program transformations can
significantly increase their size. Examples of situations
where such a mechanism can result in improved perfor-
mance are presented. Results based on a software
implementation of the fuzzy barrier on the Encore mul-
tiprocessor indicate that the synchronization overhead
can be greatly reduced using the mechanism.

Keywords - multiprocessor systems, barrier synchroni-
zation, parallelizing compilers.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1989 ACM O-8979 l-300-O/89/0004/0054 $1.50

1. Introduction

In order to achieve efficient parallel execution of
tightly synchronizing streams of instructions, the
development of fast synchronization mechanisms is
essential. A commonly used mechanism for synchroniz-
ing the parallel execution of streams is the barrier[l].
An application that creates streams for exploiting fine-
grained parallelism schedules the parallel execution of
streams on processors. Upon reaching a barrier the pro-
cessor must wait until all participating processors reach
the barrier. Barriers may be automatically introduced
by a parallelizing compiler[2] or may be introduced
explicitly by the programmer[3]. Barriers can be easily
implemented in software using one or more shared vari-
ables. However, such implementations entail significant
run-time overhead as they require execution of several
instructions in each stream in order to achieve synchron-
ization. The synchronization overhead increases
linearly, or for the best possible software implementa-
tion, logarithmically[4] with the number of processors
synchronizing at the barrier. Furthermore, the tech-
niques are known to cause hot-spot accesses[4]. A pro-
cessor upon reaching a barrier is idle until other proces-
sors also reach the barrier[l]; thus no useful work is done
by the processor while waiting to synchronize at the
barrier. In this paper the notion of the fuzzy barrier, a
mechanism that reduces both the run-time overhead and
the idling of processors, is introduced.

In order to reduce the run-time overhead due to
execution of additional instructions, barriers specified in
instruction streams are detected by the hardware to
ascertain when a processor is ready to synchronize. All
participating processors are simultaneously informed of
this event, and when all of the processors have reached
the barrier, they simultaneously recognize that syn-
chronization has taken place. This eliminates the run-
time overhead caused by executing several instructions
to achieve barrier synchronization. However, a single
instruction is required to initialize a barrier. Once this
has been done, the processors can repeatedly synchronize
without executing any overhead instructions. Since the

l A patent application for the fuzzy barrier has already been
Bled.

54

cost of using a barrier mechanism is extremely low it can
be used frequently, thus facilitating the exploitation of
fine-grained parallelism. Ho&pot accesses are avoided
as the mechanism does not rely upon shared memory to
achieve synchronization. The above strategy applies
only to situations in which the processes synchronizing
at a barrier are simultaneously executing on different
processors. Thus, the number of streams synchronizing
at a barrier can at most equal the number of processors
in the system.

In order to reduce the idling time of processors at
barriers, estimates of the time taken to execute different
parts of a program are first used by the compiler to
schedule approximately equal amounts of work on each
processor between successive barrier synchronizations.
However, even if the compiler distributes the computa-
tion so that all processors execute identical code, they
may not arrive at a barrier at the same time. The code
being scheduled may contain conditional statements and
different processors may follow different control paths
and thus execute varying number of instructions. Furth-
ermore, the times for memory accesses may vary for
different processors. Due to a cache miss, a processor
may fall behind in execution even if all processors are
executing identical instructions. The barrier mechanism
should be able to tolerate drift in the speed of execution
of processors if idling at the barriers is to be reduced.
The fuzzy barrier mechanism provides tolerance to this
drift by specifying a range of instructions over which the
synchronization is to take place rather than a specific
point at which the processors must synchronize. Upon
reaching the first instruction in this range, a processor is
ready to synchronize. However, it can continue to exe-
cute the remaining instructions in the region even if syn-
chronization has not yet occurred. The mechanism,
though implemented in hardware, relies upon the com-
piler to discover this range of instructions. The proces-
sors may be executing different instructions from the
specified range of instructions at the time of synchroni-
zation; hence the name fuzzy barrier.

A flexible barrier of the kind described has several
advantages. If the processors in the system are pipe-
lined, repeated synchronization is less likely to degrade
the performance of the pipeline because the synchroniza-
tion point is not exactly specified. Thus upon reaching a
barrier, the processor may be able to issue instructions
even if the synchronization has not taken place. Since
there is almost no synchronization overhead, concurren-
tizable loops requiring barrier synchronization can be
efficiently executed on multiple processors even if the
size of the loop body is relatively small. Application of
transformations such as cycle shrinking[5] depend
heavily upon use of barriers. Availability of an efficient
barrier mechanism makes their application practical. A
parallelizing compiler can employ such a mechanism to
exploit instruction level parallelism using techniques
similar to those used in VLIW machines[578].

In subsequent sections the semantics of the fuzzy
barrier is described in detail. An example showing the

compilation process to exploit such a mechanism is
presented. Code reorganization techniques to increase
the range of instructions over which synchronization is
to occur are described. Potential ways in which the
mechanism can be used to achieve higher speed-ups are
presented. An implementation of the mechanism in a
prototype multiprocessor system based upon RISC(S]
processors is currently in progress. The issues of using
the barrier mechanism in presence of interrupts and sub-
routine calls are not addressed in this paper.

