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Abstract. We present speculative parallelization techniques that can
exploit parallelism in loops even in the presence of dynamic irregulari-
ties that may give rise to cross-iteration dependences. The execution of
a speculatively parallelized loop consists of five phases: scheduling, com-
putation, misspeculation check, result committing, and misspeculation
recovery. While the first two phases enable exploitation of data paral-
lelism, the latter three phases represent overhead costs of using specu-
lation. We perform misspeculation check on the GPU to minimize its
cost. We perform result committing and misspeculation recovery on the
CPU to reduce the result copying and recovery overhead. The scheduling
policies are designed to reduce the misspeculation rate. Our program-
ming model provides API for programmers to give hints about potential
misspeculations to reduce their detection cost. Our experiments yielded
speedups of 3.62x-13.76x on an nVidia Tesla C1060 hosted in an Intel(R)
Xeon(R) E5540 machine.

1 Introduction

Many top-500 supercomputers today have adopted Graphics Processing Units
(GPUs) for high performance computing. A number of research works [9, 2, 3]
have explored loop-level data parallelism using GPUs, whose massive number
of computing units are ideal for accelerating data-parallel computations. The
presence of dynamic irregularities prevents existing techniques from parallelizing
the loops for GPUs. Therefore optimizing performance in their presence has been
widely studied [20, 3, 9, 18]. In this work, we consider a new class of dynamic
irregularities in loops that may cause cross-iteration dependences at runtime.
In particular, we have identified two types of dynamic irregularities, illustrated
in Figure 1, that may dynamically cause cross-iteration dependences to arise
preventing the loops from being parallelized by compilers for GPUs.

Dynamic irregular memory accesses refer to memory accesses whose
memory access patterns are unknown at compile time. They may result in infre-
quent cross-iteration dependences at runtime. In Figure 1(a) the memory access
patterns of A[P [i]] and A[Q[i]] are determined by the runtime values of the ele-
ments in arrays P and Q. It is possible that an element in array A is read in one
iteration and written in another causing a dynamic cross-iteration dependence.

Irregular control flow is introduced by conditional statements, which may
cause execution of paths that may give rise to cross-iteration dependences at
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for (i=0; i<n; i++) {
. . . = A[P[i]];
A[Q[i]] = . . .;

}

for (i=0; i<n; i++) {
. . . = A[i];
if (A[i]) A[i+1] = . . . ;

}
(a) Irregular memory access (b) Irregular control flow

Fig. 1. Examples of dynamic irregularities that cause cross-iteration dependences.

runtime, as illustrated in Figure 1(b), where each iteration of the loop usually
only reads A[i]. In the loop, there is a conditional branch that guards a write
to A[i + 1], which is to be read in the next iteration. The true outcome of the
branch condition gives rise to a cross-iteration dependence.

Software thread-level speculation (TLS) [13, 5, 7] has been used with success
to parallelize loops that may contain cross-iteration dependences for execution
on CPUs. However, developing similar speculative techniques for GPUs is chal-
lenging due to the architectural differences between CPUs and GPUs. This is due
to the need for logically separate space to store results of thousands of threads
and high overhead of complicated thread synchronizations [8].

This paper presents a speculative execution framework for GPU comput-
ing. It parallelizes loops that may contain cross-iteration dependences caused
by above dynamic irregularities. The execution of a speculative parallel loop
consists of five phases: scheduling, computation, misspeculation check, result
committing, and misspeculation recovery. For efficiency, we develop a schedul-
ing policy that is optimized for different types of cross-iteration dependences to
reduce the misspeculation rate. We reduce the runtime overhead by performing
misspeculation check on the GPU. We optimize the result committing procedure
to reduce the size of data transferred between the CPU and GPU. Recovery is
performed on the CPU for as few iterations as possible to minimize its runtime
overhead. We present programming constructs for specifying speculatively par-
allel loops. Our implementation achieves 3.62x-13.76x speedups for speculatively
parallelized loops on nVidia Tesla C1060 hosted in a Intel Xeon E5540 machine.

