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Abstract - We present a compilation technique for 
scheduling parallelism on fine grained asynchronous 
MIMD systems. The shape scheduling algorithm is 
introduced that utilizes the flexibility of a MIMD system 
to exploit parallelism within and across basic blocks. 
Existing techniques exploit parallelism across basic 
blocks through speculative execution of instructions and 
code duplication. Our algorithm overlaps the execution 
of instructions from different basic blocks through 
matching the shapes of schedules belonging to these 
basic blocks. In addition, the shape algorithm can reduce 
the compilation time by increasing the grain size of 
schedulable units. Experimental results demonstrate that 
this technique exploits parallelism effectively and that by 
increasing the grain size the shape algorithm achieves 
faster compilation times without any significant reduc- 
tion in program speedup. 

1. Introduction 

Recent technology has focused on parallelizing a 
sequential instruction stream to exploit fine grained par- 
allelism using very long instruction word (VLIW) 
machines[2]. VLIW machines allow the concurrent 
execution of multiple operations in each instruction. The 
operations to be executed in each instruction are stati- 
cally scheduled by the compiler. The lockstep operation 
of processing units makes the machine intolerant to run- 
time delays caused by unpredictable events such as 
memory bank access conflicts. The delay in the comple- 
tion of any one of the operations in an instruction delays 
the completion of the instruction. Thus, while the VLIW 
architectures perform well on scientific applications, 
their performance can degrade rapidly when faced with 
factors that decrease run-time predictability. 

In order to address the above drawbacks of VLIW 
machines a number of tightly coupled fine-granted 
MIMD architectures have been proposed[3,7]. An asyn- 
chronous MIMD system is tolerant of delays caused by 
unpredictable events since the processors are not 
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required to operate in lockstep. Special synchronization 
and high speed communication hardware is provided to 
enable high speed processor interaction. The processors 
can execute relatively independent streams of instruc- 
tions as well as tightly synchronized instruction streams. 
Thus, both fine grained and coarse grained parallelism 
can be exploited by these architectures. 

In this paper we develop a compilation technique 
which exploits the unique features of a fine grained 
MIMD system. We develop a shape matching algorithm 
that generates schedules which exploit parallelism across 
basic blocks. Techniques such as trace scheduling[2] 
enable the exploitation of fine grained parallelism across 
basic blocks on VLIW machines. However, they achieve 
this goal by speculative execution of instructions and 
code duplication. Speculative execution allows a VLIW 
machine to achieve greater speedups along likely execu- 
tion paths at the expense of program paths that are less 
likely to be executed. Code duplication can lead to code 
explosion in a trace scheduling compiler. Our shape 
matching algorithm utilizes the asynchronous nature of 
the system to exploit parallelism without speculative 
execution or code duplication. The shape algorithm is 
based upon the program dependence graph and therefore 
it is able to move code across control structures in a 
manner similar to region scheduling[4]. 

Another cause of concern in compiling for fine 
grained machines is the cost of the compilation process 
itself. The shape matching algorithm presented in this 
paper utilizes the system’s ability to exploit both fine 
grained and coarse grained parallelism to achieve effi- 
ciency. We demonstrate that our algorithm functions for 
various grained scheduling units. Thus, by considering 
larger grain sizes during scheduling we are able to 
improve the efficiency of the compilation process. 

In a MIMD system the cost of processor synchro- 
nization and communication must also be considered 
during scheduling. We base the shape algorithm on the 
preferred path selection (PPS) algorithm[6], which 
attempts to minimize interprocessor communication dur- 
ing the execution of straight line code. 
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Figure 1. A dag, a possible schedule and a corresponding shape. 

2. Overall Approach to Matching Shapes 

The program dependence graph111 (PDG) repre- 
sentation of a program is used by the Shape Algorithm. 
The PDG expresses control dependences through a con- 
trol dependence subgraph (CDS) and data dependences 
through a data dependence subgraph (DDS). There are 
three kinds of nodes in the CDS: sfurement nodes (Si), 
boolean nodes (BJ and region nodes (I+). A region 
node points to a set of nodes representing parts of a pro- 
gram that require identical control conditions for execu- 
tion and the edges connecting regions show the flow of 
control. 

We use the preferred path selection algorithm[6] 
(PPS) to schedule regions consisting only of statement 
nodes or straight line code. The PPS algorithm con- 
structs a dag for the nodes in a region, selecting a long 
path and assigning it to a processor. All nodes along the 
path are assigned to the same processor, thus enabling 
the resolution of dependencies among these statements 
without explicit synchronization. Computation of paths 
and the assignment of nodes along each path to a proces- 
sor continues until the dag for this region is scheduled. 
Since an aspect of this work is to explore the effect of 
scheduling at various levels of granularity, the nodes in a 
region may represent (i) operations in the form of inter- 
mediate code statements, (ii) statements formed by com- 
bining operation nodes, or (iii) basic blocks formed by 
combining statement nodes. 