2. Semantics of the Fuzzy Barrier

Instruction streams are viewed as consisting of
barrier regions and non-barrier regions. In Fig. 1 the
shaded regions represent barrier regions and the
unshaded regions are non-barrier regions. Streams with
no barrier regions have no barrier synchronizations,
while a shaded region extending across all or a subset of
streams indicates a barrier and forces the processors to
synchronize. The barrier regions for different streams
may contain varying number of instructions. The func-
tionality of the fuzzy barrier is briefly described as fol-
lows:

No processor can execute an instruction from its
respective non-barrier region (UNSBADED2) fol-
lowing the barrier region (SHADED) until all pro-
cessors have executed the instructions in their
respective non-barrier regions (UNSHADEDL)
preceding the barrier region.

i.e., V i UC can be executed iff V j Cry have been
executed

Pl PI PI1

4: Ji2 -
IRRRRGIC+l(MSRNXDl)

REGION (SEMIED)

Fig. 1. Fuzzy Barrier

The semantics of the mechanism is described in
detail below.

Definition: A processor is considered to have exited a
region (barrier or non-barrier) of a stream if it has com-
pleted the execution of all the instructions in that
region. It has entered a region if it has started the exe-
cution of an instruction from that region.

Definition: A processor is ready to synchronize if it
has exited the non-barrier region preceding a barrier
region. It should be noted that exiting this non-barrier
region is not same as entering the barrier region for a
pipelined machine, for a pipelined machine overlaps the
execution of multiple instructions. Therefore, a processor
may enter the barrier region before exiting the preceding
non-barrier region.

Condition for Synchronization: Processors have

synchronized at a barrier if and only if they have all
exited their respective non-barrier regions preceding the
barrier region.

Condition for Stalling: A processor can enter a non-
barrier region following a barrier region if and only if
synchronization has occurred. Thus, if the synchroniza-
tion is yet to occur when the processor exits the barrier
region, it is not allowed to enter the non-barrier region
and must idle. In other words, the execution of the
stream is stalled.

From the above description it is clear that when
the execution of a stream reaches the first instruction of
a barrier region, it does not have to stop immediately
but can continue to execute even if other streams
haven’t reached their corresponding barrier regions.
Similarly upon reaching the last instruction in a barrier
region, the processor can continue even if other proces-
sors have not reached the end of their corresponding
barrier regions. If the barrier region for a stream con-
sists of n instructions, then at the point of synchroniza-
tion, the processor could have executed 0 to n instruc-
tions from the barrier region. The tolerance of the
mechanism to the variation in the rate at which each
stream progresses is limited by the number of instruc-
tions in the barrier regions. Thus, the larger the barrier
regions, the less likely it is that the processors will stall.

3. Branch Instructions in Barrier Regions

The instructions that form a barrier region can
contain unconditional as well as conditional branch
instructions. Thus, any sequence of instructions that are
consecutive along a control path in the program can
form a barrier. Branches in the barrier region allow a
barrier region to have multiple exits. Branches into a
barrier region from non-barrier regions permit the bar-
rier region to have multiple entry points. A processor
enters the barrier when it executes an instruction from
the barrier region and has crossed the barrier as soon as
it executes the first instruction from a non-barrier
region. The advantage of permitting branches in barrier
code is that entire control structures, such as loops and
if-statements, can be inciuded in a barrier region. Furth-
ermore, the sequence of instructions forming the barrier
may not be physically contiguous. Thus, for a loop
whose iterations are separated by a barrier, the barrier
region can contain code not only from the end of one
iteration but also from the start of the subsequent itera-
tion. As will be demonstrated through an example later
in the paper, typically the barrier region corresponding
to a barrier at the end of a loop body will, in fact,
extend across consecutive iterations.

The destination of a branch instruction in the bar-
rier region should either be an instruction in the same
barrier region or an instruction in a non-barrier region.
If the destination is within the barrier region, the proces-
sor remains in the barrier region. On the other hand if
the destination is in a non-barrier region, the processor
exits the barrier region. The compiler should not gen-

erate code where control can be transferred directly from
one barrier to another. Such branches can result in
improper synchronization and deadlocks if the hardware
cannot distinguish among different barriers. Consider the
example in Fig. 2, where there are two barriers at which
the processors must synchronize, and consider a branch
instruction that transfers control of processor P, directly
from barrier, to barrier, If this branch is taken, P, will
cross both the barriers by synchronizing with P, only
once when P, reaches barrier,. Also P, will be
deadlocked at barrier, waiting for a synchronization
that will never take place. It should be noted that the
above problem will not arise in an implementation which
explicitly specifies unique identifiers for barriers in the
code.

Fig. 2. Invalid Branch

4. Compiler Support

In this section the compilation process for con-
structing barrier and non-barrier regions is demon-
strated using the Poisson solver[3] (Fig. 3(a)). The code
shown in Fig. 3(b) is the non-deterministic parallel ver-
sion of the algorithm. The example also demonstrates
that code reordering can increase the size of the barrier
region significantly.

The iterations of the inner loops of the Poisson
solver can be executed in parallel. Thus, M2 processors
can be used to execute a single iteration of the outer-
most loop. A processor ready to begin a new iteration of
the outer loop has to be informed when all work from
the previous iteration has been completed. This can be
achieved by introducing a barrier at the end of each
iteration. The code executed by each of the M2 proces-
sors is shown in Fig. 3(b). Storage related dependences
among the parallel iterations due to loop variables are
eliminated by creating private copies of i, j and k for
each subtaek.

