
Dynamic Recognition of Synchronization Operations for
Improved Data Race Detection

Chen Tian(1) Vijay Nagarajan(1) Rajiv Gupta(1) Sriraman Tallam(2)

(1)University of California at Riverside, CSE Department, Riverside, CA 92521
(2)Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043

{tianc,vijay,gupta}@cs.ucr.edu, tmsriram@google.com

ABSTRACT
Debugging multithreaded programs, which involves detec-
tion and identification of the cause of data races, has proved
to be a hard problem. Although there has been significant
amount of research [20, 28, 25, 12, 10] on this topic, prior
works rely on one important assumption – the debuggers
must be aware of all the synchronization operations that
take place during a program run. This assumption is a sig-
nificant limitation as multithreaded programs, including the
popular SPLASH-2 benchmark [30], have barriers and flag
synchronizations implemented in the user code. We show
that the lack of knowledge of these synchronization opera-
tions leads to unnecessary reporting of numerous races. Our
experiments with SPLASH-2 benchmark suite show that 12-
131 distinct segments in source code, on an average, give rise
to well over 4 million dynamic instances of falsely reported
races for these programs. We propose a dynamic software
technique that identifies the user defined synchronizations
exercised during a program run. This information not only
helps avoids reporting of unnecessary races, but also helps a
record/replay system to speedup the replay.

Our evaluation confirms that our synchronization detec-
tor is highly accurate with no false negatives and very few
false positives. Thus, reporting of nearly all unnecessary
races is avoided. Finally, we show that the knowledge of
synchronization operations resulted in about 23% reduction
in replay time.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Testing tools

General Terms
Algorithms, Measurement, Reliability

Keywords
data races, synchronization and infeasible races, record and
replay

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

1. INTRODUCTION
With the advent of multicores, multithreaded program-

ming has acquired more importance. Unfortunately, debug-
ging multithreaded programs, involving detecting and iden-
tifying the causes of data races, has proved to be a hard
problem. Although, there has been significant research [20,
28, 25, 12, 10] on this topic, prior works suffer from one seri-
ous limitation: an inherent assumption is made that the data
race detectors are aware of all the synchronization operations
happening in the program. This is not a good assumption to
make in general as multithreaded programs, including the
popular SPLASH-2 benchmarks [30], have barriers and flag
synchronizations implemented in the user code. It is unrea-
sonable to assume that the data race detector is aware of all
such user defined synchronization operations. However, the
knowledge of synchronization operations is crucial to data
race detection. This is due to the following two reasons.

First, synchronization operations themselves cause races
in the program. These races, known as synchronization races
[25], arise due to the implementations of the synchronization
operations. Any synchronization-unaware data race detec-
tor is bound to report these as data races. Unfortunately,
these are not the races that the user is interested in, as
these synchronization races are benign. In our experiments
with SPLASH-2 [30] programs, we found that user defined
synchronization operations including barriers and flag syn-
chronization were used across all programs in the suite and
resulted in 1 to 19 distinct segments of code being present in
the programs, which gave rise to numerous synchronization
races being reported.

Second, a data race detector that is not aware of synchro-
nization operations is liable to report races that are infeasi-
ble [25] and consequently cause more false positives. This is
because shared memory accesses that are protected by syn-
chronization operations are not actually data races; if the
race detector is unaware of the synchronization operations,
it will report these protected accesses as races. In our exper-
iments, we found that this caused an additional 11 to 107
distinct segments of code being present in programs that re-
sulted in infeasible races, i.e false positives, to be reported.

Unfortunately, identifying synchronization operations in
the program is not trivial. Synchronization may happen
via simple flag synchronizations or through complex barrier
synchronization or spin locks. Often these synchronization
operations are implemented in the program source code itself
and not in libraries and there are several different algorithms
to accomplish each kind of synchronization peration. Hence

identifying synchronization operations, at best, is a tedious
process requiring manual source code inspection. In this
paper, we propose a dynamic technique to identify user de-
fined synchronization operations. Our technique is based on
the observation that the spinning read is the essential part
of each synchronization construct and is the major cause of
synchronization races. Our software implementation of this
technique is built on top of the Pin [14] dynamic instrumen-
tation engine. Our experiments confirm that our dynamic
technique is able to identify the user defined synchroniza-
tion operations with no false negatives and very few false
positives.

There has also been significant research on record/replay
systems [4, 19, 31, 18], whose purpose is to enable deter-
ministic replay debugging. We propose a scheme where our
synchronization detection technique can be used to optimize
replay. This is based on the observation that it is not nec-
essary to implement the synchronization operations exactly
during replay; it suffices if we just enforced those depen-
dencies during replay, that the synchronization operations
were themselves trying to enforce. Our experiments on the
SPLASH-2 benchmark suite, confirm that synchronization-
aware replay, on a uniprocessor, is 23% faster.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a discussion of benign races and closely related
work. In section 3 we present our approach for dynamic
detection of synchronization operations. In section 4 we de-
scribe how this information is used in data race detection
and efficient replay. Section 5 presents results of our exper-
iments. Section 6 contains a discussion of related work. We
conclude in Section 7.

2. DATA RACES AND SYNCHRONIZATION
A data race occurs when two or more different threads

access a shared memory location without any synchroniza-
tion, and at least one of these accesses is a write access. Data
races are considered to be harmful, and are known as con-
currency bugs, if they lead to unpredictable results or cause
the behavior of programs to be different from users’ expecta-
tion. There has been significant recent research [20, 28, 25,
12, 10] done to help users find such data races, and thus fix
concurrency bugs. But not all races reported by such tools
are actually concurrency bugs. In this section, we examine
how synchronization operations cause data race detectors
to report false positives. Specifically, we classify the false
positives reported by the race detection tools into two cate-
gories: Intentional races due to synchronization and infeasi-
ble races due to missed synchronizations. The first category
refers to harmless races that are intentionally programmed
to implement synchronization. The second category refers
to shared memory accesses which are actually protected by
synchronization. However, they are erroneously considered
to be races by the race detector, since the race detector is
unaware of the synchronization.

