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Bound checks are introduced in programs for the run-time detection of array bound violations.
Compile-time optimizations are employed to reduce the execution-time overhead due to bound
checks. The optimizations reduce the program execution time through elimination of checks and
propagation of checks out of loops. An execution of the optimized program terminates with an
array bound violation if and only if the same outcome would have resulted during the execution

of the program containing all array bound checks. However, the point at which the array bound
violation occurs may not be the same. Experimental results indicate that the number of bound
checks performed during the execution of a program is greatly reduced using these techniques.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugg-
ing—error handling and recouery; D.3.4 [Programming Languages]: Processors—compilers,
optimization

General Terms: Languages, Reliability
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1. INTRODUCTION

To aid in the debugging of programs under development, many compilers

generate run-time checks to detect errors due to array bound violations

dynamically. The overhead of these checks is quite high, resulting in ineffi-

cient code with high execution times. Earlier investigations indicate that

execution times for programs can double if run-time checks are performed

[Chow 1983]. This is true for both optimized and unoptimized code, because

traditional optimizations are ineffective in reducing the overhead due to

array bound checks [Chow 1983]. Most compilers allow the programmer to

control the generation of run-time checks through a switch that is specified at

compile time. The programs are compiled with run-time checks only during
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the debugging phase. When the software is being used in a production

environment, it does not include run-time checks. Thus, even if the software

appears to execute normally, it may be providing incorrect results due to the

array bound violations. To ensure high reliability, the run-time checks should

not be removed from the software. This reasoning has led to research into the

optimization of run-time checks. In this paper optimizations that significantly

reduce the run-time overhead due to array bound checks are presented. Thus,

the security of correct execution can be achieved at an acceptable run-time

cost.

Preceding each array reference, a bound check corresponding to the array

reference is introduced. A bound check is essentially a Boolean expression

that checks the lower and upper bounds of a subscript expression. If the

Boolean evaluates to true, then there is no array bound violation. If it

evaluates to false, a trap is taken that terminates the execution and reports

an error. The reduction of run-time overhead due to bound checks is treated

as an optimization performed through compile-time analysis.

The optimizations described in this paper reduce the run-time overhead

through elimination and propagation of bound checks. The checks that can

either be performed at compile time or are made unnecessary by other checks

are eliminated. This is analogous to the traditional optimizations of constant

folding and common subexpression elimination. In certain instances a check

can also be eliminated by combining it with another check. The propagation

of bound checks out of loops reduces the number of times a check is executed

at run time. This is analogous to the loop invariant code motion optimization.

However, propagation of bound checks differs from invariant code motion in

that it replaces a series of distinct bound checks executed during different

loop iterations by a single check outside the loop. Although the optimizations

in this paper eliminate and propagate bound checks, they do not degrade the

reliability of the software. Any array bound violation that is detected by a

program with all bound checks included will also be detected by the program

after bound check optimization. However, the violations may not be detected

at the same point in the program. The bound check optimizer can be inte-

grated into a traditional code optimizer. The results of other optimizations,

such as constant propagation, can enable the elimination of some bound

checks that otherwise may not have been eliminated.

In subsequent sections, first we briefly describe the earlier work done in

this area. Next, the bound check optimizations are described, and algorithms

to perform these optimizations are discussed in detail. Finally, some experi-
mental results demonstrating the effectiveness of the bound check optimiza-

tion are presented.

2. BACKGROUND

Markstein et al. [1982] also treated the elimination and propagation of bound

checks as an optimization problem. Their work provided the inspiration for

this work, and we use the same approach. The elimination and propagation

algorithms developed by Markstein et al. [1982] were developed in conjunc-
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tion with a traditional code optimizer. In some situations their algorithms are

able to benefit from the application of other code optimizations [Aho et al.

1986; Callahan et al. 1986; Wegman and Zadeck 1984]. The algorithms

described in this work do not rely on other code optimization. However, their

effectiveness can be enhanced by performing traditional optimizations. The

analysis algorithms presented in this paper exploit semantic information that

is not exploited by Markstein’s algorithms. Semantic properties of variable

definitions, namely, monotonic definitions, that do not kill previously per-

formed bound checks on the redefined variable are exploited. In addition,

semantic properties of bound checks that cause one check to subsume another

check are also exploited. Thus, certain bound checks optimized by our algo-

rithms cannot be handled using Markstein’s algorithms. Some important

differences will be discussed in subsequent sections, which describe our

algorithms in detail.

