
ONTRAC: A system for efficient ONline TRACing for debugging

Vijay Nagarajan, Dennis Jeffrey, Rajiv Gupta and Neelam Gupta
University of Arizona

Department of Computer Science
{vijay,jeffreyd,gupta,ngupta}@cs.arizona.edu

Abstract

Dynamic Slicing [11, 21, 22] is a promising trace based
technique that helps programmers in the process of debug-
ging. In order to debug a failed run, dynamic slicing re-
quires the dynamic dependence graph (DDG) information
for that particular run. In prior work, address and control-
flow traces are collected online and then extensively post-
processed offline to yield the DDG, upon which slicing is
performed. Unfortunately, the offline post-processing step
can be extremely time consuming [21], impeding the use of
dynamic slicing as a debugging technique.

In this paper, we present ONTRAC, an efficient online
tracing system, that directly computes the dynamic depen-
dences online, thus eliminating the expensive offline post-
processing step. To minimize the program slowdown, we
make the design decision of not outputting the computed
dependences to a file, instead storing them in memory in a
specially allocated fixed size circular buffer. The size of the
buffer limits the length of the execution history that can be
stored. To maximize the execution history that can be main-
tained, we introduce optimizations to eliminate the storage
of most of the generated dependences, at the same time en-
suring that those that are stored are sufficient to capture the
bug. Our experiments conducted with real bugs confirm the
above fact. Other experiments conducted on cpu-intensive
programs show that our optimizations are able to reduce the
trace-rate from 16 bytes to 0.8 bytes per executed instruc-
tion. This enables us to store the dependence trace history
for a window of 20 million executed instructions in a 16MB
buffer. ONTRAC is also very efficient, only slowing down
the execution by a factor of 19, eliminating the slowdown
by a factor of 540 due to post-processing.

1 Introduction

It is a well known fact that programmers spend a huge
amount of effort in debugging their programs and thus
improvement in debugger technology can greatly increase
the productivity of programmers. Recently there has been

significant research onDynamic Slicing[11, 21, 22] and the
indications are that it is a promising debugging technique.
The essential idea of debugging using dynamic slicing is
quite simple and intuitive. When a programmer observes
an erroneous program state, clearly, the cause of the error
should have been in one of the several statements that
influenced this state. It is precisely these set of statements
that the dynamic slicing technique helps us identify. In
other words, the dynamic slice of a value computed at
an execution point includes all those executed statements
which were directly or indirectly involved in the computa-
tion of the value. From the definition of the slice, it is quite
clear that dynamic slicing requires additional information
about the program run to enable the computation of the
slice. More specifically, it requires the DDG which is the
set of dynamic data and control dependences exercised in
the program run. Thus debugging using dynamic slicing
consists of two steps:

• Step 1Generation of DDG

• Step 2Performing dynamic slicing on the DDG.

Previously, it was thought that performing step 2 in reason-
able time was impossible due to the huge size of the DDG,
even for small program runs. Prior work [21] dispelled
this notion by coming up with a highly compact depen-
dence graph representation that made the second step not
only practical, but also efficient - in the order of a few sec-
onds. Unfortunately, the generation of this compact depen-
dence representation is expensive. Additional offline post-
processing had to be performed on the collected address and
control flow traces to yield the compacted representation. In
fact, the post-processing1 in step 1 [21] could take as long as
an hour even for short executions of a few seconds (around 5
seconds) of the original program, as seen in Table. 1. Thus
the post-processing step causes the program to slowdown
by a factor of 540.

Let us now imagine that a programmer uses a dynamic
slicing based debugging technique. Debugging code is not

1In [21] this step is called the pre-processing step as it precedes slicing.
In this work this is called post-processing as it takes placeafter tracing.

Table 1. Post-processing times in [21]
Benchmark Post-processing (minutes)

mcf 53.64
bzip 38.36
gzip 23.52

parser 44.06
twolf 65.29
perl 51.12

vortex 44.46

a one step process; it is an iterative process in which the
programmer generally makes several changes before arriv-
ing at the correct code. Every time the programmer makes
a change, the (compacted) dependence graph needs to be
generated anew. This means that step 1, in addition to step
2, is in the critical path as far as the programmer is con-
cerned. Clearly, no programmer will want to wait an hour
every time he/she makes a change to the code for the new
dependence graph to be generated.

In this paper, we address this important issue of build-
ing the DDG (step 1) efficiently. Our tracing system,ON-
TRAC, built on top ofDynamoRIO[13], a dynamic binary
instrumentation framework, directly computes the dynamic
dependences online, thus eliminating the expensive offline
post-processing step. To minimize the program slowdown,
we make the design decision of not outputting the depen-
dences to a file, instead storing them in memory in a spe-
cially allocated fixed size circular buffer. It is importantto
observe that the size of the buffer limits the length of the ex-
ecution history that can be stored, where the execution his-
tory is a window of the most recent executed instructions.
Since the dependences stored in the trace buffer pertain to
the above window of executed instructions, the faulty state-
ment can be found using dynamic slicing only if the fault is
exercised within this window. Thus it is important to maxi-
mize the length of the execution history stored in the buffer.
To accomplish this, we introduce a number of optimizations
to eliminate the storage of most of the generated depen-
dences, at the same time we observe from our experiments
that those that are stored are sufficient to capture the bug.
Besides increasing the length of the execution history that
can be stored, our optimizations helps limit the instrumen-
tation overhead, because some of our optimizations identify
static dependences for which dynamic instrumentation can
be avoided.

