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Abstract

In this paper, we propose a novel cache design, Phantom

Associative Cache (PAC), that alleviates cache thrashing in

L2 caches by keeping the in-cache data blocks for a longer

time period. To realize PAC, we introduce the concept of

phantom lines. A phantom line works like a real cache line

in the LRU stack but does not hold any data or tag. When a

phantom line is selected for replacement, cache bypassing

is performed instead of replacement. By using appropriate

number of phantom lines, PAC can always keep the data

blocks that show stronger locality longer in the cache and

bypass the cache for other blocks. We show that PAC can

be implemented reasonably in practice. The experimental

results show that on average PAC reduces cache misses by

17.95% for twelve CPU2006 benchmarks with Misses Per

Kilo-Instruction (MPKI) larger than 1 and by 6.61% for all

CPU2006 and PARSEC benchmarks. With the help of com-

piler hints, PAC can further reduce cache misses by 22% for

benchmarks that have relatively high MPKI or miss rate.

1 Introduction

The cache performance is a key factor that affects the

execution speed of applications. The LRU replacement pol-

icy and its variants (e.g., the pseudo-LRU policy) are cur-

rently the industry standard for cache replacement policy

and have been widely used for many decades. However, the

workloads for L2 caches have relatively low locality since

L1 caches filter out all the consecutive accesses to the same

data blocks. Thus, data swapping, i.e., thrashing, may occur

constantly under the LRU replacement policy, which may

then degrade the system performance.

Many techniques have been proposed to improve the

cache performance by resolving cache thrashing. Many re-

search works have considered cache bypassing and early

eviction. McFarling [8] recognized the common instruction

reference patterns where storing an instruction in the cache

actually harms performance. He then proposed a technique

for reducing direct-mapped cache conflict misses by exclud-

ing the harmful instruction. Many works [2, 3, 13, 14, 16]

present techniques for bypassing or early eviction by using

locality information. The underlying idea is to bypass the

data accesses which has low reuse. Another series of pub-

lications focus on cache optimization by predicting the last

touch of a cache line [5, 6]. By knowing the last-touch ref-

erences, the cache line can be turned off after the last touch

to save energy [4]. Lai et al. [5] proposed to use the dead

cache line to store the prefetched data. Some techniques

[10, 11, 16] try to keep the cache lines that exhibit tem-

poral locality in the L2 cache. However, these techniques

incur high storage overhead and require complicated hard-

ware designs for dynamically detecting the temporal local-

ity in lines residing in the L2 cache. Other techniques [1, 9]

have been proposed to randomly select the data accesses

for bypassing or LRU insertion. Through random sampling,

only part of the working set is brought into the cache, which

avoids competition for cache resources. In random sam-

pling, the sampling rate must be set appropriately so that the

data blocks in the cache can be kept long enough to reach

their next usages. However, due to the nature of random-

ness, data blocks may be evicted either too early or too late

causing the cache resource to be wasted.

In this paper, we propose a cache design, Phantom As-

sociative Cache (PAC). The PAC design proposed in this

paper aims to improve the cache performance in the pres-

ence of cache thrashing. When cache thrashing occurs, for

most data accesses the forward reuse distances are larger

than the cache associativity. To avoid cache thrashing, the

PAC technique inserts extra phantom cache lines into a nor-

mal LRU stack. In the LRU stack, a phantom cache line

works in the same scheme as a normal one. However, since

the phantom cache lines do not have any associated storage,

they cannot hold any data or tag. When a phantom cache

line is selected for replacement, we bypass the cache and

send the requested data block from memory directly to the

processors. By adding phantom cache lines, we postpone

data evictions and give the illusion of increased associativ-

ity. Moreover, by carefully selecting the number of added

phantom cache lines, we can always keep the data blocks

that show better locality in the cache and bypass the cache



for the other data.