Intentional races in synchronization algorithms. In some sit-
uations, a data race is intentionally programmed to intro-
duce non-determinism into the program. For instance, im-
plementation of synchronization operations often introduces
data races to enable competition of processors to enter a crit-
ical section, to lock a semaphore, etc. Let us consider the
flag synchronization shown in Figure 1(a) taken from one

of the SPLASH-2 benchmarks named barnes. When thread
2 starts executing line 407, it spins on variable Done(r),
which can only be modified by thread 1 on line 396. There-
fore thread 2 cannot proceed, until the shared variable is
marked as true by thread 1. Consequently, the executions
of write operation on line 396 of thread 1 and the read op-
eration on line 407 of thread 2 form many dynamic data
races. However, the purpose of these races is only to en-
sure execution order and thus, these races do not constitute
a concurrency bug. These races that are intentionally pro-
grammed to implement synchronization constructs are also
known as synchronization races [25]. Figure 1 (b) shows
another example of synchronization race, due to a barrier
implementation. Here, the while loop (line 227, statement
4) keeps spinning until all processors have reached the bar-
rier and statements 2 and 4 of the barrier implementation
race with each other.

There are several other situations in which the program-
mer intentionally introduces data races that are benign. In
[20], Narayanasamy et al. provide a detailed categorization
of these benign synchronization races.

Figure 1: Flag and Barrier Synchronizations in
Splash-2 Programs.

Infeasible races due to missed synchronizations. Data race
detectors, due to inherent limitations of the race detection
algorithms [13, 28], sometimes report races which are not
actually real races. For example, let us consider Figure 1(b)
which shows the barrier synchronization. Let us consider the
lines 188 and 256 that respectively write to and read from
the same location, when the value of j is 0. Although, each
of these operations access the same shared memory location,
they are not actually data races as they are protected by the
barrier synchronization. However, a race detector that is un-
aware of the barrier synchronization, will consider these as
data races. Thus, shared memory accesses that are actually
protected by synchronization, but erroneously considered to
be races by the race detector as it is unaware of the syn-
chronization, constitute a major reason for false races [20].
These false races are also known as infeasible races [25].

Replay Analysis to classify reported Races. In recent work,
Narayanasamy et al. [20] describe a technique to automat-
ically classify those races that are reported by a data race
detector into harmful and harmless races. Their technique
works by replaying the execution twice for a reported data
race, once for each possible execution order between the con-
flicting memory operations. It is possible for this technique
to identify the synchronization races as harmless, but it in-

volves a significant offline processing. To see why, let us
again consider the flag synchronization shown in Figure 1(a).
Let us assume that in the actual execution of the program,
the while loop (line 407) was executed n times, before line
396 was executed in another processor. This results in n
dynamic races between lines 396 and 407. To confirm that
this race is benign, the execution order of each of these rac-
ing instances has to be inverted and the program has to be
replayed each time. If these synchronization races are iden-
tified on-line, as we do in this current work, then these races
need not even be reported to the user. Thus our work is
complementary to offline replay analysis of Narayanasamy
et al., as far as synchronization races are concerned.

On the other hand, the replay analysis cannot classify the
infeasible races due to the missed synchronization as harm-
less, in general. To see why, let us consider the barrier syn-
chronization example shown in Figure 1(b). Recall that the
read and write operations on lines 256 and 188 respectively
constitute the infeasible race, when the value of the loop
iterator j is 0. The replay analysis works by inverting the
order of the memory accesses – line 256 will not read the
value it is supposed to read, i.e. the value coming from
line 188. This will cause the program to misbehave, in gen-
eral. Thus, if the replayer is not aware of synchronization
operations, replay analysis [20] cannot be used to correctly
identify these infeasible races. In contrast the approach we
present next effectively handles infeasible races.

3. DYNAMIC SYNCHRONIZATION
DETECTION

As discussed above, the detection of synchronization op-
erations is the key to filtering out the benign synchroniza-
tion races and infeasible races from being reported to the
user. In this section, we study the synchronization races
that occur in various algorithms for implementing widely
used synchronization operations like flag synchronizations,
locks and barriers and formulate a generalized online algo-
rithm for identifying these operations. Then we present a
software dynamic implementation of this online algorithm.

3.1 Common Patterns in Synchronizations
We first examine the various implementations of barriers,

locks, and flag synchronizations to see if there is a common
pattern among them that can be used to formulate an algo-
rithm for identifying the synchronizations.

3.1.1 Data Races in Flag Synchronizations

Flag synchronization is the simplest mechanism to syn-
chronize two threads as it does not need any special instruc-
tions such as Test-and-Set, Compare-and-Swap, etc. In-
stead, its implementation only needs one shared variable,
called the flag. When a flag synchronization is encountered
in a multithreaded program, one thread executes a while
loop waiting for the value of flag to be changed by another
thread. Once the value has changed, the waiting thread is
able to leave the while loop and proceed. From Figure 1(a),
we can clearly see a pattern of flag synchronization. Here
thread 2 performs a spinning read (line 407) and thread 1
performs a remote write (line 396) on a same shared location
and these two instructions are those that cause the synchro-
nization races.

3.1.2 Data Races in Lock Implementations

We consider different lock implementations including the
test-and-test-and-set lock, which is frequently used in several
thread libraries to implement a spin lock, and the state-of-
the-art CLH queuing based lock. We intend to find a com-
mon pattern that spans across these lock implementations.

A classic Test and Test-and-Set algorithm, which is
used in pthread library (pthread spinlock) is shown in Fig-
ure 2(a). To acquire the lock each thread executes an atomic
Test-and-Set instruction (line 3). This instruction reads and
saves the value of lock and sets the lock to true. If the
lock is available, then the Test-and-Set instruction returns a
false, which makes a winner enter the critical section. Other
threads have to spin on the lock (line 4) until there is a possi-
bility that Test-and-Set instruction can succeed. The reason
for the spinning on line 4 is to avoid executing Test-and-Set
instruction repeatedly which causes cache invalidations that
generate significant overhead due to cache coherence mes-
sages that are generated. For this implementation we can
see that there is a spinning read at line 4 that races with a
remote write at line 9. Also, we observe that the atomic in-
struction in line 3 simultaneously reads and writes the lock
variable, and consequently races with lines 4, 7, and itself.

