
A Shape Matching Approach for Scheduling

Fine-Grained Parallelism’

Brian Malloy Rajiv Gupta Mary Lou Soffa
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

Clemson University University of Pittsburgh University of Pittsburgh
Clemson, SC 29634-1906 Pittsburgh, PA 15260 Pittsburgh, PA 15260.
malloy@cs.clemson.edu gupta@cs.pitt.edu soffa@cs.pitt.edu

Abstract - We present a compilation technique for
scheduling parallelism on fine grained asynchronous
MIMD systems. The shape scheduling algorithm is
introduced that utilizes the flexibility of a MIMD system
to exploit parallelism within and across basic blocks.
Existing techniques exploit parallelism across basic
blocks through speculative execution of instructions and
code duplication. Our algorithm overlaps the execution
of instructions from different basic blocks through
matching the shapes of schedules belonging to these
basic blocks. In addition, the shape algorithm can reduce
the compilation time by increasing the grain size of
schedulable units. Experimental results demonstrate that
this technique exploits parallelism effectively and that by
increasing the grain size the shape algorithm achieves
faster compilation times without any significant reduc-
tion in program speedup.

1. Introduction

Recent technology has focused on parallelizing a
sequential instruction stream to exploit fine grained par-
allelism using very long instruction word (VLIW)
machines[2]. VLIW machines allow the concurrent
execution of multiple operations in each instruction. The
operations to be executed in each instruction are stati-
cally scheduled by the compiler. The lockstep operation
of processing units makes the machine intolerant to run-
time delays caused by unpredictable events such as
memory bank access conflicts. The delay in the comple-
tion of any one of the operations in an instruction delays
the completion of the instruction. Thus, while the VLIW
architectures perform well on scientific applications,
their performance can degrade rapidly when faced with
factors that decrease run-time predictability.

In order to address the above drawbacks of VLIW
machines a number of tightly coupled fine-granted
MIMD architectures have been proposed[3,7]. An asyn-
chronous MIMD system is tolerant of delays caused by
unpredictable events since the processors are not

t Partially supported by National Science Foundation Presiden-

tial Young Investigator Award CCR-9157371 and Grant

CCR-9109089 to the University of Pittsburgh.

required to operate in lockstep. Special synchronization
and high speed communication hardware is provided to
enable high speed processor interaction. The processors
can execute relatively independent streams of instruc-
tions as well as tightly synchronized instruction streams.
Thus, both fine grained and coarse grained parallelism
can be exploited by these architectures.

In this paper we develop a compilation technique
which exploits the unique features of a fine grained
MIMD system. We develop a shape matching algorithm
that generates schedules which exploit parallelism across
basic blocks. Techniques such as trace scheduling[2]
enable the exploitation of fine grained parallelism across
basic blocks on VLIW machines. However, they achieve
this goal by speculative execution of instructions and
code duplication. Speculative execution allows a VLIW
machine to achieve greater speedups along likely execu-
tion paths at the expense of program paths that are less
likely to be executed. Code duplication can lead to code
explosion in a trace scheduling compiler. Our shape
matching algorithm utilizes the asynchronous nature of
the system to exploit parallelism without speculative
execution or code duplication. The shape algorithm is
based upon the program dependence graph and therefore
it is able to move code across control structures in a
manner similar to region scheduling[4].

Another cause of concern in compiling for fine
grained machines is the cost of the compilation process
itself. The shape matching algorithm presented in this
paper utilizes the system’s ability to exploit both fine
grained and coarse grained parallelism to achieve effi-
ciency. We demonstrate that our algorithm functions for
various grained scheduling units. Thus, by considering
larger grain sizes during scheduling we are able to
improve the efficiency of the compilation process.

In a MIMD system the cost of processor synchro-
nization and communication must also be considered
during scheduling. We base the shape algorithm on the
preferred path selection (PPS) algorithm[6], which
attempts to minimize interprocessor communication dur-
ing the execution of straight line code.

264

O-8186-3175-9/92 $3.00 0 1992 IEEE

Pl P2 P3 P4 Pl P2 P3 P4

l(i) l(ii) l(iii)

Figure 1. A dag, a possible schedule and a corresponding shape.

