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Abstract

The advent of multicores presents a promising opportu-
nity for speeding up sequential programs via profile-based
speculative parallelization of these programs. In this paper
we present a novel solution for efficiently supporting software
speculation on multicore processors. We propose the Copy or
Discard (CorD) execution model in which the state of specu-
lative parallel threads is maintained separately from the non-
speculative computation state. If speculation is successful, the
results of the speculative computation are committed by copy-
ing them into the non-speculative state. If misspeculation is
detected, no costly state recovery mechanisms are needed as
the speculative state can be simply discarded. Optimizations
are proposed to reduce the cost of data copying between non-
speculative and speculative state. A lightweight mechanism
that maintains version numbers for non-speculative data
values enables misspeculation detection. We also present an
algorithm for profile-based speculative parallelization that is
effective in extracting parallelism from sequential programs.
Our experiments show that the combination of CorD and
our speculative parallelization algorithm achieves speedups
ranging from 3.7 to 7.8 on a Dell PowerEdge 1900 server
with two Intel Xeon quad-core processors.

Keywords - multicores, speculative parallelization, copy or
discard execution model.

1. Introduction
The advent of multicores presents a promising opportunity

for speeding up sequential programs via profile-based specu-
lative parallelization of these programs. The success of specu-
lative parallelization is dependent upon the following factors:
the efficiency with which success or failure of speculation
can be ascertained; following the determination of success or
failure of speculative execution, the efficiency with which the
state of the program can be updated or restored; and finally,
the effectiveness of the speculative parallelization technique,
which is determined by its ability to exploit parallelism in
a wide range of sequential programs and the rate at which
speculation is successful.

In this paper we develop a novel execution model, named
Copy or Discard (CorD), that effectively addresses the afore-
mentioned issues. The key features of this execution model
and our speculative parallelization algorithm are:

(Speculation and Misspeculation Detection) Under our
execution model, a parallelized application consists of the
main thread that maintains the non-speculative state of the
computation and multiple parallel threads that execute parts
of the computation using speculatively-read operand values
from non-speculative state, thereby producing the speculative
state of the computation. The main thread commits the
speculative state generated by parallel threads in order; i.e.,
a parallel thread that is assigned an earlier portion of a com-
putation from a sequential program must commit its results
before a parallel thread that is assigned a later portion of a
computation from the sequential program. Before committing
results, the main thread confirms that the speculatively-read
values conform to the sequential program semantics using
version numbers.

(Maintaining State Via Copy or Discard) The non-
speculative state (i.e., state of the main thread) is maintained
separately from the speculative state (i.e., state of the parallel
threads). After a parallel thread has completed a speculative
computation, the main thread uses the Copy or Discard
(CorD) mechanism to commit these results. In particular,
if speculation is successful, the results of the speculative
computation are committed by copying them into the non-
speculative state. If misspeculation is detected, no costly state
recovery mechanisms are needed as the speculative state can
be simply discarded. Aggressive optimizations are proposed
to minimize the cost of the copying operations.

(Speculative Parallelization Algorithm) We also present
an algorithm for profile-based speculative parallelization that
is effective in extracting parallelism from loops in sequential
programs. In particular, a loop iteration is partitioned into
three sections – the prologue, the speculative body, and the
epilogue. While the prologue and epilogue contain statements
that are dependent on statements in corresponding sections
of the preceding iteration, the body contains statements that
are extremely unlikely to be dependent on the statements in
the body of the preceding iteration. Thus, speedups can be



obtained by speculatively executing the body sections from
different loop iterations in parallel on different cores.

Our experiments show that the combination of CorD and
our speculative parallelization algorithm when applied to sev-
eral sequential applications achieves speedups ranging from
3.7 to 7.8 on a Dell PowerEdge 1900 server with two Intel
Xeon quad-core processors at 3.00 GHz and 16 GB of RAM.
Our experiments also demonstrate that our optimizations for
minimizing copying are highly effective.

2. Speculative Parallel Execution Model
2.1. Thread Execution Model

A parallelized application consists of the main thread that
maintains the non-speculative state of the computation and
multiple parallel threads that execute parts of the computation
using speculatively-read operand values from non-speculative
state, thereby producing the speculative state of the compu-
tation.

Figure 1. Thread Execution Model.

(Speculative Execution) Fig. 1 shows how threads are
created to extract and exploit parallelism from a loop. We
divide the loop iteration into three sections: the prologue, the
speculative body, and the epilogue. While the prologue and
epilogue contain statements that are dependent on statements
in corresponding sections of the preceding iteration, the
body contains statements that are extremely unlikely to be
dependent on the statements in the corresponding section
of the preceding iteration. Thus, parallelization is performed
such that the main thread (Mt) non-speculatively executes the
prologues and epilogues, while the parallel threads (T1 and
T2 in Fig. 1) are created to speculatively execute the bodies of
the iterations on separate cores. Speculative execution entails
optimistically reading operand values from non-speculative
state and using them in the execution of speculative bodies.

The partitioning of a loop iteration, and the corresponding
parallelization being employed, is based upon our analysis of
several benchmarks.

(In-order Commit) Once a parallel thread has completed
the execution of an iteration assigned to it, the speculatively
computed results are returned to the main thread. The main
thread is responsible for committing these results to the non-
speculative state. The main thread commits the speculative
state generated by parallel threads in-order; that is, a parallel
thread that is assigned the speculative body of an earlier
iteration must commit its results to the non-speculative state
before a parallel thread that is assigned a later iteration
commits its results.