Harrison [1977] also used compile-time analysis to reduce the overhead due

to bound checks. Compile-time techniques of range propagation and range

analysis are employed yielding bounds on the values of variables at various

points in a program. The range information is used to eliminate redundant

bound checks on array subscripts. However, in contrast to Markstein’s work,

the techniques developed by Harrison do not reduce the run-time overhead

due to bound checks that cannot be eliminated at compile time. Harrison’s

techniques will not be effective in the presence of dynamic arrays, since value

range analysis will not be effective.

Suzuki and Ishihata [1977] discussed the implementation of a system that

performs array bound checks on a program. The system creates logical

assertions immediately before array element accesses that must be true for

the program to be valid. These assertions are then proved, by a theorem

prover, using techniques similar to inductive assertion methods. Such tech-

niques are significantly more expensive than the techniques based on data-

flow analysis. Suzuki and Ishihata’s approach cannot reduce the run-time

overhead due to bound checks that cannot be eliminated at compile time.

3. BOUND CHECK OPTIMIZATION

In this section we discuss intraprocedural bound check optimizations for

eliminating and propagating bound checks. We assume that the optimizer

can distinguish the bound checks from the remainder of the program and

that no control flow instructions are introduced in the code by the bound

checks. The upper and lower bounds of an array a are referred to as &L4X(cz)

and MlN(a), respectively. The lower and upper bound checks are treated

separately, as sometimes it is possible to optimize only one of the checks.

After the optimizations have been applied, we are guaranteed that the

optimized program will report an error if and only if the original program

would have also terminated with an error. However, after the propagation

and elimination of checks, the optimized program may detect an error at a

different point in the program. This is not a serious limitation, because even

if no bound check optimizations are applied, the point of error detection may

be altered due to other program optimizations, such as invariant code motion.
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3.1 Local Elimination

In certain situations checks can be eliminated from a basic block through

very simple local analysis. If a bound check is identical to another check or if

it is subsumed by another check, it can be eliminated. These situations are

described below. In general, more opportunities for combining checks may

exist. However, we limit the combining of checks to situations that can be

easily identified by examining the checks. Furthermore, the simple situations

described below arise often in real programs.

Identical checks. Assume that checks C and C‘ are two identical checks in

a basic block and that the execution of C precedes the execution of C‘. If the

variables used in the checks are not redefined after C and before C‘, then C‘

is eliminated.

Subsumed checks with identical bounds. Consider two bound checks whose

lower (or upper) bounds are identical, although the subscript expressions on

which the bound checks are performed are not the same. If the two subscript

expressions are functions of the same variable and the compiler determines

that one expression is always greater than the other, then one check can be

eliminated, because it is subsumed by the other check:

MIN<f(v) and MIN<g(u) =MIN <f(u) if f(u) <g(u),

f(u) <M= and g(u) <MAX =g(u) s M= if f(u) <g(u).

Subsumed checks with identical subscript expressions. Consider two bound

checks on the same subscript expression with different lower (or upper)

bounds. This situation can occur if the same subscript expression is used to

refer to elements of two arrays of different dimensions. In this case also one

of the checks can be eliminated because it is subsumed by the other as shown

below. Assuming that the bounds MINI, MINZ, MAXI, and MAXZ are

compile-time constants, this optimization is beneficial:

MINI s f and MINZ < f = maximum( MINI, MINZ ) <f,

f s MAXI and f 5 MAX, = fs minimum (MAXl, MAX,).

The techniques developed by Markstein et al. [1982] use common subex-

pression elimination, which can only eliminate identical checks. Their tech-

niques cannot eliminate subsumed checks in the manner discussed above. It

should be noted that the application of subsumption optimizations may cause

an error to be reported at an earlier program point. The example in Figure 1

demonstrates the results of local elimination. In this example, optimization

resulted from the first two situations.

3.2 Global Elimination

Global flow analysis is employed to collect information that is used to

eliminate bound checks from a program. Opportunities for the elimination of

checks arise because often the same check is performed repeatedly or some of

the checks performed subsume other checks performed during execution.
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-- MIN(a)s i+l s MAX(a) -- MIN(a)s i, i+l < MAX(a)
temp e-- a[i+l] temp e a[i+ 1]
-- MIN(a) S i+ 1< MAX(a) a[i+l] - a[i]
-- MIN(a)s i < MAX(a) a[i] +- temp
afi+l] + a[i]
-- MIN(a)s is MAX(a)
a[i] e temp
Before Optimization After Optimization

Fig. 1. Local elimination of bound checks.

if ( ) then if ( ) then
--10< i<50 -.10< i<50

.... ....
else else

--20< i<IO0 --20< i<l(Jj

.... ....
fi fi
.-s<i<zoo ....
....