/’ Boundary conditions are held in rows/columns 0 and M+l l /
int P[M+lJ[M+lJ;

for (k=l; k<=lO*M; k++) do seq
for h-1: i<=M: i++l do ear

fo; (j-1; j<&; j$+) do par
Plilljl - (P(ij[j+l] + P(i][j-l] + P[i+l/[j] + P[i-l](j])/4;

Fig. $(a). Poisson Solver

Processor P, ~ where 15 1,m <M:

Private i,j,k;
i=l; j-m;
ro;(k-1; k<=lO*M; ki+)

’ ~$I,- Wllj+ll + Plillj-11 + P[i+l][jl + P[i-l][jl)/4;
1
I

Fig. 3(b). Per Processor Tasks

56

The barrier region is constructed by examining
instructions along the control flow path on which the
barrier lies. The instructions preceding and following a
barrier are candidates for inclusion in the barrier region.
For the above example, since the barrier is at the end of
a loop, these instructions include the instructions from
two consecutive loop iterations. Our goal is to include
as many instructions as possible in the barrier region.

In order to construct the barrier and non-barrier
regions the instructions that must be in the non-barrier
regions are identified. These instructions are referred to
as the marked instructions. All instructions starting
with the first marked instruction and ending at the last
marked instruction are included in the non-barrier
region. The remaining instructions form the barrier
region. The marked instructions are those instructions
which either access a value computed by another proces-
sor or compute a value that will be accessed by another
processor. In order to ensure that a processor accesses a
value after it has been computed by another processor,
barrier synchronization is introduced. In the example
presented, a barrier at the end of each iteration of the
outer loop enforces loop carried dependences which are
the data dependences among different iterations of a
loop. Thus, by analyzing the loop carried dependences,
the instructions that must be included in the non-barrier
region can be identified.

The instructions that read/write array P are
involved in the loop carried dependences and thus must
be included in the non-barrier region, because the values
computed by the processors during an iteration of the
outer loop must be available during the next iteration.
The intermediate code[lO] for the Poisson solver is
shown in Fig. 4(a). Instructions I,, Ip I, and I, are the
four marked instructions that read/write elements of the
array. Thus, the non-barrier region extends from I,, the
first instruction, to I, the last instruction that modifies
the array. The remaining instructions are included in
the barrier region. The code shown in Fig. 4(a) contains
a fuzzy barrier that ensures that a processor does not
execute any instruction from the non-barrier region dur-
ing iteration k+l until all processors have completed the
execution of their respective non-barrier regions during
iteration k

As mentioned earlier, it is preferable if the non-
barrier regions are small and barrier regions are large.
Code teordering(ll,l2] can be performed to move instruc-
tions, other than the marked instructions, from the non-
barrier region to the barrier region. The process of code
reordering requires examining the dependences among
the instructions to determine if they can be reordered
and finding a suitable ordering. In the example, the
instructions that compute the addresses of the array ele-
ments can be executed before any of the array elements
are actually accessed and can be moved out of the non-
barrier region. This leaves only a small number of
instructions in the non-barrier region as shown in Fig.
4(b).

/* Let M = 2; int P[3][3]; declaration of the array
Let P be the base address of the array l /

Non-barrier:
.

Barrier:
i==l
j=m
k-1

Ll: Tl=j+l
T2=12’i
T3=T2+P
T4 =4*Tl
Tb=T3+T4 /’ Tb <- address of P[i][j+l] l /
T6=j- 1
T7=12*i
Ts=T71+P
TQ=l*T6
TlO=TS+TQ /* TIO <- address of P[i][j-11 l /

..---.~.-.-~-.-~~~*~~~*.~.~~~
Non-barrier:
11: :I$ = /TI]l+ [TlO] /’ Tll = P[i][j+l] + P[i][j-11 */

T13 = 12 l T12
T14=T13+P
Tlb = 4 l j

12:
T16 = T14 + Tlb
:I?: = T-1: + [Tl6]

/‘T16 <- address of P(i+l][j] */
/’ T17 - Tll + P[i+l][jl l /

TlQ - 12 l T18
TZD==TlQ+P
T21=4*j
m-T2O+T21
g = z fiT22]

/’ T22 <- address of P i-l][j] */
13: /’ T23 = T17 + P[i-l][j l / I

T%=12*l
T%=T%+p
T27-=4*j

14:
gr T22: T27 /’ p8.c address*of P[i][j] l /

/ pbllll = T24 /

Barrier:
k=k+l
if k<&iJ go to Ll

Non-barrier:

.