The optimizations that we perform to reduce the size of
the dependence graph can be classified broadly into two
types. While the first kind of optimizations are generic ones,
based on program properties, the second kind are exclu-
sively targeted towards debugging. Our generic optimiza-
tions are as follows. First, we eliminate the storage of de-
pendences within a basic block that can be directly inferred
by static examination of the binary. Second, we extend the
same idea to traces of frequently executed code spanning

several basic blocks. Third, we detect redundant loads dy-
namically and exclude the related dependences. Our tar-
geted optimizations are as follows. We first provide support
to safely trace only the specified parts of the program, where
the programmer expects to find the bug. This is useful be-
cause the programmer sometimes has fair knowledge about
the approximate location of the bug in the code. For in-
stance, he/she might be modifying a particular function and
hence may be relatively sure that the bug is in that function.
It is worth noting that a naive solution where the unspec-
ified functions are simply uninstrumented, will not work
because this could potentially break the chain of depen-
dences through the user specified functions; this can cause
the backward slice to miss some statements from the spec-
ified functions that should have been included. Our second
targeted optimization is based on the observation that the
root cause of the bug is often in the forward slice of the in-
puts of the program. This observation has been verified in
prior work [14, 20]. Thus, by computing the forward slice
of the inputs dynamically, we provide support to selectively
trace only those dependences that are affected by the input.

Our experiments conducted on cpu-intensive programs
from the SPEC 2000 suite show that computing the depen-
dence trace online causes the program to slowdown by a
factor of 19 on an average, as opposed to 540 times slow-
down caused by extensive post-processing [21]. The op-
timizations also ensure that we only need to store tracing
information at the average rate of 0.8 bytes per executed
instruction as opposed to 16 bytes per instruction without
them. This enables us to store the dependence trace history
for a window of 20 million executed instructions in a 16MB
buffer. The rest of the paper is organized as follows. In
section 2, we describe the representation of the DDG and
describe how the program is instrumented to capture it. In
section 3, we briefly explain the implementation of theON-
TRACsystem. In section 4, we discuss the 3 generic opti-
mizations that are based on program properties. Section 5
concerns the two optimizations that are targeted towards de-
bugging. Experimental results are presented in section 6. In
section 7 related work is presented and the paper concludes
in section 8.

2 Online Computation of DDG

In this section, we discuss the basic representation of our
DDG, followed by a description of the instrumentation in-
volved in computing it.

Our representation of the DDG is very similar to the one
used in prior work [21]. Each node of the DDG corresponds
to a unique static instruction of the program and is identi-
fied by its instruction address, theinstr id. The nodes of the
DDG are initially statically linked via static control depen-
dences. As the program executes, the graph is transformed

by introducing edges for the dynamically exercised data de-
pendences. Since the same dependence may be exercised
many times, the edge is labeled with additional information
to uniquely identify the executioninstancesof the instruc-
tions which are involved in the dependence. Execution in-
stances are identified by generating timestamps. A global
timestamp value is maintained and each time a basic block
is executed, it is incremented. We consider adependence
to be either adata dependenceor acontrol dependence. A
data dependence exists between two instructions if one of
them usesthe valuedefinedby the other. This is repre-
sented by a pair of tuples(instr iduse, instanceuse) →
(instr iddef , instancedef). A control dependence exists
between two instruction if one of them (the predicate) con-
trols the execution of the other. This is represented by
a pair of tuples,(instr iduse, instanceuse) → (instr

idpredicate, instancepredicate).

In order to compute the dependences during tracing,
we maintain a separateshadow memory locationfor ev-
ery memory location and register during program execu-
tion. The shadow register/memory contains the (instr id, in-
stance) pair of the instruction that writes to the correspond-
ing register/memory location. This enables us to lookup
the information when the aforementioned value is subse-
quently used. It is worth noting that we only compute the
data dependences dynamically. However, in this process,
the control flow is captured, which allows us to recover the
dynamic control dependences.

int fun (char *input) {
char *array; int len,j = -1;

1. len = strlen(input);
// root cause
2. array = malloc(len+2);

3. while (j<len)
{
4. j++;

5. i = 2* j;

6. array[i] = input[j]; //crash

7. if (isupper(array[j]))
 {
8. array[i+1] = input[j];
 }
 else
 {
9. array[i+1] =
 toupper(array[j]);
 }
}

}

…

//% ebx points to start addr. input
//% eax points to start addr. array
//% ecx contains value of i
//% edx contains value of j

Statement 5:

// i = j
a) mov %edx, %ecx

// i = 2*i
b) add %ecx, %ecx

Statement 6.

// Load input[j] into %esi
c) mov (%ebx, %edx), %esi

// Store %esi into array[i]
d) mov %esi, (%eax, %ecx)

…

Let:
i)(pc,inst): (instr addr, instance)
ii) EA: effective address
iii) tagr: shadow for reg 'r'
iv) shadowm: shadow memory
for effective addr 'm'

Instrumentation for instr. a
i) tagecx = (pca, insta) pair
ii) Output: (pca, insta)� tagedx

Instrumentation for instr. b
i) tagecx = (pcb, instb) pair
ii) Output: (pcb, instb)� tagecx

Instrumentation for instr. c
i) tagesi = (pcc, instc) pair
ii) Output: (pcc, instc)� tagebx,
tagedx, shadowEA

Instrumentation for instr. d
i) shadowEA = (pcd, instd) pair
ii) Output: (pcd, instd)� tagesi,
tageax, tagecx,

 (a) Original code (b) Assembly (c) Instrumentation

Figure 1. Instrumentation for Computing Data
Dependences at Runtime.