Before Optimization After Optimization

Fig. 2. Global elimination of redundant bound checks.

There are two types of situations that can lead to the elimination of bound

checks. First, a check at a program point can be eliminated if bound checks

can be found that are executed prior to reaching this point and if these checks

subsume the current check. In other words, the check is redundant because

it will not cause an error if the control reaches the point at which the check

appears. This optimization is illustrated by the example in Figure 2. Since

the check 10 s i or the check 20 s i is performed before 5 s i, the check

5 s i is redundant. Similarly, one of two checks i s 50 or i s 100 is per-

formed before i s 200, which causes the check i s 200 to be redundant.

The second situation in which a check can be removed arises when, along

all paths following the execution of a check, other checks are encountered,

and the former check is subsumed by the latter checks. By appropriately

modifying the former check, at least one of the latter checks can be elimi-

nated. In other words, the modification of an earlier check causes a later

check to become redundant. Consider the example in Figure 3. The execution

of the check 5 s i is followed by the execution of 10 s i or 20 < i. If we

replace 5 s i by 10 s i, then the later execution of 10 s i becomes redun-

dant. Similarly, we observe that the execution of i s 200 is followed by either

the execution of i s 50 or the execution of i s 100. We can replace the

execution of i s 200 by i s 100, which causes the later execution of i s 100

to become redundant. As shown in Figure 3, we can perform this optimization
in two steps: First, we modify the checks, and then we eliminate the redun-

dant checks created through the modification. The error will be reported at

an earlier program point following the optimization.
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-j<i<zoo” --]()<i<l~ --lo<i<~(-)(j

if ( ) then if ( ) then if ( ) then

-lo<i<j(j -lo<i<so -i<-f(j

.... .... ....
else else eke

-zo<i<lo(l -zo<i<]ofj --zo<i

.... .... ....
fi fi fi
Before Optimization After Modification After Elimination

Fig. 3. Global elimination by modification of bound checks.

To perform the above optimizations, we develop two algorithms: The first

algorithm is used to modify bound checks in order to create additional

redundant checks. The second algorithm carries out the elimination of redun-

dant checks. Since the first algorithm creates additional redundant checks, it

is applied before the second algorithm for the removal of redundant checks is

applied. These algorithms are based on the notions of available checks and

uery busy checks, which is analogous to the notions of available expressions

and very busy expressions. However, there are important differences between

bound checks and ordinary expressions, which allow us to be more aggressive

in the propagation of bound checks. First, a bound check is not always killed

by a definition of a variable used in the subscript expression. In the presence

of certain definitions, a check may be propagated. For example, the check

10 s i can be propagated from the point before statement i ~ i + 1 to the

point after the statement. The definitions of interest are termed as monotonic

definitions. Second, bound checks can also be propagated across points where

multiple paths meet in an aggressive fashion. If checks 10 < i and 20 s i

arrive at a point along two distinct paths, we may consider the weaker check
10< i to be available at that point. The conditions under which a bound

check can be eliminated are also less restrictive than the conditions under

which an expression evaluation can be eliminated. If a check is subsumed by

an available check, it can be removed. However, an expression at a given

point in the program can only be eliminated during global common subex-
pression elimination if an identical expression is available at that point. Next,

we present algorithms for modification and elimination of bound checks that

exploit the above semantic information.

Algorithm for modifying checks to create redundant checks. In order to

identify checks that can be modified, we carry out data-flow analysis, which

propagates the checks performed at various points in the program in the

backward direction along the program paths. This process enables us to

compute very busy checks, which can be precisely defined as follows:
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Definition 3.1. A bound check C is very busy at a program point p if it is

guaranteed that, along each path starting at point p, either C is performed

or a check that subsumes C is performed.

We formulate the task of computing very busy checks as a data-flow

problem. The result of solving the data-flow problem is the set of very busy

checks at all points in the program. Following this analysis we examine each

bound check in conjunction with the set of very busy checks immediately

after the check and determine whether the check should be modified. Next,

the steps of the algorithm are discussed in detail.