To get the full benefit from the PAC technique, we need

to design a scheme for selecting an appropriate number of

phantom cache lines that should be added into the cache for

a given program. A simple way is to add an instruction to

the ISA that allows us to set the number of phantom cache

lines. The compiler can then insert such an instruction into

program segments where cache thrashing may occur based

on profiling results. In this paper, we present a different

technique - a runtime scheme that dynamically adjusts the

number of phantom cache lines according to the cache per-

formance. We select a small number of cache sets and apply

different numbers of phantom cache lines to them at run-

time. The cache misses taking place in these cache sets are

tracked for comparing the cache performance with differ-

ent numbers of cache lines. At regular execution intervals,

we select the number of phantom cache lines that produces

fewest cache misses for the whole cache. By using the run-

time scheme, the PAC technique can adapt to different types

of applications as well as different phases of the same ap-

plication.

In our experiments, we used all 29 SPEC CPU2006

benchmarks and 13 PARSEC benchmarks. The perfor-

mance was measured on a simulated SPARC processor. We

compared the cache misses achieved by PAC and LRU.

PAC reduces cache misses on average by 17.95% for twelve

CPU2006 benchmarks with Misses Per Kilo-Instruction

(MPKI) larger than 1 and 6.61% for all CPU2006 and PAR-

SEC benchmarks. It reduces the cycles per instruction (CPI)

on average by 7.1% for the twelve CPU2006 benchmarks

with MPKI larger than 1 and 4.3% for PARSEC bench-

marks. The experiments also showed that with the help of

compiler hints, PAC can further reduce the cache misses by

22% for benchmarks that have relatively high MPKI or miss

rate.

The remainder of the paper is organized as follows. In

Section 2, we first give the logic underlying PAC and then

present its hardware design. In Section 3, we propose a

runtime scheme that dynamically adjusts the associativity of

PAC. We present the evaluation of our method in Section 4.

Section 5 discusses the related work and section 6 concludes

this paper.

2 Phantom Associative Cache

2.1 Phantom Associativity

We define an n:m-way PAC as a cache that contains n
real cache lines and m phantom cache lines in each cache

set. The total associativity of an n:m-way PAC is (n + m).
In a PAC, each real cache line can actually store a data block

while each phantom cache line is a dummy one that cannot

store any data or tag. When a real cache line is selected

for replacement, the requested data block is brought into

the cache line so that it can be reused in the future. How-

ever, when a phantom cache line is selected for replacement,

we bypass the cache and send the requested data block di-

rectly to the processor since the phantom line cannot hold

any data. A normal n-way cache can be used to simulate an

arbitrarily large n:m-way PAC. Although the actual storage

size of an n:m-way PAC is equal to that of an n-way nor-

mal cache, it creates an illusion that the cache has higher

associativity by only bringing part of the working set into

the cache.

When we apply the LRU cache replacement policy to

PAC, data blocks are kept in the cache for a longer period

of time and then they have a greater chance of being reused.

The LRU policy with phantom associativity works as fol-

lows. A LRU stack is maintained to indicate the access or-

der of both real and phantom cache lines. When a cache

miss occurs, the LRU policy selects the bottom of the LRU

stack (i.e., the least recently used position) for replacement.

The replacement decision (replace or bypass) is made based

on whether the selected line is real or phantom as mentioned

before. No matter whether the selected line is real or phan-

tom, it is then moved to the top of the LRU stack (i.e., the

most recently used position). Note that phantom cache lines

cannot be hit since their tags are not kept in the cache.

Figure 1. An example of the LRU policy in a

2:2-way PAC, where PCL stands for phantom
cache line.

The example in Figure 1 shows how the LRU policy

works in a 2:2-way PAC that contains two real cache lines

and two phantom cache lines. The data block a, b, c, and

d are mapped to the same cache set. Initially, the cache is

empty with two phantom cache lines at the top of the LRU

stack. The processor first loads a and b. Thus, the two real

cache lines at the bottom of the LRU stack are replaced with

them and moved to the top of the LRU stack. When c is ac-

cessed, the bottom of the LRU stack is a phantom cache

line. Therefore, c bypasses the cache and the selected phan-

tom cache line is moved to the top of the LRU stack. The

processor then accesses b again. Since b is in the cache, the

data access causes a cache hit and the cache line that con-

tains b is moved to the top of the LRU stack. At the fifth

data access, since another phantom cache line is available



at the bottom of the LRU stack, d is directly sent to the pro-

cessor without affecting the cache. In the whole procedure,

a is always kept in the cache and eventually hit at the last

data access because we bypass the cache for c and d. The

LRU policy with phantom associativity reduces one miss

compared to the LRU policy for a regular 2-way cache.