We explain the computation of data dependences with an
example as seen in Fig. 1. The first column shows a simple
function in which an input string is processed to obtain a
larger string of double the size, such that each character in
the original string is duplicated with a capitalized version
of the same character. The second column shows two of
the statements (5 and 6) from the function in x86 assem-
bly format and the final column shows the instrumentation
for instructions corresponding to the statements. There are
two main steps involved in the instrumentation for these in-
structions. First, we store the (instr id,instance) pair ofthe
instruction in the shadow location corresponding to the de-
fined value of the instruction. This is done so that, when
the definition is subsequently used, we know where it came
from. Second, we output dependency information relating
the current instruction with the the shadow locations of the
uses. Note that the shadow locations of the uses contain the
instr id and instances of those instructions that originally
produced the uses. Let us consider instructiona of state-
ment 5, which moves the value ofj (stored inecx register)
into i (stored inedx register). The instrumentation for this
instruction consists of the following two steps. First, the
(instr id, instance) pair for this instruction is stored in the
shadow location corresponding to the definition of this in-
struction, which is the variable i (registerecx). Second, the
dynamic dependence relating the current (instr id, instance)
pair to the shadow memory (containing the definition in-
formation) of theinstruction’s use. In this case, there is a
dependency between the pair (pca, insta) and the shadow
memory of the registeredx. The instructionb from state-
ment 5 is similarly instrumented. Let us now consider state-
ment 6, which movesinput[j] into array[i]. As we see
in column 2, this statement consists of two instructionsc

andd; the former loadsinput[j] into esi register and latter
stores the loaded value intoarray[j]. Let us consider in-
structionc. The first instrumentation step stores the current
instruction information, (pcc, instc) pair into the shadow lo-
cation for defined register,edx. In the second instrumenta-
tion step, we output three dependences to the buffer because
the load has three uses: one is the memory location loaded
from, and the other two are registers (ebx, edx), which are
used in the computation of the effective address of the load.
Instrumentation for instructiond, which is a store, is of sim-
ilar flavor.

As we can see from the first column of Fig. 1, there is
a bug in the allocation in statement 2, where the size of
the resultant string, array, has not been properly allocated
(len + 2 has been allocated insteadlen ∗ 2). Let us as-
sume the crash happens in statement 6 (instruction d), be-
cause of the overflow of the buffer, array. Recall that we
are computing the dependences online during the program
run to make sure that a backward slice from instructiond

leads to the root cause of the bug, in the statement 2. As we

can see from column 2, one of the uses for instructiond is
the start address of array (registereax). Consequently, the
shadow location foreax (tageax) will contain the statement
that is responsible for defining it, which is in fact, statement
2. Thus a dynamic slicing based debugger using our com-
puted traces will be able to present the buggy statement to
the programmer, in this example.

One-Pass Post-processing.After the program termi-
nates, we consolidate the trace collected in the fixed size
buffer, using a fast one-pass post processing step. In this
step, we classify the collected dependences instruction-wise
in increasing order of instances. This will facilitate the rapid
traversal of the dependence trace when dynamic slicing is
subsequently performed. In this step, we also compute the
dynamic control dependence from the set of multiple po-
tential static control dependences for an instruction, which
can happen when unstructured programming statements are
used. The dynamic control dependence for an instruction in
such a case, is the static control dependence ancestor that
was executed the latest. This is easily determined by ex-
amining the time stamps of the static control dependence
ancestors. Thus, the representation of the DDG at the end
of this post-processing step is as indicated in the Fig.2. The
figure shows the set of dynamic dependences for one in-
struction, whose instruction address ispc1. The dynamic

pc1

static control pcm , pcn

 ….

 insti

 data
 { (pcp, instu), (pcp, instv) }

 insti

 control { (pcm, instw)}

 insti+1
 data

 { (pcp, instx), (pcp, insty) }

 insti+1

 control { (pcn, instz)}

 ….

Figure 2. DDG Representation

data and control dependences exercised for each instance of
the instruction’s execution are represented explicitly. It is
important to note that the time taken for this post-processing
step is negligible, dominated by the time required for read-
ing the contents of the trace buffer, which has to be done
anyway. This is why we claim to have eliminated the ex-
pensive post-processing in [21] that involves computation
of dependences from address and control flow traces, fol-
lowed by their compaction. In fact, we found in our ex-
periments that our post-processing step does not exceed 10
seconds for a 16 MB trace buffer.

3 ONTRAC System

In this section, we briefly describe the implementation
of ONTRAC, our online tracing system. We built our

system on top ofDynamoRIOa dynamic binary instru-
mentation framework [13], although other binary instru-
mentation frameworks likePin[15] could have been used.
DynamoRIO supports code transformations on a program,