2. Overall Approach to Matching Shapes

The program dependence graph111 (PDG) repre-
sentation of a program is used by the Shape Algorithm.
The PDG expresses control dependences through a con-
trol dependence subgraph (CDS) and data dependences
through a data dependence subgraph (DDS). There are
three kinds of nodes in the CDS: sfurement nodes (Si),
boolean nodes (BJ and region nodes (I+). A region
node points to a set of nodes representing parts of a pro-
gram that require identical control conditions for execu-
tion and the edges connecting regions show the flow of
control.

We use the preferred path selection algorithm[6]
(PPS) to schedule regions consisting only of statement
nodes or straight line code. The PPS algorithm con-
structs a dag for the nodes in a region, selecting a long
path and assigning it to a processor. All nodes along the
path are assigned to the same processor, thus enabling
the resolution of dependencies among these statements
without explicit synchronization. Computation of paths
and the assignment of nodes along each path to a proces-
sor continues until the dag for this region is scheduled.
Since an aspect of this work is to explore the effect of
scheduling at various levels of granularity, the nodes in a
region may represent (i) operations in the form of inter-
mediate code statements, (ii) statements formed by com-
bining operation nodes, or (iii) basic blocks formed by
combining statement nodes.

To illustrate the PPS algorithm, consider the dag
and a corresponding schedule in Figure 1 where nodes in
the dag represent operations, statements or basic blocks
and an edge from node 4 to nj indicates that the value
computed by nj is required for the computation of ni.
For the schedule shown in Figure l(ii), the first path
(nodes 8,6, 5 and 3) is assigned to processor 1, the sec-
ond path (nodes 7 and 4) is assigned to processor 2, the
third path (node 2) is assigned to processor 3 and the
fourth path (node 1) is assigned to processor 4. Fnrther-
more, without loss of generality, we consider that node 3,
assigned to processor 1, begins execution at time 0 and

terminates at time 1 and the length of the schedule is 4
time units. In the schedule, node 7 cannot begin execu-
tion until node 5 terminates since node 7 requires the
value computed at node 5. Thus, node 7 cannot begin
execution until time 2 when node 5 terminates. We rep-
resent the schedule without insertion of synchronization
to guarantee, for example, that node 7 does not begin
until node 7 terminates.

As the paths in the dag are scheduled using the
PPS, control dependences in the program as well as data
dependences between paths form a shape in the sched-
ule. For control dependences, statements that depend on
control statements must be scheduled after the control
statement. For data dependences, if a definition of a vari-
able x reaches a use of that variable x, then the use must
be scheduled after the definition. Figure 1 (iii) illustrates
the shape resulting from scheduling the dag using the
PPS scheduling algorithm.

Paths are assigned to processors so that they will
be scheduled for execution as early as possible, and
nodes in a path are placed in contiguous positions in the
schedule if data dependences permit. For example in
Figure 1, the path containing nodes 7 and 4 cannot begin
execution until after node 5 executes.

3. The Shape Matching Algorithm

The shape matching algorithm traverses the PDG
creating ordered lists of region nodes RN during its des-
cent until an unscheduled region node is encountered.
Procedure AssignBottom (Figure 2) is used to create an
initial shape in the schedule. Scheduling resumes, pro-
gressing from the lowest level of the PDG consisting of
unscheduled regions to higher levels containing partially
scheduled regions. The shape of a scheduled set of nodes
is maintained through variables Findi and Initiali, the
time of the last node to finish execution and the earliest
node to begin execution respectively for processor Pi.

When a partially scheduled region is encountered,
the unscheduled nodes in this region are partitioned into

265

sets whose membership is determined by the data depen-
dencies among the scheduled regions and the unsched-
uled statement nodes. The unscheduled nodes that must
execute before scheduled nodes form TopSet and
unscheduled nodes that must execute after scheduled
nodes form the Bottom+%. The unscheduled nodes that
have no data dependencies with the scheduled regions
form DontCareSet. Nodes in TopSet are scheduled by
Procedure AssignTop so that the formed shape matches
the top of the shape of the scheduled nodes; nodes in
BottomSet are scheduled by AssignBottom $0 that the
formed shape matches the bottom of the shape of the
scheduled nodes; nodes in DontCareSet may be used to
match either the top or the bottom of the shape of the
unscheduled nodes. Thus, the nodes in the DontCareSet
are the ones which can be propagated across control
structures.