 1 bool lock = false;

 2 aquire_lock:
 3 while (TS(lock)) {
 4 while(lock) ;
 5 }

 6 release_lock:
 7 lock = false;

(a) Test and Test-and-Set lock

1 type qnodede = record
 2 prev : ^qnode
 3 succ_must_wait : Boolean
 4 type lock = ^qnode
 5 acquire_lock (L : ^lock, I : ^qnode)
 6 I->succ_must_wait := true
 7 pred : ^qnode := I->prev := fetch_and_store(L, I)
 8 repeat while pred->succ_must_wait
 9 procedure release_lock (ref I : ^qnode)
 10 pred : ^qnode := I->prev
 11 I->succ_must_wait := false
 12 I := pred

(b) CLH lock

Figure 2: Test & Test-and-Set lock and CLH lock.

CLH lock [15] is another well-studied spin lock, which is
a variant of the popular MCS [17] lock. The main idea of
this lock is that each processor that wants to acquire the
lock is put into the queue of waiting processors. A waiting
processor is made to poll the flag of the predecessor which
is set by the predecessor only when it releases the lock. As
we can see from Figure 2(b), this implementation also has a
similar pattern, a spinning read at line 8 and a remote write
at line 11 to the same shared variable succ must wait, and
there is also an atomic instruction at line 7 that handles the
case when multiple processors want to enter the queue at
the same time.

Thus the synchronization races due to the lock synchro-
nization follows the following pattern: a spinning read with
its corresponding write and an atomic instruction in the
vicinity of the spinning read.

3.1.3 Data Races in Barrier implementations

In this section we consider different barrier implementa-
tions including the simple centralized barrier (which is used
in the source code of several SPLASH-2 benchmarks), the
sense reversing barrier, and the arrival tree barrier. Here
again, we find that the spinning read along with its corre-
sponding spin ending write is the cause for synchronization
races.

In Figure 1(b), we have shown the centralized barrier,
where all threads except the last one, are delayed by a spin-
ning read on variable counter (line 227, statement 4). In
this implementation, every thread also increments variable
counter (line 227, statement 2), which is a remote write to
all earlier-arrived threads.

Figure 3: Sense-reversing Counter Barrier.

To make the centralized counter barrier reusable, a sense-
reversing centralized barrier, described in [17], is shown
in Figure 3. Each arriving processor decrements count by
exclusively executing line 7 and then waits for the value of
variable sense to be changed by the last arriving processor
(line 10). Similar to the simple counter barrier, line 13 is a
spinning read and line 10 is a write on variable sense, which
is the cause of synchronization races produced due by this
barrier.

Figure 4: Arrival Tree Barrier.

Another efficient barrier algorithm, is the arrival tree
barrier which is described in prior work [11, 17]. Every
processor is assigned a unique tree node to form two trees, an
arrival tree and a wakeup tree. In the arrival tree, the arrival
information is propagated from the leaves up to the root. In
the wakeup tree, the wakeup information is propagated in
an opposite direction, from root to the leaves. To obtain the
best performance, the degree of arrival tree is set to 4 and
that of wakeup tree is 2. Figure 4 shows the source code
for this barrier. In the arrival tree, each processor waits
for the arrival of its four children by spinning on variables
childnotready[]. When all children have arrived, it informs
its parent by updating a variable in its parent’s node pointed
by parentpointer. Thus line 12 and 14 forms a spinning-read
and a remote-write pattern in the arrival tree. Similarly,
line 20 is a spinning read and line 22, 23 are remote writes
in the wakeup tree.

Having studied the different implementations of various
synchronization operations, we find that the spinning read
and its corresponding remote write is a common pattern
among the synchronization operations.

3.2 Algorithm to Detect the Pattern
In the previous section, we found that the spinning read

and its corresponding remote write is a common pattern
across different implementations of various synchronization
primitives. It is worth noting that it is difficult to find this
pair by statically examining the code. Even if we can reduce
a candidate set of spinning reads, it is not clear how the re-
mote write can be statically identified. Hence, we explore a
dynamic technique to identify this pattern. By examining
the dynamic values and the addresses accessed by a load
instruction, we decide on whether the load is a part of a
spinning read. We identify the corresponding remote write,
by identifying the store instruction from which the last iter-
ation of the spinning read obtained its value.

The detailed algorithm following our approach is shown in
Figure 5. We first introduce a load table which stores the in-
formation of 3 most recent load instructions for each thread.
The information includes the pc, the previous address addr
accessed by the load instruction, the previous value val in
addr and a variable counter, which essentially maintains the
current count of spin loop. The reason that we set the size of
load table to 3 is based on the fact that it is sufficient to have
as many entries as the maximum number of static loads in
a spinning loop. In our experiments, we found this number
to be less than 3 and so we limited the number of entries
to 3. This is a reasonable limit, as in a spin loop there are
typically not more than two loads, a load instruction that
loads the shared memory value and possibly another load
that loads the address of the shared memory location.

For every memory location accessed by a store instruction,
we maintain the PC of the last store in writepc and the
thread id of a thread that performs the last store in writetid.
We also have a synchronization table, syn table, which stores
a pair of instructions: pc of spinning read as readpc; and the
pc of the corresponding remote write as writepc.

With the above data structures, we now can use our algo-
rithm to dynamically identify the synchronization pattern.
The general idea of our algorithm is as follows. For each
load instruction, we examine if it has been loading the same
value from the address for a threshold number of times by
one thread, until the value of this location is changed by
another thread. It is worth noting that the threshold is a
heuristic to give importance to the process of spinning and
thus distinguish it from other potential situations that are
not spin loops.