 Context switch

 DynamoRIO

Basic Block
Builder

Trace
Selector

DISPATCHER

Basic Block
Cache

Trace
Cache

Indirect
Branch
Lookup

ONTRAC INSTRUMENTATION

SHADOW
MEMORY

TRACE BUFFER

Figure 3. The ONTRAC System

while it executes. It exports an application interface for
building dynamic tools for a wide variety of uses: program
analysis, profiling, instrumentation, optimization etc. Func-
tionally, DynamoRIO can be viewed as an interpreter which
reads/decodes the original instructions from the application
and executes it along with the potential instrumentation for
that particular instruction. To avoid the emulation overhead,
DynamoRIO caches frequently executed code into itscode
caches, from where it is executed natively in the future. This
optimization proves to be extremely effective and most pro-
grams can be run with very little overhead. The working
of dynamoRIO is illustrated in Fig. 3. The top half repre-
sents the execution under the control of dynamoRIO while
the bottom half represents native execution of instrumented
code from the code cache. It is worth noting that very lit-
tle execution time is actually spent on the top half, which
can be considered the instrumentation or the dynamic com-
pilation phase. Thebasic block buildercopies the appli-
cation code one basic block at a time into the basic block
code cache. A block that directly targets another block al-
ready resident in the code cache is linked to that block to
avoid the cost of returning to the DynamoRIOdispatcher,
through theindirect branch lookup. Frequently executed se-
quences of basic blocks are combined intotraces, which are
placed in a separate code cache. DynamoRIO makes these
traces available via its interface for convenient access tohot
application code streams. Our main work, theONTRAC in-
strumentationfor computing and outputting the dependence
trace, is added after basic blocks/traces are built. Thus the
code caches contain our modified instructions, which in-

cludes the instrumentation code.
As we saw in the previous section, we also require addi-

tional memory requirements for storing the shadow values
for each register and each word of application memory. We
use a global array for storing the shadow values for reg-
isters. We implemented our shadow memory support into
dynamoRIO and made sure that the translation between the
effective address and the shadow memory location is effi-
cient. We also made the design decision of maintaining the
computed dependence trace in a circular trace buffer instead
of writing it to a file. This was done for two reasons. First,
we found that writing all the collected information into a
file greatly slows down the original program [17]. Secondly,
when debugging is performed the trace information has to
be read again from the file, which can be avoided if we
maintain trace information in a buffer. On the other hand,
storing traces in a fixed circular buffer suffers from the ob-
vious disadvantage that trace information is lost when the
buffer becomes full. Fortunately, it has been observed that
debugging often requires only the tracing information per-
taining to a window of recently executed instructions [16].
It was found that a window of 18 million instructions was
sufficient to capture the bug for several bugs considered.
We later show that for only a 16MB trace buffer, we can
store trace information for about 20 millions executed in-
structions.

4 Generic Optimizations

In this section, we limit the number of dependences that
need to be traced, by taking advantage of program proper-
ties. Specifically we utilize the fact that several data de-
pendences, especially the dependences between the regis-
ters, can be inferred by statically analyzing the code locally
within a basic block. Secondly, we extend this idea totraces
of multiple basic blocks that are executed frequently. Fi-
nally we identify redundant loads to eliminate tracing for
such loads.

4.1 Basic-block Optimization

Frequently, data dependences between instructions can
be inferred statically by performing a simple analysis. For
example, consider Fig.4 which is the same function con-
sidered as in Fig. 1. We can infer that that statement 5 is
data dependent on statement 4 as the former uses the value j
defined by the latter. Furthermore, this can be inferred stati-
cally by just examining the binary, by observing the fact that
statement 5 uses registeredx, allocated to variablej, which
was defined in statement 4. Here it is important to note that
since we use a dynamic instrumentation framework, these
static dependences are actually inferred during the instru-
mentation time. Nevertheless, the benefit of computing the

 3. while (j<len)
 {

 TRC

 4. j++; BBL

 5. i = 2* j;

 6. array[i] = input[j];

 7. if (isupper(array[j]))
 {
 8. array[i+1] = input[j];
 }

Static dep. @ BBL

Stmt 5� Stmt 4 (value j)
Stmt 6� Stmt 4 (value j)
Stmt 6� Stmt 5(value i)

Additional static dep. @ TRC

Stmt 7� Stmt 4 (value j)
Stmt 8� Stmt 4 (value j)
Stmt 8� Stmt 5 (value i)

…
//% ebx points to start addr. input
//% eax points to start addr. array
//% ecx contains value of i
//% edx contains value of j

Statement 5@ BBL Opt :
// i = j
a) mov %edx, %ecx
// i = 2*i
b) add %ecx, %ecx

Statement 8 @ TRC Opt

// Load input[j] into %esi
c) mov (%ebx, %edx), %esi

// Store %esi into array[i+1]
d) mov %esi, 0x1(%eax, %ecx)

i)(pc,inst): (instr addr, instance)
ii) EA: effective address
iii) tagr: shadow for reg 'r'
iv) shadowm: shadow memory
for effective addr 'm'

Instrumentation for instr. a
// value of j obtained from stmt 3

i) tagecx = (pca, insta) pair

Instrumentation for instr. b
// value of ecx obtained from a

i) tagecx = (pcb, instb) pair

Instrumentation for instr. c
// value of j obtained from stmt 3

i) tagesi = (pcc, instc) pair
ii) Output: (pcc, instc)�
shadowEA, tagebx

Instrumentation for instr . d
// value of esi obtained from c
// value of i obtained from stmt 4

i) shadowEA = (pcd, instd) pair
ii) Output: (pcd, instd)� tageax

 (a) Original code (b) Assembly (c) Instrumentation

Figure 4. Static Dependences at the Basic
block/Trace level

dependency at instrumentation time is equivalent to stati-
cally identifying the dependency, since relatively very little
time is spent during instrumentation. As we can see from
the third column, we do not output dependences for instruc-
tionsa andb of statement 5, since they were already inferred
statically (at instrumentation time). Thus inferring the de-
pendences at instrumentation time, reduces the amount of
work that needs to done at runtime and also reduces the
traced information.