2 Execution Framework

Figure 2 gives the overview of executing a speculative parallel loop using GPUs.
The procedure consists of five phases: scheduling, computation, misspeculation
check, result committing, and misspeculation recovery, among which computa-
tion and misspeculation check are performed on the GPU. The five phases are
repeated until the entire loop is finished.

Scheduling, performed on the CPU, determines the proper number of itera-
tions to execute on the GPU – assigning too many iterations to the GPU can
cause excessive misspeculations while assigning too few iterations limits perfor-
mance by leaving the GPU underutilized. In the Computation phase the GPU
executes the iterations in parallel by speculating on the absence of cross-iteration
dependence while tracking the irregular memory accesses and control flow. Next
the GPU performs the Misspeculation Check in two steps: detection and local-
ization. Misspeculation detection is used to determine whether the iterations
have been executed correctly. If misspeculation is detected, the localization step
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Fig. 2. Execution framework of a speculative parallel loop with GPUs.

identifies the iterations that were executed incorrectly. In addition, we identify
the correctly computed results so they can be copied back to the CPU memory.
To make misspeculation checks efficient, they are performed in parallel on the
GPU. Result committing phase copies the results from the GPU memory to the
CPU memory. Finally, Misspeculation Recovery phase re-executes the iterations
where misspeculation occured on the CPU or GPU depending on whether a few
or a large number of iterations are to be executed. In the subsequent sections
we first illustrate the GPU part of the execution model, i.e., the second and
third phases. Then we will elaborate on the fourth and fifth phases, which are
performed on the CPU. Finally, we will describe our scheduling policy.

3 Speculative Execution on GPUs

In this section, we describe how a loop is speculatively executed in parallel on
GPUs. The infrequent cross-iteration dependences in a speculative parallel loop
are usually caused by two types of dynamic irregularities – irregular memory
accesses and irregular control flow. We elaborate the strategies for speculative
execution for the types of irregularities separately.

3.1 Irregular memory accesses

Figure 3(a) shows the kernel of the loop example given in Figure 1(a). The
conversion from loops to GPU kernels has been studied in [9, 2]. In this example,
tid is the GPU thread ID and each GPU thread executes one iteration of the
loop. Depending upon the runtime values of the elements in arrays P and Q, two
iterations of the loop may read and write the same element of array A, causing
cross-iteration dependence at runtime. Consider the runtime values of arrays P
and Q shown in Figure 3(a). Because iteration 1 (starting from 0) writes A[2] and
iteration 2 reads A[2], there exists a RAW cross-iteration dependence. Similarly,
since both iteration 2 and 4 write to A[3], there is a WAW dependence between
them. Therefore, the results computed by iterations 2 and 4 will be incorrect
following parallel execution. Our speculative execution of this kernel on GPUs
consists of three phases: execution with memory access tracking, misspeculation
detection, and misspeculation localization.

Memory access tracking – to detect cross-iteration dependences, we track
which elements of the arrays with irregular access patterns are accessed in each



4 Min Feng1, Rajiv Gupta2, and Laxmi N. Bhuyan2

����������	

�

������	

�����

��
�����������������

��
�����������������

����������	

�

������������	�
�������
�
������

������	

�����

������������	����������
�
������

�������������������� ���� ���!"#�$�	�������

Fig. 3. Code transformation of a loop with irregular memory accesses.

iteration. This is done by inserting a tracking operation after each irregular mem-
ory access. For low tracking overhead, we use two static arrays of a predefined
size for each iteration to store the indices of the read and written elements. We
assume that we know the maximum number of elements that will be accessed
in each iteration. This is often true, including for all benchmarks used in our
experiments. Figure 3(b) shows the transformed kernel with a tracking operation
after each irregular access to array A.
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Fig. 4. Misspeculation detection.