Step 1: compute local information for all basic blocks. For each basic block

B, we compute the set of checks C_ GEiV[ B ] such that at the start of this

basic block we can assert that these checks will be performed inside B. Thus,

these are the very busy checks at the start of B that are performed in B. The

set C–GEIV[ B ] is computed by examining the checks in B and the definitions

of variables examined by the checks. In addition, we also compute the effect

that a block B has on the value of each variable u, which is used by some

subscript expression in the program. A monotonic definition of a variable is

one for which the compiler can predict whether the value of the variable is

either definitely going to increase or definitely going to decrease. It is

beneficial to take advantage of monotonic definitions, because the definitions

of variables used in subscript expressions are very often monotonic. In this

work we use a simple approach for detecting monotonic definitions. A more

general algorithm for detecting monotonic computations can be found in

Gupta and Spezialetti [ 1991]. The effect of B on variable v is summarized by

EFFECT( B, v), as shown below. Here, v~~~Or~and v. ~~~, denote the values of

variable u before and after a block, respectively, and c is a positive compile-

time constant:

EFFECT(B , v)

I
unchanged: ‘after * ‘before

increment: ‘after + ‘before + c, where c is a positive integer,

decrement: ‘after + ‘before — c, where c is a positive integer,

( multiply: ‘after + ‘before *C, where c is a positive integer,

div >1: ‘after + Vbefore div C, where c is a positive integer,

div <1: v~ft~, +- vb~fOr~ div c, where O < c < 1,

changed: relationship between v=f ter and v bcfore is not known.

Step 2: Compute very busy checks. With each block B, we associate the set

C-IN[ B ], which is the set of very busy checks at the entry to the basic block,

and C–OUT[ B ], which is the set of very busy checks at the exit of the basic
block. These sets are computed by solving the data-flow equations given

below. SUCC(B) denotes the set of basic blocks that are successors of B. The
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backward( C_OUT [B ], B ) [

s=O
for eachcheckC e C_OiYT[B] do

caseC of
[b <V:

caseAFFECT(B ,V) of
unchanged: S=S U {lb <v]

increment r the checkiskilled */
decrementS= Su {b < v )
multiply: F thecheckiskilled */
div>l: S= SU[/b Sv]

div<l: P thecheckiskdkxl”/
changed P thecheckiskdlcd’/

endcase
v<~:

caseAFFECT(B ,V) of
unchangedS=S u {v <u/r]
increment S= Su {v < ub )

decrement P the checkiskilled */
multiply S=SU {v Sub}

div>l : P the checkiskilled”/
div<l: S= SU(v<ub]

changed P thecheckiskilled’/
endcase

lb <~(v):
caseAFFECT(B,V) of

unchangedS=S u (lb <f(v)]

increment,multiply,div<l: ifj (v) decrcascswhenv increasesthen S= Su ([b <f (v)) fi

decrement,div>l: if~ (v) decreaseswhenv dczrcasesthen S= Su (lb s f (v )) Ii

changed P thecheckISkilled “/
endcase

f(v)<ub:

caseAFFECT(B ,V) of
unchanged:S=SU ~(v)<ub)
increment,multiply,div<1:if ~ (v) increasawhenv increasesthen S= Su ~ (v)s ub ) fi

decrement,div>l: if ~ (v) increaseswhenv decreasesthen S= S u {~(v)s ub ] fi

changed P the checkiskilled”/
endcase

endcase
ad
return( S)

1

Fig. 4. Backward propagation of bound checks.

function backward (see Figure 4) computes the checks that are very busy on

entry to a basic block as a consequence of the checks being very busy at the

exit of the block. The implementation of backward propagation takes advan-

tage of monotonic definitions. If there is no change in the value of a variable

involved in a bound check, the check is passed through unchanged. If a

change is made through a monotonic definition, the same check may be

propagated. Finally, if the change to the variable’s value is unpredictable at

compile time, the bound check is killed:
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C.IN[ B] = C-GEN[B] V backward(C_OUT[ B], B),

C_Oi7T[B] == A C.IN[S] , where B is not the terminating block,
S ● SUCC(B)

C-OUZ’[ B ] = 0, where 1? is the terminating block;

SlAS2A””. ASn

={ C: b’S,, lSi<n, (C= SiV3C’6S, AC’subsumes C)},

slvs2v... vsn

={ C:(3S,, lSi Sn, CGS,)A(~C' =S,, lgi<n, C'subsumes C)}.