We use a theoretical model of cyclic references to ana-

lyze the LRU policy with phantom associativity on thrash-

ing workloads. Similar model has been used in [12] for

modeling conflict misses in caches. Let (a1, a2, . . . , aL)
denote a temporal sequence of memory references mapped

into the same cache set, where ai(1 ≤ i ≤ L) is the address

of the requested data block. Let (a1, a2, . . . , aL)K denote a

temporal sequence that repeats K times.

We analyze the behavior of the LRU policy with

phantom associativity on the access pattern in which

(a1, a2, . . . , aL)K is followed by (b1, b2, . . . , bL)K . We as-

sume that the number of real cache lines is smaller than L
(n < L) and each temporal sequence repeats no less than

three times (K >= 3). Table 1 compares the hit rate of the

LRU policy in an n:m-way PAC and that in a regular n-way

cache.

(a1 . . . aL)K (b1 . . . bL)K

n-way LRU 0 0

n-way OPT
(n−1)(K−1)

KL

(n−1)(K−1)
KL

n:m-way LRU (n+m < L) 0 0

n:m-way LRU (n+m = L)
n(K−1)

KL

n(K−1)
KL

n:m-way LRU (n+m = 2L)
n(K−1)

KL

n(K−2)
KL

n:m-way LRU (n+m = 3L)
n(K−1)

KL

n(K−3)
KL

Table 1. Comparison of theoretical hit rate.

As the cache associativity n is less than L, the LRU pol-

icy in a regular n-way cache causes thrashing and cannot

achieve any hit for both temporal sequences. The optimal

policy brings any n data blocks from the current temporal

sequence into the cache in the first iteration and keeps them

in the cache until the next temporal sequence. Therefore, it

can achieve (n−1)(K−1) hits for both temporal sequences.

In an n:m-way PAC, if the total associativity (n + m)
is less than L, the LRU policy still causes thrashing, which

is similar to that in a regular n-way cache. However, when

the total associativity (n + m) is equal to or larger than the

length of the temporal sequence, the LRU policy retains the

first n data blocks out of the L data blocks of the first tem-

poral sequence in the cache. The other data blocks in the

first temporal sequence are sent to the processor through

bypassing since when they are accessed the phantom cache

lines are selected for replacement. For the second tempo-

ral sequence, if the total associativity of the PAC is exactly

equal to L, the LRU policy will bring the first n data blocks

of the second temporal sequence into the cache since all the

phantom cache lines are consumed in the last iteration of

the first temporal sequence. After warm-up, the LRU pol-

icy will keep the n data blocks in the cache, similar to the

first temporal sequence, and it can achieve n(K−1) hits for

the second temporal sequence. When the total associativity

of PAC is larger than L, the LRU policy has to use up all the

extra phantom cache lines before it can actually bring the

data blocks into the cache. Therefore, no cache hits can be

obtained for the first few iterations of the second temporal

sequence if (n + m) is much larger than L. The smaller

the repetition time K, the higher is the degradation in hit

ratio due to an overly large phantom associativity. In other

words, PAC can achieve optimal cache hits in a cyclic refer-

ence model when its total associativity is equal to the length

of the temporal sequence. When the total associativity is

larger than the length of the temporal sequence, the perfor-

mance of the PAC gradually worsens with the increase in

total associativity.

2.2 Cache Design

In this section, we propose a PAC design that has low

space overhead and enables fast phantom associativity ad-

justment. The extra space overhead for each cache set is

(n log
2
m) bits. As will be shown, to adjust the phantom

associativity in this PAC design, we only need to update the

value of two registers in each cache set.

Figure 2. The LRU stack of a 4:4-way PAC.