Misspeculation detection checks whether a cross-iteration dependence was
encountered during parallel execution. Unlike recent speculative parallelization
techniques [7] for CPUs, which only need to detect RAW dependences, spec-
ulative parallelization on GPUs requires detecting RAW, WAR, and WAW.
Speculative parallelization on CPUs resolves WAR and WAW dependences by
committing the results of the iterations in a sequential order. However, these
techniques cannot be efficiently implemented on GPUs because they require
complicated synchronizations. Since all computations are performed simultane-
ously on GPUs, we need to detect all kinds of dependences. Additionally, in some
cases, privatizing a shared array can solve WAR and WAW dependences on the
array. However, privatization is not always possible. A shared array can be pri-
vatized only if the compiler can guarantee that every read access to an element
is preceded by a write access to the same element within the same iteration.
Since this is not always true in real applications, speculative parallelization on
GPUs should be able to detect WAR and WAW dependences.

We simplify the traditional shadow memory-based misspeculation detection
method [13] and adapt it for GPU computing. We perform the misspeculation
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detection on the GPU to exploit the data parallelism in the detection procedure.
Our lightweight misspeculation detection method only detects the existence of
cross-iteration dependences. Only if there is a dependence, we perform the mis-
speculation localization phase to determine in which iterations misspeculation
has occurred. Figure 4(a) shows the pseudocode for misspeculation detection for
the kernel example given in Figure 3. In our implementation, all trace data are
stored in the global memory. The detection procedure is as follows.

1. Compute ReadA in parallel (line 1–3). ReadA[i] is set when A[i] is read but
not written in an iteration. It records the elements of array A which are read-
only in some iteration(s). It is safe to allow multiple blocks to simultaneously
update ReadA since each update is just setting an element to 1.

2. Compute WriteA and WCA in parallel (line 4–6). WriteA[i] is set when A[i]
is written in an iteration. It records the elements of array A that have been
written. WCA stores the number of elements written in each iteration. We
allow multiple blocks to simultaneously update WriteA.

3. Compute sums of WriteA and WCA in parallel (line 7–8). The sum of
WriteA is the number of elements that have been written, where multi-
ple writes to the same element in an iteration count as 1. The sum of WCA

is the number of writes to array A.
4. Compute the intersection of ReadA and WriteA in parallel using threads

0 . . . sizeof(A) (line 9–11). If ∃i, ReadA[i]∧WriteA[i] = 1, then A[i] is read-
only in some iteration(s) and written in some other iteration(s). In this case,
misspeculation occurs due to a RAW or WAR dependence. In some cases,
an element may be read and written in an iteration(s) and also written
in another iteration(s). We treat such dependences as WAW dependences,
which are detected in the next step.

5. Compare the sum of WriteA and WCA. If
∑

i WriteA[i] <
∑

i WCA[i],
then there must exist multiple iterations that write the same element. This
indicates the existence of WAW dependences.

Figure 4(b) shows the calculated values of array ReadA and WriteA for the P
and Q given in Figure 3(a). The values indicate that there exist both RAW/WAR
and WAW dependences in the kernel execution. ReadA[2] and WriteA[2] are
both equal to 1 since iteration 1 writes A[2] and iteration 2 reads A[2].

∑
WriteA[i]

= 4 is smaller than
∑

WCA[i] = 5 since A[3] is written in two iterations. The
read and write of A[3] happens in the same iteration. Thus, A[3] is not recorded
in ReadA. Therefore, there is no dependence detected on A[3].

Misspeculation localization method identifies not only the misspeculated it-
erations but also the incorrect elements of arrays with irregular access patterns.
With the information of incorrect elements, we can optimize the copying of re-
sults from the GPU to the CPU. The localization procedure is also parallelized
for performance. Figure 5(a) shows the misspeculation localization for the kernel
example. The details of the localization procedure are described below.

1. Compute RWA in parallel (line 1–2) by intersecting ReadA and WriteA,
which indicate elements that are read and written in different iterations. To
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Fig. 5. Misspeculation localization.

calculate RWA in parallel, we divide array A into blocks. Block boundaries
are stored in BKA. Each thread calculates RWA for one block of array A.

2. Compute WWA in parallel (line 3–7). WWA stores the number of iterations
that write each element. WWA[i] is larger than 1 if A[i] is written in multiple
iterations. We use the first N threads to calculate WWA in parallel. Each
of the N threads calculates partial WWA using arrays WriteTraceA from
a block of threads. The block boundaries are stored in BKT . A reduction
merges the values of these subsets. The total size of WWA is N ∗ sizeof(A).