(Misspeculation Detection) Before committing
speculatively-computed results to non-speculative state,
the main thread confirms that the speculatively-read values
are consistent with the sequential semantics of the program.
The main thread maintains version numbers for variable
values to make this determination. In particular, if the
version number of a speculatively-read operand value used
during loop iteration i has not changed from the time it was
read until the time at which the results of iteration i are
committed, then the speculation is successful. However, if
the version has been changed by an earlier loop iteration
being executed in parallel on another core, then we conclude
that misspeculation has occurred and the results must be
recomputed.

2.2. Maintaining Memory State
The non-speculative state (i.e., state of the main thread) is

maintained separately from the speculative state (i.e., state of
the parallel threads). After a parallel thread has completed
a speculative computation, the main thread uses the Copy
or Discard (CorD) mechanism to commit these results. In
particular, if speculation is successful, the results of the spec-
ulative computation are committed by copying them into the
non-speculative state. If misspeculation is detected, no costly
state recovery mechanisms are needed as the speculative state
can be simply discarded.

To implement CorD, it is essential that thread isolation be
provided such that no updates of the non-speculative state can
be performed by the parallel threads. Once a parallel thread
completes the execution of a speculative iteration body, it
sends its results to the main thread which is responsible for
updating the non-speculative state. To ensure thread isolation,
the shared memory space is divided into three disjoint parti-
tions < D, P, C> such that each partition contains a distinct
type of program state (see Fig. 2).

(Non-speculative State) - D memory is the part of the
address space that reflects the non-speculative state of the
computation. Only the main computation thread Mt performs
updates of D. If the program is executed sequentially, the
main thread Mt performs the entire computation using D.



Figure 2. Maintaining Memory State.

If parallel threads are used, then the main thread Mt is
responsible for updating D according to the results produced
by the parallel threads.

(Parallel or Speculative State) - P memory is the part
of the address space that reflects the parallel computation
state, i.e. the state of the parallel threads Ts created by the
main thread Mt to boost performance. Since parallel threads
perform speculative computations, speculative state that exists
is at all times contained in P memory. The results produced
by the parallel threads are communicated to the main thread
Mt that then performs updates of D.

(Coordinating State) - C is the part of the address
space that contains the coordinating state of the computation.
Since the execution of Mt is isolated from the execution of
parallel threads Ts, mechanisms are needed via which the
threads can coordinate their actions. The coordinating state
provides memory where all state needed for coordinating
actions is maintained. The coordinating state is maintained
for three purposes: to synchronize the actions of the main
thread and the parallel threads; to track the version numbers
of speculatively-read values so that misspeculation can be
detected; and to buffer speculative results computed by a
parallel thread before they can be sent to the main thread
to be committed.

When a parallel thread is created, both C state and P state
memory is allocated for its execution. The speculatively-read
operand values are copied from non-speculative D state to P
state memory allocated to the thread. The thread executes,
speculatively computing results into the P state memory.
These results are communicated to the main thread for
committing to the D state memory. Thus, during the execution
of a parallel thread the state of the main thread in D state is
isolated from the actions of the parallel thread. The C state
memory allocated to the thread is used, among other things,
by the main and parallel threads to signal each other when
various actions can be performed.

2.2.1. Coordinating State for Realizing CorD. When the
speculative bodies of two consecutive iterations of a loop
in a sequential program are executed in parallel on two
cores, the execution of the later iteration must be carried out
speculatively under the assumption that the earlier iteration
does not produce any value that is needed for the execution
of the later iteration. The values of variables referenced
by the later iteration are speculatively copied from D state
memory to the P state memory, and using these copied
values, the later iteration is speculatively executed. Before
committing the results of the later iteration to D state memory,
the main thread must check to see if the speculation was
successful. If the earlier iteration has not modified the values
of variables that were speculatively copied and used by the
later iteration, then the speculation of the later iteration is
successful; otherwise a misspeculation occurs. In order to
perform misspeculation checking, the following coordinating
state is maintained in C state memory:

(Version Numbers for Variables in D State Memory
– C state of the main thread) For each variable in D
state memory that is potentially read and written by parallel
threads, the main thread maintains a version number. This
version number is incremented every time the value of the
variable in D state memory is modified during the committing
of results produced by parallel threads. For each variable in
D state memory, an associated memory location is allocated
in the C state memory where the current version number for
the variable is maintained.

(Mapping Table for Variables in P State Memory – C
state of a parallel thread) Each parallel thread maintains
a mapping table where each entry in the mapping table
contains the following information for a variable whose value
is speculatively copied from the D state memory to P state
memory so that it can be used during the execution of
the parallel thread computation. The mapping table is also
maintained in the C state memory. As shown below, an entry
in the mapping table contains five fields.

D Addr P Addr Size Version Write Flag

The D Addr and P Addr fields provide the corresponding
addresses of a variable in the D state and P state memory
while Size is the size of the variable. Version is the version
number of the variable when the value is copied from D state
to P state memory. The Write Flag is initialized to false
when the value is initially copied from D state to P state
memory. However, if the parallel thread modifies the value
contained in P Addr, the Write Flag is set to true by the
parallel thread.

Realizing CorD. When the parallel thread informs the
main thread that it has completed the execution of a specu-
lative body, the main thread consults the mapping table and
accordingly takes the following actions. First, the main thread
compares the current version numbers of variables with the



version numbers of the variables in the mapping table. If
some version number does not match, then the main thread
concludes that misspeculation has occurred and it �discards
the results. If all version numbers match, then speculation
is successful. Thus, the main thread commits the results by
copying the values of variables for which the Write flag is
true from P state memory to D state memory. Note that if
the Write flag is not true, then there is no need to copy back
the result as the variable’s value is unchanged.