Step 3: Modify checks. The set of checks very busy at each point inside a

block B is determined from C-OUT[ B]. A check C is modified if we

determine that there is another check C‘ that is very busy at the point

immediately following C and C‘ subsumes C. The modification replaces C by

C”. Recall that the conditions under which one check subsumes another were
described in Section 3.1.

Algorithm for the elimination of redundant checks. In order to identify

checks that are redundant, we carry out data-flow analysis, which propagates

the checks performed at various points in the program in the forward

direction along the program paths. This process enables us to compute

available checks, which can be precisely defined as follows:

Definition 3.2. A bound check C is available at a program point p if it is

guaranteed that, along each path leading to p, either C is performed or a
check that subsumes C is performed.

We formulate the task of computing available checks as a data-flow prob-

lem. The result of solving the data-flow problem is the set of available checks

at all points in the program. Following this analysis we examine each bound

check in conjunction with the set of available checks immediately before the

check and determine whether the check is redundant. Next, the steps of the

algorithm are discussed in detail.

Step 1: Compute local information for all basic blocks. For each basic

block B, we compute the set of checks C–GEN[ B ] such that at the end of the

basic block we can assert that these checks were performed inside B. Thus,

these are the available checks at the end of B that were performed in B.

The set C-GEN[ B] is computed by examining the checks in B and the

definitions of variables examined by the checks. In addition, we assume that

the EFFECT information computed during the detection of very busy checks

is also available.

Step 2: Compute available checks. For each basic block B, we compute the

set C–IN[ B ], which is the set of checks available on entry to the basic block,
and C_ Oi7T[ B ], which is the set of checks available at the exit of the basic

block. These sets are computed by solving the data-flow equations given
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forward(C_fN[B], B ) (

s=O
for each check C e C_IN [B ] do

caseC of
[b <v:

caseAFFECT(B,V) of
unchange&S=S u [(b <V)

increment S=S u (lb <v]

decrement/“ thecheckiskdled’/
multiply: S= St._j (lb S v )

div>l : /’ thecheckiskilled”/
div<l: S= SU(/b Sv]

changed /* thecheckiskilled’/
endcase

“<J&;
caseAFFECT(B,V) of

unchanged:S=S u (v <ub]

increment /* thecheckiskilled */
decremerwS= S u [v < ub )

multiply: /“ thecheckiskilled */
div>l: S= SU{v Sub]

dlv<l: /’ thecheckiskilled”/
changed /“ thecheckiskilled”/

endcase
lb <~(v):

caseAFFECT(B,V) of
unchangedS=S u [[b <f(v)]

increment,multiply,div<1:if ~ (v) increaseswhenv increasesthen S= Su [lb s f(v)} fi

decrement,dw>l: if ~ (v) mcrcaseswhenv decreasesthen S= Su [lb < f (v)) fi

chmged /* the checkiskilled”/
endcase

f(v)<ub:

caseAFFECT(B,V) of
unchanged:S= S u [~ (v)s ub ]

increment,muluply,div<l: if ~ (v) dccrcaseswhenv increasesthen S= Su (~(v) < ub] fi
decrement,dlv>l: if ~ (v) dccrcaseswhenv decreasesthen S= Su {~(v)s ub ) fi

changed: /“ thecheckISkilled”/
endcase

endcase
od
return( S)

Fig. 5. Forward propagation of bound checks.

below. f%-eci(l?) denotes the set of basic blocks that are predecessors of B. The

forward propagation of checks through a basic block is implemented using
the function forward (see Figure 5), which takes advantage of monotonic

definitions:

C. OCTT[l?] = C. GEN[B] V forumrd(C-DV[ B], B),

C-llV[ B ] = A C-OUT[ P], where B is not the initial block,
PsPred(B)

C_lN[ B ] = @, where B is the initial block,

Step 3: Eliminate redundant checks. A check C is eliminated if we

determine that there is a check C‘ that is available at the point immediately
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--MIN(a) < i S M&(a) -- MIN(a) < i 5 MAX(a)-1

S1:a[i] +- ... S1:a[i] ~ ...
S2:if X then S2:if X then

-- MIN(a)< i < MAX(a) -- MIN(a) S is M.AX(a)-l

S3: a[i] + ah] + 1fi S3:a[i] e a[i] + 1fi
-- MIN(a)-1 <is M4X(a)-1 -- MIN(a)-1 < i < AL4X(a)-1

S4: a[i+l] + ... S4:a[i+l] e ...
Before Optimization After Modi~cation

-- MIN(a) s i < M.&i(a)-l

S1:a[i] ~ ...
S2 ifX then

S3: a[i] ~ a[i] + 1 fi
S4: a[i+l] ~ ...
After Elimitwion of Redundant Checks

Fig. 6. Global elimination of checks.

preceding C and that either C” is identical to C or C‘ subsumes C. The set of

checks available at each point inside a block B is determined from C–llV[ B ].