3. Check RWA in each thread (line 8–10). If RWA[i] is set and A[i] is read in the
current thread, then the iteration performed by the current thread reads an
element that is written in another iteration. The iteration is misspeculated
due to a RAW/WAR dependence. Array Misspec stores such iterations.

4. Check WWA in each thread (line 11–13). If WWA[i] is larger than 1 and A[i]
is written in the current thread, then the iteration performed by the current
thread writes an element that is written in some other iteration(s). The
iteration misspeculates due to a WAW dependence. Misspec[tid] is set when
the iteration calculated by the current thread is involved in a misspeculation.

5. Compute WrongA in parallel (line 14–16), which indicates the incorrect
elements of array A. An element is incorrect only when it is written by at
least one misspeculated iteration.

6. Perform parallel reductions on WrongA and Misspec to store the incor-
rect elements and misspeculated iterations in lists. The CPU uses these to
perform commit and recovery instead of having to inefficiently scan sparse
arrays WrongA and Misspec.

Figure 5(b) shows the values of RWA, WWA, WrongA, and Misspec for the
P and Q given in Figure 3(a). Since iteration 2 reads A[2] which is written by
iteration 1, iteration 2 is involved in misspeculation. Since iteration 4 writes A[3]
which is written by multiple iterations, it is misspeculated. As A[3] is written
by misspeculated iterations 2 and 4, its value is incorrect.
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3.2 Irregular Control Flow
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Fig. 6. Loops with irregular control flow.

Figure 6 shows three types of cross-iteration dependences that are caused by
irregular control flow. In Figure 6(a), the true branch condition causes a write
to an element that is read in the next iteration and thus causing misspeculation
in the next iteration. In Figure 6(b), the true branch condition reads an element
that is written in the previous iteration and thus causing misspeculation in
the current iteration. In Figure 6(c), the true branch condition writes a scalar
variable that is read in all iterations and therefore makes them all wrong. We
parallelize such loops by speculating the branch will not be executed. To verify
the correctness of the parallel execution, we must monitor the execution of these
branches. Once these branches are executed, we should be able to detect the
misspeculation and identify the misspeculated iterations.

The cross-iteration dependences in the branches can be either marked by the
programmer or detected by the static data race detection techniques. The static
data race detection techniques identify dependences in a conservative way. There-
fore, they may cause false misspeculations. Programmers can better identify the
branches using their knowledge of the application. We propose a programming
model that allows programmers to mark such branches (Section 6).

Once we have identified the cross-iteration dependences in the branches, we
transform the branches for speculative execution in two steps.

1. In the branches that cause cross-iteration dependences, we insert an op-
eration for recording the misspeculated iterations. We use the same array
Misspec to store the misspeculated iterations as shown previously.

2. We remove the statements in a branch from the GPU kernels if the branch
execution will cause previous or current iterations to misspeculate.
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We explain the rationale behind this transformation using examples. Figure
6 gives the transformed code for the branches. In Figure 6(a), we insert an
operation that marks the next iteration as misspeculated. The statements in the
branch are kept since they will not pollute previous iterations. In Figure 6(b),
we insert an operation that marks the current iteration as misspeculated. Since
the current iteration is misspeculated, executing the statements in the branch
is meaningless. Therefore, we remove the statements from the branch. In Figure
6(c), the operation inserted in the branch sets a special flag in Misspec. The
flag indicates that all subsequent iterations including the current iteration are
misspeculated. Since executing the statements in the branch also make previous
iterations wrong, we remove the statements from the branch so that the results
of previous iterations will be correct. In this branch, the current iteration is
included in the misspeculated iterations because the statements in the branch
need to be re-executed during recovery.

Having identified which iterations have misspeculated, we next identify the
incorrect elements in the output array (i.e., incorrect results). Since the memory
accesses are regular, we can use polyhedral tools to capture the mapping between
the iterations and array elements. Once the mapping is known, the elements that
are written in the misspeculated iterations can be easily found. These elements
are incorrect and should be stored in array Wrong as shown in the previous
section. As in the previous section, we use GPU to perform parallel reductions
on WrongA and Misspec to store the incorrect elements and misspeculated
iterations in lists. This reduces the commit and recovery overhead on the CPU.