Fig. d(a). Barrier Region

Given a piece of code that forms the non-barrier
region, code reordering to move instructions to the bar-
rier region can be carried out as follows. First a directed
acyclic graph (DAG)[lO] representing the data depen-
dences for the code in the non-barrier region is built.
Since a DAG represents the dependences among the
intermediate code statements, it can be used to find
another legal ordering of instructions that results in
smaller non-barrier regions. First we consider for
scheduling only the instructions from the non-barrier
region that are not marked (i.e., instructions other than
I,, 1, I, and I, in the example). All instructions
scheduled during this phase are essentially moved into
the barrier region preceding the non-barrier region.
Next, the scheduling of instructions is carried out in
manner that tries to schedule the marked instructions as
early as possible. This process continues until all marked
instructions have been scheduled. In the example, in
addition to instructions I,, I, I, and I, only one more
instruction is scheduled during this phase. The instruc-
tions scheduled during this phase form the non-barrier
region. After the last non-barrier instruction has been
scheduled, the final phase generates an ordering for the
remaining instructions. These instructions are included

57

in the barrier region following the non-barrier region and
hence are moved out of the non-barrier region. In the
example presented, there are no instructions left to be
scheduled during this phase.

Non-barrier:
.

Barrier:
i=I
j=m
k=l

Ll: Tl=j+l
T2=12*i
T3=T2+P
T4 = 4 * Tl
TS=T3+T4 /’ T5 <- address of P[i][j+l] l /
T6=j- 1
T7=12*i
T8=T7+P
TO = 4 * TB
Tlo=T8+TO /* TlO <- address of P[i][j-l] */
T12=i+l
T13 = 12 * T12
T14 =T13 +P
T15=4*j-
T16 = T14 + T16 /* T16 <- address of P[i+l][j] ‘/
T18=i- 1
TlB = 12 l T18
T20 =TlO +P
T21=4*j
m=Txl+T21 /* T22 <- address of P[i-l][j] */
T2.5 = 12 l i
T26=T!X+P
T27=4*j
T28=T26+T27 /* ‘I28 <- address of P[i][j] */

Non-barrier:
11: Tll = [T5] + TlO
12: I I T17 =Tll + T16

/* Tll = P[i][j+l] + P i [j-l]
/* T17 = Tll + P i+l

I
II j] l /

/* T23 = T17 + P i-l][j] l /
/* P[i]]j] = T24 l /

__---
Barrier:

k=k+l
if k<&Xl go to Ll

Non-barrier:
.

Fig. 4(b). Barrier Region After Code Reordering

Since the barrier region in Fig. 4(b) is large, a pro
cessor can execute the majority of instructions from the
next iteration even if synchronization at the end of the
current iteration has not yet taken place. In the exam-
ple presented, the reordering was performed at inter-
mediate code level as this is more effective than reorder-
ing machine code. After machine code has been gen-
erated, the opportunities for reordering are restricted
due to dependences introduced from register or other
resource usages.

In addition to reordering at the intermediate code
level, statement level transformations may be useful in
increasing the size of the barrier region. The example
shown in Fig. 5 illustrates the use of loop distribu-
tion[l3] to increase the size of the barrier region. Loop
distribution is a transformation that takes a loop with
several statements and divides it into multiple loops,
each of which contains only a subset of statements from
the loop body. For example the loop in Fig. 5(a) has two
statements S, and S, Application of loop distribution
results in two loops with S, and S, as their respective

loop bodies (see Fig. 5(c)). In this example, the barrier
synchronization is required between consecutive itera-
tions of the outer loop, because the values computed by
S, during iteration i of the outer loop are needed during
the execution of S, in iteration i+l and the processor
using the value may not be same as the processor com-
puting the value. Since the outer loop must be sequen-
tialized to enforce the dependences due to statement S,,
the execution of statement S, can be performed as part
of the barrier region. If loop distribution is not applied,
the barrier region includes a single execution of state-
ment S, (Fig. 5(b)), which is the last execution of S, by a
processor in an iteration of the outer loop. On the other
hand if loop distribution is applied, the barrier region
consists of an entire loop that includes all executions of
the statement S, as shown in Fig. 5(c).

for (i=l; i<N; i++) do seq
for (j=l; j<=M; j++) do par

{
Sl: a j.i = a j+l, i-l] + 2;

1
II I S2: b j.i = b j,i] + c[j,i];

(a) Original Code

Task , where 0 5 p 5 S-l:

for (ih; i<N, i-l-+ {
foril==pprM/S t+ 1; j<min(M,(p+l)*rM/S$ j++) {

1 ; ;
Sl;
__-_---
] S2;] barrier region
-_-_---

1
(b) Without Loop Distribution

Task+ mhere 0 5 p 5 s-1:
for (i=l; i<N; i++) {

for (j=p’ rM/S]+l; j<=min(M,(p+l)* [M/S& j++) ~1;
/* start of barrier region ‘f
for (j=p* rM/Shl; j<=min(M,(p+l)* [M/SD; j++) ~2;

I
/’ end of barrier region */

I

(c) After Loop Distribution

Fig. 5. Enlarging Barrier Regions

In the example presented above, a significant
amount of source level code was included in the barrier
region. At source level a programmer may be able to
construct barrier regions while coding an application.
This indicates it may be possible for both the compiler
and the programmers to exploit the semantics of the
fuzzy barrier. Commercial multiprocessor systems, such
as Encore[l4] and Sequent[lS], support the barrier
mechanism as part of their parallel programming library
which is available to application programmers. By sup-
porting the fuzzy barrier in software, the performance of
the multiprocessor system may be further enhanced.