On every load instruction that has not been determined as
a spinning read in a thread, we first examine if the informa-
tion of the load has been stored in load table by searching the
matching PC. If not, we need to find a location in load table
for this load instruction. The location can be either empty
(line 21) or the one that has the oldest entry (line 22-24).
Then we store the information of the load into this loca-
tion (line 25-29). If we can find an entry in load table that
matches current load (line 1), we first check if the current
load accesses the same address as before (line 2-4). If so, we
then compare the current value with the previous value of
this address to determine if the variable counter reflecting
the number of executions of a spinning read, should be in-

Figure 5: Dynamic Detection of Synchronization
Pattern.

cremented by 1. The flag possible spin is set to 1 indicating
that the current load is a possible spinning read, if counter
has reached the threshold number (line 5-12). Recall that to
determine a synchronization pattern, we also need to ensure
that the value of this address has to be changed by another
thread. Therefore we check this condition by comparing the
id of current thread with the id of the thread that performs
the most recent write to this address. If they are same or
the flag possible spin has not been updated to 1, we reset the
information about this load, expecting that the pattern can
be determined subsequently (line 14-17). Otherwise, a syn-
chronization pattern has been recognized. Thus, we store
the load PC and store PC into syn table and then return
(line 18).

On every store instruction that has not been stored into
the synchronization table, we simply record its PC and thread-
id in the shadow memory corresponding to the location ac-
cessed by this store (line 31-32).

Finally, recall that atomic instructions were responsible
for creating synchronization races in some lock implementa-
tions. We consider those atomic instructions that appear in
the vicinity of a spinning read to be a potential synchroniza-
tion race. Specifically, we capture those atomic instructions
whose PCs are near to the PCs of spinning read instructions.

4. EXPLOITING DYNAMIC
INFORMATION

Next we discuss how synchronization information is ex-
ploited to filter out the harmless data races, namely syn-
chronization races and infeasible races. We will also present
a scheme where the knowledge of synchronizations can be
used to speed up the replay process.

Race detection. Significant amount of recent research [28,
25, 12, 10] has focused on data race detection. However, if
these tools cannot recognize all synchronization operations
in a program execution, they will report many synchroniza-
tion races and infeasible races. Since now we can dynam-
ically recognize synchronization operations with the detec-
tion technique described in the previous section, we can eas-
ily make the existing race detector stop reporting harmless
races.

To filter out infeasible races, the existing race detectors do
not have to monitor any calls to the library synchronization
functions. Instead, they only need to look up our synchro-
nization report captured by the syn table to get the infor-
mation about synchronization operations. Next, the race
detector can apply the same technique as before (for exam-
ple, computing happens-before partial order) to discover the
harmful data races. Since our synchronization table con-
tains more accurate synchronization knowledge, the infea-
sible races will go away automatically. To filter out syn-
chronization races, the existing race detectors only need to
compare the races discovered with the synchronization op-
erations stored in syn table. If there is a match, then we
do not report this data race. This is because the pairs of
instructions stored in the syn table are actually involved in
synchronization operations which give rise to synchroniza-
tion races.

Thus, our synchronization detection technique can be eas-
ily used to filter out benign races. Moreover, it does not
require any big changes to the existing race detection work.

Synchronization-aware record and replay. Recently there has
been research on providing software support [4, 26] and
hardware support [3, 31, 19, 18] for recording a program’s
execution. The key idea of record/replay systems is to record
outcomes of all non-deterministic events, including memory
races, so that the program can be replayed accurately. In
other words, recording systems record all the memory de-
pendencies exercised in the program, so that they can be
enforced while replay.

A benefit of having the knowledge of synchronization races
is that it can lead to optimized replay, especially if the replay
happens on a uniprocessor. Here, we make a key observation
that if the recorder is aware of all the synchronization races,
it is possible for the replayer to replay the original program
without the execution of synchronization operations. This
is because, the main purpose of synchronization operations
themselves in a multithreaded program is to enforce a set
of memory dependencies in the program. Suppose we know
a priori, the dependencies that the synchronization opera-
tions are trying to enforce, then we can modify the replayer
to enforce these dependencies and consequently, there is no
need to replay the synchronization operations.

Rs1
Rs2

…

 Rsn-1

 Ws

 Rsn

 R

W

Processor 1 Processor 2Time

t1

t2

Figure 6: Synchronization Aware Record/Replay.

Consider the example in Figure 6 which shows barrier syn-
chronization between two processors. Processor 1 reaches
the barrier first (time t1) and spins until processor 2 also
reaches the barrier (time t2). The spinning reads (denoted
by Rs1...Rsn) races with the write (Ws) from the processor
2 when it eventually reaches the barrier. Now let us con-
sider the dependence W, R, which is one of the dependen-
cies that the barrier is actually trying to enforce. Clearly, if
we are able to enforce this dependency, then we can safely
remove the execution of the spinning reads from the replay.
To enable this replay without synchronization, the recorder
system have to be slightly modified. As far as the barrier is
concerned, many recorders will record the last dependency
(Ws, Rsn) along with the respective processors’ instruction
counts, since this is the last read is the one that is obtained
from coherence reply (all other reads are local reads). When
the W, R dependency is encountered, it is optimized using
Netzer’s transitive optimization [22] as it is implied by the
Ws, Rsn dependency.

In our synchronization aware recording scheme, by the
time the last read (Rsn) is executed, we would have inferred
that this is a spinning read and hence we do not record this
dependency. At the same time, we decrement the instruction
count of spinning processor by the number of time the pro-
cessor spins to enable replay without execution of spinning

reads. When the W, R is now encountered, it is recorded
and not optimized away as we do not record the Ws, Rsn de-
pendence. Synchronization-aware replay, happens as usual
except that we do not execute the reads that are identified
as spinning reads due to synchronization.

Thus with only small changes to record and replay mech-
anism, the knowledge of synchronization races enables us to
avoid the execution of synchronization operations during the
replay.