2.2.2. Optimizing Copying Operations. In the above dis-
cussion, we assumed that all data locations that may be
accessed by a parallel thread have been identified and thus
code can be generated to copy the values of these variables
from (to) D state to (from) P state at the start (end) of parallel
thread speculative body execution. Let us refer to this set as
the Copy Set. In this section we discuss how the Copy Set is
determined. One approach is to use compile-time analysis to
conservatively overestimate the Copy Set. While this approach
will guarantee that any variable ever needed by the parallel
thread would have been allocated and appropriately initialized
via copying, this may introduce excessive overhead due to
wasteful copying. There are two main causes of Copy Set
overestimation. First, even when the accesses to global and
local variables can be precisely disambiguated at compile-
time, it is possible that these variables may not be accessed as
the instructions that access them are conditionally executed.
Second, in presence of pointers, particularly when the pointers
point to heap allocated data, it may not be possible to pre-
cisely disambiguate accesses to the data. In the remainder of
this section we present aggressive optimizations to minimize
the cost of copying.
Reducing Wasteful Copying. To avoid wasteful copying,

we use a profile-guided approach which identifies data that
is highly likely to be accessed by the parallel thread and
thus potentially underestimates the Copy Set. The code for
the parallel thread is generated such that accesses to data
items are guarded by checks that determine whether or not
the data item’s value is available in the P state memory. If
the data item’s value is not available in P state memory, a
Communication Exception mechanism is invoked that causes
the parallel thread to interact with the main thread to transfer
the desired value from D state memory to P state memory.

(Global/Local Variables) These variables are allocated in
P state memory at the start of a parallel thread’s execution.
However, the values of the variables may or may not have
been initialized by copying from D state memory. Therefore,
a one-bit tag will be used for each variable to indicate if the
variable has been initialized or not. Note that uninitialized
variables, unlike initialized ones, do not have entries in the
mapping table. The accesses (reads and writes) to these
variables must be modified as follows. Upon a read, we check
the variable’s tag and if the tag is “not initialized”, then the

parallel thread performs actions associated with what we call
Communication Exception.

A request is sent to the main thread for the variable’s
value. Upon receiving the response, which also includes the
version number, the variable is allocated in P state memory,
initialized using the received value, and the variable’s entry in
the mapping table is updated. Upon a write, the Write flag
in the mapping table is set and if there is no entry for the
variable in the mapping table, an entry is first created.

(Heap Allocated Objects) Heap allocated objects are
neither preallocated in P state memory nor are the values of
their fields copied from D state memory to P state memory
at the start of the parallel thread’s execution. When the first
time an address that corresponds to a field of a heap allocated
object is assigned to a pointer variable, a communication
exception occurs and the object is allocated and initialized
in P state memory. When an assignment is being made via
a pointer variable, the mapping table must be consulted to
check if the pointer points to a copied object in P state
memory or does it point to an object in D state memory.
In the former case the assignment operation can proceed.
However, in the latter situation actions associated with a
communication exception must be performed. The parallel
thread sends a request to the main thread which returns the
following information: the size of the object, the values in the
fields of the object, and the offset that indicates the location
to which the assignment must be made in order to complete
the assignment operation which caused the exception. The
parallel thread uses this information to allocate an object in
P state memory and set up the values of all its fields. In
addition, it updates the mapping table to indicate the presence
of this object in P state memory.
Optimizing Communication Exception Checks. Even for

the variables which are created in P state memory at the start
of a parallel thread’s execution, some of the actions can be
optimized. First, not all of these variables require copying in
and copying out from D state memory to P state memory.
Second, all the actions associated with loads and stores of
these global and local variables during the execution of a
parallel thread may not be required for all of the variables,
i.e. some of the actions can be optimized away. As shown
in Table 1, the variables are classified according to their
observed dynamic behavior which allows the corresponding
optimizations.

A Copy In variable is one that is observed to be only
read by the parallel thread during profiling. Therefore its
value is definitely copied in and no actions are performed
at loads. However, actions are performed at stores to update
the Write flag in the mapping table so that the value can be
copied out if a store is executed. A Copy Out variable is one
that is observed to be written during its first access by the
parallel thread while profiling, and thus it is not copied in but



Type of Variable Copying Needed Actions Needed
Copy In Copy In = YES; Put Actions at

Copy Out = MAYBE Stores
Copy Out Copy In = MAYBE; Put Actions at

Copy Out = YES Loads
Thread Local Copy In = NO; No Actions

Copy Out = NO
Copy In and Out Copy In = YES; No Actions

Copy Out = YES
Unknown Copy In = MAYBE; All Actions

Copy Out = MAYBE

Table 1. Variable Types in Parallel Threads.

requires copying out. However, actions are needed at loads
to cause a communication exception if the value is read by
the parallel thread before it has been written by it. Thread
Local variables are ones that definitely do not require either
copy in or copy out, and Copy In and Out are variables
that are always copied in and copied out. Thus, no checks
are required for variables of these types. Finally, all other
variables – globals/locals that are observed not to be accessed
during profiling as well as all heap allocated objects accessed
through pointers – are classified as Unknown. If these are
accessed at runtime by a parallel thread, the accesses are han-
dled via communication exceptions and thus no optimizations
are possible for these variables.

3. Speculative Parallelization

3.1. Algorithm for Partitioning a Loop Iteration

A loop iteration must be partitioned into the prologue,
speculative body, and the epilogue. The algorithm for per-
forming the partitioning first constructs the prologue, then
the epilogue, and finally everything that is not included in
the prologue or the epilogue is placed in the speculative body.
Below we describe the construction of the prologue and the
epilogue:

(Prologue) The prologue is constructed such that it con-
tains all the input statements that read from files (e.g.,
fgets()). This is because such input statements should not be
executed speculatively. In addition, an input statement within
a loop is typically dependent only upon its execution in the
previous iteration – this loop carried dependence is needed
to preserve the order in which the inputs are read from a
file. Therefore input statements for multiple consecutive loop
iterations can be executed by the main thread before the
speculative bodies of these iterations are assigned to parallel
threads for execution. Loop index update statements (e.g. i++)
are also included into the prologue, as the index variables can
be considered as the input of each iteration and hence should
be executed non-speculatively.