5. Multiple Barriers

All of the processors in the system are not forced
to synchronize every time a barrier is used. Disjoint sub-
sets of processors can independently synchronize among
themselves. A mask is provided in each processor for
specifying particular processors participating in a bar-
rier synchronization, If it is known at compile-time that

the streams would definitely be created and interact in a
precisely predictable fashion, the synchronizations can
be achieved using a single barrier. The masks for each of
the processors can be set to either synchronize with or
ignore other streams. But if the streams are created
dynamically or are conditionally created, their existence
is not known until run-time. In this situation multiple
barriers are used. Logically distinct barriers are
assigned to different subsets of streams that do not know
of each others existence. In addition to the mask a tag is
provided to indicate the identity of a barrier. Two pr@
cessors can only synchronize at a barrier if their tags
match. Both the mask and the tag are set by the pro-
cessors under software control. Barriers are allocated
when the streams are created. The creation of the first
stream does not require allocation of a barrier as there is
no other stream with which it can synchronize. Subse-
quently, creation of every stream requires allocation of
at most one barrier which may be used by the newly
created stream to synchronize with its parent. Thus, in
a N processor system which allows creation of at most
N streams, a maximum of N-l barriers is needed.
Different subsets of streams must synchronize using logi-
cally different barriers. In other words, the processors
must know the identity of a barrier to achieve correct
synchronization.

Consider the example shown in Fig. 6 where the
barriers are essentially being used to merge streams.
Different subsets of processors synchronize at different
barriers. Note that processor P, engages in barriers B,
and B, processor P, engages in barriers B, and B, and
finally P, engages in barrier B, Processor P, upon
reaching barrier B, may incorrectly synchronize with
processor P, when P, reaches barrier B, if the barriers
are not given different identities. From this example it
is clear that in a N processor system which allows crea-
tion of at most N streams, a maximum of N-1 barriers
is needed. The streams that need to synchronize repeat-
edly can reuse the barrier shared by them. Disjoint sub-
sets of a group of streams that share the same barrier
can synchronize by manipulating their masks.

Pl(S0)

A
Pl(SI SJ)

P1(S3 (S4)

3

P3()

4

4ts41

P3

PJ

Fig. 6. Multiple Barriers

In the above example it was assumed that the
streams were being created dynamically or are condi-
tionally created. For the same set of streams, if it was
known at compile-time that the streams would definitely

be created and interact precisely in the manner specified
in Fig. 6, the synchronizations can be achieved using a
single barrier. By forcing all processors to synchronize
each time any two processors need to synchronize, a
correct schedule that uses a single barrier can be gen-
erated. However, the disadvantage of such an approach
is that redundant synchronizations are introduced in the
streams. Having multiple barriers eliminates redundant
synchronizations and enables decisions regarding crea-
tion and destruction of streams to be dynamic. Although
static schedules have the advantages of simplicity and
low run-time overhead, they lack the capability to
spawn a variable number of instruction streams based
upon run-time information such as the amount of com-
putation to be performed and the availability of proces-
sors. A dynamic schedule can do a better job in alloca-
tion of resources based upon the run-time information.

6. Implementation

The fuzzy barrier mechanism is being imple-
mented in a multiprocessor system that uses RISC pro-
cessors. In this section the implementation is described
briefly (for detailed description see [lS]). In order to dis-
tinguish between instructions from non-barrier and
barrier regions, a single bit in each instruction is used.
The bit is one if the instruction is from a barrier region
and zero otherwise. If there are no instructions that can
be included in the barrier region, a null operation is
introduced to create a barrier region. An alternative and
less expensive approach is to use special instructions
that when executed, indicate an entry or exit from a
barrier region. If special instructions are used to mark
the boundaries of a barrier region then the null opera-
tion is no tonger needed to represent a null barrier
region.

In a non-pipelined machine a processor enters a
region at the same time it exits the preceding region.
Thus, determining whether a processor is in a barrier
region or a non-barrier region can be done simply by
examining the current instruction. In a pipelined
machine, exiting the non-barrier region and entering the
barrier region are not equivalent. A processor will typi-
cally enter the barrier region before exiting the non-
barrier region because multiple instructions are being
executed simultaneously. Thus, checking whether syn-
chronization has occurred or not requires information
about all the instructions in the pipeline.

It is assumed that all processors use a common
clock and are reset simultaneously. The hardware
detects when a processor enters a barrier region, and a
signal indicating that the processor is ready to synchron-
ize is broadcast to ali other processors. When a proces-
sor is ready to synchronize and has received similar sig-
nals from the participating processors, it knows that
synchronization has taken place. Since the signals are
being broadcast and monitored by each processor
independently, all processors simultaneously discover the
occurrence of synchronization. If a processor reaches the
end of the barrier region and tries to execute a non-

59

barrier instruction before synchronization has not taken
place, the processor is stalled.

Each processor contains an identical copy of the
fuzzy barrier hardware. This consists of a state machine
that determines the status of the barrier for the proces-
sor, an internal register that contains the current tag
and mask for the processor, and some combinational
logic which determines whether the processor’s tag
matches the tags of processors with which it wishes to
synchronize. A processor’s state machine can be in one
of the following states: (i) the processor is executing
instructions from a non-barrier region; (ii) the processor
is in the barrier region and has not synchronized; (iii)
the processor is in the barrier region and has synchron-
ized; and (iv) synchronization has not taken place and
the processor is stalled as it has completed the execution
of instructions from the barrier region. No explicit reset
is required as the state machine returns to the start
state when a processor is ready to synchronize again.