In Figure 6, since after the execution of statements S1 and S3, and before

the execution of statement S5, variable i is incremented, the check i <

ikt=(a) before S1 and S3 is modified to i s JL4X(CZ) – 1. The bound checks

performed before the execution of S1 are available during the execution of S3

and S4. Thus, no bound checks need to be performed before executing S3 and

S4. Markstein’s algorithm would not have eliminated the check i < M=(a)

before S4 because it does not take advantage of modified checks.

The elimination process described above is more general than the algo-

rithms described in previous work [Gupta 1990]. In the earlier version of this

work, modification of checks, which creates additional redundant checks, was

not carried out. Thus, the propagation algorithms forward and backward

developed in this paper are more general. Although the forward and back-

ward propagation algorithms modify checks during propagation, this cannot

cause an unbounded increase in the sizes of data-flow sets. The size of a

data-flow set is limited to 2 x V + N, where V is the number of unique

variables in checks of the form lb < u and u < ub, and iV is the number of

bound checks of the form lb < f(u) and f(u) < ub.

3.3 Propagation of Checks Out of Loops

The goal of propagation is to reduce the number of times the checks are

executed by moving them out of loops. Since propagation moves the checks to

an earlier point in the code, an error detected following this optimization will

be detected at a point different from the point at which it would have been

detected in the original code. In this section an algorithm to propagate bound

checks out of a loop is presented. The innermost loops are processed first, and

the outermost loops are processed last. Thus, a bound check may be propa-
gated across multiple nesting levels. Consider the example shown in Figure 7.

Assume that there are no definitions of variables i and ~ in the loop. The

bound checks 1< i <10 can be moved out of the loop because they are
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repeat

if ( ) then
-]o<i<ll)o

--l<j<10

....
else

-.f<i<so

--l<j<10

....
fi

until ( )

....
else

-- 1550

....
fi

until ( )

Before Optimization After Propagation

Fig. 7. Propagation of bound checks.

executed during each loop iteration. When we consider the bound checks on .j,

we find that the checks on the then part and the else part are not identical.

In this case, the weaker checks 5 s z s 100 can be moved out of the loop,

whereas the stronger checks 10 < i and i s 50 must be left in the loop. If the

loop iterates only once, we would perform three checks on j in the optimized

code and only two checks in the optimized code. However, if the loop iterates

more than once we are guaranteed that the number of checks executed after

propagation will be lower. Since typically loops iterate more than once, it is

beneficial to perform propagation of such checks. In previous version of this

work, only identical checks were propagated [Gupta 1990]. Thus, the bound

checks on variable i would not have been propagated out of the loop.

Algorithm for propagation. This algorithm first identifies the bound checks

that are potential candidates for propagation. These checks are either invari-

ant with respect to the loop or can be suitably modified to allow their

propagation. If a check is moved out of a loop, we must be sure that if the loop

is executed so will the check. If a candidate check belongs to a basic block

that dominates all loop exits, we can be sure that the check can be moved

outside the loop. In addition, it may be possible for us to propagate some

checks from blocks that do not dominate loop exits to blocks that do dominate

loop exits. This process is analogous to code hoisting and creates additional

opportunities for the propagation of checks outside the loop. Next, we de-
scribe the steps of the algorithm in detail. We assume that prior to applying

the following algorithm we have identified the loops and have computed

use-clef chains and dominator sets.

Step 1: Identify candidates for propagation. A check C is a candidate for

moving out of the loop if once executed it need not be executed in subsequent
loop iterations. This situation arises if the bound check is loop invariant or if

the definitions of a variable used in a bound check consistently cause the

value of the variable to either increase or decrease. In case of some loops, it is

possible to modify a bound check and place it outside the loop. For simplicity,
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we assume that the loop is executed at least once. However, this assumption

is not necessary, since the checks propagated out of a loop can be preceded by

a predicate that ensures that the check is only executed if the loop is executed

at least once.

(i) Invariant. A check C is a candidate for propagation if it uses only

definitions from outside the loop body (i.e., C is a loop invariant). This is

determined from the use-clef information.