(Epilogue) The epilogue is made up of two types of
statements. First, the output statements are included in the

epilogue because output statements cannot be executed spec-
ulatively. If an output statement is encountered in the middle
of the loop iteration or it is executed multiple times, then the
code is transformed so that the results are stored in a memory
buffer and the output statements that write the buffer contents
to files are placed in the epilogue which is later executed non-
speculatively by the main thread. Second, a statement that
may depend upon another statement in the preceding iteration
is placed in the epilogue if the probability of this dependence
manifesting itself is above a threshold. Any statements that
are control or data dependent upon statements already in the
epilogue via an intra-iteration dependence are also placed in
the epilogue.

Figure 3. Partitioning a Loop into Prologue, Speculative
Body, and Epilogue.

Fig. 3 illustrates the partitioning of a loop body. In the
for loop shown on the left, the first statement is a typical
input statement as it reads some data from a file and stores it
into a buffer. Hence, we place it into the prologue. Then we
construct the epilogue of this loop. First, all output statements
(lines 5 and 12) are included. Since the profiling information
can tell us that a loop dependence at line 10 is exercised very
often, we also put this statement into the epilogue. If we do
not do this, all speculative executions of iterations will fail
because of this dependence. Thus, the epilogue of this loop
has three statements, as shown by the code segment to the
right in Fig. 3. Note that in this example, all three statements
appear in the middle of the loop. Thus, we use a buffer to
store the information of epilogue statements such as the PC
of statements and values of the arguments. When the epilogue
is executed by the main thread, the information stored in this
buffer is referenced.

After the prologue and epilogue of a loop are identified,
the rest of the code is considered as the speculative body
as shown in Fig. 3. Note that line 4 may introduce loop
dependence because of the accesses to variable set, but this



Figure 4. Code Transformation.

dependence seldom manifests itself. So we actually speculate
on this variable. It is worth noting that placing line 4 into the
epilogue does not help the parallelism of the loop, because
the variable set is used by function process in every iteration.
If this variable is changed, whether by parallel threads or
the main thread, all subsequent iterations being executed will
have to redo their work.

3.2. Parallelizing Transformation
Next we show the form of the main thread and the parallel

thread created by our speculative parallelization transforma-
tion. Before we present the detailed transformed code, let
us see how the main thread and parallel threads interact.
The main thread and a parallel thread need to communicate
with each other to appropriately respond to certain events.
This communication is achieved via messages. Four types of
messages exist. When the main thread assigns an iteration to
a parallel thread, it sends a Start message to indicate to the
parallel thread that it should start execution. When a parallel
thread finishes its assigned work, it sends a Finish message to
the main thread. When a parallel thread tries to use a variable
that does not exist in the P space, a communication exception
occurs which causes the parallel thread to send an Exception
message to the main thread. The main thread services this
exception by sending a Reply message.

The main thread allocates a message buffer for each parallel
thread it creates. This message buffer is used to pass messages
back and forth between the main thread and the parallel
thread. When a parallel thread is free, it waits for a Start
message to be deposited in its message buffer. After sending
an Exception message, a parallel thread waits for the main
thread to deposit a Reply message in its message buffer.
After sending Start messages to the parallel threads, the
main thread waits for a message to be deposited in any
message buffer by its parallel thread (i.e., for a Finish or

Exception message). Whenever the main thread encounters
an Exception message in a buffer, it processes the message
and responds to it with a Reply message. If a message present
in the message buffer of some parallel thread is a Finish
message, then the main thread may or may not process this
message right away. This is because the results of the parallel
threads must be committed in order. If the Finish message is
from a parallel thread that is next in line to have its results
committed, then the Finish message is processed by the main
thread; otherwise the processing of this message is postponed
until a later time. When the main thread processes a Finish
message, it first checks for misspeculation. If misspeculation
has not occurred, the results are committed and new work is
assigned to the parallel thread, and a Start message is sent
to it. However, if misspeculation is detected, the main thread
prepares the parallel thread for reexecution of the assigned
work and sends a Start message to the parallel thread. The
above interactions continue as long as the parallel threads
continue to speculatively execute iterations.

Another important issue is the number of parallel threads
that should be created. One approach is to dedicate one
core to the execution of the main thread and create one
parallel thread for each additional core available. However,
we observe that while the parallel threads are executing, the
main thread only needs to execute when a parallel thread
sends a message to it. In addition, the parallel thread sending
the message must wait for the main thread to respond before
it can continue execution. Thus, we do not need to dedicate
a core for the main thread. Instead we can create as many
parallel threads as there are cores available and the main
thread can execute on the same core as the parallel thread
with which it is currently interacting through messages. This
strategy can be implemented in POSIX as follows. The main
thread executes the select call which allows it to wait



on multiple buffers corresponding to the multiple parallel
threads. The call causes the main thread to be descheduled
and later woken up when a message is written into any of
the message buffers being monitored. Unlike the main thread,
a parallel thread simply needs to wait for the main thread.
Therefore, a parallel thread can execute the read call which
allows the parallel thread to monitor a single message buffer
which is its own message buffer. Upon executing a read, the
parallel thread is descheduled until the main thread performs
a write to the monitored buffer.