In an n processor system, the mask for each prc-
cessor consists of n-l bits, one bit corresponding to
each of the other processors. By setting the mask bits, a
processor specifies the processors with which it wishes to
synchronize. The tag identifies the current barrier for
the processor, and two processors can synchronize only if
their tags match. A system with an m bit tag supports
2” -1 logical barriers, where a combination of all zeros is
used to indicate that the processor is not participating
in barrier synchronization. The internal register con-
taining the tag and the mask is set under software con-
trol. The mask and tag for a processor are determined
by the compiler for static scheduling and by the run-
time system for a dynamic schedule. All of the proces-
sors in the system are not forced to synchronize. Disjoint
subsets of processors can be made to independently syn-
chronize among themselves by setting the masks
appropriately, without one subset interfering with the
other.

Although the fuzzy barrier can be implemented in
a system with any number of processors, the number of
interconnections among the processors increases with the
number of processors. Each processor must broadcast
its tag to the other processors in the system. The exten-
sibility of the mechanism is further restricted by the fact
that all of the processors share the same clock.

7. Other Applications of the Fuzzy Barrier

In this section, situations in which barrier syn-
chronization can be used are presented. Possible advan-
tages of using a fuzzy barrier extending across several
instructions in each of these cases are discussed.

7.1. Variable Length Streams

The advantage of allowing conditional and uncon-
ditional branches is the possible inclusion of if-
statements in barrier regions. As a result, the time
spent in barrier regions can vary from one instruction
stream to another. If a single instruction barrier region
is used, all processors that execute the lesser number of

instructions have to wait. If the entire statement is part
of the barrier region then there are situations where the
variation in the number of instructions will not result in
a stall. This is demonstrated by the example in Fig. 7. If
a single instruction barrier is introduced at the end of
the loop, the processor that takes the path along S,
which involves less work, must wait for the other proces-
sor before it can continue execution (Fig. 7(b)(i)). On the
other hand if the entire if-statement is part of the bar-
rier then even if the two processors take different paths
they may not have to stall (Fig. 7(b)(ii)).

for (i-l; i<=N; i+t) do seq
for (j-1; j<lz; j-f+) do par

1
Sl;
if coed then S2 else S3;

1

Tark ‘:
for ii,;‘; i<=N; i++) {

i if cond then S2 else s3; i barrier region
..l...~....--...~...........

1

Fig. 7(a). Parallel Loop with if-statements

(i) (ii)

Fig. 7(b). If Statements in Barrier Regions

7.2. Lexically Forward Dependences in Loops

Consider the schedules for processors containing
dependences of the type shown in Fig. 8. These depen-
dences point forward in the program source and are
called lezically forward dependences(l71. Assuming that
all processors proceed at the same rate, these depen-
dences are satisfied by the time they are needed.
Although the dependences are not likely to cause any
delay, in an architecture where processors execute asyn-
chronously, a barrier synchronization is required to
guarantee these dependences.

The example in Fig. 9 demonstrates the use of a
barrier to enforce lexically forward dependences. In this
example the iterations of the inner loop can be executed
in parallel and are distributed among four processors.
Further assume that the outer loop has been unrolled
once to create the tasks shown for each processor. Upon
examining the schedules for the processors, dependences
between statements Sj,, and Sj+,,l+, that belong to the
corresponding iterations of the loop for processor 1 and

60

f+l are found. The outer loop contains loop carried
data dependences; therefore a second barrier is intro-
duced at the end of the loop to enforce these depen-
dences.

The intermediate code after code reordering for
the example presented is shown in Fig. 10. Upon exa-
mining this code, it can be seen that the barrier regions
for the loop contain a substantial number of instructions
and hence the code is tolerant of significant drift in exe-
cution of different streams. The code contains two dis-
tinct barrier regions, one of which extends across loop
iterations and the other is entirely included in a single
iteration.

Fig. 8. Lezically Forward Dependences

for (j=l; j<l& j++) do seq
for (id; i<& it+) do par {

Sj ;: a[j][i] - a[j-l][i-l] + i l j;
1 ’

Task T,, where 1 < 1 2 1:
Private i;
i-l;
for (j=l; j<l& j+-2) do seq

1:
S. : alj][i+alj-#-I] + i’j;
b:‘krier; /’ due to lexically forward dependences l /
s. : a[j+l][i]-a[j]~l] + i*(j+l);
b:%r; /’ due to loop carried depeodences ‘/

1

- lexically forward dependenccs
----+ loop carried dependences

Fig. 9. Enforcing Lezically Forward Dependence8

/’ Let int l (10][4]; be the the declaration of
the array and “a” be its base address l /

Non-barrier:
e......