Boolean nodes, encountered in the PDG traversal,
represent For, While, If-then-else or If-then structures. If
a For loop is found the data dependences are examined
to determine suitability for concurrentization; if suitable,
the iterations of the For loop are scheduled on the pro-
cessors. If the loop is not suitable for concurremization
then it is scheduled as if it were a single path in a dag.
While and Zf statements are scheduled by assigning the
statements in their respective regions in the shape match-
ing fashion discussed previously. In scheduling boolean
no&s representing If-Then-Else structures, the shape
matching algorithm determines which of the two regions,
the Then or Else part, to use for the matching since only
one of the two will be executed during a given iteration.
Profile information is used to determine the more likely
path resulting in either the Then shape or the Else shape
becoming part of the scheduled shape. Both regions are
scheduled by matching shapes but the less likely path
does not impact on future matches. Since the shape of
the scheduled regions is maintained in Initial and Final,
these variables are updated only for the region that is
more likely to execute.

After scheduling a boolean node, two tasks
remain: (i) determine if the structure in the region
requires concurrentization, and (ii) determine if the
shape requires adjustment. The first task is needed when
statements within a structure are assigned to different
processors. To preserve the semantics of the program,
the control conditions and branches of the structure are
duplicated so that statements in the concurrentized pro-
gram have the same conditions for execution that they
had in the sequential program. For the second task, the
scheduled shape may require adjustment for a concurren-
tized While loop. The two while loops resulting from the
concurrentization of a single while loop perform the
same number of iterations as the original loop. The
shape must be “stretched” to reflect the number of itera-

tions performed so that subsequent assignments can try
to balance processor load.

The procedure AssignBottom, for assigning nodes
in BottomSet to processors, is summarized in Figure 2.
AssignBottom begins by constructing a dag for the nodes
in set G and then invokes ComputeLongPath to return a
long path in the dag. A greedy approach is used to com-
pute the path so that a node is selected primarily on the
basis of the level in the dag where the node is located
and secondarily on its weight. Nodes at a higher level are
chosen over nodes at a lower level to maximize the
length of the path. The weight of a node is the number of
operations included in the node so that “heavier” nodes
are preferred to “lighter” ones. Long paths are matched
with previously assigned paths in the schedule until all
nodes in G are scheduled.

Procedure A.rsignBorront(input G Set of Nodes);

Begin
&t,StNCt a dag for G;

CurrentI_evel:= Level of terminal node at highest level,

While them ate unscheduled nodes E G Do
ComputeLutgPath(L, CurrentLevel); /* Find longest path L */

Search L, starting at the top, for a use Ui of a variable with a

scheduled definition that reaches Ui;

If Ui is Found Then

Let dist, be the distance from the top of L to Ui.

Consnlt DefUseTable for the exec time td of last def di
that reaches Ui

t, = td - dist, + 1;
S:= 0; Done:= False;

While Not Done Do
i:= 1;

While Not Done AND i I p Do
If ABS(Fmal[i] - ts) 5 SThen Done:= True;
Elsei:=i+l;EndIf

End Loop;
w= 6+ 1;

End Loop;
Else pi is the processor such that Fina&] is a minimum

End If
Assign L to pi;

Compute TotalWeight of L, the sum of the weights of the nodes;

If Fmal[i] >= t, Then Fmal[i]:= Final[i] + TotalWeight

Else Fmal[i]:= ts + TotalWeight; End If
Update Def/Use table for pi;

Possibly set Ittitkl[pi] to the earliest start time of L;

End loop;
End AssignBottom;
Figure 2. Algorithm to assign nodes in BottomSet.