Having discussed how the main thread and parallel
threads interact and work together to execute speculatively
parallelized code, now we show the corresponding code
transformation. Fig. 4(a) shows a sequential version of the
code. After transformation, the structure of the resulting
code for the main thread and a parallel thread are shown
in Fig. 4(b) and (c) respectively. As we can see, the code
executed by the main thread first creates parallel threads and
allocates P space and C space. Next, the main thread enters
a loop where it first calls check_thread which takes the
following actions. It processes Exception requests from all
parallel threads until finally a Finish message is received
from the parallel thread that executed the earliest speculative
iteration currently assigned to the parallel threads (this is
thread i in the code). Upon receiving this message, a check
is made to detect misspeculation. If speculation is successful,
the results are committed and the check_thread routine
returns TRUE; otherwise it returns FALSE and as a result
the main thread prepares the parallel thread for reexecuting
the assigned iteration. As we can see, once the results have
been committed, the epilogue code is executed. Next, the
main thread executes the prologue code for the next available
iteration and prepares the idle parallel thread to execute this
iteration. Finally, the value of i is updated to identify the
next parallel thread whose results will be committed by the
main thread.

Figure 5. Parallel Thread: Detecting and Handling Com-
munication Exceptions.

Now let us consider further details of the speculation
body code in the parallel thread. Recall that the code must
be modified to guard data accesses appropriately so that
communication exceptions are appropriately generated and
the mapping table is maintained. Although the code that is
generated will depend upon the types of variables shown
in Table 1, in Fig. 5, we show the generated code for the
situation in which no optimization is possible, i.e. the variable
type is Unknown. For other variable types, an appropriate
subset of this code is generated. In Fig. 5(a) we consider
the execution of statement a=b+1. The code preceding the
statement handles the loading of b and the code following
the statement handles the storing of the value of a. Fig. 5(b)
considers the case in which an assignment to pointer variable
p is made. The code following the assignment determines if
the address assigned corresponds to a heap object that must
be copied from D space into P space.

3.3. Enhancements
(Reducing Thread Idling) The performance of the parallel

version may still be hindered by two factors. The first one is
thread idling. If a parallel thread that is assigned work earlier,
finishes its work before some later threads get their work from
the main thread, it has to wait for the main thread to check its
result. However, it may take a long time for the main thread to
finish assigning the later iterations to other threads. So during
this period, this parallel thread cannot do any other work but
simply idle. This will cause substantial performance loss. To
avoid thread idling, we can increase the workload of each
parallel thread by assigning 2 or more iterations at one time
using loop unrolling. In this way, we ensure every thread stays
busy while the main thread is assigning the later iterations to
other threads.
(Delayed Coping) Another factor that affects the perfor-
mance is the misspeculation rate. Since our approach specu-
lates on rarely-exercised loop-carried dependencies, a mis-
speculation may cause the result of some later threads to
be discarded. Therefore, an earlier thread’s misspeculation
can lead to significant waste when more threads are used. To
reduce the performance impact of misspeculations, we delay
copying the variables on which we speculate. Specifically,
the values of these variables will not be copied from D space
until the variables are accessed for the first time. The idea
of delayed copying is to increase the chance of obtaining the
correct version of these variables as some earlier thread may
commit its values.

4. Experiments
To speculatively parallelize loops, we first profile the loop

code to gather information such as the dependence graph and
dynamic access patterns of variables. In our implementation
we use the Pin [16] instrumentation framework to enable
profiling. Since the output of Pin is in the form of instruction



Program LOC Loop Prof. Input Exp. Input Prologue Epilogue Vars. in Body
Exec. Time I O L IO

197.parser 9.7K 100% 1K file 36K file fgets printf 49 6 12 2
181.mcf 1.5K 31% test/inp.in train/inp.in i++ total++ 5 0 5 3
130.li 7.8K 100% 6 scripts 72 scripts i++ printf 30 0 3 6

var++
256.bzip2 2.9K 100% 200K file 7.5M file fgetc fputc 12 8 11 1
255.vortex 49.3K 80% test/input train/input ++i fprintf 76 5 4 6
CRC32 0.2K 100% one 4M-file 80 4M-files −−argc printf 1 0 2 1

I-Copy In O-Copy Out L-Thread Local IO-Copy In and Out

Table 2. Characteristics of Benchmarks.

or memory addresses, we use the output of objdump, a utility
that can display the information from object files, to map
these addresses to the names of variables and statements in
the original programs. We make the stack variables static so
that they get stored in the data or bss segment and hence
can be recognized by objdump. Based upon the gathered
profile data, the compiler performs code transformation. We
choose LLVM [15] as our compiler infrastructure as it allows
us to perform static analysis and customized transformation.
All code transformations are performed at the level of bc
code, the intermediate representation of LLVM. After the
transformation, we use the native option of LLVM to generate
the x86 binary code which can be executed on the real
machine. All our experiments were conducted under Fedora
4 OS running on a dual quad-core 3.0 GHz Xeon machine
with 16GB memory.

4.1. Case Studies
Table 2 describes the programs used to evaluate our paral-

lelization approach. Among the 6 programs used, 5 are from
SPEC [10] and 1 from MiBench [8]. In the table, the first
two columns show the name and the number of source code
lines of each program. The third column shows the execution
time of the loops that we parallelized as a percentage of total
program execution time – as we can see, the loops represent
the entire execution time in all but one program. The profiling
input is shown by column Prof. Input and the column Exp.
Input gives the input used in the experimental evaluation.
The next two columns show the contents of the prologue
and epilogue of the parallelized loop. We also use profiling
to identify different communication types of each variable
used in the speculative body. The last four columns show
the distribution of variables across these categories (recall
these variables do not include heap data). All these programs
are the ones where without speculation, parallelization is not
possible.