(ii) Increasing values. A check C is a candidate for propagation if it is of the

form lb s i and if all definitions of i inside the loop are of the form

i~i+c, i-c+ i,i~i* c,orie- c*i, where cisa positive integer

constant.

(iii) Decreasing values. A check C’ is a candidate for propagation if it is of the

form i < ub and if all definitions of i inside the loop are of the form

i e i – c, i + – c + i, or i + i/c, where c is a positive integer constant.

(iv) Loops with increment/decrement of one. Consider a check C of the form
“-lb siopc, iopc <u b,” where i is incremented\ decremented by one

during each iteration, op G {+, –, div, * }, c is a constant, and min and

max are the minimum and maximum values taken by the variable i.

This check is a candidate for propagation because it can be replaced by

the check “lb < min op c, max op c < ub” outside the loop. This situation

arises primarily for loops. It should be noted that the bounds min and

max need not be compile-time constants, although they must be constant

for the loop under consideration. In a compiler that parallelizes scientific

programs, we can take advantage of Banerjee’s [1988] techniques for

computing min and max for subscript expressions in nested loops. Using

this information, bound checks may be moved out of a loop nest. In our

approach, checks can only be moved out of a loop nest one loop at a time.

Step 2: Check hoisting. A check that is a candidate for propagation can be

propagated only if it is in a block that dominates loop exits. In order to
increase the number of checks that are propagated out of a loop, an attempt

is made to hoist candidate checks, identified in Step 1, from blocks that do

not dominate all loop exits to blocks that dominate all loop exits. In other

words, we hoist checks from blocks that are conditionally executed to blocks

that are executed unconditionally during each loop iteration. The set ND

contains blocks from which checks will be hoisted, and C(n) contains the

checks in block n that are candidates for hoisting. The details of this step are

presented in Figure 8.

Step 3: Propagate checks out of the loop. Propagate all candidate checks

from blocks that dominate all loop exits. In accordance with the rules

described in Step 1, some checks are modified in this process, whereas others

are propagated unchanged.

Figures 9 and 10 demonstrate the propagation algorithm. In the example

shown below, the lower bound check on i and the upper bound check on ~ are

moved out the loop, since the value of variable i increases with each iteration
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hoist [
ND = (n: block n dees not dominate afl loopexits)
for eachblock n do

C(n) = (c: at theentryto n we can assertthatcmdida[e checkc will beexecutedinn]
od
change= true
while changedo

change= false
for eachblockn = Succ(n)~D #@ A n is the umque predecessor of nodesin Succ(n) do

J’rop=sd)c(”)
c(s)”

if prop # 0 then
change= !mse
hoistchecks in prop to n

for eachcheckc E prop do
if c &S, SeSucc(n) thenelimmatec fromS fi

Od
fi

od
od

Fig. 8. Hoisting checks out of loops.

while

-- MIN(a) 5 i < MAX(a)
-- MIN(a) < j 5 MAX(a)
a[i] * au]

do
i=i+l
j=j.1

Od
Before Propagation

-- MIN(a) 5 i, j 5 MAX(a)

while
. . i < MM(a)

-- MIN(a) 5 j
a[i] # au]

do
i=i+l
j=j-1

Od
After Propagation

Fig. 9. Propagation out of loops with unknown bounds for subscript variables.

for i ~ min to max do
if (inc) then -- MIN(a) < i < MAX(a)

sum + sum + a[i]
else -- MIN(a) < i < MAX(a)

sum 4 sum - a[i]
fi

Od
Before Propagation

-- MIN(a) < rein, max S MAX(a)
for i + min to max do

if (inc) then

sum + sum + a[i]
else sum e sum - a[i]
fi

Od
After Propagation

Fig. 10. Propagation out of loops with known bounds for subscript variables.

and the value of ~ decreases with each iteration. These optimizations would

not have been performed using Markstein’s algorithm. Markstein’s algorithm

only propagates checks out of loops if the loop exit condition is of the form
ic < MAX or ic > MAX, where ic is an induction variable and the subscript

expressions are linear functions of the induction variable ic. In Figure 10 the
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Table I. Effects of Bound Check Optimization