5. EXPERIMENTAL EVALUATION
In this section, we first introduce the experimental envi-

ronment and examine the number of synchronization races
and infeasible races present in SPLASH-2 programs. Next
we evaluate the effectiveness of our online synchronization
detection algorithm in filtering out synchronization and in-
feasible races. We also evaluate the runtime overhead of dy-
namic synchronization detection. Finally, we evaluate ben-
efits of synchronization detection in performing execution
replay.

5.1 Experimental Setup
Implementation. Our synchronization detection algorithm

is implemented by using the Pin [14] dynamic instrumenta-
tion framework to instrument the program as it executes.
A load table is implemented by a struct variable for each
thread to store the information about each potential spin-
ning read, to help us determine if it actually is one. The
information includes the value, address, the execution count
of each load and a flag. We also use shadow memory support
[21] for maintaining information about each store instruc-
tion. Specifically, we store the PC of the store instruction
and the thread-id in the shadow memory corresponding to
the memory location for the store. To determine if a read is
a spinning read, we examine if the value loaded (and the ad-
dress) remains unchanged for a threshold number of times;
and when the value changes, we ensure that it is caused by
a store coming from a different thread. This store, inciden-
tally, is also the store that races with the spinning read. If
the above conditions are satisfied, we can conclude that the
load PC is actually a spinning read. Note that the accesses
to the shadow memory have to be done atomically, so we
use Pin Lock to prevent any possible violations. Since the
Pin Lock is provided by the instrumentation tool, it will not
affect the detection of synchronizations in the original pro-
gram. All our experiments were conducted under Fedora 4
OS running on a dual quad-core Xeon machine with 16GB
memory. Each core is running at 3.0 GHz.

Programs LOC Input Description

BARNES 2.0K 8192 Barnes-Hut alg.
FMM 3.2K 256 fast multipole alg.
OCEAN-1 2.6K 258 × 258 non-contiguous
OCEAN-2 4.0K 258 × 258 contiguous
RADIOSITY 8.2K batch diffuse radiosity alg.
RAYTRACE 6.1K tea ray tracing alg.
VOLREND 2.5K head -a ray casting alg.
WATER-1 1.2K 512 nsquared
WATER-2 1.6K 512 spatial

Table 1: SPLASH-2 Benchmarks Description.

Programs Realistic Optimistic Pessimistic
Sync. Infeasible Sync. Infeasible Sync. Infeasible

Dist. Dyn. Dist. Dyn. Dist. Dyn. Dist. Dyn. Dist. Dyn. Dist. Dyn.

BARNES 7 6.5M 21 102.5K 1 1.6K 6 7.5K 82 17.6M 2.5M 1121.5M
FMM 14 4.2M 107 7.7K 5 7.3K 10 1.8K 147 6.1M 0.2M 176.7M
OCEAN-1 19 5.9M 40 75.1K 0 0 0 0 275 8.5M 3.9M 5074.1M
OCEAN-2 18 6.2M 57 82.4K 0 0 0 0 270 7.1M 17.8M 5871.1M
RADI. 3 51.6K 32 30.3K 1 1.2K 13 2.7K 55 0.6M 11.3M 8442.3M
RAYTRC 1 15.1K 11 7.8K 0 0 0 0 53 0.3M 1.1M 5162.7M
VOLREND 7 578.9K 68 40.8K 1 1.1K 7 1.3K 93 1.5M 0.5M 371.4M
WATER-1 7 17.3M 62 18.21K 0 0 0 0 47 19.7M 4.1M 352.16M
WATER-2 9 1.2M 53 156.75K 0 0 0 0 98 2.4M 1.2M 288.7M

Table 2: Synchronization Races and Infeasible Races.

Benchmarks. In our experiments, we choose the SPLASH-
2 benchmark [30] suite as it is widely used to facilitate the
study of shared memory multiprocessors. Table 1 shows the
name, number of lines, input, and brief description for each
program used in our experiments. These programs have
different types of synchronizations (flag synchronizations,
locks, and barriers) most of which are defined by PARMACS
Macro constructs [2]. These constructs are different from
library routines. Unlike the implementations of library rou-
tines, during compilation, the implementations of the con-
structs will cause their code to be inlined into the user code.

Using PARMACS constructs in source code gives pro-
grammers the flexibility to choose different implementations
of synchronizations according to their needs like performance,
portability etc. For example, the programmer may use an
available implementation of a synchronization operation from
a library routine (e.g., pthread library) or the programmer
may develop his or her own implementation. For instance,
in some SPLASH-2 benchmarks, we observe that program-
mers have implemented their own flag synchronizations in
the user code (Figure 1(a)) rather than using PARMACS
Macro construct. Even for Macro constructs, library rou-
tines may not provide the implementations that program-
mers want. For example, counter based barrier using spin
lock is not available in pthread library. Therefore, program-
mers have to implement their own algorithms for such con-
structs (Figure 1(b)).

We studied the benchmarks by identifying occurrences of
synchronization and infeasible races in these benchmarks.
To carry out this study we applied a race detection tool,
which computes the happens-before partial order based on
the knowledge of synchronization operations in the libraries.
All synchronizations implemented in the user code are ig-
nored. The results of this study depend upon what syn-
chronization operations are used from libraries. While the
flag synchronization must always be expressed in user code,
in general, the LOCK/UNLOCK and BARRIER operations
could be either expressed in user code or used from an avail-
able library. For SPLASH-2 benchmarks we consider three
different scenarios:

(Realistic) Given the availability of the pthread library on
Fedora 4, spin lock implementation is available in form
of two library routines, pthread spin lock and
pthread spin unlock. However, BARRIER operation
must be implemented in the user code;

(Optimistic) We assume that LOCK/UNLOCK and BAR-
RIER operations are available as library routines. To
study this scenario we compiled our own implementa-
tion of BARRIER into a library file; and

(Pessimistic) We assume that LOCK/UNLOCK and BAR-
RIER operations are implemented in user code.

Table 2 shows the number of synchronization races and in-
feasible races found in the scenarios. Note that we create 4
threads for each benchmark in our experiments. For each
scenario, 4 columns giving the number of distinct synchro-
nization races, dynamic synchronization race instances, dis-
tinct infeasible races and dynamic infeasible race instances.