197.parser is a program that can parse a given sentence
based on the link grammar. In its batch mode, a while loop
is used to parse a given file line by line, one sentence per
line. After the loop partition, the speculative body parses a
sentence. If a sentence conforms to a certain pattern, a global
variable is changed indicating that the parsing process of the

following lines must be different. Also, if a sentence is not
consistent with the grammar, a variable errors is incremented
by 1. According to the profiling result, these two cases do
not appear very often and hence we can speculate on these
two variables.

181.mcf is a program for solving the single-depot vehicle
scheduling problem. A hot loop is identified in function
price out impl and is parallelized. In its speculative body,
a variable red cost is computed over a list. If this variable is
less than 0, a new arc will be inserted into the list, and two
counters, dep and new arc, will be updated. Since most of
the time this branch will not be taken, we can speculate on
the tail pointer of this list and these two counters.

130.li is an interpreter of the extended Lisp language which
supports object-oriented programming. It uses a for loop to
process a set of Lisp scripts specified on the command line.
Since these scripts can be interpreted separately, we exploit
the parallelism of this loop. The profiling result actually
shows that besides I/O stream dependencies, there exist loop
dependencies on 12 variables. Among these variables, 6 are
used to count the number of certain types of memory allo-
cations. These dependences are exercised between every two
consecutive iterations, so we put the corresponding statements
into the epilogue so that they are executed by the main
thread non-speculatively. For the remaining 6 variables, 5 are
used to store information such as context, stack pointer, or
environment vectors when each script is processed. Although
these dependencies occur in every iteration, they are all
silent, meaning that at the beginning and the end of each
iteration, the values of each variable are the same. In our
experiments, we specify them as copy in and out type.
This is because we perform a value-based speculation check
which can effectively prevent these silent dependencies from
serializing the loop execution. The last one is the variable
xldebug, which is updated when there is an error in a script.
Since errors do not appear very often, we speculate on this
variable. Thus, we can see that 6 copy in and out variables
are found in the speculative body.

256.bzip2 is a data compressor which uses Huffman
encoding and Burrows-Wheeler transformation. During the
compression process, a while loop is used in function com-
pressStream to compress a file. Within this loop, a fixed-size
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Figure 6. Execution Speedups.

block is first read from a file stream, then compressed and
written to an output file. Thus, this loop can be executed
in parallel as the blocks can be independently compressed.
The speculative body performs compression. If an exception
occurs during the compression, the program will jump to the
corresponding handler. In our parallel code, we do specu-
lation on those checks. If any exception occurs, the main
thread stops all the worker threads executing the subsequent
iterations and then processes the exception.

255.vortex is a database transaction benchmark. This
program’s execution performs a certain number of inserts,
deletes and lookups on a pre-configured database. In our
experiments, the while loop in function BMT LookUpParts
can be identified and parallelized. In the speculative body, an
object is selected randomly and searched from the database.
During this process, a variable Status will be updated if any
error is encountered. Also, when certain conditions become
true, several assertion variables will be updated accordingly.
However, since all these situations rarely happen, we specu-
late on these variables. Note that random selection of objects
is implemented through the function Random, which causes
a loop-carried dependence on variable jran. This dependence
actually can be ignored because this function is commutative
[2], [14]. In our framework, the compiler does not generate
misspeculation checks for variables used in commutative
functions.

CRC32 is a program used to compute the 32-bit CRC of a
file. It accepts multiple file names as the input and uses a for
loop to calculate the CRC of those files one by one. Since
the calculation for each file is independent, this loop can be
parallelized. The prologue of this loop is a typical loop index
statement and the epilogue is a printf call. The rest of the
statements are the speculative body. In this body, a variable
error will be updated if any problems are encountered during
the CRC computation. However, the value of this variable
changes infrequently and thus we speculate on it.

4.2. Execution Speedups

To evaluate the performance of our model for every bench-
mark, we first measured the baseline which is the sequential
execution time of the loop that was parallelized. Then we
measured the time of executing this loop in our model with
different numbers of parallel threads. Fig. 6 shows our best
result. Each execution time is obtained by taking the average
of the execution times of 10 runs. In all cases, the copy
communications between the main thread and parallel threads
are optimized.

From Fig. 6, we can see that when the number of parallel
threads increases, the loop speedup for all benchmarks goes
up linearly. The highest speedup achieved ranges from 3.7
to 7.8 across the benchmarks when 8 parallel threads are
used. We also notice that the performance of our model with
one parallel thread is slightly worse than with the sequential
version for some benchmarks. That is due to the copying,
tracking and checking overhead. In fact, if only one core
is available, we can force the main thread to perform all
computations rather than spawning parallel threads.

4.2.1. Benefits of Enhancements. The data shown in Fig. 6
was obtained after applying all performance enhancements.
We found that idling threads and misspeculation can signif-
icantly affect the speedups for all benchmarks except for
CRC32 when more than 5 threads are used. In particu-
lar, when using the basic transformation, we noticed that
idling threads caused performance to remain unchanged for
197.parser, 130.li, 256.bzip2, and 255.vortex when the thread
number is above 5 or 6, and using additional threads did not
increase the speedup further. Table 3 shows the speedups of
these benchmarks with and without reducing thread idling.
Clearly, increasing the workload of parallel threads takes
effect when the number of parallel threads is more than 5
(197.parser, 130.li and 256.bzip2), or 6 (255.vortex). In the
case of CRC32, however, we are still able to obtain more



speedups with more threads when using the basic transfor-
mation because each thread performs substantial computation
on a 40M file.