4.2 Trace Optimization

A traceis a sequence of frequently executed basic blocks
that do not extend across loop boundaries. Since we use
a dynamic instrumentation framework, traces of frequently
executed basic blocks can be identified dynamically. In fact,
dynamoRIO makes these traces available to the user via its
application interface. This makes it possible to apply the
optimization discussed in the previous section aggressively
across several basic blocks. For example, consider state-
ments 7 and 8 in Fig.4. Let us assume that the input pro-
vided is in capitals already, so that the sequence of state-
ments 4,5,6,7 and 8 form a trace. Clearly, we can now infer
that the use ofj in statement 7 comes from statement 4 and
the use ofi andj in statement 8 comes from statemented 4
and 5 respectively. As in the basic block optimization these
static dependences are output at instrumentation time, when
the traces are identified. This obviates the need to output
these dependences into the trace buffer during runtime.

 1. x = …

 2. * p = …

 3. = x

Statement 3:

if EA(x) = EA(p)
{
 Output: (pc3, inst3) � (pc2, inst2)
 }

Original Code Instrumentation

Figure 5. Inferring Memory Dependences in
the presence of aliasing

In some situations, even memory dependences can be in-
ferred statically although memory aliasing proves to be a
hindrance for this inference. But we can deal with it by
dynamically verifying if there has been any memory alias-
ing. Consider the simple example in Fig. 5. First, we infer
that there is a memory dependency between statements 3
and 1; statement 3 uses the global variablex which is de-
fined in statement 1. This inference is performed during
instrumentation time and a static dependency between the
two statements is speculatively output. Second, we need to
make sure that none of the memory instructions between
statements 1 and 3 alias with the address of the variable
x. Observe that in statement 2, there is a definition to a
pointer reference which may or may not point tox. This
is done dynamically by instrumenting statement 3 with an
additional check, in which the effective addresses ofx and
p are compared. We output a dynamic dependency between
statements 2 and 3, only if the addresses match. It is worth
noting that if this memory aliasing happens to occur dur-
ing program execution, the static dependence edge between
statements 1 and 3 becomes superfluous. Thus during dy-
namic slicing we give precedence to dynamic dependences
over the static ones.

4.3 Redundant Load Optimization

 1. x = …

 for(….)
 {
 // redundant load
 2. … = x
 …
 }

Assembly for stmt 2
a. mov addr, %ecx
…

Instrumentation for instr. a

i) tagecx = (pcb, instb) pair

ii) if (shadowaddr != save)
 {
 O/p: (pcb, instb)� shadowaddr

 save = shadowaddr;
 }

 (a) Original code (c) Instrumentation

Figure 6. Dealing with Redundant Loads

Prior work [19] has shown that a significant percentage
(around 20%) of dynamic loads in program execution are
redundant loads. One important reason for such an obser-
vation is because of the presence of loads in loops. As we

can see in Fig. 6, the load (instructiona) of statement 2 is
redundant, since it repeatedly loads the same value across
different loop iterations. Thus, all but the load from the
first instance is redundant. We detect redundant loads by
instrumenting the load under consideration. We check if
the current load gets its value from the same dynamic in-
stance of the same store as the load from the previous loop
iteration; if so then the current load is redundant. Recall that
the (instr id,instance) pair of the store, from which the cur-
rent load gets it value, is available in the shadow memory
of the effective address of the load. This is compared with
the corresponding saved pair for the load from the previous
iteration. In this example, the saved pair is denoted by the
identifier,save. In our implementation, we performed the
redundant load optimization to selected frequently executed
loads inside loops.

5 Targeted Optimizations

The optimizations considered in the previous section are
generic in the sense that they are based on program proper-
ties and are applicable irrespective of the potential use ofthe
traces. In this section, we discuss two optimizations that are
exclusively targeted towards debugging. In our first opti-
mization, we describe how we can selectively trace through
functions where the programmer expects to find the bug. In
the second optimization, we only trace instructions that are
in theforward sliceof the input.

5.1 Selective Tracing

Programmers often debug large software spread across
different functions in various files. More often than not,
they have a fair idea of where the bug is, at least at file
granularity. Typically, the programmer can isolate a set of
few functions, which are likely to contain the bug. In the
worst case, it can usually be assumed that the bug is not
present in any of the the library functions that the current
software uses. In this optimization, we take advantage of
the knowledge the programmer has about the bug, to selec-
tively trace only those functions in which the programmer
expects the bug to be contained. But this does not mean
we can completely ignore all other functions and not in-
strument them at all. To see why, let us consider a simple
example shown in Fig. 7. Let us assume that there is a bug
in the original code and the bug lies in the first statement in
which an assignment is performed to one of the characters
of stringa. Further, let us assume there is a call tostrcpy
which copies the string ‘a’ into another string calledans,
which is the output variable. Finally, the program termi-
nates with the value ofans printed out. Since there is a
bug in the code, the programmer observes the fact there is
a discrepancy with the output and starts a backward slice

1. a[i] = … // rootcause
 …

2. strcpy(ans, a);

 …

3. printf("%s", ans);

Code for strcpy:
…
a. mov a[i] , %eax
b. mov %eax, ans[i]
…

strcpy: instr. a

i) tageax = shadowa[i]

strcpy: instr. b

i) shadowans[i] = tageax

 (a) Original code (c) Instrumentation

Figure 7. Selective Tracing

based on the valueans, during debugging. Clearly state-
ment 2 will be contained in the backward slice of statement
3 because the latter uses the variableans defined by the for-
mer. Intuitively, statement 1 is expected to be contained in
the backward slice of statement 3 for the same reason. It is
important to note that this can be inferred only if we can in
turn realize that there is a dependency between the strings
a andans via strcpy. Now, the programmer surely knows
that the root cause is not present in library functions and
hence not instrcpy. But if we had naively chosen to ignore
strcpy completely and not perform any instrumentation for
instructions insidestrcpy, we would have not been able to
identify the dependency between the variablesa andans.
Hence a backward slice from statement 3 would not reach
statement 1, ifstrcpy was completely ignored. Thus, it is
clear that such functions, even if they are not expected to
contain the bug, cannot be ignored completely.