For the realistic scenario (columns 2-5), barriers and flag
synchronizations contribute to the synchronization races.
The number of observed distinct races in synchronization
and their corresponding dynamic instances are shown in col-
umn 2 and 3, which varies from 1-19 and 15.1K - 17.3M
respectively. Since these synchronizations cannot be cap-
tured by race detector, 11-107 distinct infeasible races will
be reported. These correspond to thousands of dynamic
infeasible races that are reported (column 4-5). Thus we
can see that user defined synchronization operations cause a
significant number of distinct false positives (12-131) to be
reported.

For the pessimistic scenario (columns 10-13) these num-
bers are even higher. As we can see in Table 2, 55-275 dis-
tinct synchronization race instances contribute to millions
of dynamic synchronization races. In addition, millions of
distinct and dynamic infeasible races are also reported. To
perform this experiment we implemented a Test and Test-
and-Set lock via an atomic decrement x86 instruction for
LOCK/UNLOCK Macro constructs, and a counter-based
sense-reversing barrier for BARRIER Macro constructs.

Finally, as expected, for the optimistic scenario (columns
6-9), the number of distinct synchronization and infeasible
races is small and these gave rise to few thousand dynamic
races. It should be noted that to conduct this experiment we
had to disassemble our own library code and hard-code the
instruction addresses into the race detector. Thus, while this
approach gives good results, it places a great deal of burden
on the programmer.

5.2 Filtering Data Races
To evaluate the effectiveness of our synchronization detec-

tion algorithm, we added our software implementation into

the happens-before race detector and conducted the exper-
iments on all three scenarios described above. This experi-
ment yielded the following key results.

Robustness. First, the results were identical for all three
scenarios. In other words, our synchronization detection
based approach is highly robust as it is equally effective in
filtering out synchronization and infeasible races in varying
scenarios.

Programs Sync. Races Infeasible Races
Distinct Dynamic Distinct Dynamic

BARNES 0 0 0 0
FMM 4 0.4K 4 0.6K
OCEAN-1 0 0 0 0
OCEAN-2 0 0 0 0
RADI. 0 0 0 0
RAYTRC 0 0 0 0
VOLRND 0 0 0 0
WATER-1 0 0 0 0
WATER-2 0 0 0 0

Table 3: Synchronization Races and Infeasible Races
with Synchronization Detection.

Filtering effectiveness. Second, nearly all the number of
synchronization and infeasible races were successfully fil-
tered out using the dynamically detected synchronization
operations. Let us examine the data in Table 3 in more
detail. With the exception of FMM, no synchronization
races or infeasible races are reported in any of the bench-
marks. In FMM, we found 4 synchronization races and 4
infeasible races. The dynamic numbers are 0.4K and 0.6K
respectively. The reason we report these races is that our
algorithm missed 4 flag synchronizations; 2 in the function
VListInteration and 2 in the function WListInteraction in
the file interaction.C. We investigated why we missed these
synchronizations and found the reason to be following. In
each of the flag synchronizations we missed, the spinning
read was executed exactly once. In other words, the spinning
read did not actually experience any spin. We also measured
the effect of missing the synchronizations and found that this
caused 4 additional distinct infeasible races to be reported.

False positives and negatives. Finally, it is worth not-
ing that if our synchronization detector does not miss any
synchronization operation, the false positives caused due to
synchronization will be eliminated. At the same time, if
our synchronization detector falsely considers some other
program operations as synchronization operations, this can
potentially lead to a real race being considered as a synchro-
nization race and hence cause false negatives. However, the
latter situation does not arise. This is because the pattern
we captured, namely a spinning read and a corresponding
write, is the essence of synchronization semantic. Accesses
to a shared memory that is not used for synchronization will
not experience any spin.

Selection of Threshold Value. In the above experiment
the threshold value used by the algorithm was set to 10.
We also varied the threshold value to study its impact on
the effectiveness of our approach. In Table 4, we show the
number of distinct synchronizations reported by our algo-
rithm under the realistic scenario with threshold values of

10, 100, and 500. Since the threshold number is our heuris-
tic used in the algorithm to quantify the number of spins,
the higher this threshold, the higher the chance that we may
miss synchronization races and vice versa. The actual num-
ber of synchronizations are also presented for the purpose
of comparison in column ”Actual”. From this table, we can
see that setting the threshold to 500 causes some synchro-
nization operations to escape detection. Then we reduced
the threshold to 10 and found that we were able to find
most of the synchronizations, missing only 4 in FMM which
was discussed earlier. We could not observe an increase in
the detected synchronizations, if we lowered the threshold
any further. Thus, the synchronization detector works well
when the threshold is set to 10. To evaluate the sensitivity,
we also considered a threshold of 100 and found that the
results were same with 100 as with the threshold of 10.

Programs Actual T = 500 T = 10 T = 100

BARNES 7 4 7 7
FMM 14 7 10 10
OCEAN-1 19 19 19 19
OCEAN-2 18 16 18 18
RADIOSITY 3 2 3 3
RAYTRACE 1 1 1 1
VOLREND 7 5 7 7
WATER-1 7 7 7 7
WATER-2 9 7 9 9

Table 4: Number of User Defined Synchronizations
in SPLASH-2 Benchmarks.

In conclusion, from the above experiment, we are able to
observe the following. First, there was no situation where
we falsely considered some other program operation to be
a synchronization operation. Hence our synchronization de-
tector did not cause any false negatives in race detection.
Second, the number of missed synchronizations depended
on the threshold with more synchronizations missed when
the threshold was set higher. Third, even if the threshold
value was set to be low, we still can miss synchronizations
if there is no spin experienced.

Baseline
Opt.

 0

 10

 20

 30

 40

 50

 60

 70

m
ea

n

W
A

T
E

R
−

2

W
A

T
E

R
−

1

V
O

L
R

E
N

D

A
Y

T
R

A
C

E

A
D

IO
SI

T
Y

O
C

E
A

N
−

2

O
C

E
A

N
−

1

FM
M

B
A

R
N

E
S

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Figure 7: Overhead of Synchronization Detection.