Threads 197.parser 130.li 256.bzip2 255.vortex
4 w/o 2.63 3.27 2.72 3.02

w/ 2.62 3.39 2.85 3.01
5 w/o 2.70 3.92 2.80 3.43

w/ 2.94 4.45 3.21 3.50
6 w/o 2.77 4.59 2.99 3.72

w/ 3.55 5.62 4.09 3.90
7 w/o 2.87 4.61 2.98 3.92

w/ 4.19 6.25 4.78 4.23
8 w/o 2.90 4.63 2.98 3.95

w/ 4.81 6.96 5.37 4.69

Table 3. Effect of Reducing Thread Idling on Speedups.

For benchmark 181.mcf, we found that the misspeculation
rate, which increases from 0.7% to 17.5% as the number of
threads increases from 2 to 8, limited the speedup. For other
benchmarks, however, the misspeculation rate stays below
2% and does not vary much and hence it does not impact
performance. Table 4 shows the speedup of 187.mcf with
and without delayed copying. As we can see, this technique
can provide moderate improvement in the performance. This
is because with this technique, the misspeculation rate of this
benchmark is not more than 10%.

Threads w/o Delayed Copying w/ Delayed Copying
2 1.45 1.55
3 1.79 1.92
4 2.03 2.23
5 2.41 2.71
6 2.65 2.95
7 2.99 3.33
8 2.72 3.71

Table 4. Effect of Delayed Copying on Speedups for
181.mcf.

4.2.2. Benefits of Copy Optimization. As shown in Table 2,
we use profiling information to identify the communication
type of each variable so that the copy in and out overhead can
be minimized. To evaluate the effect of our optimization, we
compare the performance of the optimized program with two
other versions of the program: (Copy-All) that uses copy-
in of all variables that will be potentially used by parallel
threads; and (Copy On-the-fly) in which no variables are
initially copied, i.e. each variable is copied on-the-fly using
a communication exception upon the first access to it. While
Copy-All may perform excessive copying and spends more
time maintaining the mapping table, Copy On-the-fly will not
perform unnecessary copying but will execute extra checks
(e.g., even for variables that could have been made thread
local). Copy operations of heap data are performed on the fly
for all schemes.

Table 5 shows the loop speedups for each benchmark with
different copy schemes. According to the results shown, our

Program Copy All Copy On-the-fly Opt.
197.parser 2.28 2.38 2.63
130.li 2.68 2.67 3.09
256.bzip2 2.35 2.62 2.72
181.mcf 1.90 2.21 2.23
255.vortex 2.50 2.33 3.01
CRC 32 3.92 3.86 3.91

Table 5. Loop Speedup for Different Copy Schemes
with 4 Parallel Threads.

optimized copy scheme outperforms the other two schemes
in all cases except for CRC32. In the case of CRC32, the
computation only uses 4 variables, so all copy schemes
perform about the same. We also observed that the Copy On-
the-fly scheme for 256.bzip2 and 187.mcf is almost as good
as the optimized one. For 256.bzip2, the reason is that most
memory accesses in this benchmark are heap references, and
all schemes copy the heap data on-the-fly. For 187.mcf, Copy
On-the-fly reduces misspeculation rate which is the primary
limiting factor for its performance.

We observe that the performance of the Copy-All and the
Copy On-the-fly schemes differs for different benchmarks.
In some cases (197.parser, 256.bzip2) the Copy On-the-fly
scheme performs much better than the Copy-All scheme. This
is because the Copy On-the-fly scheme does not perform any
copy operations for thread local variables. Using more thread
local variables will only affect the Copy-All scheme, not the
Copy On-the-fly scheme.

Note that the data shown in this figure is based on
executions using 4 parallel threads. We also conducted the
experiments with different numbers of parallel threads. The
results observed are similar. This is because the total number
of iterations that need to be executed are the same, and for
each copy scheme, the same amount of copy operations need
to be performed over the entire execution.

4.3. Overheads
4.3.1. Time Overhead. Our software speculative paralleliza-
tion technique involves overhead due to instructions intro-
duced during parallelization. We measured this execution time
overhead in terms of the fraction of total instructions executed
on each core. The results are based upon an experiment
in which we use 8 parallel threads, and we breakdown
the overhead into five categories as shown in Table 6. The
second column Static Copy is the fraction of the total number
of instructions used for performing copy-in and copy-out
operations by the main thread. This overhead ranges from
0.02% to 5.28% depending on how many variables need
to be copied. The third column Dynamic Copy gives the
fraction of instructions for on-the-fly copying. The Exception
Check column shows the fraction of instructions used by
parallel threads to check if a variable has been copied into the
local space. According to the results, these two numbers are



very low for the benchmarks we used. Another category of
overhead comes from the Misspeculation Checking. This uses
1%-2% instructions for all benchmarks except for CRC32
which does not have many variables to copy. Besides the
above four categories, there are other instructions executed
for Setup operations (e.g., thread initialization, mapping table
allocation and deallocation etc.). The last column shows the
result. In total, no more than 7% of total instructions are used
for execution model on each core.

Program Static Dynamic Exception Misspec. Setup
Copy Copy Check Check

197.parser 3.51% 0.33% 0.02% 1.76% 0.62%
130.li 0.08% 0 0 1.08% 0.07%
256.bzip2 1.32% 0.25% 0.06% 1.03% 0.48%
181.mcf 1.97% 0.13% 0.08% 2.81% 2.15%
255.vortex 5.28% 0.04% 0.01% 1.25% 0.39%
CRC32 0.02% 0 0 0.01% 0.32%

Table 6. Overhead Breakdown on Each Core.