Barrier due to loop carried dependences:
i-i
j-1

Ll: Tl =i- 1
T2=j-1
T3=1a*T2
TI=T3+a
TS-4*+1
Tb -T4 +TS /’ T6 <- address of a[j-l]li-l] l /
T7-i*j
T8-16*j
TO-T8+a
TlO=l’i
Tll =TO +TlO /’ Tll <- address of a[#] l /

Non-barrier:
T12 - IT61 +T7
IT111 = T12

/* T12 - a[j-ll[i-11 + i*j l /
/* a[j][i] - T12 l /

Barrier due to lexically forward dependeoces:
T13-i- 1
T14 = 16 * j
TlS=T14+s
Tl6 =4*Tt3
T17 - T15 + T16 /’ T17 <- address of a[j)\i-11 l /
T18-j +l
TlO - i * T18 /‘T19 = i*(j+l) */
T2Oj+l
T21=16*‘IYO
T22=T21+a
T23=4*i
T24=Tzz+T23 /* T24 <- address of alj+l][i] l /

----__----__-----_----------.-------------------*------
Non-barrier:

T% = (T17] + T10
[T24] - T2s

/’ T26 = a[j][i-l] + i*(j+l) l /
/’ a[j+ll(il - T2S l /

Barrier due to loop carried dependences:
j=j+2
if j<10 w to Ll

-_ -__-____-___________-----------------------------
Non-barrier:

Fig. 10

7.3. Static Scheduling of Psrallel Loops

The schedule for execution of a parallel loop can
be statically specified at compile-time if the number of
loop iterations and the number of available processors
are known at compile-time. It is not possible to distri-
bute the iterations of a loop equally among the proces-
sors if the number of iterations is not divisible by the
number of processors available. For example, if there are
only three processors available to execute the code seg-
ment in Fig. 11(a), one of the processors would have to
execute two iterations of the inner loop. As a result the
other two processors may have to be kept idle for
periods of time.

The idling times of processors can be potentially
reduced in the following manner. As demonstrated in
Fig. 11(b), instead of scheduling the extra iteration on
the same processor every time, the processors can take
turns in executing the extra iteration. The result of such
scheduling strategy is that over multiple iterations of
the outer loop, the processors do equal amount of work.
Once the work has been equally divided among the pro
cessors, an attempt to reorder code to create large bar-

61

rier regions can be made. In the best possible case, bar-
rier regions large enough to potentially eliminate idling
may be found (Fig. 11(c)). In order to achieve the above
effect, not only must the inner loop unrolled completely
but the outer loop must be unrolled as well. The outer
loop is unrolled until the total number of loop iterations
available becomes divisible by the number of processors.
In the example presented unrolling the outer loop twice
results in 12 iterations which is divisible by three, the
number of processors. It should be noted that if the bar-
rier mechanism was not flexible in nature, the compiler
would have to decide how much code should be moved
across the barrier in each of the streams. However, in
this example all it had to do was to try and include as
many instructions as possible in the barrier region.

for (j-l; j<lO; j++) do seq
for (ill; i<b; ii+) do par

t
loop body;

1

tb) (4

Fig. 11. Static Scheduling

7.4. Run-time Scheduling of Loop Iterations

In situations where the number of loop iterations
and/or the number of processors available are not
known at compile-time, compiler assisted run-time
scheduling techniques can be used. Consider the code
segment in Fig. 12. The number of iterations in the inner
loop is not known at compile-time. Thus one must wait
until run-time to schedule these iterations among the
available processors. Several self-scheduling techniques
have been developed to distribute the iterations at run-
time(l81. Guided Self Scheduling (GSS) is one technique
that attempts to distribute the work among the proces-
sors so that they complete execution at about the same
time[l9]. This is desirable as it will reduce the idling of
processors at the barrier that must be introduced
between iterations of the outer loop.

Idling of processors can also be reduced using the
fuzzy barrier. At run-time the iterations can be distri-
buted among the available processors. Next, depending
upon the iteration being executed, the processor can
choose to execute a version of the loop body compiled
with or without a barrier. The successive iterations of
the outer loop must be separated by a barrier for correct

execution. To achieve this, the first iteration of the inner
loop that a processor executes should start with a bar-
rier, the last iteration should be followed by a barrier
and the intervening iterations should have no barriers at
all. If the processor is allocated only a single iteration,
the loop body should be compiled such that it is both
preceded and followed by a barrier region. The four ver-
sions of the loop are shown in Fig. 12. Compiling multi-
ple versions of code and selecting the appropriate one at
run-time is a common practice in parallelizing com-
pilers[20].

for (i-l; i<N, i++) do seg
for (j=l; j<M; j-t-t) do par
{

loop body;
1

Task where l<p<s:

for $i-1; i<N; i++)
for (j-p; i<M; H-S) {

if j is (first and (not last)) iteration { oersionl }
else if j is ((not first) and last) iteration { aersiona}
else if j is notffirst or last) iteration

else if j is (first and last)
{ versions }

iteration

1

{ ocrvion4}

Fig. 12. Run-time Scheduling of Parallel Loops

8. Preliminary Results

Commercial muitiprocessor systems, such as
Encore[l4] and Sequent[lS], support the barrier mechan-
ism as part of their parallel programming library which
is available to application programmers. By supporting
the fuzzy barrier in software, the performance of the sys-
tem can be further enhanced. A software implementation
of the fuzzy barrier on a four processor Encore Multimax
has been carried out. For nested loops, similar to those
in Fig. 9, the cost of synchronizing four processors was
reduced from 10,OOO~sec to 3OOpsec as the size of the
barrier region was increased from zero instructions to
half of the total instructions in the loop body. The cost
of barrier synchronization is mainly due to context saves
and restores for the tasks that must be stalled. As the
size of the barrier region increases, the likelihood of a
processor stalling decreases. Therefore, the expensive
context saves and restores may be avoided. At source
level a programmer may be able to construct barrier
regions while coding an application. Thus, it is possible
for both the compiler and the programmers to exploit
the semantics of the fuzzy barrier.