To illustrate the PPS algorithm, consider the dag 
and a corresponding schedule in Figure 1 where nodes in 
the dag represent operations, statements or basic blocks 
and an edge from node 4 to nj indicates that the value 
computed by nj is required for the computation of ni. 
For the schedule shown in Figure l(ii), the first path 
(nodes 8,6, 5 and 3) is assigned to processor 1, the sec- 
ond path (nodes 7 and 4) is assigned to processor 2, the 
third path (node 2) is assigned to processor 3 and the 
fourth path (node 1) is assigned to processor 4. Fnrther- 
more, without loss of generality, we consider that node 3, 
assigned to processor 1, begins execution at time 0 and 

terminates at time 1 and the length of the schedule is 4 
time units. In the schedule, node 7 cannot begin execu- 
tion until node 5 terminates since node 7 requires the 
value computed at node 5. Thus, node 7 cannot begin 
execution until time 2 when node 5 terminates. We rep- 
resent the schedule without insertion of synchronization 
to guarantee, for example, that node 7 does not begin 
until node 7 terminates. 

As the paths in the dag are scheduled using the 
PPS, control dependences in the program as well as data 
dependences between paths form a shape in the sched- 
ule. For control dependences, statements that depend on 
control statements must be scheduled after the control 
statement. For data dependences, if a definition of a vari- 
able x reaches a use of that variable x, then the use must 
be scheduled after the definition. Figure 1 (iii) illustrates 
the shape resulting from scheduling the dag using the 
PPS scheduling algorithm. 

Paths are assigned to processors so that they will 
be scheduled for execution as early as possible, and 
nodes in a path are placed in contiguous positions in the 
schedule if data dependences permit. For example in 
Figure 1, the path containing nodes 7 and 4 cannot begin 
execution until after node 5 executes. 

3. The Shape Matching Algorithm 

The shape matching algorithm traverses the PDG 
creating ordered lists of region nodes RN during its des- 
cent until an unscheduled region node is encountered. 
Procedure AssignBottom (Figure 2) is used to create an 
initial shape in the schedule. Scheduling resumes, pro- 
gressing from the lowest level of the PDG consisting of 
unscheduled regions to higher levels containing partially 
scheduled regions. The shape of a scheduled set of nodes 
is maintained through variables Findi and Initiali, the 
time of the last node to finish execution and the earliest 
node to begin execution respectively for processor Pi. 

When a partially scheduled region is encountered, 
the unscheduled nodes in this region are partitioned into 
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sets whose membership is determined by the data depen- 
dencies among the scheduled regions and the unsched- 
uled statement nodes. The unscheduled nodes that must 
execute before scheduled nodes form TopSet and 
unscheduled nodes that must execute after scheduled 
nodes form the Bottom+%. The unscheduled nodes that 
have no data dependencies with the scheduled regions 
form DontCareSet. Nodes in TopSet are scheduled by 
Procedure AssignTop so that the formed shape matches 
the top of the shape of the scheduled nodes; nodes in 
BottomSet are scheduled by AssignBottom $0 that the 
formed shape matches the bottom of the shape of the 
scheduled nodes; nodes in DontCareSet may be used to 
match either the top or the bottom of the shape of the 
unscheduled nodes. Thus, the nodes in the DontCareSet 
are the ones which can be propagated across control 
structures. 

Boolean nodes, encountered in the PDG traversal, 
represent For, While, If-then-else or If-then structures. If 
a For loop is found the data dependences are examined 
to determine suitability for concurrentization; if suitable, 
the iterations of the For loop are scheduled on the pro- 
cessors. If the loop is not suitable for concurremization 
then it is scheduled as if it were a single path in a dag. 
While and Zf statements are scheduled by assigning the 
statements in their respective regions in the shape match- 
ing fashion discussed previously. In scheduling boolean 
no&s representing If-Then-Else structures, the shape 
matching algorithm determines which of the two regions, 
the Then or Else part, to use for the matching since only 
one of the two will be executed during a given iteration. 
Profile information is used to determine the more likely 
path resulting in either the Then shape or the Else shape 
becoming part of the scheduled shape. Both regions are 
scheduled by matching shapes but the less likely path 
does not impact on future matches. Since the shape of 
the scheduled regions is maintained in Initial and Final, 
these variables are updated only for the region that is 
more likely to execute. 

After scheduling a boolean node, two tasks 
remain: (i) determine if the structure in the region 
requires concurrentization, and (ii) determine if the 
shape requires adjustment. The first task is needed when 
statements within a structure are assigned to different 
processors. To preserve the semantics of the program, 
the control conditions and branches of the structure are 
duplicated so that statements in the concurrentized pro- 
gram have the same conditions for execution that they 
had in the sequential program. For the second task, the 
scheduled shape may require adjustment for a concurren- 
tized While loop. The two while loops resulting from the 
concurrentization of a single while loop perform the 
same number of iterations as the original loop. The 
shape must be “stretched” to reflect the number of itera- 

tions performed so that subsequent assignments can try 
to balance processor load. 