4.3.2. Space Overhead. Since we partition the memory into
three states during the execution, and each parallel thread
has its own C and P state memory, extra space certainly
needs to be used in our execution model. So we measured
the space overhead of the executions of parallelized loops.
The space overhead is shown in Table 7. The space used by
the sequential version serves as the baseline.

Program 1 thread 2 threads 4 threads 8 threads
197.parser 1.01 1.22 1.46 2.13
130.li 1.14 2.56 1.95 2.95
256.bzip2 1.32 2.13 3.86 5.81
181.mcf 1.05 1.13 1.36 2.29
255.vortex 1.14 1.36 1.57 1.95
CRC32 1.04 1.38 2.01 3.28

Table 7. Memory Space Overhead.

As we can see, the overhead for most benchmarks is around
2x-3x when 8 threads are used. Given the speedup achieved
for these benchmarks, we can see that the memory overhead
is acceptable. For 256.bzip2, a large chunk of heap memory
allocated in D space is used during the compression. In our
execution model, each parallel thread will make a copy of this
memory space to execute the speculative body. Therefore, as
more parallel threads are used, more memory is consumed.

Program Sequential Version Parallel Version
197.parser 234K 239K
130.li 179K 183K
256.bzip2 53K 57K
181.mcf 22K 24K
255.vortex 1336K 1370K
CRC32 8K 10K

Table 8. Size of Binary Code.
Besides the dynamic space consumption, we also examined

the increase in the static size of the binary. As shown in Table
8, the increase varied from 2K to 5K for most programs, a
very small fraction of the binary size.

5. Related Work

Ding et al. [6] proposed a process based runtime model that
enables speculative parallel execution of Potentially Parallel
Regions (PPRs) on multiple cores. Due to use of processes,
significant amount of memory pages need to be copied when
speculation succeeds. The parallelism is not fully exploited in
this scheme because the work is assigned to the cores round
by round and the next round cannot start until all work in the
previous round is finished successfully. If speculation with
respect to a process fails, the work by following processes in
the same round is completely discarded. None of the above
drawbacks are present in our approach. Finally, brute force
methods are used to identify the PPRs in [6] while in our
work we divide all statements in a loop into three partitions
according to their dynamic execution pattern. Kulkarni et
al. [13], [14] proposed a runtime system to exploit the
data parallelism in applications with irregular parallelism.
Parallelization requires speculation with respect to data de-
pendences. The programmer uses two special constructs to
identify the data parallelism opportunities. When speculation
fails, user supplied code is executed to perform rollback. In
contrast, our work does not require help from the user, nor
does it require any rollbacks. Finally, an important aspect
of the above work is its use of commutativity property – a
function is considered to be commutative if its calls can be ex-
ecuted in different order without changing the correctness of
the program. Commutative functions either do not introduce
any loop-carried dependencies or these dependencies can be
safely ignored. In our work commutativity can be exploited by
eliminating misspeculation checks – recall that in 255.vortex
the calls to a random number generator were commutative.

One commonly-used approach for parallelization of loops
is software pipelining. This technique partitions a loop into
multiple pipeline stages where each stage is executed on a
different processor. Decoupled software pipelining (DSWP)
[18], [19], [22] is a technique that targets multicores. The
proposed DSWP techniques require two kinds of hardware
support that is not commonly supported by current processors.
First, hardware support is used to achieve efficient message
passing between different cores. Second, hardware support
is versioned memory which is used to support speculative
DSWP parallelization. Since DSWP requires the flow of data
among the cores to be acyclic, in general, it is difficult
to balance the workloads across the cores. Raman et al.
[19] address this issue by parallelizing the workload of
overloaded stages using DO-ALL techniques. This technique
achieves better scalability than DSWP but it does not support
speculative parallelization which limits its applicability. Other
recent works on software pipelining target stream and graphic
processors [3], [7], [11], [12], [21].

The alternative approach to exploiting loop parallelism is
DO-ALL technique [6], [14], [13], [5], [9], [23], [20], [1],



[17], [25] where each iteration of a loop is executed on
one processor. Among these works, a large number of them
focus on thread level speculation (TLS) which essentially is
a hardware-based technique for extracting parallelism from
sequential codes [5], [9], [23], [20], [1], [17], [25]. In
TLS, speculative threads are spawned to venture into unsafe
program sections. The memory state of the speculative thread
is buffered in the cache, to help create thread isolation. Hard-
ware support is required to check for cross thread dependence
violations; upon detection of these violations, the speculative
thread is squashed and restarted on the fly. Compared to TLS,
our work does not require any hardware support and can be
done purely in software.

Vijaykumar et al. [24] also presented some compiler tech-
niques to exploit parallelism of sequential programs. A set
of heuristics operate on the control flow graph and the data
dependence graph so that the code can be divided into tasks.
These tasks are speculatively executed in parallel and the
hardware is responsible for detecting misspeculation and per-
forming recovery. However, this work focuses specifically on
Multiscalar processors. Instead of concentrating on extracting
coarse-grained parallelism, Chu et al. [4] recently proposed
exploiting fine-grained parallelism on multicores. Memory
operations are profiled to collect memory access information
and this information is used to partition memory operations
to minimize cache misses.

6. Conclusion
We presented a novel Copy or Discard (CorD) execution

model to efficiently support software speculation on mul-
ticore processors. The state of speculative parallel threads
is maintained separately from the non-speculative computa-
tion state. The computation results from parallel threads are
committed if the speculation succeeds; otherwise, they are
simply discarded. A profile-guided parallelization algorithm
and optimizations are proposed to reduce the communication
overhead between parallel threads and the main thread. Our
experiments show that our approach achieves speedups rang-
ing from 3.7 to 7.8 on a server with two Intel Xeon quad-core
processors.
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