4 Scheduling

The synchronization granularity is critical to the GPU performance. Schedul-
ing more iterations in one assignment may not give better performance because
larger number of iterations in one assignment may cause excessive misspecula-
tions. However, if we reduce the synchronization granularity to lower the mis-
speculation rate, we will also increase the kernel launching overhead. Thus, when
scheduling iterations, we need to balance the above factors.

For loops with irregular memory accesses scheduling more iterations in one
assignment will increase the chance of dependences between iterations. The op-
timal assignment size cannot be found since the cross-iteration dependences are
unknown at compile time. Therefore we propose a runtime scheme.

In the first assignment, we schedule n/m iterations to the GPU, where m is
the number of elements written in each iteration and n is the number of elements
in the array. If we assign more than n/m iterations, there must exist two itera-
tions that writes the same element. From the second assignment, we adjust the
assignment size based on the observed misspeculation rate. If the misspeculation
rate is higher than a predefined threshold, we halve the assignment size to reduce
the misspeculation rate in the next round of scheduling. If the misspeculation
rate stays zero for a number of consecutive iterations, we double the assignment
size for better utilizing the large number of stream processors on the GPU. We
do not increase the assignment size beyond n/m.
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For loops with irregular control flow, in the first two cases in Figure 6, we
schedule as many iterations as possible in one assignment. This is because the
number of misspeculated iterations are almost solely determined by the number
of iterations that execute the branches. Therefore we can only change the mis-
speculation rate if we schedule the iterations that execute the branches as the
first or last iteration in an assignment, which is very unlikely.

For the third example in Figure 6, where all subsequent iterations are marked
misspeculated if the branch is executed, we measure the average interval between
two iterations that executes the branch at runtime and uses the interval as the
assignment size when scheduling. This is because once an iteration executes
the branch, all subsequent iterations are misspeculated. Therefore, we want the
iterations that execute the branch to appear near the end of an assignment.

5 Commit and Recovery
The commit and misspeculation recovery are performed on the CPU. Figure 7
shows the pseudocode of commit and misspeculation recovery for the example
given in Figure 3. The procedure is described next in detail.

01 copyFromGPUToCPU(Misspec);
02 copyFromGPUToCPU(WrongA);
03 if ( sizeof(WrongA) == 0 )
04 copyFromGPUToCPU(A);
05 else { // copy only correct part of array A
06 prepend(-1, WrongA);
07 append(size(A), WrongA);
08 for (i=0; i<size(WrongA); i++)
09 copyFromGPUToCPU(A[WrongA[i]+1 . . . WrongA[i+1]-1]);
10 }
11 for (i=0; i<size(Misspec); i++)
12 reexecute(Misspec[i]);

Fig. 7. Commit and misspeculation recovery for the example given in Figure 3.

1. We first copy the reduced arrays Misspec and Wrong from the GPU to to
CPU. These arrays are required for the commit and misspeculation recovery.
This step has very low overhead since the arrays are usually very small.

2. We then commit the data back to the CPU. For an array, if all elements are
correct, we directly copy the whole array from the GPU to the CPU and
overwrite the original array on the CPU. If misspeculation is detected, we
scan array Wrong and only copy the correct elements between the wrong
elements stored in array Wrong.

3. Finally, we perform the misspeculation recovery step that reexecutes the mis-
speculated iterations on the CPU. For loops with irregular memory accesses,
we scan array Misspec and redo every iteration inside. For the loops with
irregular control flow, we perform recovery depending on the misspeculation
type. For the first two cases in Figure 6, where only one iteration is mis-
speculated with the execution of the branch, we redo every misspeculated
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iteration in array Misspec. For the third case in Figure 6, where all subse-
quent iterations are misspeculated, we only reexecute the first iteration on
the CPU. All remaining misspeculated iterations are assigned to the GPU
in the next scheduling assignment.