In our PAC design, the LRU stack of each cache set in

a n:m-way PAC only contains n entries that point to the

n real cache lines. To maintain the position information

of the phantom cache lines, we use (n − 1) counters that

count the phantom cache lines between each two consec-

utive real cache lines in the LRU stack. We also have two

counters that store the number of phantom cache lines above

the most recently used real cache line and below the least

recently used real cache line in the LRU stack. Figure 2

shows an example of a 4:4-way LRU stack, where we have

5 counters (named PLC1∼PLC4 and RLC, which will be

described later) that count the phantom cache lines in five

possible positions. Since we do not distinguish between dif-

ferent phantom cache lines, these (n + 1) counters can tell

us all the information we need from the (n+m)-entry LRU

stack of the straightforward implementation. When a cache

miss occurs, we can simply make the replacement decision

based on the number of phantom cache lines below the least



recently used real cache line in the LRU stack. If there is

no phantom cache line below the least recently used real

cache line, then the least recently used real cache line is

at the LRU position and will be selected for replacement.

Otherwise, the LRU position is taken by a phantom cache

line and therefore the requested data block will bypass the

cache. After each cache access, we update these counters to

maintain the state of the LRU stack.

Figure 3. PAC design.

Figure 3 shows our design for PAC. Compared to the

traditional cache design, the extra components are shown in

the shaded part. We describe these extra components of the

PAC in detail below:

Phantom cache line counter (PLC). A PLC is attached

to each real cache line. It stores the number of phantom

cache lines between this real line and the preceding real line

in the LRU stack. Note that for the first real line, its PLC

stores the number of phantom lines preceding itself. For a

cache that supports up to m-way phantom associativity, a

PLC takes log
2
m bits.

Remaining phantom cache line counter (RLC). The

RLC stores the number of phantom cache lines below the

least recently used real cache line in the LRU stack. It in-

dicates how many times the cache needs to be bypassed be-

fore the next real cache line is selected for replacement. The

RLC could be negative after we decrease the phantom asso-

ciativity at runtime. When a cache miss occurs, the replace-

ment decision is made based on the RLC in the correspond-

ing cache set. The RLC takes log
2
m + 1 bits for a cache

that support up to m-way phantom associativity.

Phantom associativity register (PAR). The PAR stores

the phantom associativity that the cache currently simulates.

The PAR takes log
2
m bits for a cache that supports up to

m-way phantom associativity.

The values of PLCs and RLC need to be maintained at

runtime since the cache replacement decision is made based

upon them. The phantom associativity of PAC should also

be adjustable dynamically since different programs may re-

quire different phantom associativities. Figure 4 summa-

rizes the logic for three PAC operations. For each PAC op-

eration, we only need to update at most two counters besides

the LRU stack. We describe our modification to the normal

LRU cache logic in detail below.

Figure 4. PAC operations.

Modification for a cache hit. Upon every cache hit,

the accessed cache line needs to be moved to the top of

the LRU stack. Before moving the accessed cache line, we

add its PLC value to the PLC of the real cache line just be-

low it in the LRU stack since the two segments of phantom

cache lines above or below the accessed cache line will be

merged. If the accessed cache line is the least recently used

real cache line, its PLC value is added to the RLC since no

real cache line is below it in the LRU stack. After being

moved to the top of the LRU stack, the PLC of the accessed

cache line is reset to 0 because there is no phantom cache

line above it in the LRU stack.

Modification for a cache miss. Upon every cache miss,

the replacement decision is made based on the RLC in the

corresponding cache set. If the RLC is no more than 0,

the least recently used real cache line will be selected for

replacement since there is no phantom cache line below it

in the LRU stack. Otherwise, the requested data will bypass

the cache since a phantom cache line is at the LRU position.

If a real cache line is selected for replacement, it will be

moved to the top of the LRU stack. Its PLC value is added

to the RLC before the PLC is reset to 0. If the requested data

block is sent to the processor through cache bypassing, i.e.,

a phantom cache line is selected for replacement, the RLC

will be decreased by 1 and the PLC of the most recently

used real cache line will be increased by 1 since a phantom

cache line is moved from the bottom to the top of the LRU

stack.

Adjusting the phantom associativity. When we adjust

the phantom associativity of the cache, we first add the dif-

ference between the new and current phantom associativity

to the RLC in each cache set. This is equal to adding the

new phantom cache lines to the LRU position for increas-

ing phantom associativity or removing the phantom cache

lines from the LRU position for decreasing phantom asso-

ciativity. We then copy the new phantom associativity to the

PAR for future phantom associativity adjustment.