Program UNOPT LELIM + GELIM + PROP = Total deleted

BUBBLE
QUICK
QUEEN
TOWERS
LLOOP6
FFT
MATMUL
PERM

59,400
271,184

13,784
556,262
20,160
37,414

1,043,200
80,624

39,600 +
72,784 +

2,288 +
261,944 +

8,064 +
24,568 +

640,000 +
10,078 +

9,900 + 9,900 = 59,400 = 100%
10,014 + 54,347 = 137,145 = 51%

1,748 i- 1,778 = 5,814 = 42’ZO
97,844 + o= 359,788 = 65%

o+ 12,096 = 20,160 = 100%
o+ 5,930 = 30,498 = 82%

256,000 + 147,200 = 1,043,200 = 100%
o+ 7,240 = 73,384 = 91%

UNOPT = total number of bound checks before optimization; LELIM = number of checks elimi-
nated by local elimination; GELIM = number of checks eliminated by global elimination; PROP
= number of checks eliminated by propagation.

bound check on variable i is first hoisted to the beginning of the loop. Next,

the bound check is propagated out of the loop. The propagation algorithm

proposed by Markstein et al. [1982] does not perform code hoisting.

4. EXPERIMENTAL RESULTS AND CONCLUSION

The bound check optimizations have been applied to a small set of programs.

The programs have been first profiled to determine the number of bound

checks that would be performed at run time if no optimization was carried

out. Next, the optimizations have been applied by hand, and the checks have

been eliminated and propagated. The profiling information has been used

again to determine the reduction in the number of checks performed after

optimization.

In general, the elimination of bound checks can create opportunities for

propagation that did not exist before, and vice versa. However, in these

experiments we have not applied these optimizations repeatedly. The local

and global elimination was performed first followed by propagation. It has

also been observed that for these test programs repeated application of

optimizations would not have resulted in any further improvement. This can

be attributed to the small program sizes.

The results of bound check optimization are presented in Table I. The total

number of bound checks before optimization is given by UNOPT. The number

of checks that were eliminated by local elimination (LELIM), global elimina-

tion (GELIM), and propagation (PROP) are given. The results indicate that

substantial reduction in the number of run-time checks results by applying

bound check optimizations. As mentioned earlier, previous research showed

that similar results cannot be obtained through traditional optimizations

[Chow 1983].

ACKNOWLEDGMENTS

The comments from the reviewers have been helpful in improving the algo-

rithms and the presentation of the paper. In particular, observations of one

reviewer resulted in the generalization of the algorithms.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.



150 . Rajw Gupta

REFERENCES

ho, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, Reading, Mass.

BANERJEE, U. 1988. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,

Boston, Mass.

CALLAHAN, D., COOPER, K. D., KENNEDY, K., AND TORCZON,L. 1986. Interprocedural constant
propagation. In Proceedings 14th ACM Symposium on Principles of Programming Languages.

(St. petersburg Beach, Fla., Jan. 13-15). ACM, New York, 152-161.
CHOW,F. 1983. A portable machine-independent global optimizer—Design and measure-

ments. Tech. Rep. 83-254, Ph.D. thesis, Computer Systems Labj Stanford Univ., Calif.
GUFTA, R. 1990. A fresh look at optimizing array bound checking. In Proceedings ACM

SIGPLAN 90 Conference on Programming Language Design and Implementation (White

Plains, N.Y., June 20-22). ACM, New York, 272-282.
GUPTA, R., AND SPEZIALETTI, M. 1991. Loop monotonic computations: An approach for the

efficient run-time detection of races. In Proceedings of the SIGSOFT Symposium on Testing,

Analysis, and Verification. (Victoria, B. C., Oct. 8-10). ACM, New York, 98-111.

HARRISON, W. 1977. Compiler analysis of the value ranges for variables. IEEE Trans. Sofiw.

Eng. 3, 3 (May), 243-250.
MARKSTEIN, V., Cocw, J., AND MARKSTEIN, P. 1982. Optimization of range checking. In

Proceedings of SIGPLAN 82 Symposium on Compiler Construction. (Boston, Mass., June
23–25). ACM, New York, 114–119.

SUZUm, N., AND ISHIHATA, K. 1977. Implementation of array bound checker. In Proceedings

4th ACM Symposium on Principles of Programming Languages. ACM, New York, 132-143.
WEGW, M. N., ANDZADECK,F. K. 1984. Constant propagation with conditional branches. In

Proceedings 12th ACM Sympo.wum on Principles of Programming Languages. (Salt Lake City,
Ut., Jan. 15-18). ACM, New York, 152-161.

Received August 1991; revised March and November 1993; accepted December 1993

ACM Letters on Programming Languages and Systems, Vol. 2, Nos 1-4, March–December 1993