Overhead of Synchronization Detection. We also studied
the overhead of our technique. Figure 7 shows the perfor-

mance overhead involved in our implementations. In this
experiment the realistic scenario is used. Note that in our
Baseline implementation we instrument every load and store
instruction, while in our optimized version (Opt.), we only
instrument the specific loads and stores that are likely to
be spinning reads and writes. Specifically, we instrument
only those loads that are within a spin loop and those stores
that do not operate on the stack. We identify potential spin
loops by first identifying branch instructions that branch
backwards in code which contain just loads and compare
instructions. As we can see from Figure 7 our average base-
line overhead is a slowdown by a factor of 45, while our
optimization is able to significantly reduce the overhead to
a slowdown factor of 9.

5.3 Synchronization-Aware Replay
In this experiment, we wanted to measure the savings of

synchronization-aware replay when the replay is carried out
on a uniprocessor. Recall that if we are aware of synchro-
nization operations, we do not need to faithfully re-execute
the synchronization events during replay; it suffices if we
just enforced the appropriate dependencies during replay.
We have not actually implemented a replayer system, but
we measured the time spent on synchronization operations
for each of the programs. As this is a measure of time we
can save during replay, this percentage is a good indicator
of the speed up that can be achieved during replay. As we
can see from Figure 8, the savings varies from 7% to 48%
and the average savings is 23%.

Time spent on other computation
Time spent on synchronization

 0%

 20%

 40%

 60%

 80%

 100%

m
ea

n

W
A

T
E

R
−

2

W
A

T
E

R
−

1

V
O

L
R

E
N

D

A
Y

T
R

A
C

E

A
D

IO
SI

T
Y

O
C

E
A

N
−

2

O
C

E
A

N
−

1

FM
M

B
A

R
N

E
S

 E
xe

cu
tio

n
T

im
e

D
is

tr
ib

ut
io

n

Figure 8: Savings during Replay

6. RELATED WORK
Software based race detection techniques can be broadly

classified into static and dynamic approaches. Static analy-
sis techniques [27, 5, 9] utilize type analysis and knowledge
of synchronization operations to identify data races. The
important limitation of static analysis approaches is their
accuracy in terms of false positives and false negatives re-
ported [20].

Dynamic race detection techniques can be broadly divided
into three categories, those using happens-before algorithm,
those using lockset algorithm, and those combining happens-
before and lockset algorithms. The happens-before based

techniques use the execution order and the knowledge of syn-
chronization events to compute happens-before partial order,
which was proposed by Lamport in [13]. If two accesses from
different threads to a shared location are not ordered by the
happens-before relation, a data race will be reported. Race
detection techniques used in [22, 6, 1, 7, 25, 16] are in this
category.

Race detectors using lockset algorithm basically focus on
lock-based multithreaded programs. The idea first proposed
by Savage et al. in [28] is to verify that every shared-memory
access is associated with a correct locking behavior. To avoid
false positives due to some common programming practices,
such as using read-only shared variables after they are ini-
tialized, many improved lockset algorithms that basically
track the states of each memory location are proposed and
utilized in recent works [28, 12, 10, 29].

Both happens-before and lockset algorithms have their own
drawbacks for race detection. Happens-before algorithm is
hard to implement in software and more likely to miss some
potential races (false negatives). On the other hand, lock-
set method is efficient to implement but it usually gives too
many false alarms. Therefore, many works attempt to com-
bine these two algorithms in some way in order to overcome
the drawbacks. The hybrid techniques are discussed in [8,
23, 32, 24].

To report data races as accurately as possible, all of the
above approaches need exact synchronization information
regardless of whether synchronizations are implemented in
libraries or user code. Unfortunately, when monitoring a
program, none of those approaches attempt to recognize ev-
ery synchronization event, especially those implemented in
user code. They either make an assumption that all syn-
chronizations are in the library or ignore synchronizations
defined by user. In reality, however, programmers may use
different synchronization implementations according to their
demands as shown in SPLASH-2 benchmark suite rather
than using library implementations. Thus, when those de-
tectors are applied, many synchronization races and infea-
sible races will be falsely reported to debuggers, which may
consume vast amounts of time. On the contrary, our tech-
nique is effective in avoiding the reporting of benign syn-
chonization or infeasible races by automatically identifying
the synchronizations no matter how the synchronizations are
implemented. Hence, our current work is a complement to
prior work.

Narayanasamy et. al. [20] focus on classifying the re-
ported races into benign and harmful races using offline re-
play analysis. As discussed earlier, the above technique can
handle synchronization races but it cannot handle infeasible
races. Compared to the above work, our approach can find
synchronization races on-the-fly. It can also avoid report-
ing infeasible races when working together with other race
detection techniques.

7. CONCLUSION
In this paper we first discussed how lack of knowledge of

user defined synchronizations can lead to a lot of false posi-
tives in race detection tools. We then proposed a technique
to dynamically identify synchronization operations that are
exercised in a program run. This information was demon-
strated to be highly effective in filtering out synchronization
and infeasible races. Furthermore, our technique can be

easily exploited by a record/replay system to significantly
speedup the replay. A scheme of using the knowledge of
synchronizations to optimize replay is proposed.

Our evaluation confirms that our synchronization detector
is highly accurate with no false negatives and very few false
positives. We also show that, on average, our optimized
software implementation causes a 9 fold slowdown in pro-
gram execution. Finally, we showed that the knowledge of
synchronization operations resulted in about 23% reduction
in replay time.

Acknowledgements. This work is supported by NSF grants
CNS-0810906, CNS-0751961, CCF-0753470, and CNS-0751949
to the University of California, Riverside.

8. REFERENCES
[1] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B.

Netzer. Detecting data races on weak memory
systems. In Proceedings of the 18th International
Symposium on Computer Architecture (ISCA),
volume 19, pages 234–243, New York, NY, 1991.