2.3 PAC for Pseudo-LRU Caches

Pseudo-LRU is a cache policy that almost always dis-

cards one of the least recently used data blocks. It has

been used in many modern processors such as Intel Pen-

tium due to its low implementation cost. The space over-

head for Pseudo-LRU is only one bit for each cache line.

The pseudo-LRU policy works as follows: all cache lines in

a cache set are considered as leaf nodes of a binary search

tree. Each internal node of the tree has a one-bit flag indi-

cating which way will lead to the pseudo-LRU cache line.

To update the tree upon a cache access, the tree is traversed

to find the requested cache line and the flags are set so that

they point to the direction that is opposite to the direction

taken.

Figure 5. An example of pseudo-LRU tree.

Our PAC technique works with pseudo-LRU caches. As

shown in Figure 4, to update the PLCs and RLC for the

three PAC operations, we need to know if the accessed line

is at the LRU position and which cache line is next to the ac-

cessed one in the recency stack. While identifying whether

a cache line is at the LRU position is very easy, since the

LRU line is indicated by the flags, it is impossible to find

a cache line that is next to the accessed one in the recency

stack since the pseudo-LRU policy does not maintain a strict

recency ordering of the cache lines. However, we can find

a cache line that is closer to the LRU position than the ac-

cessed one in the pseudo-LRU tree. The procedure is as

follows: (1) trace back from the leaf node corresponding

to the accessed line to find the first flag that points to the

other direction; (2) follow the direction denoted by the flags

until reaching a leaf node. The leaf node indicates a cache

line that is closer to the LRU position than the accessed one.

Figure 5 shows an example of pseudo-LRU tree. In the ex-

ample, line 4 is at the LRU position as indicated by the flags.

To find a cache line that follows line 7 in the pseudo-LRU

recency stack, we first trace back from node 7 until reaching

the flag in the shaded rectangle and then follow the flags to

find node 6. Supposing no hits in the cache set, node 6 has

to be selected as victim first to flip the flag in the shaded

rectangle so that node 7 can reach the pseudo-LRU posi-

tion. Therefore node 6 is closer to the LRU position than

node 7 in the pseudo-LRU recency stack. Using these in-

formation, our PAC technique can work with pseudo-LRU

caches without any change.

3 Phantom Associativity Setting

The performance of our PAC technique depends highly

on the setting of phantom associativity. Setting large phan-

tom associativity can relieve the cache thrashing for low-

locality workloads but increase the cache misses for high-

locality workloads, and vice versa. In this section, we

present a runtime scheme that dynamically adjusts the phan-

tom associativity of the PAC according to the cache behav-

ior of the running programs.

In PAC, the current phantom associativity is stored in

the register PAR. To learn whether the current phantom as-

sociativity is optimal, we generate two alternative phantom

associativities. One of them is always 0 since we need to

make sure our method performs better than a normal LRU

cache. For the other associativity, we have a candidate pool

of three phantom associativities {16, 48, 112}, which makes

the total associativity {32, 64, 128}. We select the phan-

tom associativity that is merely bigger than the current PAR

value as the second alternative associativity. Set dueling [9]

are then used to measure the cache performance with the

current and alternative phantom associativities. At fixed ex-

ecution intervals, we compare the number of cache misses

produced by different phantom associativities and select the

one that produce fewest cache misses for the cache.

4 Evaluation

We evaluate PAC using Flexus [15], which is a cycle-

accurate full-system simulator built on Virtutech Simics [7].

Flexus models the SPARC ISA and allows commercial ap-

plications and operating systems to be executed without any

modification. The configuration used in our experiments is

summarized in Table 2. We run the Solaris 10 operating

system on the simulated processor. The SPEC CPU2006

benchmarks and PARSEC benchmarks are used in our ex-

periments. The CPU2006 benchmarks are executed on the

single-core model using the reference inputs. The PARSEC

benchmarks are executed on the quad-core model using four

threads and native inputs. The pre-compiled binaries down-

loaded from the official website are used.

We use the LRU policy as the baseline when we show the

results of PAC. Since the PAC we use in the experiments

supports up to 112 phantom ways, each cache line (64B)

needs a 7-bit PLC and each cache set (64B * 16) needs a 8-



bit RLC as RLC can be negative. The total storage overhead

is 7/(64 ∗ 8) + 8/(64 ∗ 8 ∗ 16) = 1.38% of the cache size.