9. Current Status and Future Work

The fuzzy barrier mechanism is being imple-
mented in a prototype system using RISC processors. It
will be used for executing code in VLIW mode as well as

62

code generated by concurrentization of loops. Currently
the possibilities of allowing procedure calls from barrier
regions are being investigated. This is important
because allowing parallel procedure calls can
significantly increase the amount of parallelism. The
issue of interrupts and traps in a barrier region is also
being investigated. Traps are useful as they are often
used in RISC based systems to implement floating point
operations.

Acknowledgements - I am grateful to Mike Epstein for
developing the first hardware realization of the fuzzy
barrier and to Carlo Bronco for assisting him. I thank
Mike Whelan, Charlie Hill, Mark Tucker, Jim Wendorf
and H-Y. Wang for their help and discussions during this
work. I am grateful to Horst Mauersberg and Loek Nij-
man for their encouragement and support. I appreciate
and thank the referees and Prof. M.L. Soffa for their
suggestions.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

P. Tang and P.C. Yew, “Processor Self-Scheduling
for Multiple-Nested Parallel Loops,” Proc. Inter-
national Conf. on Parallel Processing, pp. 528-535,
August, 1986.

R. Gupta, “Synchronization and Communication
Costs of Loop Partitioning on Shared-Memory
Multiprocessor Systems,” Tech. Report TR-88419,
Philips Laboratories, Briarcliff Manor, NY, 1988.

H.S. Stone, High-Performance Computer Architec-
ture, Addison-Wesley Publishing Company, 1987.

P.C. Yew, N.F. Tzeng, and D.H. Lawrie, “Distri-
buting Hot-Spot Addressing in Large Scale Muf-
tiprocessors,” IEEE Trans. on Computers, vol. C-
36, no. 4, Aprif, 1987.

C.D. Polychronopoulos, “Compiler Optimizations
for Enhancing Parallelism and Their Impact on
Architecture Design,” IEEE Trans. on Computers,
vol. 37, no. 8, pp. 991-1004, August, 1988.

J.R. Ellis, Bulldog: A Compiler for VLIW Architec-
tures, MIT Press, 1986.

R. Gupta, “A Reconfigurable LIW Architecture
and its Compiler,” Dept. of Computer Science;
Ph.D. dissertation, Tech. Report 87-3, University
of Pittsburgh , August, 1987.

R. Gupta and M.L. Soffa, “A Reconfigurable LIW
Architecture,” Proc. of the International Conf. on
Parallel Processing, pp. 893-900, August, 1987.

D.A. Patterson, “Reduced Instruction Set Com-
puters,” Communications of the ACM, vol. 28, no.
1, pp. 8-21, Jan., 1985.

A.V. Aho, R. Sethi, and J.D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley,
1986.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. Hennessy and T. Gross, “Postpass Code Optim-
ization of Pipeline Constraints,“ ACM Trans. on
Programming Languages and Systems, vol. 3, no. 5,
pp. 422-448, 1983.

W.C. Hsu, “Register Allocation and Code Schedul-
ing for Load/Store Architectures,” Dept. of Com-
puter Science; Ph.D. dissertation, University of
Wisconsin, Madison, 1987.

D.J Kuck, R.H. Kuhn, D.A. Padua, B. Leasure,
and M. Wolfe, “Dependence Graphs and Compiler
Optimizations,” 8th Annual ACM Symp. on Princi-
ples of Programming Languages, pp. 207-218, 1981.

“Multimax Technical Summary,” Encore Com-
puter Corporation, Marlboro MA, 1987.

A. Osterhaug, “Guide to Parallel Programming on
Sequent Computer Systems,” Sequent Computer
Systems, Inc., Beaverton, Oregan, 1987.

R. Gupta and M. Epstein, “Achieving Low Cost
Synchronization in a Multiprocessor System,” Phi-
lips Laboratories; Tech. Note TN-88-140, Briarcliff
Manor, NY, October, 1988.

R. Cytron, “Doacross: Beyond Vectorization for
Multiprocessors,” Proc. International Conf. on
Parallel Processing, pp. 836-844, August, 1986.

C.D. Polychronopoulos, D.J. Kuck, and D.A.
Padua, “Execution of Parallel Loops on Parallel
Processor Systems,” Proc. International Conf on
Parallel Processing, pp. 235-242, August, 1986.

C.D. Polychronopoulos and D.J. Kuck, “Guided
Self-Scheduling: A Practical Scheduling Scheme
for Parallel Supercomputers,” IEEE Trans. on
Computers, vol. C-36, no. 12, pp. 1425-1439, Dec.,
1987.

M. Byler, J.R.B. Davies, C. Huson, B. Leasure, and
M. Wolfe, “Multiple Version Loops,” International
Conf. on Parallel Processing, pp. 312-318, August,
1987.

63