It is the two innermost While loops in AssignBot-
tom that actually matches shapes. The goal of shape
matching is to choose a processor for an assignment that
allows the path being scheduled to start close to its actual
start time while creating the smallest hole in the sched-
ule. The actual start time is the time that the first opera-
tion in the path begins execution. Due to data and con-
trol dependences, the actual start time is always greater

266

than or equal to the scheduled start time. A hole in the
schedule occurs when a processor is either idle or is
waiting to synchronize. If the long path L that is
returned by ComputeLongPath does not contain a use of
a variable, then AssignBottom load balances by assigning
L to the processor that has the earliest finish time.

The actions of AssignTop in assigning the nodes in
TopSet are similar to the action of AssignBottom except
the long path returned by ComputeLongPath is exam-
ined, progressing from the bottom of the path to the top,
for a definition that reaches a node in the shape formed
by scheduled nodes. The actual start time of L is then
computed in terms of the start time of the use in the
schedule and the position of the definition in L. The path
L is then assigned to the processor that will allow L to
start close to its actual start time while creating the
smallest hole.

4. Performance of the Shape Matching Algo-
rithm

The results in Table 1 show that the shape match-
ing algorithm can appreciably improve execution speed
of the program. The programs listed in the first 5 rows
of Table 1 experienced virtually linear speed up for all
three scheduling grains. For example, the Kernel 1-F
program experienced a speedup of 7.99 and 15.92 when
executed on p=8 and p=16 processors respectively at the
operation grain. Both the Kernel I-W and the Broadcast
programs achieved their best speedup at the basic block
grain, while the Vector program did not experience good
speedup at the basic block grain (0.99 speedup for both 8
and 16 processors) because there were only five basic
blocks remaining in the Vector program after loop
unrolling. Finally, the Sieve program did not experience
appreciable speedup at any grain because the Sieve of
Erosthosthenes algorithm is replete with data depen-
dences so that the gain achieved from the load balancing
of the shape matching algorithm is eroded by communi-
cations costs, even with a fast communication network.

For most of the benchmark programs, the basic
block grained schedules performed as well or better than

schedules at the other grains. However, basic block
grained schedules can be computed faster than schedules
at the other grains. For the benchmark programs, basic
block grained schedules were computed from 34 to 146
percent faster than the operation grained schedules.

In further experiments[5], the reported speedups
indicate a strong correlation between the simulations and
actual executions on the Dam General multiprocessor.
For example, experiments show that 43,022 cycles are
required to simulate the execution of the sequential code
for the Search program, and 21,537 cycles are required
to simulate the execution of the schedule for 2 proces-
sors with a speedup of 1.99 over the sequential execu-
tion. For the actual execution of the Search program on
the Data General multiprocessor, an average of 6.18 sec-
onds were required using 1 processor and 3.23 seconds
were required for 2 processors producing a speedup of
1.9 1 over the sequential execution.

References

1.

2.

3.

4.

5.

6.

7.

J. Ferrante, K. Ottenstein, and J. Warren, “The
Program Dependence Graph and its Use in Gpti-
mization,” Transactions on Programming Lan-
guages and Systems, vol. 9, no. 3, pp. 319-349,
July, 1987.

J. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction,” IEEE Transac-
tions on Computers, vol. C-30, NO. 7, July 1981.

Rajiv Gupta, Michael Epstein, and Michael Whe-
lan, “The Design of a RISC based Multiprocessor
Chip,” Proceedings of Supercomputing’90, New
York, pp. 920-929, November 1990.

Rajiv Gupta and Mary Lou Soffa, “Region
Scheduling: An Approach for Detecting and
Redistributing Parallelism,” IEEE Transactions on
Software Engineering, vol. 16, no. 4, pp. 421-431,
April, 1990.

B. Malloy, “A Fine Grained Approach to Schedul-
ing Asynchronous Multiprocessors,” Technical
Report TR92-116, May 1991.

B. Malloy, E.L. Lloyd, and M.L. Soffa., “A Fine
Grained Approach to Scheduling Asynchronous
Multiprocessors,” 4th International ConJerence on
Computing and Information,, pp. 131-135, May,
1992.

A. Wolfe and J.P. Shen , “A Variable Instruction
Stream Extension to the VLIW Architecture,”
Proc. of the Fourth International Conference on
Architectural Support for Programming Lan-
guages and Operating Systems, pp. 2-14, April
1991.

261