Array Wrong can also be used to reduce the copy-in (copy from the CPU to
GPU) overhead. For loops with irregular memory accesses, we do not know the
array elements that will be accessed in an assignment of iterations. Therefore,
we keep the whole array in the GPU memory. After the recovery procedure, all
elements that are re-calculated on the CPU are stored in array Wrong. In the
next assignment, we only copy the elements stored in array Wrong from the
CPU to GPU. All other elements in the GPU memory are already up-to-date.

6 Programming Speculative Parallel Loops on GPUs

Our extensions to OpenMP basically tell the compiler which variables/branches
to speculate on. Code offload and data transfer is handled by OpenMPC. To
extend OpenMP for GPUs, previous works [2] have introduced the target clause,
which can be applied to worksharing constructs:

#pragma omp for target(device)

This clause is also similar to the target device clause introduced in OpenMP
4.0. The intent of the target clause is to specify the device on which a given
computation will be executed. The valid device specified by the target clause
can be cuda, cell, and etc. We use target(cuda) for loop parallelization on
GPUs.

6.1 Irregular Memory Accesses

To enable speculative parallelization of loops with irregular memory accesses,
we introduce the speculate clause:

#pragma omp for speculate(array)

The speculate clause is designed to be used with worksharing constructs. Pro-
grammers can specify which arrays may cause cross-iteration dependences in
the speculate clause. The memory accesses to these arrays will be monitored
at runtime for misspeculation check. Although the compiler can identify the
arrays that have irregular access patterns [18], not all of them will cause cross-
iteration dependence at runtime. Programmers can better identify which arrays
need to be monitored. This construct was useful in parallelizing a loop from the
benchmark ocean, a Boussinesq fluid layer solver.

6.2 Irregular Control Flow

To enable speculative parallelization of loops with irregular control flow, we
introduce the branch construct:

#pragma omp branch misspeculate(iterations)

The branch construct is designed to be inserted at the beginning of a branch
that will cause cross-iteration dependences once its branch condition is true.
The misspeculate clause is used to specify the misspeculated iterations if the
branch is executed. A loop that is parallelized with worksharing constructs and
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contains the branch construct will be executed speculatively using the scheme
described in Section 3.2.

The iterations expression in the misspeculate clause is designed to allow
the following forms: absolute iterations, relative iterations, and iteration ranges.
Absolute iterations can be expressed as (i), where i is the iteration index. For
example, (10) denotes the 10th iteration. Relative iterations can be expressed as
(+i/-i), where i is the relative iteration index. For example, (+1) denotes the
next iteration. Iteration ranges can be expressed as (i:j), where i and j can be
either absolute iteration index or relative iteration index. For example, (+0:+4)
denotes the current iteration and next four iterations. Multiple iterations can
be separated by comma in the expression. For example, (-1,+1) denotes the
previous and next iterations. We found this construct useful in parallelizing a
loop from benchmark mdg, which dynamically calculates water molecules in the
liquid state at room temperature and pressure.

7 Evaluation
We implemented our framework whose core components consist of: a source-to-
source translator and a runtime library. The translator is based on OpenMPC [9],
which is an OpenMP-to-CUDA compiler. The programmers use pragmas to an-
notate the variables or control flow. The runtime library implements the core
steps. We used an nVidia Tesla C1060 as our platform which includes a sin-
gle chip with 240 cores organized as 30 streaming multiprocessors. The device
is connected to a host system consisting of Intel Xeon E5540 processors. The
machine has CUDA 3.0 installed. The benchmarks are summarized in Table 1.

Benchmark Irregularities % of time # of pragmas

ocean irregular memory accesses 45% 1

trfd irregular memory accesses 6% 1

fftbench irregular memory accesses 20% 1

mdg irregular control flow 94% 2

strcat irregular control flow 99% 2

gothic irregular control flow 99% 2

alvinn irregular control flow 97% 8

Table 1. Benchmark summary: benchmark name, type of irregularities, percentage of
total execution time taken by the loop, and number of pragmas inserted.