Processors single-core for CPU2006 benchmarks

quad-core for PARSEC benchmarks

Cores SPARC v9 ISA, 8-stage pipeline,

out-of-order execution, 256-entry ROB,

8-wide dispatch, 32-entry store buffer

L1 Caches Split ID, 64KB 2-way

2-cycle latency, 2 ports

32 MSHRs, 16-entry victim cache

L2 Cache shared, 4MB 16-way, 64B lines

24-cycle latency, 1 port

32 MSHRs, 16-entry victim cache

Main Memory 4GB total memory

200-cycle access time

Table 2. System parameters.

4.1 Single-Threaded Applications
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Figure 6. Impact on SPEC CPU2006 bench-

marks.

Figure 6(a) compares the L2 misses per kilo-instruction

(MPKI) achieved by LRU and PAC on SPEC CPU2006

benchmarks. We only show the results for benchmarks with

MPKI larger than 1. On average, PAC reduces the L2 cache

misses by 17.95% for the benchmarks with MPKI higher

than 1. For the benchmarks with MPKI less than 1, PAC

only increases the L2 cache misses by 1.2%, which has neg-

ligible impact on the system performance (< 0.5%). Figure

6(b) compares the system performance of LRU and PAC in

terms of cycles per instructions (CPI). PAC significantly im-

proves the system performance for those benchmarks with

higher MPKI since their performance is more sensitive to

cache misses. On average, PAC reduces the CPI by 7.1%
for benchmarks that have MPKI higher than 1. For the three

benchmarks with MPKI higher than 10, PAC improves their

performance by more than 10%. On the other hand, the sys-

tem performance for those benchmarks with lower MPKI is

more resilient to changes in number of cache misses. For

benchmarks with MPKI less than 1, the average CPI differ-

ence between LRU and PAC is within 0.5%.

4.2 Multi-Threaded Applications
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Figure 7. Impact on PARSEC benchmarks.

Figure 7(a) shows the L2 MPKI of LRU and PAC on

PARSEC benchmarks. Although PARSEC benchmarks

generally have lower L2 MPKI than CPU2006 benchmarks,

most of them have higher miss rate. For example, for

the three benchmarks blackscholes, canneal, and

streamcluster that have MPKI less than 1, the miss

rates are around 20% which is quite high. Therefore PAC

can also reduce their cache misses by alleviating cache

thrashing. Compared to LRU, PAC reduces the L2 MPKI

for 7 out of 13 benchmarks. On average, PAC reduces the

L2 cache misses by 10.1% for PARSEC benchmarks. Fig-

ure 7(b) compares the system performance of LRU and PAC

on PARSEC benchmarks. On average, PAC reduces the CPI

by 4.3% for PARSEC benchmarks compared to LRU.

4.3 Results with Compiler Hints

In this section, we show the performance of PAC if the

compiler provides hints for adjusting the phantom associa-

tivity. The hints for a program are generated using the fol-

lowing steps: (1) Cache trace is collected by running the

program on a training data set; (2) For each main loop in the

program, its optimal phantom associativity is found by try-

ing different phantom associativity on the trace; (3) Before

each main loop a hint is inserted in the program. During the

execution of a program, PAC sets the phantom associativ-

ity based on the hints. We conducted this experiment on 10

benchmarks with relatively high MPKI or miss rate.
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Figure 8. Performance with compiler hints.

Figure 8 shows the performance of PAC with the help



of its compiler. All values are normalized to the LRU re-

sults. Since all 10 benchmarks used in this experiment have

relatively high MPKI or miss rate, their cache performance

has more potential to be improved with greater impact on

system performance. Compared to PAC without compiler

hints, PAC with compiler hints improves the cache perfor-

mance for 9 out of 10 benchmarks significantly. On aver-

age, PAC with compiler hints reduces the L2 cache misses

by 22% for these benchmarks over PAC without compiler

hints. Correspondingly, PAC with compiler hints improves

the system performance by 7% over PAC without compiler

hints.