In this optimization, we come up with a simple solution,
whilst reducing the tracing information collected for func-
tions that are not expected to contain the bug, still ensures
that the slicing technique is still effective on the reduced
trace collected. The main idea is to not output dependences
within such functions, but ensure that we stillpropagatede-
pendences. Suppose there is an instruction with a unique
definition and a use; propagation of dependences involves
copying the shadow value corresponding to the use into the
shadow value for the definition. There is no output of de-
pendences. By propagating the dependency, we are regis-
tering the fact that the current instruction alters the exist-
ing dependences. By not outputting the the dependence in-
formation, we are ensuring the slicing algorithm can safely
by-pass the current instruction. Thus, propagation of de-
pendences, is an effective solution for selectively tracing a
set of functions. In the above example, consider the two
instructions a and b that perform the core function of str-
cpy. Instructiona, loads a character from the stringa into

a register and instructionb stores it intoans. The instru-
mentation involved for performing this propagation is illus-
trated in the second column and is self explanatory. Since
the shadow values of the stringa are propagated into the
shadow values ofans, statement 1 can still be reached by
performing a backward slice from statement 3 and thus the
bug will be contained in the slice.

5.2 Forward Slice Optimization

This optimization is based upon the observation that
when a software failure occurs during program execution,
the root cause of the failure will generally be contained
within the forward slice of the input to the program. In
other words, this leverages the fact that the root cause of
a failure will be dependent upon the input to the program.
Intuitively, the above fact is not surprising, especially with
harder-to-find errors that are only revealed on particular in-
puts. Moreover, this has been empirically observed in prior
work [14] which has shown that forward slices on program
input contain the error in most cases. Thus the main idea of
this optimization is totrace only those instructions that are
in the forward slice of the input.

 BS

 FS

Failure inducing i/p

Failure
inducing
chop

Figure 8. The failure inducing chop

This technique is inspired by the success offailure-
inducing chops[14] as a technique for debugging. The
failure inducing chop is defined as the intersection of back-
ward dynamic slice of the faulty output and forward dy-
namic slice of the failure inducing input as shown in Fig. 8.
It has been found that the failure inducing chop contains
the root cause of the error in most cases and it is signifi-
cantly smaller than the backward dynamic slice, making it
an effective technique for debugging. By selectively trac-
ing those instructions that are in the forward slice of the
input, we are eliminating the need to perform this intersec-
tion later. Moreover, this allows us to trace lesser informa-
tion and store a larger execution history, for the same buffer
size. To implement this, we simply need to propagate an ex-
tra forward-slicing bit of data within the shadow contents of
variables to indicate whether the variable values are depen-
dent upon the program input or not. Then, we only output
dependences involving variables whose forward-slicing bits
are set.

6 Experimental Evaluation

We conducted experiments with several goals in mind.
First and foremost, we wanted to measure the execution
time overhead of computing the dependences online and
also observe the effect of our optimizations on the execution
time overhead. At the same time, we also wanted to study
the rate at which the trace buffer is filled up by executing
instructions. We call this thetrace-rate. We also study the
effect of the various optimizations on this trace-rate. Intu-
itively, this rate should decrease monotonically as and when
several optimizations are applied. It is worth noting that the
trace-rate is an indirect measure of the length of the tracing
history that can be stored in the fixed buffer. The lower the
trace-rate, the more slowly the buffer will get filled up and
thus the buffer can hence store a longer execution history.
We chose a buffer size of 16 MB to store the traces. We
made the counter that kept track of the current buffer size to
roll over, to avoid repeatedly checking its value during trac-
ing. All experiments were performed on an Intel Pentium 4
- 3GHz machine with 2GB physical memory.

Another important goal of our experiments was to ensure
that the optimizations that were targeted towards debugging
actually work. In other words, we want to make sure that
the optimizations do not accidentally remove important de-
pendences that make it impossible to find the bug through
slicing. We present results of this experiment first.

6.1 Efficacy of Targeted Optimizations

In this experiment, we wanted to study whether the re-
duced trace information collected is still able to capture the
bug. For this experiment, we considered 6 real world bugs
given in Table 2. Since all the above bugs were memory
related, we used only data dependences for the dynamic
slicing. For the selective tracing optimization (ST), we per-
formed tracing only in the function in which the bug was
present, performing dependence propagation in all other
functions. For the forward slice optimization (FS), we only
traced the instructions that were in the forward data slice of
the input that caused the bug to manifest. As we can see
from the last two columns of the table, we were able to find
the bug for all benchmarks, even though the two optimiza-
tions were performed.

Table 2. Efficacy of targeted optimizations

Benchmark Bug Type S.T F.S

bc-1.06 [1] heap overflow Yes Yes
mc-4.5.55[3] stack overflow[2] Yes Yes

mutt-1.4.2.1i[5] heap overflow[4] Yes Yes
pine-4.44[8] stack overflow [7] Yes Yes
pine-4.44[8] heap overflow[6] Yes Yes
squid-2.3[10] heap overflow[9] Yes Yes

6.2 Overhead of ONTRAC

In this section we evaluate the execution time overhead
of online dependence generation relative to the native run of
the original program. We considered the SPEC integer pro-
grams for this experiment, all of which are CPU intensive
programs. We provided the training input set for performing
this experiment.