7.1 Performance Overview
Figure 8 shows the speedups for the loops considered. The baseline is the sequen-
tial execution time of the loops on the host system. Bars higher (lower) than 1
indicate speedup (slowdown).

For each benchmark there are four bars – the first bar shows the perfor-
mance of our technique with all optimizations. The rest of the bars show the
performance with different optimizations individually omitted (for discussion of
optimization results see Section 7.2). The speedups for the fully optimized ver-
sion are between 3.62x and 13.76x, with five (out of seven) benchmarks achieving
over 5x. The speedups demonstrate the effectiveness of our framework in using
GPUs for irregular loops considered.
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Fig. 8. Loop speedups for different
optimization.
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Fig. 9. A comparison with other ap-
proaches.

Figure 9 compares the loop speedups achieved by our approach, speculative
parallelization on a CPU, and non-speculative parallelization on a GPU. We
implemented non-speculative GPU versions for two benchmarks – fftbench and
alvinn since they do not have cross-iteration dependences at runtime. The other
benchmarks cannot be parallelized in a non-speculative way without changing
the algorithms. From the figure, we can see that our approach always outperforms
speculation on the CPU. This is because we can run the benchmarks using more
concurrent threads on the GPU and the transactional memory on the CPU has
high time overhead.

7.2 Effectiveness of the Optimizations

Let us examine Figure 8 to study the effectiveness of optimizations. The sec-
ond bar (“w/o MO” in Figure 8) gives the performance without misspeculation
optimization (i.e., misspeculation detection without misspeculation localization
and re-executing all iterations on the host system once misspeculation is de-
tected). The third bar (“w/o CO” in Figure 8) shows the performance without
copy optimization (i.e., copying all data between CPU and GPU for every as-
signment of iterations). The last bar (“w/o SCHED” in Figure 8) shows the
performance without our scheduling policy (i.e., scheduling all iterations to the
GPU in the first assignment). These three groups of bars are intended to show the
importance of misspeculation localization, copy optimization, and our schedul-
ing policy. Figure 10 shows the misspeculation rate (i.e., the number of iterations
re-computed on the CPU divided by the total number of iterations) with and
without the optimizations. We can see that our optimizations greatly reduces
the misspeculation rate. The details of each benchmark will be described next.

For the ocean benchmark, our scheduling policy improves the performance
by around 32% over the one (“w/o SCHED”) with minimum speedup. Our
scheduling policy decreases the size of each assignment so that there is almost
no misspeculation after the first few assignments. Misspeculation and copy opti-
mizations do not improve the performance much since no misspeculation occurs
in most assignments of iterations. Misspeculation optimization improves the per-
formance of trfd greatly because there is always only one misspeculation in each
execution of the loop. Without misspeculation optimization, we have to always
re-execute all iterations on the CPU, which apparently will cause slowdown.
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Benchmark Misspeculation Rate
w/o opts w/ opts

ocean 0.53% 0.14%

trfd 100% 0.52%

fftbench 0.0% 0.0%

mdg 0.0018% 0.0018%

strcat 41.23% 2.10%

gothic 0.92% 0.67%

alvinn 0.0% 0.0%

Fig. 10. Misspeculation rates
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Fig. 11. Time overhead.

Copy optimization improves its performance by 36%. The copy-in (i.e., copy
from CPU to GPU) overhead is greatly reduced as we only copy elements that
are re-computed on the CPU (for recovery) to the GPU memory for every as-
signment. Our scheduling policy does not have much impact on the performance
of trfd since there is only one misspeculation for each execution of the loop. The
speedup of fftbench is partially offset by the number of memory access track-
ing. Since no cross-iteration dependences occur at runtime for the test input,
misspeculation localization and recovery are never performed. Therefore, none
of the optimizations has a performance impact. The speedup of mdg is high be-
cause the loop body has a lot of computation which can fully utilize the massively
parallel architecture of the GPU. Also, only a few iterations execute the branch
at runtime. Therefore, most computations are performed in parallel. With mis-
speculation optimization, we only re-execute the first misspeculated iteration on
the CPU. The rest of the misspeculated iterations are assigned to the GPU in
the next assignment of iterations. If we re-execute all misspeculated iterations on
the CPU, the performance will be degraded by 60%. The speedup for strcat is
good since the misspeculation rate is very low due to the rapid growth of buffer
size. Misspeculation optimization improves the performance by 72% for the same
reason as in mdg. Copy optimization is critical for performance of strcat. By
avoiding copying the correct results back and forth between the CPU and GPU,
we improve the performance by 55%. In gothic, a misspeculation makes all sub-
sequent iterations incorrect. Thus, misspeculation optimization greatly reduces
iterations executed on the CPU and improves the performance. The speedup
of alvinn is high because no misspeculation happens in our experiments. The
increment of the weight pointer does not change according to the input and thus
the optimizations make no impact.