4.4 Results for Pseudo–LRU Caches

In this experiment, we implemented PAC with the

Pseudo–LRU policy as described in Section 2.3. The per-

formance of PAC with Pseudo–LRU is compared with that

of regular cache with Pseudo–LRU. We did not conduct this

experiments on those CPU2006 benchmarks with MPKI

less than 1 since their system performance is hardly im-

pacted by the cache performance.
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Figure 9. Cache miss reduction with Pseudo–

LRU policy.

Figure 9 shows the L2 MPKI with the Pseudo–LRU pol-

icy. For CPU2006 benchmark suite, we only show the re-

sults for benchmarks with MPKI larger than 1. The per-

formance of Pseudo–LRU is very close to that of LRU. For

most CPU2006 and PARSEC benchmarks, the MPKI dif-

ference between LRU and Pseudo–LRU is less than 1%.

The average MPKI difference between LRU and Pseudo–

LRU across all benchmarks is 0.3%. Similarly, PAC

achieves similar performance with both LRU and Pseudo–

LRU based implementation. The average MPKI differ-

ence between PAC+LRU and PAC+Pseudo–LRU across all

benchmarks is 1.65%. The most noticable difference oc-

curs on lbm benchmark, where PAC reduces cache misses

by 51.1% over LRU but only 39.4% over Pseudo–LRU. For

most other benchmarks, the improvement achieved by PAC

over Pseudo–LRU is slightly larger than that over LRU.

4.5 Comparison with Other Cache Re-
placement Policies

In this section, we compare PAC with other cache re-

placement policies. Random replacement policy can some-

times alleviate cache thrashing since it does not always evict

the LRU line. A possible scheme for improving cache per-

formance is to dynamically select between LRU and Ran-

dom policy at runtime. Dynamic Insertion Policy (DIP) [9]

is another scheme for resolving cache thrashing. It ran-

domly selects LRU or MRU position for inserting new data.

We compare PAC with these two policies.

Figure 10 compares the L2 MPKI of LRU,

LRU+Random, DIP, and PAC. The CPU2006 bench-

marks with MPKI less than 1 are not shown in the figure

since their system performances are not significantly

impacted by the cache performance. LRU+Random outper-

forms LRU for most benchmarks with very high MPKI but

is mostly inferior to LRU for benchmarks with relatively

low MPKI. DIP outperforms both LRU and LRU+Random

for most benchmarks. On average, DIP reduces the L2

cache misses by 8.4% for these benchmarks compared

to LRU. The overall performance of PAC is best among

all four policies. PAC outperforms DIP for 16 out of 25

benchmarks. On average, PAC reduces the cache misses by

14.0% over LRU.

Figure 11 compares the system performance of LRU,

LRU+Random, DIP, and PAC. Compared to LRU, DIP im-

proves the system performance by 4.65% for the CPU2006

benchmarks with MPKI larger than 1 and 3.30% for PAR-

SEC benchmarks. For all CPU2006 benchmarks, DIP im-

proves the system performance by 1.95%. PAC outperforms

the other replacement policies for most benchmarks shown

in the figure. Overall, PAC improves the system perfor-

mance by 7.06% for the CPU2006 benchmarks with MPKI

larger than 1 and 4.34% for PARSEC benchmarks. For the

whole CPU2006 benchmark suite, PAC improves the sys-

tem performance by 3.09% on average.

5 Conclusion

In this paper, we proposed the PAC design for alleviat-

ing the cache thrashing in L2 cache. In PAC, the phantom

cache lines are introduced to postpone the eviction of the

in-cache data blocks. By setting appropriate phantom as-

sociativity in PAC, strong-locality data can be kept in the

cache for a longer period after being brought into the cache.

We also presented a hardware scheme for dynamically ad-

justing the phantom associativity. According to our exper-

imental results, PAC reduces cache misses on average by

17.95% and improves the system performance by 7.1% for

the CPU2006 benchmarks with MPKI larger than 1. On

average across all 29 SPEC2006 benchmarks and 13 PAR-
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Figure 10. Cache miss comparison of cache replacement policies.
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Figure 11. System performance comparison of cache replacement policies.

SEC benchmarks, PAC reduces L2 cache misses by 6.61%.

With the help of compiler hints, PAC can further reduce

cache misses by 22% for benchmarks that have relatively

high MPKI or miss rate.
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