 0

 5

 10

 15

 20

 25

 30

G-MEANvortexcraftyperltwolfparservprgzipbzipmcf
N
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

Subject Program

Normalized Execution Time
Base

BBl
Trc
Sel

Red
FS

Figure 9. Execution Time Overheads.

As we can see from the Fig. 9, the execution slowdown
of the Base configuration in which all dependences are
traced is around a factor of 19. Although this is quite high in
absolute terms, it is a marked improvement from the slow-
down of the post-processing step in [21] which was at least
a magnitude higher around a factor of 540 as we saw in
Table. 1. The second bar,BBl, shows the execution time
overhead after the static dependences present at the basic
block level are found at instrumentation time. As expected,
this causes a significant drop in the slowdown. The average
slowdown experienced after this stage is around a factor of
15. The next optimization,Trc, concerns the deduction of
static dependences at the trace level of the program. This
further improves the performance of the system by a non-
trivial amount. In the selective tracing optimization (Sel),
we selected the five statically largest routines from each
program and then performed tracing only for those. The
choice of the five largest functions, albeit arbitrary, ensures
that there is a reasonable size of code we are tracing. As
expected, we could save significant execution time by sim-
ply performing ‘propagation’ as opposed to ‘tracing’ into
the non chosen routines. The execution time overhead af-
ter this optimization is around a factor of 9. The next bar,
Red, refers to the execution time overhead when the load
redundancy optimization is implemented online. There is a
an increase in the execution time because extra work needs
to be done to identify the redundancies. The final barFS

shows the effect of the forward slice optimization. In our
experiments we only considered the forward data slice, as

this was sufficient to capture the error for the memory bugs
considered. We observe that there is a further increase in
the execution time overhead since the forward slice instru-
mentation has to be performed for most of the executed in-
structions. The nett program execution slowdown after all
optimizations are performed is around a factor of 19. It is
important to note that although the last two optimizations
causes increases in execution time, they also enable signifi-
cant savings in the trace rate as we will see in the next sec-
tion. Finally, we also implemented our system under the
Pin instrumentation framework[15], which we used for pro-
totyping due to the ease of implementation. The lack of
fine-grained control over instrumentation resulted in ON-
TRAC running 2-3 times slower in Pin.

6.3 Trace-rate

In this experiment, we measured the rate of trace pro-
duction, which we define as the number of bytes of trac-
ing data produced per dynamic instruction executed in the
original program. As we can see from the Fig. 10, the rate

 0

 5

 10

 15

 20

G-MEANvortexcraftyperltwolfparservprgzipbzipmcf

B
y
t
e
s

p
e
r

I
n
s
t
r

I
n
s
t
a
n
c
e

Subject Program

Bytes per Executed Instruction Instance

Base
BBl
Trc

Red
Sel
FS

Figure 10. Rate of trace production.

of trace production is quite high without any optimizations,
averaging 16 bytes per dynamic instruction. But most of
these dependences are static dependences and this can be
optimized by examining the dependences within the basic
block. There is an almost 50% reduction in the trace pro-
duction rate if the static dependences within a basic block
are identified. There is also a significant reduction in the
trace-rate after performing the same optimization at the
trace level. At the end of this optimization the trace rate
stands at about 5 bytes per instruction. We can further ob-
serve that there is about 20% additional reduction in the
trace rate when the load redundancies are considered. This
confirms with the fact that about 20% of loads even in opti-
mized code are redundant [19].

The final two optimizations are those targeted towards
debugging. As we can see from the graphs, each of the fi-
nal two optimizations results in a significant decrease in the

trace rate. There is a about a 50% drop in the trace rate due
to selective tracing through special routines. There is a fur-
ther 4 fold drop in the trace rate when the forward slicing
optimization is considered. This is because most of the de-
pendences (about 75%) are surprisingly not in the forward
data slice of the input. The average final trace-rate after all
optimizations are performed stands at 0.8 bytes per instruc-
tion.

6.4 Execution histories stored

One of the goals of the optimizations is to sufficiently re-
duce the trace-rate so that the execution history of the stored
trace can be increased. Accordingly, we measured the exe-
cution history stored for a fixed buffer in our implementa-
tion that amounts to 16 MB. For this experiment we show
the execution histories at the end of three optimizations: the
trace level static optimization, the selective tracing debug-
ging optimization and finally after the forward slicing opti-
mization. We did not show the baseline and basic block op-
timizations for this experiment because they are subsumed
by the trace optimization. As we can see from average val-

 0

 10

 20

 30

 40

 50

 60

G-MEANvortexcraftyperltwolfparservprgzipbzipmcfE
x
e
c
u
t
i
o
n

H
i
s
t
o
r
y

(
m
i
l
l
i
o
n
s

o
f

i
n
s
t
r
s
)

Subject Program

Execution History

Trc
Sel
FS

Figure 11. The size of execution history

ues from the graph, the size of the execution history stored
after the trace level optimization is about 3.4 million in-
structions. It increases to about 7 million instructions af-
ter the selective tracing optimization is applied and finally
reaches the peak value of 20 million instructions when all
optimizations are applied together.