Figure 11 shows the time overhead (recovery and misspeculation check) as
the percentage of the loop execution time. The time of computation and copy
is a necessity for all GPU computations. The misspeculation check overhead
for the ocean benchmark is the highest among all benchmarks because it re-
quires memory access tracking, and its misspeculation check needs to detect
both RAW/WAR and WAW dependences. The recovery overhead is high for
ocean since the first few schedules of the loop cause many misspeculations. The
misspeculation check overhead for trfd is lower than ocean since its misspecu-
lation check only needs to detect WAW dependences. In fftbench and alvinn,
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since no cross-iteration dependence occurs for the test input, misspeculation lo-
calization and recovery are never performed. The recovery overhead for mdg and
gothic is low since we only re-execute the first misspeculated iteration on the
CPU. In strcat, the overhead for misspeculation check is low since we only
monitor the execution of the branch that reallocates the buffer.

8 Related Work

Speculative execution has been used to explore task-level parallelism on multi-
GPU systems [6]. Usually, the runtime system must block the execution of a
kernel until its predecessors in the control flow graph (CFG) have finished. On
multi-GPU systems, the performance is limited by the runtime system’s inability
to execute more kernels in parallel. Diamos and Yalamanchili [6] alleviated this
problem by speculating the control flow between kernels. Unlike their work, this
paper explores thread-level speculative parallelism in a kernel. An exploratory
study has been done for speculative execution on GPUs [10, 11]. They explored
the hardware implementation of speculative execution operations on GPU ar-
chitectures to reduce the software performance overheads. The GPU-TLS sys-
tem [19] adapted CPU speculative parallelization techniques for GPU use. Like
previous speculative parallelization works for CPUs, it only checks RAW de-
pendences at runtime and handles other types of dependences (i.e., WAW and
WAR) by keeping the sequential order of iteration commits. Paragon [14] is the
work closest to ours. It is a framework to speculatively run possible parallel loops
on a GPU. However, unlike our framework, Paragon is not able to locate the
misspeculated iterations. Therefore, on misspeculation, Paragon has to throw
away any result on the GPU and re-execute the entire loop sequentially on the
CPU.

Instead of causing cross-iteration dependences, irregularities may severely
limit the efficiency of GPU computing due to the warp organization and SIMD
execution model of GPUs. Zhang et al. [20] proposed runtime optimizations
with the support of a CPU-GPU pipeline scheme to remove thread divergences.
Baskaran et al. [3] use a polyhedral compiler model to optimize affine memory
accesses in regular loops. Yang et al. [18] presented an optimizing compiler for
memory bandwidth enhancement, data reuse, parallelism management, etc.

Several programming models have been proposed for GPU computing includ-
ing OpenCL [15], CUDA [12], OpenACC [16], PGI Accelerator [17], OmpSs [2]
which is based upon OpenMP standard [4], and Par4All [1]. None of these pro-
gramming models support speculative parallelization for GPU computing.

9 Conclusion

We presented a framework for employing GPUs to speculatively parallelize loops
that may have cross-iteration dependences at runtime due to irregularities. Sev-
eral optimizations were proposed to improve the performance, including paral-
lelizing misspeculation check on the GPU, optimizing the procedure of result
committing and misspeculation recovery, and adaptive scheduling policy for dif-
ferent types of cross-iteration dependences. Our implementation achieves 3.62x-
13.76x speedup for the seven parallelized loops.
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