[2] E. Artiaga, N. Navarro, X. Martorell, Y. Becerra,
M. Gil, and A. Serra. Experiences on the
implementation of parmacs macros using different
multiprocessor operating system interfaces.

[3] D. F. Bacon and S. C. Goldstein. Hardware-assisted
replay of multiprocessor programs. In PADD ’91:
Proceedings of the 1991 ACM/ONR workshop on
Parallel and distributed debugging, pages 194–206,
New York, NY, USA, 1991. ACM Press.

[4] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,
R. Murray, M. Drinić, D. Mihočka, and J. Chau.
Framework for instruction-level tracing and analysis of
program executions. In VEE ’06: Proceedings of the
2nd international conference on Virtual execution
environments, pages 154–163, New York, NY, USA,
2006. ACM.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: preventing data races and
deadlocks. In OOPSLA ’02: Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 211–230, New York, NY, USA, 2002.

[6] J.-D. Choi, B. P. Miller, and R. H. B. Netzer.
Techniques for debugging parallel programs with
flowback analysis. ACM Trans. Program. Lang. Syst.,
13(4):491–530, 1991.

[7] M. Christiaens and K. D. Bosschere. Trade, a
topological approach to on-the-fly race detection in
java programs. In JVM’01: Proceedings of the JavaTM
Virtual Machine Research and Technology Symposium
on JavaTM Virtual Machine Research and Technology
Symposium, pages 15–15, Berkeley, CA, USA, 2001.
USENIX Association.

[8] A. Dinning and E. Schonberg. Detecting access
anomalies in programs with critical sections. In PADD
’91: Proceedings of the 1991 ACM/ONR workshop on
Parallel and distributed debugging, pages 85–96, New
York, NY, USA, 1991. ACM Press.

[9] C. Flanagan and S. N. Freund. Type-based race
detection for Java. ACM SIGPLAN Notices,
35(5):219–232, 2000.

[10] C. Flanagan and S. N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs.
SIGPLAN Not., 39(1):256–267, 2004.

[11] R. Gupta. The fuzzy barrier: a mechanism for high
speed synchronization of processors. In ASPLOS-III:
Proceedings of the third international conference on
Architectural support for programming languages and
operating systems, pages 54–63, New York, NY, USA,
1989. ACM Press.

[12] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar.
Healing data races on-the-fly. In PADTAD ’07:
Proceedings of the 2007 ACM workshop on Parallel
and distributed systems: testing and debugging, pages
54–64, New York, NY, USA, 2007. ACM Press.

[13] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation.
SIGPLAN Not., 40(6):190–200, 2005.

[15] P. Magnusson, A. Landin, and E. Hagersten. Queue
locks on cache coherent multiprocessors. pages
165–171.

[16] J. Mellor-Crummey. On-the-fly detection of data races
for programs with nested fork-join parallelism. In
Supercomputing ’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing, pages
24–33, New York, NY, USA, 1991. ACM.

[17] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Trans. Comput. Syst.,
9(1):21–65, 1991.

[18] S. Narayanasamy, C. Pereira, and B. Calder.
Recording shared memory dependencies using strata.
In ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming
languages and operating systems, pages 229–240, New
York, NY, USA, 2006. ACM Press.

[19] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet:
Continuously recording program execution for
deterministic replay debugging. In ISCA ’05:
Proceedings of the 32nd annual international
symposium on Computer Architecture, pages 284–295,
Washington, DC, USA, 2005. IEEE Computer Society.

[20] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards,
and B. Calder. Automatically classifying benign and
harmful data racesallusing replay analysis. In PLDI
’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and
implementation, pages 22–31, New York, NY, 2007.

[21] N. Nethercote and J. Seward. How to shadow every
byte of memory used by a program. In VEE ’07:
Proceedings of the 3rd international conference on

Virtual execution environments, pages 65–74, New
York, NY, USA, 2007. ACM Press.

[22] R. H. B. Netzer. Optimal tracing and replay for
debugging shared-memory parallel programs. In
PADD ’93: Proceedings of the 1993 ACM/ONR
workshop on Parallel and distributed debugging, pages
1–11, New York, NY, USA, 1993. ACM Press.

[23] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In PPoPP ’03: Proceedings of the
ninth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 167–178, New
York, NY, USA, 2003. ACM Press.

[24] V. Project. Helgrind, a data race detector. In
http://valgrind.org/docs/manual/hg-manual.html,
2003.

[25] M. Ronsse and K. D. Bosschere. Recplay: a fully
integrated practical record/replay system. ACM
Trans. Comput. Syst., 17(2):133–152, 1999.

[26] Y. Saito. Jockey: a user-space library for record-replay
debugging. In AADEBUG’05: Proceedings of the sixth
international symposium on Automated
analysis-driven debugging, pages 69–76, New York,
NY, USA, 2005. ACM.

[27] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller.
Automated type-based analysis of data races and
atomicity. In PPoPP ’05: Proceedings of the tenth
ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 83–94, New
York, NY, USA, 2005. ACM Press.

[28] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multi-threaded programs. In SOSP ’97: Proceedings of
the sixteenth ACM symposium on Operating systems
principles, pages 27–37, New York, NY, USA, 1997.
ACM Press.

[29] C. von Praun and T. R. Gross. Object race detection.
In OOPSLA ’01: Proceedings of the 16th ACM
SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
pages 70–82, New York, NY, USA, 2001. ACM.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings of
the 22th International Symposium on Computer
Architecture, pages 24–36, Santa Margherita Ligure,
Italy, 1995.

[31] M. Xu, R. Bodik, and M. D. Hill. A ”flight data
recorder” for enabling full-system multiprocessor
deterministic replay. In ISCA ’03: Proceedings of the
30th annual international symposium on Computer
architecture, pages 122–135, New York, NY, USA,
2003. ACM Press.

[32] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack:
efficient detection of data race conditions via adaptive
tracking. In SOSP ’05: Proceedings of the twentieth
ACM symposium on Operating systems principles,
pages 221–234, New York, NY, USA, 2005. ACM
Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