The procedure AssignBottom, for assigning nodes 
in BottomSet to processors, is summarized in Figure 2. 
AssignBottom begins by constructing a dag for the nodes 
in set G and then invokes ComputeLongPath to return a 
long path in the dag. A greedy approach is used to com- 
pute the path so that a node is selected primarily on the 
basis of the level in the dag where the node is located 
and secondarily on its weight. Nodes at a higher level are 
chosen over nodes at a lower level to maximize the 
length of the path. The weight of a node is the number of 
operations included in the node so that “heavier” nodes 
are preferred to “lighter” ones. Long paths are matched 
with previously assigned paths in the schedule until all 
nodes in G are scheduled. 

Procedure A.rsignBorront(input G Set of Nodes); 

Begin 
&t,StNCt a dag for G; 

CurrentI_evel:= Level of terminal node at highest level, 

While them ate unscheduled nodes E G Do 
ComputeLutgPath(L, CurrentLevel); /* Find longest path L */ 

Search L, starting at the top, for a use Ui of a variable with a 

scheduled definition that reaches Ui; 

If Ui is Found Then 

Let dist, be the distance from the top of L to Ui. 

Consnlt DefUseTable for the exec time td of last def di 
that reaches Ui 

t, = td - dist, + 1; 
S:= 0; Done:= False; 

While Not Done Do 
i:= 1; 

While Not Done AND i I p Do 
If ABS(Fmal[i] - ts) 5 SThen Done:= True; 
Elsei:=i+l;EndIf 

End Loop; 
w= 6+ 1; 

End Loop; 
Else pi is the processor such that Fina&] is a minimum 

End If 
Assign L to pi; 

Compute TotalWeight of L, the sum of the weights of the nodes; 

If Fmal[i] >= t, Then Fmal[i]:= Final[i] + TotalWeight 

Else Fmal[i]:= ts + TotalWeight; End If 
Update Def/Use table for pi; 

Possibly set Ittitkl[pi] to the earliest start time of L; 

End loop; 
End AssignBottom; 
Figure 2. Algorithm to assign nodes in BottomSet. 

It is the two innermost While loops in AssignBot- 
tom that actually matches shapes. The goal of shape 
matching is to choose a processor for an assignment that 
allows the path being scheduled to start close to its actual 
start time while creating the smallest hole in the sched- 
ule. The actual start time is the time that the first opera- 
tion in the path begins execution. Due to data and con- 
trol dependences, the actual start time is always greater 
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than or equal to the scheduled start time. A hole in the 
schedule occurs when a processor is either idle or is 
waiting to synchronize. If the long path L that is 
returned by ComputeLongPath does not contain a use of 
a variable, then AssignBottom load balances by assigning 
L to the processor that has the earliest finish time. 

The actions of AssignTop in assigning the nodes in 
TopSet are similar to the action of AssignBottom except 
the long path returned by ComputeLongPath is exam- 
ined, progressing from the bottom of the path to the top, 
for a definition that reaches a node in the shape formed 
by scheduled nodes. The actual start time of L is then 
computed in terms of the start time of the use in the 
schedule and the position of the definition in L. The path 
L is then assigned to the processor that will allow L to 
start close to its actual start time while creating the 
smallest hole. 

4. Performance of the Shape Matching Algo- 
rithm 

The results in Table 1 show that the shape match- 
ing algorithm can appreciably improve execution speed 
of the program. The programs listed in the first 5 rows 
of Table 1 experienced virtually linear speed up for all 
three scheduling grains. For example, the Kernel 1-F 
program experienced a speedup of 7.99 and 15.92 when 
executed on p=8 and p=16 processors respectively at the 
operation grain. Both the Kernel I-W and the Broadcast 
programs achieved their best speedup at the basic block 
grain, while the Vector program did not experience good 
speedup at the basic block grain (0.99 speedup for both 8 
and 16 processors) because there were only five basic 
blocks remaining in the Vector program after loop 
unrolling. Finally, the Sieve program did not experience 
appreciable speedup at any grain because the Sieve of 
Erosthosthenes algorithm is replete with data depen- 
dences so that the gain achieved from the load balancing 
of the shape matching algorithm is eroded by communi- 
cations costs, even with a fast communication network. 

For most of the benchmark programs, the basic 
block grained schedules performed as well or better than 

schedules at the other grains. However, basic block 
grained schedules can be computed faster than schedules 
at the other grains. For the benchmark programs, basic 
block grained schedules were computed from 34 to 146 
percent faster than the operation grained schedules. 

In further experiments[5], the reported speedups 
indicate a strong correlation between the simulations and 
actual executions on the Dam General multiprocessor. 
For example, experiments show that 43,022 cycles are 
required to simulate the execution of the sequential code 
for the Search program, and 21,537 cycles are required 
to simulate the execution of the schedule for 2 proces- 
sors with a speedup of 1.99 over the sequential execu- 
tion. For the actual execution of the Search program on 
the Data General multiprocessor, an average of 6.18 sec- 
onds were required using 1 processor and 3.23 seconds 
were required for 2 processors producing a speedup of 
1.9 1 over the sequential execution. 
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