7 Related Work
Although there has been several recent work concern-

ing efficient tracing [17, 24, 12], none of them are di-
rectly applicable to debugging as they do not directly com-
pute the dynamic dependences. Adapting each of the
above approaches to debugging involves an expensive post-
processing step, which we avoid in our work. The idea of
using a trace buffer was inspired from [24]. Bugnet [16] is
a hardware assisted tracing infrastructure that can be used

to replay the program efficiently for debugging. Although,
a replay infrastructure isusefulfor performing debugging,
the above work does not deal with the problem of actually
performing debugging. In contrast, our technique, is first,a
fully software based tracing technique. Moreover, we con-
sider the problem of using the collected dependence traces
in a dynamic slicing based debugger. There has also been
prior work [23] that circumvents the expensive tracing step,
for debugging long running programs, by combining trac-
ing along with checkpointing. The main idea of the above
paper is based on the repetitive characteristics of long run-
ning programs, which is not true for a general class of pro-
grams. In our current work we recover control dependences
from the data dependences that have been computed online.
Recent work [18] shows how to compute the control depen-
dences online; but it does not deal with data dependences.

8 Conclusions
In this paper, we presented ONTRAC, an online trac-

ing infrastructure that is exclusively targeted towards de-
bugging. By performing the dependence tracing step online
efficiently, we have now made it more practical for a pro-
grammer to use dynamic slicing as a means of debugging.
We also evaluated the efficacy of our targeted tracing infras-
tructure with 6 real world memory errors and found that we
were able to capture the error in all cases. For future work,
we plan to test this tracing infrastructure with other kindsof
bugs.

Acknowledgments

We would like to thank the anonymous reviewers for
providing useful comments. This work was supported by
grants from Microsoft and NSF grants CNS-0719791, CNS-
0708199, CNS-0614707 and CCF-0541382.

References

[1] Gnu bc. www.gnu.org/software/bc.
[2] Midnight commander exploit.

www.securityfocus.com/bid/8658.
[3] Midnight commander. www.ibiblio.org/mc.
[4] Mutt buffer overflow exploit.

www.securiteam.com/unixfocus/5fp0t0u9fu.html.
[5] Mutt url. www.mutt.org.
[6] Pine heap buffer overflow.

www.securityfocus.com/bid/6120.
[7] Pine stack overflow. www.xatrix.org/advisory.php?s=7408.
[8] Pine website. www.washington.edu/pine/.
[9] Squid buffer overflow exploit.

www.securiteam.com/unixfocus/5bp0p2a6ay.html.
[10] Squid. www.squid-cache.org/.
[11] H. Agrawal and J. R. Horgan. Dynamic program slicing. In

PLDI ’90: Proceedings of the ACM SIGPLAN 1990 confer-
ence on Programming language design and implementation,
pages 246–256, New York, NY, USA, 1990. ACM Press.

[12] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
M. Drini;, D. Miho, and J. Chau. Framework for instruction-
level tracing and analysis of program executions. InVEE

’06: Proceedings of the second international conference on
Virtual execution environments, pages 154–163, New York,
NY, USA, 2006. ACM Press.

[13] D. Bruening, T. Garnett, and S. Amarasinghe. An infras-
tructure for adaptive dynamic optimization. InCGO ’03:
Proceedings of the international symposium on Code gen-
eration and optimization, pages 265–275, Washington, DC,
USA, 2003. IEEE Computer Society.

[14] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty
code using failure-inducing chops. InASE ’05: Proceed-
ings of the 20th IEEE/ACM international Conference on Au-
tomated software engineering, pages 263–272, New York,
NY, USA, 2005. ACM Press.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
building customized program analysis tools with dynamic in-
strumentation. InPLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, pages 190–200, New York, NY, USA, 2005.
ACM Press.

[16] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet:
Recording application-level execution for deterministicre-
play debugging.IEEE Micro, 26(1):100–109, 2006.

[17] S. Tallam and R. Gupta. Unified control flow and dependence
traces.ACM Trans. Archit. Code Optim., To Appear.

[18] B. Xin and X. Zhang. Efficient online detection of dynamic
control dependence. InISSTA ’07: Proceedings of the 2007
international symposium on Software testing and analysis,
pages 185–195, New York, NY, USA, 2007. ACM Press.

[19] J. Yang and R. Gupta. Load redundancy removal through
instruction reuse. InICPP ’00: Proceedings of the Proceed-
ings of the 2000 International Conference on Parallel Pro-
cessing, page 61, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[20] A. Zeller. Isolating cause-effect chains from computer pro-
grams. InSIGSOFT ’02/FSE-10: Proceedings of the 10th
ACM SIGSOFT symposium on Foundations of software en-
gineering, pages 1–10, New York, NY, USA, 2002. ACM
Press.

[21] X. Zhang and R. Gupta. Cost effective dynamic program
slicing. In PLDI ’04: Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and im-
plementation, pages 94–106, New York, NY, USA, 2004.
ACM Press.

[22] X. Zhang, H. He, N. Gupta, and R. Gupta. Experimen-
tal evaluation of using dynamic slices for fault location. In
AADEBUG’05: Proceedings of the sixth international sym-
posium on Automated analysis-driven debugging, pages 33–
42, New York, NY, USA, 2005. ACM Press.

[23] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing long
running programs through execution fast forwarding. InSIG-
SOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engi-
neering, pages 81–91, New York, NY, USA, 2006. ACM
Press.

[24] Q. Zhao, J. E. Sim, W.-F. Wong, and L. Rudolph. Dep:
detailed execution profile. InPACT ’06: Proceedings of
the 15th international conference on Parallel architectures
and compilation techniques, pages 154–163, New York, NY,
USA, 2006. ACM Press.

